JP2009006509A - Method and apparatus for manufacture of three-dimensional article - Google Patents

Method and apparatus for manufacture of three-dimensional article Download PDF

Info

Publication number
JP2009006509A
JP2009006509A JP2007167826A JP2007167826A JP2009006509A JP 2009006509 A JP2009006509 A JP 2009006509A JP 2007167826 A JP2007167826 A JP 2007167826A JP 2007167826 A JP2007167826 A JP 2007167826A JP 2009006509 A JP2009006509 A JP 2009006509A
Authority
JP
Japan
Prior art keywords
light beam
modeling
powder layer
manufacturing
shaped object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007167826A
Other languages
Japanese (ja)
Other versions
JP4916392B2 (en
Inventor
Isao Fuwa
勲 不破
Yoshikazu Azuma
喜万 東
Hirohiko Tougeyama
裕彦 峠山
Satoshi Abe
諭 阿部
Masataka Takenami
正孝 武南
Takashi Shimizu
俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007167826A priority Critical patent/JP4916392B2/en
Publication of JP2009006509A publication Critical patent/JP2009006509A/en
Application granted granted Critical
Publication of JP4916392B2 publication Critical patent/JP4916392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a three-dimensional article which enables efficient molding with plural light beams. <P>SOLUTION: A metal light forming machine 1 has a forming plate 3 on which a powder layer 21 of a metal powder 2 is laid, a forming table 31 holding the forming plate 3 and moving vertically, a powder layer forming section 4 forming the powder layer 21, an irradiation section 5 irradiating the powder layer 21 with two or more light beams, a camera 6 photographing the status of molding and a control section controlling the metal light molding machine 1. In the molding area of each powder layer 21, a molding area for molding is assigned preliminarily to each light beam L, and the irradiation section 5 is made to carry out scanning data sequences for individual molding areas at the same time, with each of the scanning data sequences carried out in order, so as to mold a three-dimensionally shaped molding through these parallel operations. Because a target powder layer can be irradiated with two or more light beams through parallel operations, a three-dimensionally shaped forming can be manufactured efficiently. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、無機質、又は有機質の粉末材料に光ビームの照射を行なう三次元形状造形物の製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a three-dimensional shaped object that irradiates a light beam onto an inorganic or organic powder material.

従来から、無機質、又は有機質の粉末材料で形成した粉末層に光ビームを照射し、粉末層を溶融して焼結層を形成し、その焼結層の上に新たな粉末層を形成して光ビームを照射し焼結層を形成することを繰り返して、三次元形状造形物を製造する製造方法が知られている。   Conventionally, a powder layer formed of an inorganic or organic powder material is irradiated with a light beam, the powder layer is melted to form a sintered layer, and a new powder layer is formed on the sintered layer. There is known a manufacturing method for manufacturing a three-dimensional shaped object by repeatedly irradiating a light beam to form a sintered layer.

また、光ビームを複数として三次元形状造形物を製造する方法が知られている(例えば特許文献1参照)。   Further, a method of manufacturing a three-dimensional shaped object using a plurality of light beams is known (for example, see Patent Document 1).

しかしながら、特許文献1に示されるような製造方法においては、効率的な造形を行なうための複数の光ビームの制御方法が示されていない。
特表平7−501998号公報
However, the manufacturing method as shown in Patent Document 1 does not show a method for controlling a plurality of light beams for efficient modeling.
Japanese translation of PCT publication No. 7-501998

本発明は、上記問題を解消するものであり、複数の光ビームによって効率的な造形を行うことが可能な三次元形状造形物の製造方法及び製造装置を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a manufacturing method and a manufacturing apparatus for a three-dimensional shaped object capable of performing efficient modeling with a plurality of light beams.

上記目的を達成するために請求項1の発明は、無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程と照射工程とを繰り返すことにより下層の焼結硬化層と一体になった新たな焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造方法において、前記光ビームを走査する複数の光ビーム走査手段を有し、前記光ビームを前記粉末層の複数の箇所に照射すると共に、一つの層の造形エリアに対し、複数の光ビームが行う造形エリアを予め決めておき、前記光ビーム走査手段に、同時に、それぞれの造形エリアに対応する異なる走査データを順次実行させ、並列動作によって三次元形状造形物を造形するものである。   In order to achieve the above object, the invention of claim 1 includes a powder layer forming step of supplying an inorganic or organic powder material to form a powder layer, and irradiating the powder layer with a light beam to melt the powder layer. An irradiation step for forming a sintered hardened layer, and by repeating the powder layer forming step and the irradiation step, a new sintered hardened layer integrated with the lower sintered hardened layer is laminated to form a three-dimensional structure. In the manufacturing method of the three-dimensional modeled object that models the modeled model, the three-dimensional modeled object has a plurality of light beam scanning means for scanning the light beam, and irradiates the light beam to a plurality of locations of the powder layer. A modeling area to be formed by a plurality of light beams is determined in advance with respect to the modeling area of the layer, and the light beam scanning unit simultaneously executes different scanning data corresponding to each modeling area in a three-dimensional manner by parallel operation. form It is intended to shape the molded article.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、一つの光ビームが担当する造形エリアを単位面積当たりの領域に小分割し、分割した領域毎に造形終了を検出するものである。   According to a second aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the first aspect, the modeling area handled by one light beam is subdivided into regions per unit area, and the modeling ends for each divided region. Is detected.

請求項3の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、一つの光ビームが担当する造形エリアの造形を終了すると、他の光ビームの造形エリアの造形を行なうものである。   The invention of claim 3 is the method of manufacturing a three-dimensional shaped article according to claim 1 or claim 2, and when the modeling of the modeling area that one light beam is in charge of, the modeling area of the other light beam It is for modeling.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法において、それぞれの光ビームが担当する各層の造形エリアの面積が等しくなるように、造形エリア全体が分割されているものである。   According to a fourth aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to any one of the first to third aspects, the area of the modeling area of each layer that each light beam takes charge of becomes equal. The entire modeling area is divided.

請求項5の発明は、請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法において、それぞれの光ビームが担当する造形エリアが、該光ビームを走査するそれぞれの光ビーム走査手段から近くになるように造形エリア全体が分割されているものである。   The invention of claim 5 is the method of manufacturing a three-dimensional shaped article according to any one of claims 1 to 4, wherein each modeling area that each light beam takes charge scans the light beam. The entire modeling area is divided so as to be close to the light beam scanning means.

請求項6の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、異なる焼結密度からなる三次元形状造形物の造形において、照射する光ビームが焼結密度毎に異なるものである。   The invention of claim 6 is the method for producing a three-dimensional shaped article according to claim 1 or claim 2, wherein the light beam to be irradiated is sintered density in the modeling of the three-dimensional shaped article having different sintered densities. Everything is different.

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法において、造形前及び任意の造形途中のいずれか一方又は両方において、それぞれの光ビームの照射位置の原点補正を行なうものである。   The invention of claim 7 is the method for producing a three-dimensional shaped article according to any one of claims 1 to 6, wherein each light is emitted before shaping and / or during any shaping. The origin correction of the beam irradiation position is performed.

請求項8の発明は、請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法において、前記焼結硬化層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び不要部分のいずれか一方又は両方の切削除去を行なう切削工程を更に備え、造形前及び任意の造形途中のいずれか一方又は両方において、それぞれの光ビームの照射位置及び切削削除位置の原点補正を行なうものである。   Invention of Claim 8 was obtained by laminating until then after formation of the sintered hardened layer in the method for producing a three-dimensional shaped article according to any one of Claims 1 to 6. It further includes a cutting step for cutting and removing either or both of the surface portion and unnecessary portion of the three-dimensional shaped object, and each light beam irradiation position before or during any one of the forming operations In addition, the origin correction of the cutting deletion position is performed.

請求項9の発明は、請求項1乃至請求項8のいずれか一項に記載の三次元形状造形物の製造方法において、光ビームを分岐して複数の光ビームを形成するものである。   According to a ninth aspect of the present invention, in the method for manufacturing a three-dimensionally shaped object according to any one of the first to eighth aspects, the light beam is branched to form a plurality of light beams.

請求項10の発明は、請求項9に記載の三次元形状造形物の製造方法において、前記光ビームの分岐はハーフミラーによって行なわれるものである。   According to a tenth aspect of the present invention, in the method for manufacturing a three-dimensionally shaped object according to the ninth aspect, the light beam is branched by a half mirror.

請求項11の発明は、請求項9に記載の三次元形状造形物の製造方法において、光ビームの光軸上に設置され該光軸と垂直な回転軸を有し、前記回転軸によって前記光軸との角度を変化させる回転ミラーにより、光ビームを前記回転ミラーによって反射される光ビームと前記回転ミラーの端部の外側を通過する光ビームとに分けることにより前記光ビームを分岐し、前記回転ミラーによる反射光を、該反射光の照射位置に移動する移動ミラーによって受光して照射方向へ反射し、前記回転ミラーと前記光軸との角度を変えることにより、光ビームの分岐量を変えるものである。   The invention of claim 11 is the method of manufacturing a three-dimensional shaped article according to claim 9, wherein the three-dimensional shaped article has a rotation axis that is installed on the optical axis of the light beam and is perpendicular to the optical axis, and the light is reflected by the rotation axis. The light beam is split by dividing the light beam into a light beam reflected by the rotating mirror and a light beam passing outside the end of the rotating mirror by a rotating mirror that changes an angle with the axis, The reflected light from the rotating mirror is received by a moving mirror that moves to the position where the reflected light is irradiated, reflected in the irradiation direction, and the angle between the rotating mirror and the optical axis is changed to change the branching amount of the light beam. Is.

請求項12の発明は、請求項9乃至請求項11のいずれか一項に記載の三次元形状造形物の製造方法において、前記光ビームは、パワーを制御されるものである。   According to a twelfth aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to any one of the ninth to eleventh aspects, the power of the light beam is controlled.

請求項13の発明は、請求項12に記載の三次元形状造形物の製造方法において、前記光ビームのパワー制御は、前記光ビームを該光ビームの光軸上に設けられた径の異なる穴に通過させ、該光ビームの一部を制限することにより行なうものである。   According to a thirteenth aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the twelfth aspect, the power control of the light beam is performed by a hole having a different diameter provided on the optical axis of the light beam. By passing the light beam and limiting a part of the light beam.

請求項14の発明は、無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成手段と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射手段と、を備え、前記粉末層の形成と前記焼結硬化層の形成とを繰り返すことにより下層の焼結硬化層と一体になった新たな焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造装置において、前記照射手段は光ビームを走査する複数の光ビーム走査手段を有し、複数の光ビームを前記粉末層の複数の箇所にそれぞれ照射し、一つの層の造形エリアに対し、複数の光ビームの各々が行う造形エリアを予め決めておき、前記光ビーム走査手段に、同時に、それぞれの造形エリアに対応する異なる走査データを順次実行させて並列動作によって三次元形状造形物を造形すると共に、一つの光ビームが担当する造形エリアを単位面積当たりの領域に小分割し、分割した領域毎に造形終了を検出するものである。   The invention of claim 14 is a powder layer forming means for forming a powder layer by supplying an inorganic or organic powder material, and irradiating the powder layer with a light beam to melt the powder layer to form a sintered hardened layer. A three-dimensional shape by laminating a new sintered hardened layer integrated with the lower sintered hardened layer by repeating the formation of the powder layer and the formation of the sintered hardened layer. In the apparatus for manufacturing a three-dimensional shaped object for modeling a three-dimensional object, the irradiation unit includes a plurality of light beam scanning units that scan a light beam, and each of the plurality of light beams is irradiated to a plurality of portions of the powder layer. , A modeling area to be performed by each of a plurality of light beams is determined in advance for a modeling area of one layer, and the light beam scanning unit is caused to sequentially execute different scanning data corresponding to each modeling area at the same time. By parallel operation With shaping the dimension shaped object, small portions a shaped area in which one of the light beams is responsible to the area per unit area, and detects the shaped ends each divided region.

