JPH04113828A - Manufacture of large-sized stereo-resin model and device therefor - Google Patents

Manufacture of large-sized stereo-resin model and device therefor

Info

Publication number
JPH04113828A
JPH04113828A JP2232466A JP23246690A JPH04113828A JP H04113828 A JPH04113828 A JP H04113828A JP 2232466 A JP2232466 A JP 2232466A JP 23246690 A JP23246690 A JP 23246690A JP H04113828 A JPH04113828 A JP H04113828A
Authority
JP
Japan
Prior art keywords
liquid
liquid surface
resin
laser beam
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232466A
Other languages
Japanese (ja)
Inventor
Takehiko Muramatsu
村松 岳彦
Masayasu Amano
天野 壮泰
Kimihisa Takada
高田 公久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2232466A priority Critical patent/JPH04113828A/en
Publication of JPH04113828A publication Critical patent/JPH04113828A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49013Deposit layers, cured by scanning laser, stereo lithography SLA, prototyping

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To make it possible to speedily manufacture the title stereo-resin model with high accuracy and low deformation by sharing the scanning for respective division regions of the surface of a light hardening resin or for in dependent slice sectional portions of a stereo-model with each laser beam of each scanner. CONSTITUTION:A three-dimensional CAD is formed with a contour-like sectional data of the sliced layers of thin sectional bodies of designed model. It is prepared on a computer of a controller 15. Next, a work table 12 is held near the surface of a resin liquid 11 to be slightly covered therewith. A laser supply 1 emits four laser beams 8 to scan the surface of the resin liquid 11 through light shutter 4 and light scanner 7, thereby hardening the resin liquid 11. In this case, the laser beams 8 are shared into respective division regions A, B, C and D for sharing the scanning in respective regions. The parallel scans for respective division regions increase the light hardening speed. Further, by oscillating the laser beam in the range of allowable emitting angle, it is possible to harden the sectional portion of the resin with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザ光硬化による大型立体樹脂モデルの製造
方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and apparatus for manufacturing a large three-dimensional resin model by laser light curing.

[従来の技術] 従来のレーザ光硬化による大型立体樹脂モデルの製造方
法を第9図に示す。
[Prior Art] FIG. 9 shows a conventional method for manufacturing a large three-dimensional resin model using laser light curing.

まず(イ)のように、3次元CAD上にデザインされた
モデルaを幾層もの薄い断面体にスライスして等高線状
の断面データを作成し、制御装置のコンピュータ上に用
意しておく。
First, as shown in (a), a model a designed on a three-dimensional CAD is sliced into many thin cross-sectional layers to create contour cross-sectional data and prepared on the computer of the control device.

次に(ロ)に示すように、レーザ光線を当てると硬化す
る光硬化樹脂液すを満たした液槽Cにおいて、最初に、
2方向(上下方向)に移動可能なワークテーブルdを樹
脂液すが薄く覆い隠すように液面e近くに止め、その液
面eに、紫外線レーザ光線fを、図示のガルバノミラ−
g又は図示してないXYプロッタから成る光スキャナh
により、X−Y方向に走査しながら照射する。即ち、上
記等高線状の断面データに基づき光スキャナhを制御す
ることにより、上記立体モデルaの第1層目のスライス
断面形状に沿って、液面をレーザ光線でで走査する。光
に当った樹脂液は硬化して、ワークテーブルdに第1層
目のスライス断面形状が固着する。
Next, as shown in (b), first, in a liquid tank C filled with a photocurable resin liquid that hardens when exposed to a laser beam,
A work table d movable in two directions (up and down) is stopped near the liquid surface e so that the resin liquid is thinly covered, and an ultraviolet laser beam f is applied to the liquid surface e using the galvano mirror shown in the figure.
g or an optical scanner h consisting of an XY plotter (not shown)
irradiation while scanning in the X-Y direction. That is, by controlling the optical scanner h based on the contour cross-sectional data, the liquid surface is scanned with a laser beam along the slice cross-sectional shape of the first layer of the three-dimensional model a. The resin liquid exposed to the light hardens, and the cross-sectional shape of the slice of the first layer is fixed to the work table d.

次に、ワークテーブルdを少し下げると、樹脂液が回り
込んで来て、薄い液状の樹脂層ができる。
Next, when the work table d is lowered a little, the resin liquid flows around and forms a thin liquid resin layer.

これにまたレーザ光線fを照射し且つ走査して、第2層
目のスライス断面形状を硬化させる。
This is also irradiated with a laser beam f and scanned to harden the sliced cross-sectional shape of the second layer.

この操作を繰り返すと、(ハ)(ニ)に示すように薄い
層が徐々に積層されて、立体モデルの積層ワーク部i、
jが形成されて行く、所望の積層ワーク部jが出来上が
ったところで、(ホ)に示すようにワークテーブルdを
樹脂液す中から引き上げ、完成した積層ワーク(立体樹
脂モデル)kを得る。
By repeating this operation, thin layers are gradually laminated as shown in (c) and (d), and the laminated work part i of the three-dimensional model,
When the desired laminated work part j is completed, as shown in (e), the work table d is pulled out of the resin bath to obtain the completed laminated work (three-dimensional resin model) k.

このような積層加工による立体樹脂モデルの光速形方法
は、金型加工のような特殊技術を必要とせずに、ある一
定精度の範囲内ならば、CADデータから直接に立体樹
脂モデルが作成できる。従って、複数の立体樹脂モデル
を試作し最適な形状を確認した上で量産用などの金型を
起こす、といったことが可能であり、重要な技術として
確立されつつあり、現在では試作の高速化、高精度化。
This light-speed method of creating a three-dimensional resin model using lamination processing allows a three-dimensional resin model to be created directly from CAD data within a certain accuracy range without requiring special techniques such as mold processing. Therefore, it is possible to prototype multiple three-dimensional resin models, confirm the optimal shape, and then create molds for mass production.This technology is becoming established as an important technology, and is currently being used to speed up prototyping. High precision.

大型化、低コスト化等に関心が寄せられている。There is interest in increasing the size and reducing costs.

[発明が解決しようとする課題] しかし、従来の製造方法は、上記ガルバノミラ−又はX
Yプロッタのいずれ方式の光スキャナの場合も、液面を
操作するレーザ光線fが1本であり、このため製造すべ
き立体モデルが大型化すると、その製造に時間がかかり
過ぎたり、寸法精度が低くなるという問題があった。
[Problems to be Solved by the Invention] However, the conventional manufacturing method
In the case of any type of Y-plotter optical scanner, there is only one laser beam f that manipulates the liquid surface, so when the three-dimensional model to be manufactured becomes large, it takes too much time to manufacture it and the dimensional accuracy becomes poor. There was a problem with it being low.