請求項1の発明によれば、複数の光ビームを並列動作によって照射するので、効率良く三次元形状造形物を造形することができる。   According to the first aspect of the present invention, since a plurality of light beams are irradiated in a parallel operation, a three-dimensional shaped object can be formed efficiently.

請求項2の発明によれば、造形の進捗状況が詳しく分かるので、効率良く三次元形状造形物を造形することができる。   According to the invention of claim 2, since the progress of modeling can be understood in detail, a three-dimensional shaped object can be efficiently modeled.

請求項3の発明によれば、それぞれの光ビームは、他の光ビームの造形エリアも造形するので効率良く造形を行なうことができる。   According to invention of Claim 3, since each light beam also models the modeling area of another light beam, it can model efficiently.

請求項4の発明によれば、それぞれの光ビームの造形エリア面積が等しいので、効率良く造形を行なうことができる。   According to invention of Claim 4, since the modeling area area of each light beam is equal, modeling can be performed efficiently.

請求項5の発明によれば、光ビームの照射の位置精度が良くなり、三次元形状造形物の寸法精度が良くなる。   According to the invention of claim 5, the positional accuracy of the light beam irradiation is improved, and the dimensional accuracy of the three-dimensional shaped object is improved.

請求項6の発明によれば、光ビームの条件を造形中に変えないので、効率良く造形を行なうことができる。   According to the invention of claim 6, since the condition of the light beam is not changed during modeling, modeling can be performed efficiently.

請求項7の発明によれば、三次元形状造形物の寸法精度が良くなる。   According to the invention of claim 7, the dimensional accuracy of the three-dimensional shaped object is improved.

請求項8の発明によれば、切削工程を有する製造方法においても三次元形状造形物の寸法精度が良くなる。   According to the invention of claim 8, the dimensional accuracy of the three-dimensional shaped object is improved even in the manufacturing method having a cutting process.

請求項9の発明によれば、製造装置の低コスト化を図ることができると共に、製造装置を小型化することができる。   According to invention of Claim 9, while being able to achieve cost reduction of a manufacturing apparatus, a manufacturing apparatus can be reduced in size.

請求項10の発明によれば、容易に光ビームを分岐することができる。   According to the invention of claim 10, the light beam can be easily branched.

請求項11の発明によれば、光ビームの分岐量を調整し、効率良く造形を行なうことができる。   According to the eleventh aspect of the present invention, the amount of branching of the light beam can be adjusted, and modeling can be performed efficiently.

請求項12の発明によれば、分岐した光ビーム毎にパワーを変えることができ、効率良く造形を行なうことができる。また、光ビーム毎に通過/遮断の制御を行なうことができる。   According to the twelfth aspect of the present invention, the power can be changed for each branched light beam, and modeling can be performed efficiently. Further, it is possible to control passage / blocking for each light beam.

請求項13の発明によれば、分岐した光ビーム毎のパワーを容易に制御することができ、効率良く造形を行なうことができる。   According to invention of Claim 13, the power for every branched light beam can be controlled easily, and modeling can be performed efficiently.

請求項14の発明によれば、複数の光ビームを並列動作によって照射するので、効率良く三次元形状造形物を造形することができる。   According to the fourteenth aspect of the present invention, a plurality of light beams are irradiated by a parallel operation, so that a three-dimensional shaped object can be efficiently modeled.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1及び図2は、同製造方法に用いられる金属光造形加工機の構成を示す。金属光造形加工機1は、金属粉末2の粉末層21が敷かれる造形用プレート3と、造形用プレート3を保持し、上下に昇降する造形用テーブル31と、粉末層21を形成する粉末層形成部4と、粉末層21に光ビームを照射する照射部5と造形の進捗状況を撮影するカメラ6と、金属光造形加工機1各部の動作を制御する制御部71と、を備える。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG.1 and FIG.2 shows the structure of the metal stereolithography processing machine used for the manufacturing method. The metal stereolithography machine 1 includes a modeling plate 3 on which a powder layer 21 of metal powder 2 is laid, a modeling table 31 that holds the modeling plate 3 and moves up and down, and a powder layer that forms the powder layer 21. A forming unit 4, an irradiation unit 5 that irradiates the powder layer 21 with a light beam, a camera 6 that captures the progress of modeling, and a control unit 71 that controls the operation of each unit of the metal optical modeling machine 1 are provided.

粉末層形成部4は、金属粉末2を供給する供給槽41と、供給槽41の金属粉末2を上昇させる材料用テーブル42と、粉末層21を形成するスキージ43と、を有する。スキージ43は、方向Dに移動して材料用テーブル41上の金属粉末2を造形用プレート3上に供給する。照射部5は、光ビームLを発する光ビーム発振器51と、光ビームLを複数に分岐する分波器52と、光ビームLを通過/遮断するスイッチングデバイス53と、光ビームLの径を調整するスポット径変更デバイス54と、ガルバノミラーにより光ビームLを粉末層21の上に走査するスキャナ55と、光ビームLを反射して光路に進める反射ミラー59とを有する。光ビームLの分岐は3本に限られず、2本以上の複数本とすればよい。また、光ビームLを分岐する構成に代えて、複数の光ビーム発振器51を用いて、複数の光ビームを照射する構成としてもよい。金属粉末2は、例えば、平均粒径20μmの球形の鉄粉であり、光ビーム発振器51は、例えば、炭酸ガスレーザやYAGレーザの発振器である。   The powder layer forming unit 4 includes a supply tank 41 that supplies the metal powder 2, a material table 42 that raises the metal powder 2 in the supply tank 41, and a squeegee 43 that forms the powder layer 21. The squeegee 43 moves in the direction D and supplies the metal powder 2 on the material table 41 onto the modeling plate 3. The irradiation unit 5 adjusts the diameter of the light beam L, a light beam oscillator 51 that emits the light beam L, a demultiplexer 52 that divides the light beam L into a plurality, a switching device 53 that passes / blocks the light beam L, and A spot diameter changing device 54, a scanner 55 that scans the light beam L onto the powder layer 21 by a galvano mirror, and a reflection mirror 59 that reflects the light beam L and advances it to the optical path. The number of branches of the light beam L is not limited to three, and may be two or more. Further, instead of the configuration in which the light beam L is branched, a plurality of light beam oscillators 51 may be used to irradiate a plurality of light beams. The metal powder 2 is, for example, a spherical iron powder having an average particle diameter of 20 μm, and the light beam oscillator 51 is, for example, an oscillator of a carbon dioxide laser or a YAG laser.

次に、分波器について説明する。図3は分波器52の一構成例を示す。分波器52は、ハーフミラー52aと反射ミラー52bとを有している。分波器52は、光ビームLをハーフミラー52aにより透過光と反射光とに分け、反射光を更に反射ミラー52bによって反射することにより分岐している。光ビームLを3本以上に分岐する場合には、更にハーフミラー52aを用いて光ビームLを分岐する。このように、ハーフミラーを用いることにより、光ビームを容易に分岐することができる。   Next, the duplexer will be described. FIG. 3 shows a configuration example of the duplexer 52. The duplexer 52 includes a half mirror 52a and a reflection mirror 52b. The demultiplexer 52 divides the light beam L into transmitted light and reflected light by the half mirror 52a, and further branches the reflected light by reflecting it by the reflecting mirror 52b. When the light beam L is branched into three or more, the light beam L is further branched using the half mirror 52a. In this way, the light beam can be easily branched by using the half mirror.

図4(a)及び(b)は、分波器52の第1の変形例を示す。分波器52は、ポリイミド系の材料より構成され、内部にY字状に分岐した光導波路52cが形成されている。光ビームLは光導波路52cを全反射しながら進み、分岐部52dにより分岐される。分波器52をこのような構成にすることにより、光ビームを容易に分岐することができる。   4A and 4B show a first modification of the duplexer 52. FIG. The duplexer 52 is made of a polyimide-based material, and an optical waveguide 52c branched in a Y shape is formed therein. The light beam L travels while totally reflecting the optical waveguide 52c, and is branched by the branching portion 52d. By configuring the duplexer 52 in such a configuration, the light beam can be easily branched.

図5(a)は、分波器52の第2の変形例を示し、図5(b)は、その反射部分を拡大して示す。分波器52は、回転軸52eを有する回転ミラー52fと、回転ミラー52fによる反射光を反射する移動ミラー52gとを備えている。回転ミラー52fは、光ビームLの一部を反射するが、回転ミラー52fの端部の外側を通る光ビームLを通過させる。また、回転ミラー52fは、光ビームLの光軸との角度を変えることにより、光ビームLの反射量を変える。このとき、移動ミラー52gは矢印E方向に移動することにより、光ビームLの光軸と回転ミラー52fとの角度が変わって反射光の反射方向が変化しても、反射光を受けて照射方向へ反射する。このように、分波器52は光ビームLを分岐すると共に、回転ミラー52fと光ビームLの光軸との角度を変えることにより、光ビームLの分岐量を変えることができる。   FIG. 5A shows a second modification of the duplexer 52, and FIG. 5B shows an enlarged reflection portion. The duplexer 52 includes a rotating mirror 52f having a rotating shaft 52e and a moving mirror 52g that reflects light reflected by the rotating mirror 52f. The rotating mirror 52f reflects a part of the light beam L, but allows the light beam L passing outside the end of the rotating mirror 52f to pass. The rotating mirror 52f changes the reflection amount of the light beam L by changing the angle with the optical axis of the light beam L. At this time, the moving mirror 52g moves in the direction of the arrow E, so that even if the angle between the optical axis of the light beam L and the rotating mirror 52f changes and the reflection direction of the reflected light changes, the reflected light is received and the irradiation direction Reflect to. As described above, the branching filter 52 can branch the light beam L and change the branching amount of the light beam L by changing the angle between the rotating mirror 52 f and the optical axis of the light beam L.

次に、スイッチングデバイス53について図6を参照して説明する。図6(a)及び(b)はスイッチングデバイス53の一構成例を示す。スイッチングデバイス53は、回転軸53aを有する反射ミラー53bと光ビームLを吸収するダンパー53cとを備えている。図6(a)は、スイッチングデバイス53が光ビームLを遮断している状態を示す。光ビームLを遮断するときは、反射ミラー53bを回転軸53aによって回転させ、光ビームLをダンパー53cの方へ反射させ、ダンパー53cによって吸収する。図6(b)は、光ビームLを通過させている状態を示す。光ビームLを通過させるときは、光ビームLを遮断しないように反射ミラー53bを回転させる。このような構成にすることにより、光ビームLの通過と遮断を容易に行なうことができる。   Next, the switching device 53 will be described with reference to FIG. 6A and 6B show a configuration example of the switching device 53. FIG. The switching device 53 includes a reflection mirror 53b having a rotation axis 53a and a damper 53c that absorbs the light beam L. FIG. 6A shows a state where the switching device 53 blocks the light beam L. FIG. When blocking the light beam L, the reflecting mirror 53b is rotated by the rotating shaft 53a, the light beam L is reflected toward the damper 53c, and is absorbed by the damper 53c. FIG. 6B shows a state in which the light beam L is allowed to pass. When passing the light beam L, the reflection mirror 53b is rotated so as not to block the light beam L. With this configuration, the light beam L can be easily passed and blocked.

図6(c)及び(d)は、スイッチングデバイス53の変形例を示す。このスイッチングデバイス53は、回転軸53dを有するダンパー53eを備えている。図6(c)は、スイッチングデバイス53が光ビームLを遮断している状態を示す。光ビームLを遮断するときは、ダンパー53eが光ビームLの光軸と垂直になるようにダンパー53eを回転軸53dによって回転させ、光ビームLをダンパー53dによって吸収する。図6(d)は、光ビームLを通過させている状態を示す。光ビームLを通過させるときには、ダンパー53eが光ビームLを遮断しないように、ダンパー53eを光軸と平行になるように回転させる。スイッチングデバイス53をこのような構成にすることにより、光ビームLの通過と遮断を容易に行なうことができる。   6C and 6D show a modification of the switching device 53. FIG. The switching device 53 includes a damper 53e having a rotation shaft 53d. FIG. 6C shows a state where the switching device 53 blocks the light beam L. When blocking the light beam L, the damper 53e is rotated by the rotating shaft 53d so that the damper 53e is perpendicular to the optical axis of the light beam L, and the light beam L is absorbed by the damper 53d. FIG. 6D shows a state where the light beam L is allowed to pass. When passing the light beam L, the damper 53e is rotated so as to be parallel to the optical axis so that the damper 53e does not block the light beam L. With the switching device 53 having such a configuration, the light beam L can be easily passed and blocked.

次に、三次元形状造形物の製造方法を図7及び図8を参照して説明する。図7はそのフローを、図8は、その製造方法を実施したときの時系列状態を示す。まず、図8(a)に示すように、造形用プレート3が造形用テーブル31の上に載置される(ステップS1)。次に、制御部は造形用プレート3の上面と基準テーブル32の上面との段差が長さΔtになるように、造形用テーブル31を下降させる(ステップS2)。次に、制御部はスキージ43によって材料用テーブル42上の金属粉末2を造形用プレート3上に供給する。スキージ43は、基準テーブル32の上面と同じ高さで水平方向に移動し、造形用プレート3の上に厚みΔtの粉末層21を形成する(ステップS3)。このステップS2及びS3は粉末層形成工程を構成する。   Next, a method for manufacturing a three-dimensional shaped object will be described with reference to FIGS. FIG. 7 shows the flow, and FIG. 8 shows a time-series state when the manufacturing method is performed. First, as shown in FIG. 8A, the modeling plate 3 is placed on the modeling table 31 (step S1). Next, the control unit lowers the modeling table 31 so that the step between the upper surface of the modeling plate 3 and the upper surface of the reference table 32 has a length Δt (step S2). Next, the control unit supplies the metal powder 2 on the material table 42 onto the modeling plate 3 by the squeegee 43. The squeegee 43 moves in the horizontal direction at the same height as the upper surface of the reference table 32, and forms the powder layer 21 having a thickness Δt on the modeling plate 3 (step S3). Steps S2 and S3 constitute a powder layer forming process.

ステップS3の後、図8(b)に示すように、制御部は光ビームLをスキャナによって任意の位置に走査させ(ステップS4)、粉末層21を溶融し造形用プレート3と一体化した厚みΔtの焼結硬化層22を形成する(ステップS5)。このステップS4及びS5は照射工程を構成する。   After step S3, as shown in FIG. 8B, the control unit scans the light beam L to an arbitrary position with a scanner (step S4), melts the powder layer 21, and is integrated with the modeling plate 3. A Δt sintered hardened layer 22 is formed (step S5). Steps S4 and S5 constitute an irradiation process.

ステップS5の後、制御部は造形が終了したかを判断し(ステップS6)、終了していないときは、図8(c)、(d)に示すように、ステップS2へ戻り、ステップS3乃至S5を繰り返し実行し、焼結硬化層22を積層する。こうして、図8(e)に示すように、造形が終了するまでステップS2乃至S6を繰り返して、焼結層22を積層する。   After step S5, the control unit determines whether or not the modeling is finished (step S6). If not finished, as shown in FIGS. 8C and 8D, the control unit returns to step S2, and steps S3 to S3 are performed. S5 is repeatedly executed, and the sintered hardened layer 22 is laminated. In this way, as shown in FIG. 8E, steps S2 to S6 are repeated until the modeling is completed, and the sintered layer 22 is laminated.

次に、複数の光ビームLを照射する動作について図9を参照して説明する。図9は、照射を制御するための構成を示す。光ビームLは分波器52によって3本の光ビームLA、LB、LCに分岐している。制御部71は、それぞれの光ビームLA、LB、LCの走査データを、対応するスキャナコントローラ72に送信する。スキャナコントローラ72は、走査データに基づいて、光ビームLA、LB、LCの通過/遮断をスイッチングデバイス53A、53B、53Cによって行い、走査をスキャナ55A、55B、55Cによって行う。このようにして、制御部71は光ビームLA、LB、LCの制御を行なう。   Next, the operation of irradiating a plurality of light beams L will be described with reference to FIG. FIG. 9 shows a configuration for controlling irradiation. The light beam L is branched by the branching filter 52 into three light beams LA, LB, and LC. The control unit 71 transmits the scanning data of each light beam LA, LB, LC to the corresponding scanner controller 72. Based on the scanning data, the scanner controller 72 performs passage / blocking of the light beams LA, LB, and LC by the switching devices 53A, 53B, and 53C, and performs scanning by the scanners 55A, 55B, and 55C. In this way, the control unit 71 controls the light beams LA, LB, and LC.

次に、造形の感知の動作について図10を参照して説明する。図10(a)は造形エリアSを、図10(b)は造形エリアSの光ビーム毎の分担エリアを示す。造形エリアSは、2つの光ビームそれぞれが造形する分担エリアS1とS2に分割されている。図10(c)は造形の進捗を管理するために単位面積当たりの小領域S3に小分割された造形エリアを示す。制御部は、小領域S3毎にカメラによって造形が終了したかを検出する。図10(d)は、造形途中の分担エリアS1及びS2の状態を示し、終了エリアS1E及びS2Eが造形が終了した領域である。   Next, the operation of sensing modeling will be described with reference to FIG. 10A shows a modeling area S, and FIG. 10B shows a sharing area for each light beam in the modeling area S. The modeling area S is divided into shared areas S1 and S2 that each of the two light beams models. FIG. 10C shows a modeling area that is subdivided into small areas S3 per unit area in order to manage the progress of modeling. A control part detects whether modeling was completed with the camera for every small area S3. FIG. 10D shows the state of the shared areas S1 and S2 in the middle of modeling, and the end areas S1E and S2E are areas where modeling is completed.

そして、図10(e)に示すように分担エリアS1の造形が終了した時点で分担エリアS2の造形が終了していない場合には、図10(f)に示すように分担エリアS1を造形していた光ビームは分担エリアS2の造形を行なう。このように、造形エリアを単位面積当たりの小領域S3に小分割して造形の進捗を管理するので造形の終了状況が分かり易く、一つの光ビームが予定していた分担エリアの造形を終了すると、その光ビームは他の光ビームの分担エリアの造形を行なうことができ、効率良く造形を行なうことができる。   Then, when the modeling of the sharing area S2 is not completed when the modeling of the sharing area S1 is completed as shown in FIG. 10 (e), the sharing area S1 is modeled as shown in FIG. 10 (f). The light beam that has been formed forms the shared area S2. In this way, since the modeling area is subdivided into small areas S3 per unit area and the progress of modeling is managed, the completion status of modeling is easy to understand, and when the modeling of the shared area planned by one light beam is completed The light beam can perform modeling of the shared area of other light beams, and can perform modeling efficiently.

上記分担エリア分割方法は、各分担エリアの面積を等しくするような方法による。図11(a)は、造形する三次元形状造形物の構成を、図11(b)は三次元形状造形物の水平方向の断面位置を、図11(c)乃至(e)は、各断面において分割された2つの分担エリアS1及びS2を示す。断面Aの位置では、造形エリアを2つの分担エリアS1及びS2に分割する分割線M1は断面図中の上下の中間位置にある。断面Bの位置では、断面形状が断面Aでの形状とは異なり、断面Bでの分割線M2は分割線M1より断面図中で下の方向に移動する。そして、断面Cの位置では、分割線M3は分割線M1より断面図中で上の方向に移動する。このように、断面の位置によって分割線の位置を変えて分担エリアの面積が等しくなるようにすることにより、効率良く造形を行なうことができる。   The sharing area dividing method is based on a method of equalizing the areas of the sharing areas. 11A shows the configuration of the three-dimensional shaped object to be shaped, FIG. 11B shows the horizontal cross-sectional position of the three-dimensional shaped object, and FIGS. 11C to 11E show the cross sections. 2 shows two shared areas S1 and S2. At the position of the cross section A, the dividing line M1 that divides the modeling area into the two shared areas S1 and S2 is at the upper and lower intermediate positions in the sectional view. At the position of the cross section B, the cross sectional shape is different from the shape of the cross section A, and the dividing line M2 in the cross section B moves in the lower direction in the cross sectional view than the dividing line M1. Then, at the position of the cross section C, the dividing line M3 moves in the upper direction in the sectional view from the dividing line M1. Thus, modeling can be performed efficiently by changing the position of the dividing line according to the position of the cross section so that the area of the shared area becomes equal.

また、上記分担エリア分割方法は、各光ビームの分担エリアがそれぞれの光ビームを照射するスキャナ55から近くになるような方法でもよい。図12(a)は、分割された造形エリアの平面視を、図12(b)はその正面視を示す。スキャナ55Aの分担エリアS1は、スキャナ55Aの下に設定されている。同様に、分担エリアS2はスキャナ55Bの下に、分担エリアS3はスキャナ55Cの下に設定されている。分担エリアがそれぞれのスキャナ55の近くなので、光ビームLA、LB、LCの照射の位置精度がよく、造形の精度が良くなる。この分担エリアは、スキャナ55の下でなくても、近くになるように設定すればよい。   Further, the sharing area dividing method may be a method in which the sharing area of each light beam is close to the scanner 55 that irradiates each light beam. Fig.12 (a) shows the planar view of the divided | segmented modeling area, FIG.12 (b) shows the front view. The sharing area S1 of the scanner 55A is set under the scanner 55A. Similarly, the sharing area S2 is set below the scanner 55B, and the sharing area S3 is set below the scanner 55C. Since the shared area is close to each scanner 55, the positional accuracy of irradiation with the light beams LA, LB, and LC is good, and the precision of modeling is improved. This sharing area may be set to be close even if it is not under the scanner 55.

また、上記分担エリア分割方法は、三次元形状造形物が焼結密度の異なる領域から構成されている場合、造形エリアの焼結密度毎に分割する方法でもよい。図13(a)(b)は、それぞれ分割された造形エリアの平面視及び正面視の構成を示す。三次元形状造形物は、焼結密度が異なる高密度領域S11と中密度領域S12と低密度領域S13との3領域に分かれている。そして、それぞれの領域毎に、光ビームを照射するスキャナ55が異なっており、高密度領域S11にはスキャナ55Aから高密度用の光ビームLAを照射し、同様に、中密度領域S12にはスキャナ55Bから光ビームLBを、低密度領域S13にはスキャナ55Cから光ビームLCを照射する。   Moreover, the method of dividing | segmenting the said shared area may be the method of dividing | segmenting for every sintering density of a modeling area, when the three-dimensional molded item is comprised from the area | region where a sintering density differs. FIGS. 13A and 13B show configurations of the divided modeling areas in plan view and front view, respectively. The three-dimensional shaped object is divided into three regions of a high density region S11, a medium density region S12, and a low density region S13 having different sintering densities. The scanner 55 for irradiating the light beam is different for each region, the high-density region S11 is irradiated with the high-density light beam LA from the scanner 55A, and similarly, the medium-density region S12 is scanned with the scanner. The light beam LB is irradiated from 55B, and the light beam LC is irradiated from the scanner 55C to the low density region S13.

このように焼結密度を変化させるには、光ビームの出力や、走査速度や、走査ピッチを変化させることにより行うが、焼結密度毎に光ビームを設定することにより、光ビームの条件を走査中に変更しなくてよいので効率が良い。また、複数の光ビーム発振器51を用いる場合には、特定の光ビーム発振器51を高密度用に出力を高くすれば走査速度を遅くしなくてよいので効率が良い。   In this way, the sintering density is changed by changing the output of the light beam, the scanning speed, and the scanning pitch. By setting the light beam for each sintering density, the condition of the light beam can be changed. Since it is not necessary to change during scanning, it is efficient. Further, when a plurality of light beam oscillators 51 are used, if the output of the specific light beam oscillator 51 is increased for high density, the scanning speed does not have to be slowed down, which is efficient.