高速化の観点からは、従来、レーザーパワーを上げて光
硬化速度を向上させ、これによって走査速度を稼ぐ方法
が採られている。しかし、レーザーパワーが高くなって
くると、使用する光硬化樹脂の特性にもよるが、走査速
度を高くするだけでは、最適な硬化状態を保つことが困
難になってくる。つまり、過剰な光により、重合反応が
暴走し、硬化が進み過ぎる状態となることがある。
From the viewpoint of speeding up, the conventional method has been to increase the laser power to improve the photocuring speed, thereby increasing the scanning speed. However, as the laser power increases, it becomes difficult to maintain an optimal cured state simply by increasing the scanning speed, although it also depends on the characteristics of the photocurable resin used. In other words, excessive light may cause the polymerization reaction to run out of control, leading to excessive curing.

次に、寸法精度の点については、大型立体樹脂モデルの
スライス断面形状の輪郭をガルバノミラ−gで走査した
場合、例えば第7図に示すように樹脂液面eの中心A部
から外側領域のB部にレーザ光線fを走査しなとき、そ
のガルバノミラ−6の揺動中心点Cから液面までの距離
が1から1+Δ1へと逐次変化するため、レーザ光線f
は焦点ズレを起こす、そこで、従来は焦点補正レンズm
の位置を光軸に沿って移動させることにより、この焦点
ズレを補正している。しかし大型立体樹脂モデルの場合
、この補正だけではまだ寸法精度が低く、特に光硬化の
歪みが大きいことが分かった。
Next, in terms of dimensional accuracy, when scanning the outline of the sliced cross-sectional shape of a large three-dimensional resin model with a galvanometer mirror g, for example, as shown in FIG. When the laser beam f is not scanned to
causes a focus shift, so conventional focus correction lenses m
This focus shift is corrected by moving the position of the lens along the optical axis. However, in the case of large three-dimensional resin models, it was found that the dimensional accuracy was still low even with this correction alone, and the distortion caused by photocuring was particularly large.

本発明の目的は、前記した従来の欠点を解消し、レーザ
光線を2本以上使用することにより、高速度、高精度か
つ低歪みの大型立体樹脂モデルを製作することのできる
製造方法及び装置を提供することにある。
An object of the present invention is to provide a manufacturing method and apparatus that can eliminate the above-mentioned conventional drawbacks and manufacture large-sized three-dimensional resin models at high speed, with high precision, and with low distortion by using two or more laser beams. It is about providing.

[課題を解決するための手段] 本発明による大型立体樹脂モデルの製造方法には、次の
3つの形態がある。
[Means for Solving the Problems] The method for manufacturing a large three-dimensional resin model according to the present invention has the following three forms.

第1は、光硬化樹脂液の液面の上方に、液面方向に離間
して少なくとも2つの光スキャナを配置し、各光スキャ
ナで走査されるレーザ光線のそれぞれを、液面全体を分
割した個々の分割領域毎に割当て、各分割領域にまたが
って若しくは独立に存在する立体モデルのスライス断面
形状部分の走査を、各光スキャナのレーザ光線で分担す
るものである。
First, at least two optical scanners are placed above the liquid surface of the photocurable resin liquid, spaced apart in the liquid surface direction, and each of the laser beams scanned by each optical scanner is divided across the entire liquid surface. The laser beam of each optical scanner is assigned to each divided area, and the scanning of the sliced cross-sectional portion of the three-dimensional model that exists across or independently of each divided area is shared by the laser beam of each optical scanner.

第2は、光硬化樹脂液の液面の上方に、液面方向に離間
して少なくとも2つの光スキャナを配置し、各光スキャ
ナで走査されるレーザ光線のそれぞれを液面の別々の場
所に照射し、各レーザ光線によって立体モデルの同一ス
ライス層におけるスライス断面形状の独立した複数の走
査ラインを、上記各光スキャナのレーザ光線で分担する
ものである。
Second, at least two optical scanners are placed above the liquid surface of the photocuring resin liquid, spaced apart in the liquid surface direction, and the laser beams scanned by each optical scanner are directed to different locations on the liquid surface. The laser beams of each optical scanner share a plurality of independent scanning lines of slice cross-sectional shapes in the same slice layer of the three-dimensional model with each laser beam.

第3は、光硬化樹脂液の液面の上方に、液面方向に離間
して少なくとも2つの光スキャナを配置し、各光スキャ
ナで走査されるレーザ光線のそれぞれを液面の別々の場
所に照射し、立体モデルのスライス断面形状に沿った1
耽きの走査ラインを小区画に分け、各小区画の走査を上
記各光スキャナのレーザ光線で分担するものである。
Thirdly, at least two optical scanners are placed above the liquid surface of the photocuring resin liquid, spaced apart in the liquid surface direction, and the laser beams scanned by each optical scanner are directed to different locations on the liquid surface. 1 along the slice cross-sectional shape of the 3D model.
The optical scanning line is divided into small sections, and the scanning of each small section is shared by the laser beams of the respective optical scanners.

また、本発明の製造装置の形態には次の2つがある。Furthermore, there are two forms of the manufacturing apparatus of the present invention as follows.

第1は、光硬化樹脂液を満たした大型の液槽と、この液
槽の液中に配置したワークテーブルを昇降させる2方向
移動装置と、上記液槽の上方に液面方向に離間して複数
個配置され各々レーザ光源からのレーザ光線を液面に沿
ったX−Y方向に振るミラーと、3次元デザインのモデ
ルを幾層もの薄い断面体にスライスした断面データを保
持し、該断面データに従う上記複数のミラーの制御及び
各層切替え時の上記2方向移動装置の制御を行う制御装
置とを具備する構成のものである。
The first is a large liquid tank filled with a photocurable resin liquid, a two-way moving device that raises and lowers a work table placed in the liquid in this liquid tank, and a work table placed above the liquid tank that is spaced apart in the direction of the liquid level. A plurality of mirrors are arranged, each of which swings a laser beam from a laser light source in the X-Y direction along the liquid surface, and holds cross-sectional data obtained by slicing a three-dimensional design model into many thin cross-sectional bodies, and stores the cross-sectional data. and a control device that controls the plurality of mirrors according to the above and controls the two-direction moving device when switching each layer.

第2は、光硬化樹脂液を満たした大型の液槽と、この液
槽の液中に配置したワークテーブルを昇降させるZ方向
移動装置と、上記液槽の上方に液面方向に離間して複数
個配置され各々レーザ光源からのレーザ光線を液面に照
射するプロジェクタと、該プロジェクタを液面に沿って
移動させるX−Y方向移動装置と、3次元デザインのモ
デルを幾層もの薄い断面体にスライスした断面データを
保持し、該断面データに従う上記複数のプロジェクタの
X−Y方向移動装置の制御及び各層切替え時の上記Z方
向移動装置の制御を行う制御装置とを具備する構成のも
のである。
The second is a large liquid tank filled with a photocuring resin liquid, a Z-direction moving device that moves up and down a work table placed in the liquid in this liquid tank, and a Z-direction moving device that is spaced above the liquid tank in the direction of the liquid level. A plurality of projectors are arranged and each irradiates the liquid surface with a laser beam from a laser light source, an X-Y direction moving device moves the projector along the liquid surface, and a three-dimensional design model is made up of several layers of thin cross-sections. and a control device that holds cross-sectional data sliced into sectional data, and controls the X-Y direction moving device of the plurality of projectors according to the cross-sectional data, and the control device of the Z-direction moving device when switching each layer. be.

[作用] 第7図及び第8図を用いて、レーザ光線が1本の場合に
おける大型立体樹脂モデルの寸法精度及び歪みにつき、
検討したところを述べる。
[Function] Using Fig. 7 and Fig. 8, the dimensional accuracy and distortion of the large three-dimensional resin model in the case of one laser beam,
I will explain what I considered.

第7図に示すように樹脂液面eの中心A部から外側領域
のB部にレーザ光線fを走査した場合、ガルバノミラ−
gの揺動中心点Cの直下にある樹脂液面中心のA部では
、第8図(a)のように、モデル積層ワーク部iの各層
n、n−1・・・において、光硬化部Qn、Qn−1・
・・の軸線が液面に垂直方向に整列し、この部分Aの寸
法精度及び歪みは良好であった。しかし、第8図(b)
に示すように樹脂液面eの中心Aから大きく外れた外側
領域のB部では、モデル積層ワーク部iの光硬化部Qn
As shown in FIG. 7, when the laser beam f is scanned from the center A part of the resin liquid level e to the outer region B part, the galvano mirror
As shown in FIG. 8(a), in the part A at the center of the resin liquid level directly below the swinging center point C of g, the photocuring part is Qn, Qn-1・
The axes of ... were aligned perpendicular to the liquid surface, and the dimensional accuracy and distortion of this portion A were good. However, Fig. 8(b)
As shown in , in part B of the outer region far away from the center A of the resin liquid level e, the photocured part Qn of the model laminated work part i is
.

Qn−1・・・は、各層n、n−1・・・毎に、その軸
線Sn。
Qn-1... is the axis Sn of each layer n, n-1....

5n−1・・・が液面の垂直線Rに対して傾いた状態で
、垂直方向に整列しており、このB部分では寸法精度が
著しく低下し且つ歪みも大きかった。
5n-1... were aligned in the vertical direction in a state of inclination with respect to the vertical line R of the liquid level, and in this B portion, the dimensional accuracy was significantly reduced and the distortion was large.

このように、モデル積層ワーク部iの各層の光硬化部Q
n、Qn−1・・・がダンゴ状に連なる現象が生ずるの
は、大型面#樹脂モデルの場合、走査する液面領域が大
きいのに対し、この範囲を受は持つレーザ光線fが1本
であることに起因する。即ち、樹脂液面の中心A部から
外側領域のB部にレーザ光線fを走査した場合、それに
よってガルバノミラ−gの揺動角、つまりレーザ光線f
の振れ角θも大きくなるためであると推定した。
In this way, the photocured portion Q of each layer of the model laminated workpiece i
The phenomenon in which n, Qn-1, etc. are connected in a dango-like manner occurs because, in the case of a large surface #resin model, the liquid surface area to be scanned is large, whereas in the case of a receiver, there is only one laser beam f that covers this area. This is due to the fact that That is, when the laser beam f is scanned from the center A part of the resin liquid surface to the outer area B part, the swing angle of the galvanometer mirror g, that is, the laser beam f
It is assumed that this is because the deflection angle θ also increases.

本発明は、かかる認識を前提とするものであり、各光ス
キャナがガルバノミラ一方式の場合、上記製造方法の第
1の形態では、各ガルバノミラ−で揺動走査されるレー
ザ光線のそれぞれの走査可能範囲を、液面全体より小さ
く且つ互いに連なる部分領域に制限する。即ち、液面全
体を分割した分割領域の各々に1個宛レーザ光線を割当
てる。従って、立体モデルのスライス断面形状が各分割
領域にまたがって存在する場合には、各ガルバノミラ−
は自己の担当する分割領域に存在するスライス断面形状
部分のみの走査を行えばよい、この結果、各ガルバノミ
ラ−の揺動角度、つまり液面に対する振れ角θが液面全
体に対して振る場合よりも小さくなり、光スキャナが1
個の場合に比べ樹脂硬化部分の歪みが生じなくなる。
The present invention is based on such recognition, and in the case where each optical scanner is a galvano-mirror type, in the first embodiment of the above manufacturing method, each of the laser beams oscillated by each galvano-mirror can be scanned. The range is limited to partial areas that are smaller than the entire liquid surface and that are continuous with each other. That is, one laser beam is assigned to each of the divided regions obtained by dividing the entire liquid surface. Therefore, if the slice cross-sectional shape of the three-dimensional model exists across each divided region, each galvano mirror
All you have to do is scan only the slice cross-sectional shape that exists in the divided area you are responsible for. As a result, the swing angle of each galvano mirror, that is, the deflection angle θ relative to the liquid surface, is smaller than when swinging relative to the entire liquid surface. has also become smaller, and the optical scanner is now 1
Compared to the case where the resin is cured, distortion does not occur in the cured resin part.