次に、第1の実施形態の製造方法の変形例について図14を参照して説明する。図14は、本変形例に用いる金属光造形加工機の構成を示す。図示では、照射部についてはスキャナ55のみを示している。本変形例では、第1の製造方法に加えて、更に造形物の周囲の切削を行う。金属光造形加工機1は、第1の実施形態に係る金属光造形加工機に加えて、造形物の周囲を削るミーリングヘッド73と、ミーリングヘッド73を切削箇所に移動させるXY駆動機構74とを有している。本変形例では、粉末層形成工程と照射工程を繰り返して焼結硬化層の厚みがミーリングヘッド73の有効刃長から定めた厚み以上になると、XY駆動機構74によってミーリングヘッド73を矢印X及び矢印Y方向に移動させ、造形物の表面部及び不要部分を切削する切削工程を行う。製造される三次元形状造形物の表面粗さが細かくなり、寸法精度が向上する。   Next, a modification of the manufacturing method of the first embodiment will be described with reference to FIG. FIG. 14 shows the configuration of a metal stereolithography machine used in this modification. In the figure, only the scanner 55 is shown for the irradiation unit. In the present modification, in addition to the first manufacturing method, the surroundings of the modeled object are further cut. The metal stereolithography machine 1 includes, in addition to the metal stereolithography machine according to the first embodiment, a milling head 73 that scrapes the periphery of the modeled object, and an XY drive mechanism 74 that moves the milling head 73 to a cutting location. Have. In this modification, the powder layer forming step and the irradiation step are repeated, and when the thickness of the sintered hardened layer becomes equal to or greater than the thickness determined from the effective blade length of the milling head 73, the milling head 73 is moved by the arrow X and the arrow by the XY drive mechanism 74. It is moved in the Y direction, and a cutting process for cutting the surface portion and unnecessary portion of the modeled object is performed. The surface roughness of the manufactured three-dimensional shaped object becomes fine, and the dimensional accuracy is improved.

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について図15を参照して説明する。本実施形態においては、第1の実施形態の製造方法に加えて、更に光ビームの照射位置と切削削除位置の原点補正を行う。図15(a)は、本実施形態に用いる金属光造形加工機の構成を示す。金属光造形加工機1は、ミーリングヘッド73を備え、ミーリングヘッド73の横に撮像カメラ75と照明部76を有している。原点補正は、造形前に造形用テーブル31の上にターゲット板77を設置し、ターゲット板77にミーリングヘッド73による切削や光ビームLによって印を付け、その印の位置に撮像カメラ75と照明部76をXY駆動機構74によって移動させて、その印の座標を測定することにより行う。原点補正を造形途中に行う場合には、造形を停止し、ターゲット板77を造形物の上に設置し、そのターゲット板77を用いて上述したのと同一の方法によって行う。
(Second Embodiment)
A method for manufacturing a three-dimensionally shaped object according to the second embodiment of the present invention will be described with reference to FIG. In the present embodiment, in addition to the manufacturing method of the first embodiment, the origin correction of the irradiation position of the light beam and the cutting deletion position is further performed. Fig.15 (a) shows the structure of the metal stereolithography machine used for this embodiment. The metal stereolithography machine 1 includes a milling head 73, and has an imaging camera 75 and an illumination unit 76 next to the milling head 73. For the origin correction, the target plate 77 is set on the modeling table 31 before modeling, the target plate 77 is marked by cutting with the milling head 73 or the light beam L, and the imaging camera 75 and the illumination unit are placed at the position of the mark. 76 is moved by the XY drive mechanism 74, and the coordinates of the mark are measured. When the origin correction is performed during the modeling, the modeling is stopped, the target plate 77 is placed on the modeled object, and the target plate 77 is used to perform the same method as described above.

原点補正の一例として、光ビームの照射位置の原点補正の方法を説明する。図15(b)は、ターゲット板77の平面視を示し、図15(c)は、ターゲット板77に印された格子パターンを拡大して示す。最初にターゲット板77を造形用テーブル31の上に設置する。ターゲット板77は、光ビームが炭酸ガスレーザの場合は、例えば感熱紙やアクリル板を用い、YAGレーザの場合は、例えば不透明アクリルの表面に白色の塗装を施した板を用いる。続いて、ターゲット板77に光ビームLによって格子パターン78を印す。   As an example of the origin correction, a method for correcting the origin of the irradiation position of the light beam will be described. FIG. 15B shows a plan view of the target plate 77, and FIG. 15C shows an enlarged lattice pattern marked on the target plate 77. First, the target plate 77 is set on the modeling table 31. When the light beam is a carbon dioxide laser, the target plate 77 is, for example, a thermal paper or an acrylic plate, and when the light beam is a YAG laser, for example, a plate having an opaque acrylic surface coated with white is used. Subsequently, a lattice pattern 78 is marked on the target plate 77 by the light beam L.

続いて、撮像カメラ75をXY駆動機構74によって、各格子点79に移動させ、各格子点79の座標を測定し、本来のあるべき座標との誤差をX方向とY方向とについて計測する。全ての格子点79の誤差の平均ΔXとΔYとを算出し、X方向とY方向のズレを補正する。続いて、格子パターン78の4隅の点E1乃至E4の座標を測定し、点E1点E2間、点E1点E3間、点E2点E4間、点E3点E4間の距離を測定し、本来のあるべき距離との誤差を計測する。この誤差から、X方向及びY方向のゲイン(拡大率)を補正する。こうして、X、Y方向のズレとゲインの補正を繰り返すことにより、原点の補正を行う。切削削除位置の原点補正も光ビームの照射位置の原点補正と同様に行う。原点補正を行なうことにより三次元形状造形物の寸法精度が良くなる。   Subsequently, the imaging camera 75 is moved to each grid point 79 by the XY drive mechanism 74, the coordinates of each grid point 79 are measured, and an error from the original coordinate is measured in the X direction and the Y direction. The averages ΔX and ΔY of errors of all grid points 79 are calculated, and the deviation between the X direction and the Y direction is corrected. Subsequently, the coordinates of the four corner points E1 to E4 of the grid pattern 78 are measured, and the distances between the points E1, E2, E1, E3, E2, E4, and E3 are measured. Measure the error from the desired distance. From this error, the gain (enlargement ratio) in the X direction and the Y direction is corrected. In this way, the correction of the origin is performed by repeating the correction in the X and Y directions and the correction of the gain. The origin correction of the cutting deletion position is performed in the same manner as the origin correction of the irradiation position of the light beam. By performing the origin correction, the dimensional accuracy of the three-dimensional shaped object is improved.

(第3の実施形態)
本発明の第3の実施形態に係る三次元形状造形物の製造方法について図16を参照して説明する。本実施形態においては、第1の実施形態に更に加えて光ビームのパワーの制御を行う。
(Third embodiment)
A method for manufacturing a three-dimensionally shaped object according to the third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the power of the light beam is controlled in addition to the first embodiment.

図16(a)は、パワー可変デバイス56の構成を示す。パワー可変デバイス56は、光ビームの光軸上に設置されており、中心に軸57を有した円板状の形態であり、円板の周辺部に直径が異なる複数の穴58a乃至58cから成る穴58を備えている。パワー可変デバイス56は軸57を中心に回転して、所定の直径の穴58を光ビームLの光軸に合わせる。このとき、穴58の中心と光ビームLの光軸とが合うように穴58が開けられている。図16(b)は、光ビームLを100%透過させている状態を示す。光ビームLの光軸には、穴の直径が光ビームLの直径よりも大きい穴58aが合わせられており、光ビームLはパワーを制限されることなく、穴58aを通過している。図16(c)は、光ビームLの透過量を制限している状態を示す。光ビームLの光軸には、穴の直径が光ビームLの直径よりも小さい穴58b、又は58cが合わせられており、光ビームLは、穴の直径よりも大きい分のパワーを制限されている。   FIG. 16A shows the configuration of the power variable device 56. The power variable device 56 is installed on the optical axis of the light beam, has a disk shape with an axis 57 at the center, and includes a plurality of holes 58a to 58c having different diameters at the periphery of the disk. A hole 58 is provided. The variable power device 56 rotates about the axis 57 to align the hole 58 of a predetermined diameter with the optical axis of the light beam L. At this time, the hole 58 is formed so that the center of the hole 58 and the optical axis of the light beam L are aligned. FIG. 16B shows a state where the light beam L is transmitted 100%. A hole 58a having a hole diameter larger than the diameter of the light beam L is aligned with the optical axis of the light beam L, and the light beam L passes through the hole 58a without being limited in power. FIG. 16C shows a state where the transmission amount of the light beam L is limited. The optical axis of the light beam L is matched with a hole 58b or 58c whose hole diameter is smaller than the diameter of the light beam L, and the light beam L is limited in power by an amount larger than the hole diameter. Yes.

このパワー可変デバイス56には穴58が開いていない箇所も設けられており、穴58が開いていない箇所を光ビームLの光軸に合わせることにより、光ビームLを遮断することができる。このように、パワー可変デバイス56を用いることにより、同じ光ビームから分割された光ビームでも、光ビーム毎に出力を調整し、造形物の密度を変化させることができる。また、光ビームの通過/遮断の制御を行うこともできる。   The power variable device 56 is also provided with a portion where the hole 58 is not opened. By aligning the portion where the hole 58 is not opened with the optical axis of the light beam L, the light beam L can be blocked. In this way, by using the power variable device 56, even for a light beam divided from the same light beam, the output can be adjusted for each light beam and the density of the modeled object can be changed. It is also possible to control passage / blocking of the light beam.

次に、このパワー可変デバイスの変形例を説明する。図17(a)乃至(c)はパワー可変デバイスが光ビームのパワーを制限している状態を示す。パワー可変デバイス56は液晶パネルにより構成されており、液晶パネルへの電圧印加により透過度を変更することができる。この液晶パネルを光ビームの光軸上に設置し、液晶パネルの透過度を調整することにより、光ビームのパワーを調整する。図17(a)においては、光ビームLを100%透過させており、図17(b)においては、光ビームLを50%透過させており、図17(c)においては、光ビームを遮断している。液晶の透過度を細かく変えることができるので、光ビームのパワーを細かく制御することができる。   Next, a modification of the power variable device will be described. FIGS. 17A to 17C show a state where the power variable device limits the power of the light beam. The power variable device 56 includes a liquid crystal panel, and the transmittance can be changed by applying a voltage to the liquid crystal panel. The power of the light beam is adjusted by installing the liquid crystal panel on the optical axis of the light beam and adjusting the transmittance of the liquid crystal panel. In FIG. 17A, the light beam L is transmitted 100%, in FIG. 17B, the light beam L is transmitted 50%, and in FIG. 17C, the light beam is blocked. is doing. Since the transmittance of the liquid crystal can be changed finely, the power of the light beam can be finely controlled.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、金属粉末の組成は、上記実施形態の構成に限られないし、また、有機質の粉末材料でもよい。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the composition of the metal powder is not limited to the configuration of the above embodiment, and may be an organic powder material.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同金属光造形加工機の構成図。The block diagram of the metal stereolithography machine. 同金属光造形加工機の分波器の構成図。The block diagram of the splitter of the metal stereolithography machine. (a)は同金属光造形加工機の分波器の第1の変形例の斜視図、(b)は平面図。(A) is a perspective view of the 1st modification of the splitter of the metal stereolithography machine, (b) is a top view. (a)は同金属光造形加工機の分波器の第2の変形例の正面図、(b)は分波器の反射部分の拡大図。(A) is a front view of the 2nd modification of the duplexer of the metal stereolithography processing machine, (b) is an enlarged view of the reflective part of a duplexer. (a)及び(b)は同金属光造形加工機のスイッチングデバイスの正面図、(c)及び(d)はスイッチングデバイスの変形例の正面図。(A) And (b) is a front view of the switching device of the metal stereolithography machine, (c) And (d) is a front view of the modification of a switching device. 第1の実施形態に係る製造方法のフロー図。The flowchart of the manufacturing method which concerns on 1st Embodiment. 同製造方法を時系列に示す図。The figure which shows the manufacturing method in time series. 同製造方法における光ビームの制御方法を示す図。The figure which shows the control method of the light beam in the manufacturing method. 同製造方法における造形の感知方法を示す図。The figure which shows the detection method of modeling in the manufacturing method. 同製造方法における造形エリアから分割された分担エリアを示す図。The figure which shows the assignment area divided | segmented from the modeling area in the manufacturing method. 造形エリアの分割方法の第1の変形例を示す図。The figure which shows the 1st modification of the division | segmentation method of modeling area. 造形エリアの分割方法の第2の変形例を示す図。The figure which shows the 2nd modification of the division | segmentation method of modeling area. 本発明の第2の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography machine used for the manufacturing method which concerns on the 2nd Embodiment of this invention. (a)は同金属光造形加工機の正面図、(b)は同金属光造形加工機に用いるターゲット板の平面図、(c)はターゲット板の拡大図。(A) is a front view of the metal stereolithography machine, (b) is a plan view of a target plate used in the metal stereolithography machine, and (c) is an enlarged view of the target plate. (a)は本発明の第3の実施形態に係る製造方法に用いるパワー可変デバイスの斜視図、(b)及び(c)はパワー可変デバイスが光ビームのパワーを制御している状態を示す図。(A) is a perspective view of the power variable device used for the manufacturing method which concerns on the 3rd Embodiment of this invention, (b) And (c) is a figure which shows the state in which the power variable device is controlling the power of the light beam. . (a)乃至(c)は変形例のパワー可変デバイスが光ビームのパワーを制御している状態を示す図。(A) thru | or (c) is a figure which shows the state in which the power variable device of a modification is controlling the power of a light beam.