また、各光スキャナがガルバノミラ一方式又はXYプロ
ッタ方式のいずれの場合でも、2本以上のレーザ光線で
同時に並行して光走査できるため、1個の場合に比べ著
しく短時間で立体樹脂モデルを高速製造することができ
る。尚、自己が担当する分割領域にスライス断面形状部
分が存在しないときは、その光スキャナは光照射自体を
停止する。
In addition, regardless of whether each optical scanner is a galvanometer mirror type or an XY plotter type, two or more laser beams can simultaneously scan the light in parallel, so three-dimensional resin models can be created at high speed in a significantly shorter time than when using one laser beam. can be manufactured. Note that when the slice cross-sectional shape part does not exist in the divided region that it is in charge of, the optical scanner stops the light irradiation itself.

上記製造方法の第2.第3の形態は、上記のように液面
全体を複数個の分割領域に分割し、その分割領域内での
みレーザ光線を振らせるという制約を外したものである
。このうち第2の形態は、立体モデルの同一スライス層
におけるスライス断面形状に独立した複数の走査ライン
がある場合、それぞれの走査ラインを各ガルバノミラ−
のレーザ光線で分担するものである0分担する走査ライ
ンは、当該立体モデルのスライス断面形状の特質上、液
面全体の互いに興なる複数場所に独立して存在している
ため、各ガルバノミラ−によるレーザ光線の振れ角θは
、やはり、液面全体に対して振る場合よりも小さくなる
2 of the above manufacturing method. The third form removes the restriction that the entire liquid surface is divided into a plurality of divided regions and the laser beam is swung only within the divided regions as described above. In the second method, when there are a plurality of independent scanning lines in the slice cross-sectional shape in the same slice layer of the three-dimensional model, each scanning line is connected to each galvano mirror.
Due to the characteristics of the slice cross-sectional shape of the three-dimensional model, the scanning lines that are shared by the laser beams of The deflection angle θ of the laser beam is also smaller than that when the laser beam is deflected over the entire liquid surface.

第3の形態は、立体モデルのスライス断面形状に沿った
1耽きの走査ラインがある場合、当該走査ラインを小区
画(線分)に分け、各小区画の走査を上記各光スキャナ
のレーザ光線で分担するものである。1続きの走査ライ
ン全体のうち、各小区画のみ走査することになるため、
各ガルバノミラ−によるレーザ光線の振れ角θは、やは
り、液面全体に対して振る場合よりも小さくなる。
In the third form, when there is one scanning line along the slice cross-sectional shape of the three-dimensional model, the scanning line is divided into small sections (line segments), and each small section is scanned by the laser of each of the above optical scanners. It is shared by the rays of light. Since only each small section of the entire continuous scanning line is scanned,
The deflection angle θ of the laser beam by each galvanometer mirror is also smaller than that when the laser beam is deflected over the entire liquid surface.

[実施例] 以下本発明を具体的実施例により説明する。[Example] The present invention will be explained below using specific examples.

第1図に、ガルバノミラ一方式の光スキャナを用いた大
型立体樹脂モデルの高速製造装置を示す。
FIG. 1 shows a high-speed manufacturing apparatus for large-sized three-dimensional resin models using a galvano-mirror type optical scanner.

10は大型立体樹脂モデルを製造し得る液槽であり、レ
ーザを当てると硬化する光硬化樹脂液11で満たされて
いる。この光硬化樹脂液11中にはワークテーブル12
が配置され、Z方向移動装3f13により昇降可能に支
持されている。
Reference numeral 10 denotes a liquid tank in which a large three-dimensional resin model can be manufactured, and is filled with a photocurable resin liquid 11 that hardens when exposed to a laser beam. A work table 12 is contained in this photocuring resin liquid 11.
is arranged and supported so as to be movable up and down by a Z-direction moving device 3f13.

この液槽10の光硬化樹脂液面14の上方には、ガルバ
ノミラ一方式の光スキャナ7が複数個、ここでは4個、
液面方向(XY方向)に互いに離間して配置されている
。即ち、第1図にはX方向に離間した2つの光スキャナ
7しか示してないが、第1図の紙面に垂直なY方向にも
更に2つの光スキャナ7が存在する(第2図参照)、尚
、個々の光スキャナ7は、X方向用及びY方向用の電磁
ミラーを1対とするガルバノミラ−6から成る。
Above the photocuring resin liquid level 14 of this liquid tank 10, there are a plurality of galvano-mirror one-type optical scanners 7, four in this case,
They are arranged apart from each other in the liquid surface direction (XY direction). That is, although FIG. 1 only shows two optical scanners 7 spaced apart in the X direction, there are also two more optical scanners 7 in the Y direction perpendicular to the page of FIG. 1 (see FIG. 2). Incidentally, each optical scanner 7 is composed of a galvanometer mirror 6 having a pair of electromagnetic mirrors for the X direction and the Y direction.

1はレーザ光源であり、このレーザ光源1から出射され
たレーザ光2は、光分岐器3により4系統に分岐され、
その第1系統のレーザ光は、光シャッタ4,2つの反射
ミラー5.5を通して、レーザ光s1から遠い方の光ス
キャナ7に導かれ、液面14を照射する第1のレーザ光
線8となる。
1 is a laser light source, and the laser light 2 emitted from this laser light source 1 is branched into four systems by an optical splitter 3.
The first system of laser light is guided through the optical shutter 4 and two reflection mirrors 5.5 to the optical scanner 7 that is farther from the laser light s1, and becomes a first laser beam 8 that irradiates the liquid surface 14. .

また、第2系統のレーザ光は、別の反射ミラー5゜光シ
ャッタ4を通して、レーザ光源1に近い方の光スキャナ
7に導かれ、第2のレーザ光線8として液面14を照射
する。残りの2系統のレーザ光も同様にして光スキャナ
7に導かれる。
Further, the second system of laser light is guided through another reflection mirror 5° optical shutter 4 to an optical scanner 7 closer to the laser light source 1, and irradiates the liquid surface 14 as a second laser beam 8. The remaining two systems of laser light are guided to the optical scanner 7 in the same manner.

15はコンピュータを主体とする制御装置であり、上記
4系統について、光分岐器3による各レーザ光線8の出
力のコントロール、光シャッタ4の開閉、光スキャナ7
のガルバノミラ−6の揺動と焦点補正レンズの動作、及
びZ方向移動装置13の昇降等を制御する。
Reference numeral 15 denotes a control device mainly composed of a computer, which controls the output of each laser beam 8 by the optical splitter 3, opens and closes the optical shutter 4, and controls the optical scanner 7 for the above four systems.
The control unit controls the swinging of the galvanometer mirror 6, the operation of the focus correction lens, and the elevation and descent of the Z-direction moving device 13.