符号の説明Explanation of symbols

1 金属光造形加工機(三次元形状造形物の製造装置)
21 粉末層
22 焼結硬化層
4 粉末層形成部(粉末層形成手段)
5 照射部(照射手段)
52a ハーフミラー
52e 回転軸
52f 回転ミラー
52g 移動ミラー
55 スキャナ(光ビーム走査手段)
L 光ビーム
1 Metal Stereolithography Machine (Three-dimensional shaped object manufacturing equipment)
21 Powder layer 22 Sintered hardened layer 4 Powder layer forming part (powder layer forming means)
5 Irradiation part (irradiation means)
52a Half mirror 52e Rotating shaft 52f Rotating mirror 52g Moving mirror 55 Scanner (light beam scanning means)
L Light beam

Claims (14)

無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成工程と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射工程とを備え、前記粉末層形成工程と照射工程とを繰り返すことにより下層の焼結硬化層と一体になった新たな焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造方法において、
前記光ビームを走査する複数の光ビーム走査手段を有し、
前記光ビームを前記粉末層の複数の箇所に照射すると共に、一つの層の造形エリアに対し、複数の光ビームが行う造形エリアを予め決めておき、
前記光ビーム走査手段に、同時に、それぞれの造形エリアに対応する異なる走査データを順次実行させ、並列動作によって三次元形状造形物を造形することを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of forming a powder layer by supplying an inorganic or organic powder material, and an irradiation step of irradiating the powder layer with a light beam to melt the powder layer to form a sintered hardened layer, A method for producing a three-dimensional shaped article that forms a three-dimensional shaped article by laminating a new sintered hardened layer integrated with a lower sintered hardened layer by repeating the powder layer forming step and the irradiation step. In
A plurality of light beam scanning means for scanning the light beam;
While irradiating a plurality of locations of the powder layer with the light beam, a modeling area to be performed by a plurality of light beams is determined in advance for a modeling area of one layer,
A method of manufacturing a three-dimensional shaped object, wherein the light beam scanning unit simultaneously executes different scanning data corresponding to each modeling area and forms a three-dimensional shaped object by a parallel operation.
一つの光ビームが担当する造形エリアを単位面積当たりの領域に小分割し、分割した領域毎に造形終了を検出することを特徴とする請求項1に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped object according to claim 1, wherein a modeling area handled by one light beam is subdivided into areas per unit area, and the completion of modeling is detected for each divided area. 一つの光ビームが担当する造形エリアの造形を終了すると、他の光ビームの造形エリアの造形を行なうことを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   3. The method for manufacturing a three-dimensional shaped object according to claim 1, wherein, when the modeling of the modeling area handled by one light beam is completed, modeling of the modeling area of the other light beam is performed. それぞれの光ビームが担当する各層の造形エリアの面積が等しくなるように、造形エリア全体が分割されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法。   The three-dimensional shape according to any one of claims 1 to 3, wherein the entire modeling area is divided so that the areas of the modeling areas of the respective layers handled by the respective light beams are equal to each other. Manufacturing method of a model. それぞれの光ビームが担当する造形エリアが、該光ビームを走査するそれぞれの光ビーム走査手段から近くになるように造形エリア全体が分割されていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法。   5. The entire modeling area is divided so that the modeling area that each light beam takes charge is close to each light beam scanning means that scans the light beam. The manufacturing method of the three-dimensional shape molded article as described in any one of Claims. 異なる焼結密度からなる三次元形状造形物の造形において、照射する光ビームが焼結密度毎に異なることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   3. The method for producing a three-dimensional shaped object according to claim 1, wherein a light beam to be irradiated is different for each sintered density in modeling of a three-dimensional shaped object having different sintered densities. 造形前及び任意の造形途中のいずれか一方又は両方において、それぞれの光ビームの照射位置の原点補正を行なうことを特徴とする請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法。   The three-dimensional shape according to any one of claims 1 to 6, wherein an origin correction of an irradiation position of each light beam is performed before modeling or during any modeling or both. Manufacturing method of a model. 前記焼結硬化層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び不要部分のいずれか一方又は両方の切削除去を行なう切削工程を更に備え、造形前及び任意の造形途中のいずれか一方又は両方において、それぞれの光ビームの照射位置及び切削削除位置の原点補正を行なうことを特徴とする請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法。   After the formation of the sintered hardened layer, the method further comprises a cutting step for cutting and removing one or both of the surface portion and the unnecessary portion of the three-dimensionally shaped object obtained by stacking up to that time, before shaping and optionally The three-dimensional shape according to any one of claims 1 to 6, wherein the origin correction of the irradiation position of each light beam and the cutting deletion position is performed during either one or both of the forming steps. Manufacturing method of a model. 光ビームを分岐して複数の光ビームを形成することを特徴とする請求項1乃至請求項8のいずれか一項に記載の三次元形状造形物の製造方法。   The method for manufacturing a three-dimensional shaped object according to any one of claims 1 to 8, wherein the light beam is branched to form a plurality of light beams. 前記光ビームの分岐はハーフミラーによって行なわれることを特徴とする請求項9に記載の三次元形状造形物の製造方法。   The method of manufacturing a three-dimensional shaped object according to claim 9, wherein the light beam is branched by a half mirror. 光ビームの光軸上に設置され該光軸と垂直な回転軸を有し、前記回転軸によって前記光軸との角度を変化させる回転ミラーにより、光ビームを前記回転ミラーによって反射される光ビームと前記回転ミラーの端部の外側を通過する光ビームとに分けることにより前記光ビームを分岐し、前記回転ミラーによる反射光を、該反射光の照射位置に移動する移動ミラーによって受光して照射方向へ反射し、前記回転ミラーと前記光軸との角度を変えることにより、光ビームの分岐量を変えることを特徴とする請求項9に記載の三次元形状造形物の製造方法。   A light beam reflected on the rotating mirror by a rotating mirror that is installed on the optical axis of the light beam and has a rotation axis perpendicular to the optical axis, and changes an angle with the optical axis by the rotation axis. And the light beam that passes outside the end of the rotating mirror is split, and the reflected light from the rotating mirror is received and irradiated by a moving mirror that moves to the irradiation position of the reflected light. The method for manufacturing a three-dimensional shaped object according to claim 9, wherein the branching amount of the light beam is changed by reflecting in a direction and changing an angle between the rotating mirror and the optical axis. 前記光ビームは、パワーを制御されることを特徴とする請求項9乃至請求項11のいずれか一項に記載の三次元形状造形物の製造方法。   The method of manufacturing a three-dimensional shaped object according to any one of claims 9 to 11, wherein power of the light beam is controlled. 前記光ビームのパワー制御は、前記光ビームを該光ビームの光軸上に設けられた径の異なる穴に通過させ、該光ビームの一部を制限することにより行なうことを特徴とする請求項12に記載の三次元形状造形物の製造方法。   The power control of the light beam is performed by passing the light beam through holes of different diameters provided on the optical axis of the light beam and limiting a part of the light beam. The manufacturing method of the three-dimensional shape molded article of 12. 無機質又は有機質の粉末材料を供給して粉末層を形成する粉末層形成手段と、前記粉末層に光ビームを照射して該粉末層を溶融させ焼結硬化層を形成する照射手段と、を備え、前記粉末層の形成と前記焼結硬化層の形成とを繰り返すことにより下層の焼結硬化層と一体になった新たな焼結硬化層を積層して三次元形状造形物を造形する三次元形状造形物の製造装置において、
前記照射手段は光ビームを走査する複数の光ビーム走査手段を有し、複数の光ビームを前記粉末層の複数の箇所にそれぞれ照射し、一つの層の造形エリアに対し、複数の光ビームの各々が行う造形エリアを予め決めておき、
前記光ビーム走査手段に、同時に、それぞれの造形エリアに対応する異なる走査データを順次実行させて並列動作によって三次元形状造形物を造形すると共に、
一つの光ビームが担当する造形エリアを単位面積当たりの領域に小分割し、分割した領域毎に造形終了を検出することを特徴とする三次元形状造形物の製造装置。
A powder layer forming means for supplying an inorganic or organic powder material to form a powder layer; and an irradiation means for irradiating the powder layer with a light beam to melt the powder layer to form a sintered hardened layer. Three-dimensional modeling of a three-dimensional shaped object by laminating a new sintered hardened layer integrated with a lower sintered hardened layer by repeating the formation of the powder layer and the sintered hardened layer In the apparatus for manufacturing a shaped object,
The irradiating means has a plurality of light beam scanning means for scanning the light beam, irradiates the plurality of light beams to a plurality of portions of the powder layer, and applies a plurality of light beams to a modeling area of one layer. Predetermining the modeling area that each performs,
At the same time, the light beam scanning unit simultaneously executes different scanning data corresponding to each modeling area to form a three-dimensional shaped object by parallel operation,
An apparatus for producing a three-dimensional shaped object, characterized in that a modeling area handled by one light beam is subdivided into areas per unit area, and the completion of modeling is detected for each divided area.
JP2007167826A 2007-06-26 2007-06-26 Manufacturing method and manufacturing apparatus for three-dimensional shaped object Active JP4916392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167826A JP4916392B2 (en) 2007-06-26 2007-06-26 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167826A JP4916392B2 (en) 2007-06-26 2007-06-26 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2009006509A true JP2009006509A (en) 2009-01-15
JP4916392B2 JP4916392B2 (en) 2012-04-11

Family

ID=40322119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167826A Active JP4916392B2 (en) 2007-06-26 2007-06-26 Manufacturing method and manufacturing apparatus for three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP4916392B2 (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259862A1 (en) * 2008-09-05 2011-10-27 Mtt Technologies Limited Additive Manufacturing Apparatus with a Chamber and a Removably-Mountable Optical Module; Method of Preparing a Laser Processing Apparatus with such Removably-Mountable Optical Module
JP2011245553A (en) * 2010-05-21 2011-12-08 General Electric Co <Ge> System and method for heat treating weld joint
JP2011251320A (en) * 2010-06-03 2011-12-15 Stanley Electric Co Ltd Method for producing resin molded article and laser beam irradiation device
US20130112672A1 (en) * 2011-11-08 2013-05-09 John J. Keremes Laser configuration for additive manufacturing
JP2013532592A (en) * 2010-07-28 2013-08-19 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Manufacturing method of 3D parts
DE102013103006A1 (en) 2012-03-29 2013-10-02 Materials Solutions Apparatus and methods for layerwise additive fabrication of an article
CN103495729A (en) * 2013-09-03 2014-01-08 航天特种材料及工艺技术研究所 Laser three-dimensional forming method of large-size titanium-aluminum-based alloy
WO2014014589A1 (en) * 2012-07-18 2014-01-23 Pratt & Whitney Rocketdyne, Inc. Functionally graded additive manufacturing with in situ heat treatment
JP2014108454A (en) * 2012-12-04 2014-06-12 Via Mechanics Ltd Laser beam machine
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
WO2014199134A1 (en) * 2013-06-10 2014-12-18 Renishaw Plc Selective laser solidification apparatus and method
WO2014199149A1 (en) * 2013-06-11 2014-12-18 Renishaw Plc Additive manufacturing apparatus and method
WO2015003804A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production
DE102013213547A1 (en) * 2013-07-10 2015-01-15 Eos Gmbh Electro Optical Systems Calibration device and calibration method for a device for producing an object in layers
US20150202716A1 (en) * 2014-01-22 2015-07-23 Siemens Energy, Inc. Method for processing a part with an energy beam
US9138807B1 (en) 2014-04-04 2015-09-22 Matsuura Machinery Corporation Three-dimensional molding equipment
US20150283612A1 (en) * 2014-04-04 2015-10-08 Matsuura Machinery Corporation Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object
CN104972120A (en) * 2014-04-04 2015-10-14 株式会社松浦机械制作所 Laminate molding equipment and laminate molding method
EP2937163A1 (en) * 2014-03-13 2015-10-28 Jeol Ltd. Machine and method for additive manufacturing
JP5826430B1 (en) * 2015-08-03 2015-12-02 株式会社松浦機械製作所 Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
EP2875897B1 (en) 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
DE102014010934A1 (en) * 2014-07-28 2016-01-28 Cl Schutzrechtsverwaltungs Gmbh Device for producing three-dimensional objects by successive solidification of layers
CN105517779A (en) * 2013-10-18 2016-04-20 株式会社东芝 Stack forming apparatus and manufacturing method of stack formation
WO2016071096A1 (en) * 2014-11-06 2016-05-12 Arcam Ab Method for improved powder layer quality in additive manufacturing
US9358643B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
US9359897B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
JP2016526098A (en) * 2013-05-23 2016-09-01 ア−カム アーベー Method and apparatus for additive manufacturing
JP2016165758A (en) * 2010-07-01 2016-09-15 サンパワー コーポレイション Wafer manufacturing method and wafer processing system
JP2016529389A (en) * 2013-06-28 2016-09-23 ア−カム アーベー Method and apparatus for additive manufacturing
JP2016210189A (en) * 2015-05-13 2016-12-15 ナノスクライブ ゲーエムベーハーNanoscribe GmbH Method for manufacturing three-dimensional structure
JP2016210068A (en) * 2015-05-07 2016-12-15 学校法人金沢工業大学 Three-dimensionally shaping apparatus
CN106563805A (en) * 2016-10-18 2017-04-19 西安智熔金属打印系统有限公司 Additive manufacturing device and method
US20170120537A1 (en) * 2015-10-30 2017-05-04 Seurat Technologies, Inc. Chamber systems for additive manufacturing
US9664504B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam size verification
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
WO2017110130A1 (en) 2015-12-24 2017-06-29 株式会社ブリヂストン Three-dimensional object shaping device and manufacturing method
US9713844B2 (en) 2013-04-18 2017-07-25 Arcam Ab Method and apparatus for additive manufacturing
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
TWI597153B (en) * 2016-06-07 2017-09-01 台達電子工業股份有限公司 Three-Dimensional Printer and Imaging System Thereof
JP2017159361A (en) * 2016-01-20 2017-09-14 ゼネラル・エレクトリック・カンパニイ Aligning lasers of laser additive manufacturing system
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US20170320264A1 (en) * 2014-11-12 2017-11-09 Cl Schutzrechtsverwaltungs Gmbh Method and device for controlling the exposure of a selective laser sintering or laser melting device
JP6234596B1 (en) * 2016-05-31 2017-11-22 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
WO2017212619A1 (en) * 2016-06-09 2017-12-14 技術研究組合次世代3D積層造形技術総合開発機構 3d additive manufacturing system, additive manufacturing control device, additive manufacturing control method, and additive manufacturing control program
JP6254292B1 (en) * 2016-05-31 2017-12-27 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
CN107521093A (en) * 2016-06-16 2017-12-29 施乐公司 Line Laser imagers for thermoplastic materials selective laser sintering
JP2018030373A (en) * 2017-10-24 2018-03-01 技術研究組合次世代3D積層造形技術総合開発機構 Three dimensional laminate molding system, three dimensional laminate molding method, laminate molding control device, and control method and control program thereof
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
DE102016222068A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production with a plurality of spatially separated beam guides
DE102016222067A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for processing a material layer with energetic radiation
EP3213905A4 (en) * 2014-10-30 2018-07-18 Korea Institute Of Industrial Technology Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
WO2018165558A1 (en) * 2017-03-09 2018-09-13 Applied Materials, Inc. Additive manufacturing with energy delivery system having rotating polygon and second reflective member
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
KR20190019852A (en) * 2017-08-18 2019-02-27 에스에이에스 쓰리디세람-신토 Method and machine for manufacturing pieces made of ceramic or metallic material by the technique of additive manufacturing
JP2019034535A (en) * 2017-08-16 2019-03-07 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Apparatus and method for additively manufacturing three-dimensional objects, and evaluation device for that apparatus
CN109434104A (en) * 2018-11-26 2019-03-08 西安增材制造国家研究院有限公司 A kind of scan method for metal laser selective melting forming technology
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
JP2019199049A (en) * 2018-05-17 2019-11-21 株式会社神戸製鋼所 Molding procedure design method of lamination molded article, molding method and manufacturing apparatus of lamination molded article, and program
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
CN111196033A (en) * 2020-01-13 2020-05-26 哈尔滨工业大学 Rapid multi-material photocuring 3D printing device and method based on double-light-source initiation
KR20200087323A (en) * 2018-12-28 2020-07-21 한국광기술원 3D printer
JP2020128593A (en) * 2016-03-08 2020-08-27 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Apparatus for additive manufacturing of three-dimensional object
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
JP2020537049A (en) * 2017-10-09 2020-12-17 エスエルエム ソルーションズ グループ アーゲー Equipment and methods for making 3D workpieces
US10940641B2 (en) 2017-05-26 2021-03-09 Applied Materials, Inc. Multi-light beam energy delivery with rotating polygon for additive manufacturing
US10981323B2 (en) 2017-05-26 2021-04-20 Applied Materials, Inc. Energy delivery with rotating polygon and multiple light beams on same path for additive manufacturing
KR102243204B1 (en) * 2019-10-21 2021-04-21 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Three-dimensional molding method and three-dimensional molding device
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
WO2021079553A1 (en) * 2019-10-21 2021-04-29 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional shaping method and three-dimensional shaping device
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11065689B2 (en) 2017-06-23 2021-07-20 Applied Materials, Inc. Additive manufacturing with polygon and galvo mirror scanners
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
EP3312010B1 (en) 2016-10-24 2021-08-04 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
US11084132B2 (en) 2017-10-26 2021-08-10 General Electric Company Diode laser fiber array for contour of powder bed fabrication or repair
US11084097B2 (en) 2017-06-23 2021-08-10 Applied Materials, Inc. Additive manufacturing with cell processing recipes
DE102020107925A1 (en) 2020-03-23 2021-09-23 Kurtz Gmbh Device for the generative production of components, in particular by means of selective melting or sintering
US11167497B2 (en) 2016-11-14 2021-11-09 Renishaw Plc Localising sensor data collected during additive manufacturing
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
JP6978137B1 (en) * 2021-07-15 2021-12-08 株式会社松浦機械製作所 3D modeling equipment
WO2022000767A1 (en) * 2020-06-30 2022-01-06 北京闻亭泰科技术发展有限公司 3d printing laser processing module based on digital light processing
US20220016712A1 (en) * 2018-06-01 2022-01-20 Applied Materials, Inc. Optical assembly for additive manufacturing
JP6999990B1 (en) 2021-07-15 2022-02-04 株式会社松浦機械製作所 3D modeling equipment
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11305354B2 (en) 2015-11-16 2022-04-19 Renishaw Plc Machine control for additive manufacturing process and apparatus
DE102020128028A1 (en) 2020-10-23 2022-04-28 Kurtz Gmbh Device for the additive manufacturing of components, in particular by means of selective melting or sintering
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US11331855B2 (en) 2017-11-13 2022-05-17 Applied Materials, Inc. Additive manufacturing with dithering scan path
US11358224B2 (en) 2015-11-16 2022-06-14 Renishaw Plc Module for additive manufacturing apparatus and method
JP7083199B1 (en) 2021-07-15 2022-06-30 株式会社松浦機械製作所 3D modeling equipment
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
WO2022224547A1 (en) * 2021-04-22 2022-10-27 株式会社日本製鋼所 Powder bed laser processing device, powder additive manufacturing device, processing method, and program
JP2022164844A (en) * 2017-05-11 2022-10-27 シューラット テクノロジーズ,インク. additive manufacturing method
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner
US11639028B2 (en) 2017-02-22 2023-05-02 SLM Solutions Group AG Method and device for controlling an irradiation system for producing workpieces
DE102021133722A1 (en) 2021-12-17 2023-06-22 Kurtz Gmbh & Co. Kg Device for the additive manufacturing of components
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
WO2023188005A1 (en) * 2022-03-29 2023-10-05 株式会社ニコン Shaping system, radiation condition setting method, input system, computer program, and recording medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557565B2 (en) 2014-09-18 2019-08-07 ローランドディー.ジー.株式会社 3D modeling equipment
WO2016110440A1 (en) * 2015-01-07 2016-07-14 Eos Gmbh Electro Optical Systems Device and generative layer-building process for producing a three-dimensional object by multiple beams
JP6892957B1 (en) 2020-07-22 2021-06-23 株式会社ソディック Laminated modeling method and laminated modeling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113828A (en) * 1990-09-04 1992-04-15 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of large-sized stereo-resin model and device therefor
JPH115254A (en) * 1997-04-25 1999-01-12 Toyota Motor Corp Lamination shaping method
JP2002144437A (en) * 2000-11-16 2002-05-21 Teijin Seiki Co Ltd Apparatus and method for executing stereo lithography
JP2003181942A (en) * 2003-01-15 2003-07-03 Teijin Seiki Co Ltd Method and apparatus for optically stereoscopically molding
JP2004514053A (en) * 2000-10-30 2004-05-13 コンセプト レーザー ゲーエムベーハー Apparatus for sintering, material removal and / or labeling with electromagnetic radiation flux and method of operating the apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113828A (en) * 1990-09-04 1992-04-15 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of large-sized stereo-resin model and device therefor
JPH115254A (en) * 1997-04-25 1999-01-12 Toyota Motor Corp Lamination shaping method
JP2004514053A (en) * 2000-10-30 2004-05-13 コンセプト レーザー ゲーエムベーハー Apparatus for sintering, material removal and / or labeling with electromagnetic radiation flux and method of operating the apparatus
JP2002144437A (en) * 2000-11-16 2002-05-21 Teijin Seiki Co Ltd Apparatus and method for executing stereo lithography
JP2003181942A (en) * 2003-01-15 2003-07-03 Teijin Seiki Co Ltd Method and apparatus for optically stereoscopically molding