上記4@の光スキャナ7は、第2図に示すように、液面
14全体から成る走査面16を光スキヤナ数に対応した
数の領域、つまり4つの領域A。
As shown in FIG. 2, the 4@ optical scanners 7 scan the scanning surface 16 consisting of the entire liquid surface 14 into areas corresponding to the number of optical scanners, that is, four areas A.

B、C,Dに仮想的に分割し、その個々の分割領域A、
B、C,D内、例えば略中央部に位置される。この場合
、第2図に示すように等しく走査面16を当分側するか
又は第3図に示すように面積の興なる分割領域A、B、
C,Dに分割するかは任意であり、また各分割領域への
光スキャナ7の配置位置も任意であって、必ずしも、分
割領域A。
It is virtually divided into B, C, and D, and each divided area A,
It is located within B, C, and D, for example, approximately in the center. In this case, as shown in FIG. 2, the scanning surface 16 is equally placed on the side, or as shown in FIG.
It is arbitrary to divide the area into C and D, and the position of the optical scanner 7 in each divided area is also arbitrary.

B、C,Dの略中央部に配置する必要はない、しかし、
少なくとも各光スキャナ7は、当該光スキャナが受は持
つ分割領域における最遠端部への光照射した場合でも、
そのときの振れ角θが、完成した立体樹脂モデルに歪み
を生じない限界角度以内となっている必要がある。かか
る液面14に対するレーザ光線の照射角度の観点より、
走査面16の分割領域と光スキャナ7の位置とが定めら
れ、走査面16の分割数も経済的な値に決定される。
It is not necessary to place it approximately in the center of B, C, and D, but
At least each optical scanner 7 irradiates light to the farthest end of the divided area that the optical scanner has,
The deflection angle θ at that time needs to be within a limit angle that does not cause distortion to the completed three-dimensional resin model. From the viewpoint of the irradiation angle of the laser beam with respect to the liquid surface 14,
The divided areas of the scanning plane 16 and the position of the optical scanner 7 are determined, and the number of divisions of the scanning plane 16 is also determined to be an economical value.

このようにして、液面全体から成る走査面16は仮想的
に4つの分割領域A、B、C,Dに分割され、各光スキ
ャナ7で走査されるレーザ光線8が、それぞれ、個々の
分割領域毎に割当てられる。
In this way, the scanning surface 16 consisting of the entire liquid surface is virtually divided into four divided areas A, B, C, and D, and the laser beam 8 scanned by each optical scanner 7 is divided into each divided area. Allocated for each area.

次に、製造方法について説明する。Next, the manufacturing method will be explained.

(a)まず、従来と同様、3次元CAD上にデザインさ
れたモデルを幾層もの薄い断面体にスライスして等高線
状の断面データを作成し、制御装置15のコンピュータ
上に用意しておく。
(a) First, as in the past, a model designed on a three-dimensional CAD is sliced into many thin cross-sectional layers to create contour cross-sectional data and prepared on the computer of the control device 15.

(b)ワークテーブル12を樹脂液11が薄く覆い隠す
ように液面近くに止め、その液面に、レーザ光源1から
光シャッタ4.光スキャナ7を通して得られる4本のレ
ーザ光線8を走査させ、光に当たった樹脂液を硬化させ
る。その際、各レーザ光線8は、各分割領域A、B、C
,Dに割り当てられているなめ、その割り当てた分割領
域内のみの走査を担当する。
(b) The work table 12 is stopped near the liquid surface so that the resin liquid 11 covers it thinly, and the optical shutter 4. Four laser beams 8 obtained through an optical scanner 7 are scanned, and the resin liquid hit by the light is cured. At that time, each laser beam 8
, D is responsible for scanning only within the assigned divided area.

例えば、第2図に示すように、立体モデルのスライス断
面形状、つまり走査ライン17が、各分割領域A、B、
C,Dにまたがって存在するときは、各レーザ光線8は
、自己が受は持つ領域内のみに存在するスライス断面形
状部分17a。
For example, as shown in FIG. 2, the slice cross-sectional shape of the three-dimensional model, that is, the scanning line 17, is
When the laser beams 8 exist across C and D, each laser beam 8 has a slice cross-sectional shape portion 17a that exists only within the area that it receives.

17b、17c、17dだけを、その輪郭に沿って走査
する。尚、第2図において、白丸印は走査開始点を、黒
丸印は走査終了点を示す。
Only 17b, 17c, and 17d are scanned along their contours. In FIG. 2, a white circle indicates a scanning start point, and a black circle indicates a scanning end point.

もし、自己が受は持つ分割領域内に存在するスライス断
面形状部分が、他の分割領域のものと連続しない独立し
た存在のスライス断面形状部分、例えば独立した円1曲
線等であるときは、自己のレーザ光線のみによ7て、そ
の独立した走査ラインを描く、また、自己が受は持つ領
域内にスライス断面形状部分が存在しないときは、光照
射自体を行わない、また、光分岐器3により分岐される
レーザ光線の出力を制御し、他の受は持つ領域にレーザ
光線の出力を分配し、高速造形を行う。
If the slice cross-sectional shape part existing in the divided area that the self owns is an independent slice cross-sectional shape part that is not continuous with those of other divided areas, for example, an independent circular curve, The independent scanning line is drawn using only the laser beam 7, and when there is no slice cross-sectional shape part within the area that the optical branching device 3 has, the light irradiation itself is not performed. controls the output of the laser beam branched by the receiver, and distributes the output of the laser beam to the area held by the other receivers to perform high-speed modeling.

尚、このレーザ光線8の照射開始及び終了は、制御装置
15により光シャッタ4を開閉制御することで行う、ま
た、レーザ光線8の上記スライス断面形状に沿った走査
は、上記等高線状の断面データに基づき、光スキャナ7
のガルバノミラ−6を揺動制御と焦点補正レンズのフォ
ー力ッシング動作の制御をすることにより行う。
The start and end of the irradiation of the laser beam 8 is performed by controlling the opening and closing of the optical shutter 4 by the control device 15, and the scanning of the laser beam 8 along the slice cross-sectional shape is performed based on the contour line-shaped cross-sectional data. Based on optical scanner 7
This is done by controlling the swinging of the galvano mirror 6 and controlling the focusing operation of the focus correction lens.