Cited By (211)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782933B2 (en) 2008-01-03 2017-10-10 Arcam Ab Method and apparatus for producing three-dimensional objects
US20110259862A1 (en) * 2008-09-05 2011-10-27 Mtt Technologies Limited Additive Manufacturing Apparatus with a Chamber and a Removably-Mountable Optical Module; Method of Preparing a Laser Processing Apparatus with such Removably-Mountable Optical Module
US9114478B2 (en) * 2008-09-05 2015-08-25 Mtt Technologies Limited Additive manufacturing apparatus with a chamber and a removably-mountable optical module; method of preparing a laser processing apparatus with such removably-mountable optical module
US11040414B2 (en) 2008-09-05 2021-06-22 Renishaw Plc Additive manufacturing apparatus with a chamber and a removably-mountable optical module; method of preparing a laser processing apparatus with such removably-mountable optical module
US9849543B2 (en) 2008-09-05 2017-12-26 Renishaw Plc Additive manufacturing apparatus with a chamber and a removably-mountable optical module; method of preparing a laser processing apparatus with such removably-mountable optical module
US10369662B2 (en) 2009-07-15 2019-08-06 Arcam Ab Method and apparatus for producing three-dimensional objects
JP2011245553A (en) * 2010-05-21 2011-12-08 General Electric Co <Ge> System and method for heat treating weld joint
JP2011251320A (en) * 2010-06-03 2011-12-15 Stanley Electric Co Ltd Method for producing resin molded article and laser beam irradiation device
JP2016165758A (en) * 2010-07-01 2016-09-15 サンパワー コーポレイション Wafer manufacturing method and wafer processing system
JP2013532592A (en) * 2010-07-28 2013-08-19 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Manufacturing method of 3D parts
US11292060B2 (en) 2010-07-28 2022-04-05 Concept Laser Gmbh Method for producing a three-dimensional component
US10759117B2 (en) 2010-07-28 2020-09-01 Concept Laser Gmbh Method for producing a three-dimensional component
WO2013070317A1 (en) * 2011-11-08 2013-05-16 Pratt & Whitney Rocketdyne, Inc. Laser configuration for additive manufacturing
US20130112672A1 (en) * 2011-11-08 2013-05-09 John J. Keremes Laser configuration for additive manufacturing
US10144063B2 (en) 2011-12-28 2018-12-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10189086B2 (en) 2011-12-28 2019-01-29 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US11141790B2 (en) 2011-12-28 2021-10-12 Arcam Ab Method and apparatus for manufacturing porous three-dimensional articles
US11161177B2 (en) 2011-12-28 2021-11-02 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
US10029333B2 (en) 2012-03-29 2018-07-24 Siemens Aktiengesellschaft Methods for additive-layer manufacturing of an article
GB2503537A (en) * 2012-03-29 2014-01-01 Materials Solutions Apparatus and method for additive-layer manufacturing of an article
GB2503537B (en) * 2012-03-29 2015-10-07 Materials Solutions Ltd Apparatus and methods for additive-layer manufacturing of an article
DE102013103006A1 (en) 2012-03-29 2013-10-02 Materials Solutions Apparatus and methods for layerwise additive fabrication of an article
US9314972B2 (en) 2012-03-29 2016-04-19 Materials Solutions Apparatus for additive layer manufacturing of an article
WO2014014589A1 (en) * 2012-07-18 2014-01-23 Pratt & Whitney Rocketdyne, Inc. Functionally graded additive manufacturing with in situ heat treatment
JP2014108454A (en) * 2012-12-04 2014-06-12 Via Mechanics Ltd Laser beam machine
US9718129B2 (en) 2012-12-17 2017-08-01 Arcam Ab Additive manufacturing method and apparatus
US10406599B2 (en) 2012-12-17 2019-09-10 Arcam Ab Additive manufacturing method and apparatus
US20140263209A1 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
US9950366B2 (en) 2013-04-18 2018-04-24 Arcam Ab Apparatus for additive manufacturing
US9713844B2 (en) 2013-04-18 2017-07-25 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
JP2016526098A (en) * 2013-05-23 2016-09-01 ア−カム アーベー Method and apparatus for additive manufacturing
EP3415254A1 (en) * 2013-06-10 2018-12-19 Renishaw PLC Selective laser solidification apparatus and method
US10335901B2 (en) 2013-06-10 2019-07-02 Renishaw Plc Selective laser solidification apparatus and method
WO2014199134A1 (en) * 2013-06-10 2014-12-18 Renishaw Plc Selective laser solidification apparatus and method
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
CN105451971A (en) * 2013-06-11 2016-03-30 瑞尼斯豪公司 Additive manufacturing apparatus and method
US10399145B2 (en) 2013-06-11 2019-09-03 Renishaw Plc Additive manufacturing apparatus and method
CN110625934A (en) * 2013-06-11 2019-12-31 瑞尼斯豪公司 Additive manufacturing apparatus and method
WO2014199149A1 (en) * 2013-06-11 2014-12-18 Renishaw Plc Additive manufacturing apparatus and method
JP2016528374A (en) * 2013-06-11 2016-09-15 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
JP2016529389A (en) * 2013-06-28 2016-09-23 ア−カム アーベー Method and apparatus for additive manufacturing
US10444068B2 (en) 2013-07-10 2019-10-15 Eos Gmbh Electro Optical Systems Calibration device and calibration method for an apparatus for producing an object in layers
DE102013213547A1 (en) * 2013-07-10 2015-01-15 Eos Gmbh Electro Optical Systems Calibration device and calibration method for a device for producing an object in layers
US9827632B2 (en) 2013-07-11 2017-11-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for generative component production
WO2015003804A1 (en) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production
CN103495729A (en) * 2013-09-03 2014-01-08 航天特种材料及工艺技术研究所 Laser three-dimensional forming method of large-size titanium-aluminum-based alloy
US9676033B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US10814393B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US10814392B2 (en) 2013-09-20 2020-10-27 Arcam Ab Apparatus for additive manufacturing
US10259159B2 (en) 2013-10-18 2019-04-16 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
CN105517779A (en) * 2013-10-18 2016-04-20 株式会社东芝 Stack forming apparatus and manufacturing method of stack formation
US11396128B2 (en) 2013-10-18 2022-07-26 Kabushiki Kaisha Toshiba Stack forming apparatus and manufacturing method of stack formation
EP2875897B1 (en) 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
US9878497B2 (en) 2013-11-21 2018-01-30 SLM Solutions Group AG Method and device for controlling an irradiation system
US9919361B2 (en) 2013-12-16 2018-03-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10099289B2 (en) 2013-12-16 2018-10-16 Arcam Ab Additive manufacturing of three-dimensional articles
US10974448B2 (en) 2013-12-18 2021-04-13 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US11517964B2 (en) 2013-12-19 2022-12-06 Arcam Ab Method for additive manufacturing
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9815139B2 (en) * 2014-01-22 2017-11-14 Siemens Energy, Inc. Method for processing a part with an energy beam
US20150202716A1 (en) * 2014-01-22 2015-07-23 Siemens Energy, Inc. Method for processing a part with an energy beam
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US10071424B2 (en) 2014-03-07 2018-09-11 Arcam Ab Computer program products configured for additive manufacturing of three-dimensional articles
EP2937163A1 (en) * 2014-03-13 2015-10-28 Jeol Ltd. Machine and method for additive manufacturing
US10071423B2 (en) 2014-04-02 2018-09-11 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US11084098B2 (en) 2014-04-02 2021-08-10 Arcam Ab Apparatus for fusing a workpiece
US10821517B2 (en) 2014-04-02 2020-11-03 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US9950367B2 (en) 2014-04-02 2018-04-24 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
US10058921B2 (en) 2014-04-02 2018-08-28 Arcam Ab Apparatus, method, and computer program product for fusing a workpiece
JP2015199195A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Three-dimensional object molding device
CN104972121A (en) * 2014-04-04 2015-10-14 株式会社松浦机械制作所 Three-dimensional molding equipment
CN104972121B (en) * 2014-04-04 2019-06-21 株式会社松浦机械制作所 Three-dimensional moulding device
KR20150115597A (en) * 2014-04-04 2015-10-14 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Layered manufacturing device and method
KR101950534B1 (en) * 2014-04-04 2019-02-20 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Layered manufacturing device and method
CN104972120A (en) * 2014-04-04 2015-10-14 株式会社松浦机械制作所 Laminate molding equipment and laminate molding method
JP2015199196A (en) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 Laminate molding apparatus and laminate molding method
US9844915B2 (en) 2014-04-04 2017-12-19 Matsuura Machinery Corporation Laminate molding equipment and laminate molding method
US20150283612A1 (en) * 2014-04-04 2015-10-08 Matsuura Machinery Corporation Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object
EP2926979A1 (en) * 2014-04-04 2015-10-07 Matsuura Machinery Corporation Three-dimensional molding equipment
US9138807B1 (en) 2014-04-04 2015-09-22 Matsuura Machinery Corporation Three-dimensional molding equipment
DE102014010934A1 (en) * 2014-07-28 2016-01-28 Cl Schutzrechtsverwaltungs Gmbh Device for producing three-dimensional objects by successive solidification of layers
JP2017527699A (en) * 2014-08-15 2017-09-21 シーメンス エナジー インコーポレイテッド Method for building a gas turbine engine component
US9359897B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
CN106573350A (en) * 2014-08-15 2017-04-19 西门子能源有限公司 Method for building a gas turbine engine component
CN106573350B (en) * 2014-08-15 2019-11-15 西门子能源有限公司 The method for manufacturing combustion turbine engine components
US9358643B2 (en) * 2014-08-15 2016-06-07 Siemens Energy, Inc. Method for building a gas turbine engine component
US9915583B2 (en) 2014-08-20 2018-03-13 Arcam Ab Energy beam position verification
US9664504B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam size verification
US9664505B2 (en) 2014-08-20 2017-05-30 Arcam Ab Energy beam position verification
US9897513B2 (en) 2014-08-20 2018-02-20 Arcam Ab Energy beam size verification
EP3213905A4 (en) * 2014-10-30 2018-07-18 Korea Institute Of Industrial Technology Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
WO2016071096A1 (en) * 2014-11-06 2016-05-12 Arcam Ab Method for improved powder layer quality in additive manufacturing
EP3363621B1 (en) * 2014-11-12 2023-05-03 Concept Laser GmbH Method and device for controlling the exposure of a selective laser sintering or laser melting device
US11945159B2 (en) 2014-11-12 2024-04-02 Concept Laser Gmbh Method and apparatus for controlling the exposure of a selective laser sintering or laser melting apparatus
US10836103B2 (en) 2014-11-12 2020-11-17 Concept Laser Gmbh Apparatus for controlling the exposure of a selective laser sintering or laser melting apparatus
US20170320264A1 (en) * 2014-11-12 2017-11-09 Cl Schutzrechtsverwaltungs Gmbh Method and device for controlling the exposure of a selective laser sintering or laser melting device
US10137633B2 (en) * 2014-11-12 2018-11-27 Cl Schutzrechtsverwaltungs Gmbh Method and device for controlling the exposure of a selective laser sintering or laser melting device
EP3218168B2 (en) 2014-11-12 2024-03-06 Concept Laser GmbH Method and device for controlling the exposure of a selective laser sintering or laser melting device
EP3218168B1 (en) 2014-11-12 2018-06-13 CL Schutzrechtsverwaltungs GmbH Method and device for controlling the exposure of a selective laser sintering or laser melting device
JP2021112916A (en) * 2014-11-12 2021-08-05 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Method and apparatus for controlling exposure of selective laser sintering or laser melting apparatus
US10786865B2 (en) 2014-12-15 2020-09-29 Arcam Ab Method for additive manufacturing
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
US10586683B2 (en) 2015-01-21 2020-03-10 Arcam Ab Method and device for characterizing an electron beam
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
JP2016210068A (en) * 2015-05-07 2016-12-15 学校法人金沢工業大学 Three-dimensionally shaping apparatus
JP2016210189A (en) * 2015-05-13 2016-12-15 ナノスクライブ ゲーエムベーハーNanoscribe GmbH Method for manufacturing three-dimensional structure
JP2017030254A (en) * 2015-08-03 2017-02-09 株式会社松浦機械製作所 Three-dimensional shaping device and method for manufacturing three-dimensional shaped object
JP5826430B1 (en) * 2015-08-03 2015-12-02 株式会社松浦機械製作所 Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US11806800B2 (en) 2015-09-24 2023-11-07 Arcam Ab X-ray calibration standard object
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
US10967566B2 (en) * 2015-10-30 2021-04-06 Seurat Technologies, Inc. Chamber systems for additive manufacturing
US20170120537A1 (en) * 2015-10-30 2017-05-04 Seurat Technologies, Inc. Chamber systems for additive manufacturing
US11305354B2 (en) 2015-11-16 2022-04-19 Renishaw Plc Machine control for additive manufacturing process and apparatus
US11358224B2 (en) 2015-11-16 2022-06-14 Renishaw Plc Module for additive manufacturing apparatus and method
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11623282B2 (en) 2015-11-18 2023-04-11 Arcam Ab Additive manufacturing of three-dimensional articles
WO2017110130A1 (en) 2015-12-24 2017-06-29 株式会社ブリヂストン Three-dimensional object shaping device and manufacturing method
JP2017159361A (en) * 2016-01-20 2017-09-14 ゼネラル・エレクトリック・カンパニイ Aligning lasers of laser additive manufacturing system
JP2020128593A (en) * 2016-03-08 2020-08-27 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Apparatus for additive manufacturing of three-dimensional object
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US10926469B2 (en) 2016-05-31 2021-02-23 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and fabricating system, three-dimensional laminating and fabricating method, laminating and fabricating control apparatus and method of controlling the same, and control program
JP6234596B1 (en) * 2016-05-31 2017-11-22 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
JP6254292B1 (en) * 2016-05-31 2017-12-27 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
EP3272505B1 (en) 2016-05-31 2021-05-12 Technology Research Association for Future Additive Manufacturing 3d additive manufacturing system, 3d additive manufacturing method, additive manufacturing control device, and control method and control program for additive manufacturing control device
US10442136B2 (en) 2016-05-31 2019-10-15 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and fabricating system, three-dimensional laminating and fabricating method, laminating and fabricating control apparatus and method of controlling the same, and control program
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
TWI597153B (en) * 2016-06-07 2017-09-01 台達電子工業股份有限公司 Three-Dimensional Printer and Imaging System Thereof
US20180215102A1 (en) * 2016-06-09 2018-08-02 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and fabricating system, laminating and fabricating control apparatus, laminating and fabricating control method, and laminating and fabricating control program
WO2017212619A1 (en) * 2016-06-09 2017-12-14 技術研究組合次世代3D積層造形技術総合開発機構 3d additive manufacturing system, additive manufacturing control device, additive manufacturing control method, and additive manufacturing control program
JPWO2017212619A1 (en) * 2016-06-09 2018-06-14 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, additive manufacturing control device, additive manufacturing control method, and additive manufacturing control program
CN107521093A (en) * 2016-06-16 2017-12-29 施乐公司 Line Laser imagers for thermoplastic materials selective laser sintering
CN107521093B (en) * 2016-06-16 2021-10-15 施乐公司 Line laser imager for selective laser sintering of thermoplastics
CN106563805A (en) * 2016-10-18 2017-04-19 西安智熔金属打印系统有限公司 Additive manufacturing device and method
EP3312010B1 (en) 2016-10-24 2021-08-04 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing of three-dimensional objects
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
DE102016222068A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for generative component production with a plurality of spatially separated beam guides
DE102016222067A1 (en) * 2016-11-10 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for processing a material layer with energetic radiation
US11167497B2 (en) 2016-11-14 2021-11-09 Renishaw Plc Localising sensor data collected during additive manufacturing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
US11639028B2 (en) 2017-02-22 2023-05-02 SLM Solutions Group AG Method and device for controlling an irradiation system for producing workpieces
US10800103B2 (en) 2017-03-09 2020-10-13 Applied Materials, Inc. Additive manufacturing with energy delivery system having rotating polygon and second reflective member
WO2018165558A1 (en) * 2017-03-09 2018-09-13 Applied Materials, Inc. Additive manufacturing with energy delivery system having rotating polygon and second reflective member
US10730240B2 (en) 2017-03-09 2020-08-04 Applied Materials, Inc. Additive manufacturing with energy delivery system having rotating polygon
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11801636B2 (en) 2017-05-11 2023-10-31 Seurat Technologies, Inc. Additive manufacturing method using switchyard beam routing of patterned light
JP7406604B2 (en) 2017-05-11 2023-12-27 シューラット テクノロジーズ,インク. additive manufacturing methods
JP2022164844A (en) * 2017-05-11 2022-10-27 シューラット テクノロジーズ,インク. additive manufacturing method
US10940641B2 (en) 2017-05-26 2021-03-09 Applied Materials, Inc. Multi-light beam energy delivery with rotating polygon for additive manufacturing
US10981323B2 (en) 2017-05-26 2021-04-20 Applied Materials, Inc. Energy delivery with rotating polygon and multiple light beams on same path for additive manufacturing
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US11065689B2 (en) 2017-06-23 2021-07-20 Applied Materials, Inc. Additive manufacturing with polygon and galvo mirror scanners
US11084097B2 (en) 2017-06-23 2021-08-10 Applied Materials, Inc. Additive manufacturing with cell processing recipes
US11135773B2 (en) 2017-06-23 2021-10-05 Applied Materials, Inc. Additive manufacturing with multiple mirror scanners
JP2019034535A (en) * 2017-08-16 2019-03-07 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Apparatus and method for additively manufacturing three-dimensional objects, and evaluation device for that apparatus
KR102142507B1 (en) 2017-08-18 2020-08-07 에스에이에스 쓰리디세람-신토 Method and machine for manufacturing pieces made of ceramic or metallic material by the technique of additive manufacturing
KR20190019852A (en) * 2017-08-18 2019-02-27 에스에이에스 쓰리디세람-신토 Method and machine for manufacturing pieces made of ceramic or metallic material by the technique of additive manufacturing
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
JP2020537049A (en) * 2017-10-09 2020-12-17 エスエルエム ソルーションズ グループ アーゲー Equipment and methods for making 3D workpieces
JP2018030373A (en) * 2017-10-24 2018-03-01 技術研究組合次世代3D積層造形技術総合開発機構 Three dimensional laminate molding system, three dimensional laminate molding method, laminate molding control device, and control method and control program thereof
US11712765B2 (en) 2017-10-26 2023-08-01 General Electric Company Diode laser fiber array for contour of powder bed fabrication or repair
US11084132B2 (en) 2017-10-26 2021-08-10 General Electric Company Diode laser fiber array for contour of powder bed fabrication or repair
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US11331855B2 (en) 2017-11-13 2022-05-17 Applied Materials, Inc. Additive manufacturing with dithering scan path
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US11458682B2 (en) 2018-02-27 2022-10-04 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11724316B2 (en) 2018-03-29 2023-08-15 Arcam Ab Method and device for distributing powder material
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11518100B2 (en) 2018-05-09 2022-12-06 Applied Materials, Inc. Additive manufacturing with a polygon scanner
JP2019199049A (en) * 2018-05-17 2019-11-21 株式会社神戸製鋼所 Molding procedure design method of lamination molded article, molding method and manufacturing apparatus of lamination molded article, and program
JP7020995B2 (en) 2018-05-17 2022-02-16 株式会社神戸製鋼所 Modeling procedure design method for laminated model, modeling method and manufacturing equipment for laminated model, and program
US20220016712A1 (en) * 2018-06-01 2022-01-20 Applied Materials, Inc. Optical assembly for additive manufacturing
CN109434104A (en) * 2018-11-26 2019-03-08 西安增材制造国家研究院有限公司 A kind of scan method for metal laser selective melting forming technology
KR102161641B1 (en) * 2018-12-28 2020-10-05 한국광기술원 3D printer
KR20200087323A (en) * 2018-12-28 2020-07-21 한국광기술원 3D printer
WO2021079553A1 (en) * 2019-10-21 2021-04-29 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional shaping method and three-dimensional shaping device
CN113015588A (en) * 2019-10-21 2021-06-22 株式会社松浦机械制作所 Three-dimensional modeling method and three-dimensional modeling apparatus
WO2021079548A1 (en) * 2019-10-21 2021-04-29 株式会社松浦機械製作所 Three-dimensional shaping method and three-dimensional shaping device
CN113015588B (en) * 2019-10-21 2023-07-11 株式会社松浦机械制作所 Three-dimensional modeling method and three-dimensional modeling apparatus
KR102243204B1 (en) * 2019-10-21 2021-04-21 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Three-dimensional molding method and three-dimensional molding device
JP2021066059A (en) * 2019-10-21 2021-04-30 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional shaping method and three-dimensional shaping device
JP2021066922A (en) * 2019-10-21 2021-04-30 株式会社松浦機械製作所 Three-dimensional shaping method and three-dimensional shaping device
CN111196033A (en) * 2020-01-13 2020-05-26 哈尔滨工业大学 Rapid multi-material photocuring 3D printing device and method based on double-light-source initiation
CN111196033B (en) * 2020-01-13 2021-09-03 哈尔滨工业大学 Rapid multi-material photocuring 3D printing device and method based on double-light-source initiation
DE102020107925A1 (en) 2020-03-23 2021-09-23 Kurtz Gmbh Device for the generative production of components, in particular by means of selective melting or sintering
WO2022000767A1 (en) * 2020-06-30 2022-01-06 北京闻亭泰科技术发展有限公司 3d printing laser processing module based on digital light processing
DE102020128028A1 (en) 2020-10-23 2022-04-28 Kurtz Gmbh Device for the additive manufacturing of components, in particular by means of selective melting or sintering
US11752558B2 (en) 2021-04-16 2023-09-12 General Electric Company Detecting optical anomalies on optical elements used in an additive manufacturing machine
WO2022224547A1 (en) * 2021-04-22 2022-10-27 株式会社日本製鋼所 Powder bed laser processing device, powder additive manufacturing device, processing method, and program
JP2023013337A (en) * 2021-07-15 2023-01-26 株式会社松浦機械製作所 Three-dimensional molding device
JP6978137B1 (en) * 2021-07-15 2021-12-08 株式会社松浦機械製作所 3D modeling equipment
JP6999990B1 (en) 2021-07-15 2022-02-04 株式会社松浦機械製作所 3D modeling equipment
JP2023013326A (en) * 2021-07-15 2023-01-26 株式会社松浦機械製作所 Three-dimensional molding device
JP2023013305A (en) * 2021-07-15 2023-01-26 株式会社松浦機械製作所 Three-dimentional molding device
JP7083199B1 (en) 2021-07-15 2022-06-30 株式会社松浦機械製作所 3D modeling equipment
DE102021133722A1 (en) 2021-12-17 2023-06-22 Kurtz Gmbh & Co. Kg Device for the additive manufacturing of components
WO2023188005A1 (en) * 2022-03-29 2023-10-05 株式会社ニコン Shaping system, radiation condition setting method, input system, computer program, and recording medium

Also Published As

Publication number Publication date
JP4916392B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916392B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
US11850661B2 (en) Method of segmenting object to be manufactured by energy input parameter and passing energy beam across segments
JP6030597B2 (en) Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
KR101950534B1 (en) Layered manufacturing device and method
JP5826430B1 (en) Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
KR20150115596A (en) Device and method for forming a 3-dimensional shaped object
JP2015199195A (en) Three-dimensional object molding device
JP7435696B2 (en) Processing equipment, processing method, marking method, and modeling method
JP4296354B2 (en) Manufacturing method of sintered metal powder parts
EP3563203B1 (en) Control data for manufacturing one three-dimensional object by means of a layer-wise solidification of a building material
US6670575B1 (en) Method and apparatus for removing substance from the surface of a workpiece
JP4296355B2 (en) Manufacturing method of sintered metal powder parts
US7941241B2 (en) Optical fabrication method
JP2023085256A (en) Modeling system and modeling method
JP3779358B2 (en) Solid shape modeling method
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP7259494B2 (en) Additive manufacturing equipment
JP5993224B2 (en) 3D modeling equipment
EP3393760B1 (en) Additive manufacturing apparatus and methods
EP3900861A1 (en) Additive manufacturing system and method using multiple beam orientations
JP7036129B2 (en) Processing system and processing method
WO2013094025A1 (en) Laser processing method
US20200233995A1 (en) Cad system and method of generating design data
JP7221107B2 (en) Apparatus for manufacturing three-dimensional model and method for manufacturing three-dimensional model
JP2019203145A (en) Lamination molding method and lamination molding device for laminated molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150