(C)第1層目硬化後、ワークテーブル12を少し下げ
、樹脂液が降下層の上に回り込むのを待って、第2層目
の断面データにより第1層目と同様にして光走査し、樹
脂を硬化させる。
(C) After the first layer is cured, lower the work table 12 slightly, wait for the resin liquid to wrap around the falling layer, and perform optical scanning in the same manner as the first layer using the cross-sectional data of the second layer. , harden the resin.

(d)第3層目以降も同様の操作を繰り返し、光走査に
よる積層加工を行って立体モデルの積層ワーク部18(
第1図)を形成して行く。
(d) Repeat the same operation for the third and subsequent layers, and perform lamination processing by optical scanning to form the laminated work part 18 of the three-dimensional model (
Figure 1) is formed.

既に明らかなように、上記製造方法において従来と興な
る点は、走査面16の分割とレーザ光線8の走査方法に
あり、これは、各分割領域毎に並行して光走査が行うこ
とで光硬化速度を増倍し、且つ、評容照射角度範囲内で
レーザ光線を振ることにより断面形状を高精度に硬化さ
せることを意味する。
As is already clear, the difference between the above manufacturing method and the conventional method lies in the division of the scanning surface 16 and the scanning method of the laser beam 8. This means that the cross-sectional shape is cured with high precision by multiplying the curing speed and swinging the laser beam within the estimated irradiation angle range.

第3図は、モデルのスライス断面形状が二重で補強桟を
有する構造であり、多少複雑な例である。
FIG. 3 shows a somewhat complicated example in which the model has a structure in which the cross-sectional shape of the slice is double and has reinforcing bars.

各分割領域A、B、C,D毎に、その領域を担当スル“
1”2”3”4”の数字で示す各レーザ光線が、まず外
側の輪郭線19における白丸印の位置(走査開始点)か
ら四角印の位l(走査終了点)へ走査し、次に内側の輪
郭線20における白丸印から四角印へ走査し、最後に、
分割領域C,Dにおける補強桟21.22の部分を白丸
印から四角印へ走査する。ここでも、各分割領域毎に且
つ時間的に並行して光走査が行われるので、レーザ光線
が1本の場合に比べ、遇かに短時間で先進形ができる。
For each divided area A, B, C, D,
Each laser beam indicated by the numbers 1, 2, 3, and 4 first scans from the white circle mark position (scanning start point) on the outer contour line 19 to the square mark position l (scanning end point), and then Scan from the white circle mark to the square mark on the inner contour line 20, and finally,
The parts of the reinforcing bars 21 and 22 in the divided areas C and D are scanned from white circles to squares. Here, too, since optical scanning is performed for each divided area and in parallel in time, advanced scanning can be achieved in a much shorter time than when a single laser beam is used.

次に、本発明の他の製造方法の例について説明する。Next, an example of another manufacturing method of the present invention will be described.

例えば、第4図(a)に示すような1字状の立体モデル
23を製造したい場合、1字の頂部周縁垂下部23aは
当該部分の積層加工の際にワークテーブル12から遥か
上方に位置することとなり、支持するものが無いなめに
、通常の積層加工では作製できなくなる。そこで、一般
には、第4図(b)に示すようにサポート24を最初か
ら形成し、立体モデル完成後に所定の位置25でサポー
ト24を切り落とす、従って、ここではCADデータを
直接に利用することが出来ず、制御装置15のコンピュ
ータにて、このサポート24の部分の断面データを補促
する。
For example, when it is desired to manufacture a character 1-shaped three-dimensional model 23 as shown in FIG. Since there is nothing to support it, it cannot be manufactured using normal lamination processing. Therefore, in general, the support 24 is formed from the beginning as shown in FIG. 4(b), and the support 24 is cut off at a predetermined position 25 after the three-dimensional model is completed.Therefore, it is not possible to directly use CAD data here. If this is not possible, the computer of the control device 15 will request the cross-sectional data of this support 24 portion.

このサポート24の光速形ような場合、上記のように走
査面16を分割領域A、B、C,Dに分割して分担処理
することもできるが、それ自体の断面形状はそれ程大型
でなく、独立した断面形状をなすという特種な!E!様
を呈する。
In the case where the support 24 is of the speed-of-light type, the scanning surface 16 can be divided into divided areas A, B, C, and D as described above, and the processing can be shared among them, but the cross-sectional shape of the support 24 itself is not so large; A special type that has an independent cross-sectional shape! E! It shows the appearance.

そこで、本発明の第2の製造方法では、液面上方に液面
方向に離間して少なくとも2つの光スキャナ7を配置し
、且つ各光スキャナ7で走査されるレーザ光線8のそれ
ぞれを液面の別々の場所に照射するという点では上記と
同じであるが、走査面16を分割領域A、B、C,Dに
分割するという概念を捨てる。そして、各レーザ光線8
によって、立体モデルの同一スライス層におけるスライ
ス断面形状の独立した複数の走査ライン、つまり第4図
(b)の例では立体モデル23自体の幹部会23bとサ
ポート24の部分とを、上記複数個の光スキャナ7のレ
ーザ光線で分担する。
Therefore, in the second manufacturing method of the present invention, at least two optical scanners 7 are arranged above the liquid surface and spaced apart in the liquid surface direction, and each of the laser beams 8 scanned by each optical scanner 7 is directed to the liquid surface. This is the same as above in that irradiation is applied to different locations, but the concept of dividing the scanning surface 16 into divided areas A, B, C, and D is discarded. And each laser beam 8
Accordingly, a plurality of independent scanning lines of the slice cross-sectional shape in the same slice layer of the three-dimensional model, that is, in the example of FIG. The laser beam of the optical scanner 7 is used.

このようにすることで、各層の硬化速度の向上、CAD
データを走査データに変換するソフトの簡易化を図るこ
とができる。
By doing this, the curing speed of each layer can be improved, and CAD
Software for converting data into scan data can be simplified.

本発明の第3の製造方法も、第2図、第3図で述べた走
査面16を分割領域A、B、C,Dに分割するという概
念を捨て、各レーザ光線はそれが受は持つ分割領域A、
B、C,Dになければならないという制約を外したもの
である。
The third manufacturing method of the present invention also abandons the concept of dividing the scanning surface 16 into divided areas A, B, C, and D as described in FIGS. 2 and 3, and each laser beam is divided area A,
This removes the restriction that it must be in B, C, and D.

例えば、第5図に示すように、走査面16全体にまたが
るスライス断面形状の1続きの走査ライン26を小区画
26a、26b、26c、26dに分け、各小区画の走
査を各光スキャナのそれぞれのレーザ光線8で分担する
。走査ライン26自体を、レーザ光線8の数に応じて小
区画26a。
For example, as shown in FIG. 5, a continuous scanning line 26 having a slice cross-sectional shape spanning the entire scanning surface 16 is divided into small sections 26a, 26b, 26c, and 26d, and each optical scanner scans each small section. The laser beam 8 of The scanning line 26 itself is divided into subdivisions 26a depending on the number of laser beams 8.

26b、26c、26dに分けるものであるため、各レ
ーザ光線8の走査開始点(白丸)及び走査終了点(黒丸
)は、上述した分割領域A、B、C。
Since the laser beam 8 is divided into 26b, 26c, and 26d, the scanning start point (white circle) and scanning end point (black circle) of each laser beam 8 correspond to the aforementioned divided areas A, B, and C.

Dで言えば1つの分lF+領域から他の分割領域に入り
込む形態となることが許される。即ち、立体モデルに応
じて、適当に走査の開始点及び終了点を定めることがで
き、柔軟性のある光走査が可能である。
In terms of D, it is allowed to enter from one divided region into another divided region. That is, the start and end points of scanning can be appropriately determined depending on the three-dimensional model, and flexible optical scanning is possible.

上記実施例では、光スキャナ7がガルバノミラ一方式の
ものであるとして説明してきたが、本発明の方法は、光
スキャナ7がプロッタ方式のものであっても同様に適用
することができる。
Although the above embodiment has been described assuming that the optical scanner 7 is of a galvano-mirror type, the method of the present invention can be similarly applied even if the optical scanner 7 is of a plotter type.

第6図にXYプロッタ方式の光スキャナを用いた製造装
置の例を示す。
FIG. 6 shows an example of a manufacturing apparatus using an XY plotter type optical scanner.

第1図の場合と同様に、光硬化樹脂液の液面の上方に4
つの光スキャナを配置しているが、これらはXYプロッ
タ方式の光スキャナであり、それぞれプロジェクタ27
とそのX−Y方向移動装置28とから成る。
As in the case of Fig. 1, there are four
These are XY plotter type optical scanners, and each has a projector 27.
and its X-Y direction moving device 28.

レーザ光源1のレーザ光2は光分岐器3で4系統に分岐
され、それぞれ光シャッタ4を通した後、光ファイバ2
9を介して、個別にプロジェクタ27まで導かれる。そ
して、これらのプロジェクタ27から出射される4本の
レーザ光線8により、ワークテーブル12上を薄く覆い
隠している光硬化樹脂液11の液面が照射される。この
4本のレーザ光線8は、制御装置15がCADの等高線
状の断面データに基づきプロジェクタ7のX−Y方向移
動装置28を制御することにより、立体モデルのスライ
ス断面形状に沿って走査される。
Laser light 2 from laser light source 1 is branched into four systems by optical splitter 3, and after passing through each optical shutter 4, it is connected to optical fiber 2.
9 to the projector 27 individually. The four laser beams 8 emitted from these projectors 27 irradiate the surface of the photocurable resin liquid 11 that thinly covers the work table 12. These four laser beams 8 are scanned along the sliced cross-sectional shape of the three-dimensional model by the control device 15 controlling the X-Y direction moving device 28 of the projector 7 based on contour cross-sectional data of CAD. .

このプロッタ方式の光スキャナによる場合も、従来の同
種方式のものに比べて、各層の断面形状をより高速、高
精度に硬化させることができる。
Also when using this plotter type optical scanner, the cross-sectional shape of each layer can be cured faster and with higher precision than with the conventional similar type.

プロッタ方式の光スキャナは、光照射角度が液面に垂直
であるため、もともとガルバノミラ一方式の場合のよう
な歪みの発生の問題がなく、また、その光スキャナ7の
プロジェクタを複数本とすることにより、上述した第1
.第2.第3の製造方法に従って、同時に複数本のレー
ザ光線で並行処理ができるからである。
Since the light irradiation angle of a plotter-type optical scanner is perpendicular to the liquid surface, there is no problem of distortion that occurs in the case of a single-galvano-mirror type, and the optical scanner 7 can have multiple projectors. Accordingly, the first
.. Second. This is because parallel processing can be performed using a plurality of laser beams at the same time according to the third manufacturing method.

[発明の効果] 以上述べたように、本発明は次のような優れた効果を発
揮する。
[Effects of the Invention] As described above, the present invention exhibits the following excellent effects.

(1)各光スキャナがガルバノミラ一方式又はXYプロ
ッタ方式のいずれの場合でも、2本以上のレーザ光線で
同時に並行して光走査できるため、1個の場合に比べ著
しく短時間で立体樹脂モデルを高速製造することができ
る。
(1) Regardless of whether each optical scanner is a galvanometer mirror type or an XY plotter type, two or more laser beams can scan in parallel at the same time, so three-dimensional resin models can be created in a significantly shorter time than when using one. Can be manufactured at high speed.

(2)各光スキャナがガルバノミラ一方式の場合、第1
の製造方法の形態では、液面全体を分割しレーザ光線の
走査可能範囲を分割領域のみに制限するため、各ガルバ
ノミラ−によるレーザ光線の振れ角θが液面全体に対し
て振る場合よりも小さくなる。また、第2.第3の製造
方法の形態では、上記分割領域内でのみレーザ光線を振
らせるという制約を外し、立体モデルの同一スライス層
における独立した複数の走査ラインのそれぞれの走査を
、又は、立体モデルのスライス断面形状に沿った1続き
の走査ラインの小区画(線分)の走査を、各ガルバノミ
ラ−のレーザ光線で分担するものであり、各ガルバノミ
ラ−によるレーザ光線の振れ角θは、液面全体に対して
振る場合よりも小さくなる。
(2) If each optical scanner is a single galvanometer type, the first
In this manufacturing method, the entire liquid surface is divided and the scannable range of the laser beam is limited to the divided areas, so the deflection angle θ of the laser beam by each galvano mirror is smaller than that when the laser beam is deflected relative to the entire liquid surface. Become. Also, the second. In the third manufacturing method, the restriction that the laser beam is swung only within the divided regions is removed, and each scan of a plurality of independent scanning lines in the same slice layer of the three-dimensional model or a slice of the three-dimensional model is The scanning of a small section (line segment) of one continuous scanning line along the cross-sectional shape is shared by the laser beam of each galvano mirror, and the deflection angle θ of the laser beam of each galvano mirror is equal to the entire liquid surface. It will be smaller than when swinging against the opponent.

従って、光スキャナが1個の場合に比べ樹脂硬化部分の
歪みが生じなくなる。
Therefore, distortion of the cured resin portion is less likely to occur compared to when there is only one optical scanner.

(3)上記[1)(2)の結果、大型立体樹脂モデルの
断面形状を高速、高精度で硬化させることができる。
(3) As a result of [1] and (2) above, the cross-sectional shape of a large three-dimensional resin model can be cured at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の大型立体樹脂モデルの製造装置の構成
例を示す概略図、第2図及び第3図は本発明の第1の製
造方法の形態における走査方法の説明図、第4図は本発
明の第2の製造方法の形態における走査方法の説明に供
する立体モデルの断面図、第5図は本発明の第3の製造
方法の形態における走査方法の説明図、第6図は本発明
の大型立体樹脂モデルの製造装置の他の構成例を示す概
略図、第7図はレーザ光線が1本の場合の振れ角と焦点
ズレの説明図、第8図は振れ角が大きい場合に積層ワー
ク部の精度低下及び歪みの増大を生じる説明図、第9図
は従来の立体樹脂モデルの製造方法を示す図である。 尚、図中、1はレーザ光源、3は光分岐器、4は光シャ
ッタ、6はミラー、7は光スキャナ(焦点レンズを含む
)、8はレーザ光線、10は液槽、11は光硬化樹脂液
、12はワークテーブル、13はZ方向移動装置、14
は液面、15は制御波!、16は走査面、17.19〜
22.26は走査ライン、18は積層ワーク部、27は
プロジェクタ、28はX−Y方向移動装置、29は光フ
ァイバを示す。 特許出願人  石川島播磨重工業株式会社代理人弁理士
  絹  谷  信  雄(外1名)26a−26d 
’ /l−1,4 第5図 第7図 第8図
FIG. 1 is a schematic diagram showing an example of the configuration of a manufacturing apparatus for a large three-dimensional resin model of the present invention, FIGS. 2 and 3 are explanatory diagrams of a scanning method in the form of the first manufacturing method of the present invention, and FIG. is a cross-sectional view of a three-dimensional model for explaining the scanning method in the form of the second manufacturing method of the present invention, FIG. 5 is an explanatory diagram of the scanning method in the form of the third manufacturing method of the present invention, and FIG. A schematic diagram showing another configuration example of the manufacturing apparatus for a large three-dimensional resin model according to the invention. FIG. 7 is an explanatory diagram of the deflection angle and focus shift when there is only one laser beam, and FIG. 8 is an illustration of the deflection angle and focus shift when the deflection angle is large. FIG. 9 is a diagram illustrating a conventional manufacturing method of a three-dimensional resin model, which is an explanatory diagram of a decrease in accuracy and an increase in distortion of a laminated workpiece. In the figure, 1 is a laser light source, 3 is an optical splitter, 4 is an optical shutter, 6 is a mirror, 7 is an optical scanner (including a focusing lens), 8 is a laser beam, 10 is a liquid tank, and 11 is a photocuring device. Resin liquid, 12 is a work table, 13 is a Z direction moving device, 14
is the liquid level, and 15 is the control wave! , 16 is the scanning plane, 17.19~
Reference numerals 22 and 26 indicate a scanning line, 18 a laminated workpiece, 27 a projector, 28 an X-Y direction moving device, and 29 an optical fiber. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative patent attorney: Nobuo Kinutani (1 other person) 26a-26d
'/l-1,4 Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、光硬化樹脂液の液面の上方に、液面方向に離間して
少なくとも2つの光スキャナを配置し、各光スキャナで
走査されるレーザ光線のそれぞれを、液面全体を分割し
た個々の分割領域毎に割当て、各分割領域にまたがって
若しくは独立に存在する立体モデルのスライス断面形状
部分の走査を、各光スキャナのレーザ光線で分担するこ
とを特徴とする大型立体樹脂モデルの製造方法。 2、光硬化樹脂液の液面の上方に、液面方向に離間して
少なくとも2つの光スキャナを配置し、各光スキャナで
走査されるレーザ光線のそれぞれを液面の別々の場所に
照射し、各レーザ光線によって立体モデルの同一スライ
ス層におけるスライス断面形状の独立した複数の走査ラ
インを、上記各光スキャナのレーザ光線で分担すること
を特徴とする大型立体樹脂モデルの製造方法。 3、光硬化樹脂液の液面の上方に、液面方向に離間して
少なくとも2つの光スキャナを配置し、各光スキャナで
走査されるレーザ光線のそれぞれを液面の別々の場所に
照射し、立体モデルのスライス断面形状に沿った1続き
の走査ラインを小区画に分け、各小区画の走査を上記各
光スキャナのレーザ光線で分担することを特徴とする大
型立体樹脂モデルの製造方法。 4、光硬化樹脂液を満たした大型の液槽と、この液槽の
液中に配置したワークテーブルを昇降させるZ方向移動
装置と、上記液槽の上方に液面方向に離間して複数個配
置され各々レーザ光源からのレーザ光線を液面に沿つた
X−Y方向に振るミラーと、3次元デザインのモデルを
幾層もの薄い断面体にスライスした断面データを保持し
、該断面データに従う上記複数のミラーの制御及び各層
切替え時の上記Z方向移動装置の制御を行う制御装置と
を具備することを特徴とする大型立体樹脂モデルの製造
装置。 5、光硬化樹脂液を満たした大型の液槽と、この液槽の
液中に配置したワークテーブルを昇降させるZ方向移動
装置と、上記液槽の上方に液面方向に離間して複数個配
置され各々レーザ光源からのレーザ光線を液面に照射す
るプロジェクタと、該プロジェクタを液面に沿って移動
させるX−Y方向移動装置と、3次元デザインのモデル
を幾層もの薄い断面体にスライスした断面データを保持
し、該断面データに従う上記複数のプロジェクタのX−
Y方向移動装置の制御及び各層切替え時の上記Z方向移
動装置の制御を行う制御装置とを具備することを特徴と
する大型立体樹脂モデルの製造装置。
[Claims] 1. At least two optical scanners are arranged above the liquid surface of the photocuring resin liquid, spaced apart in the liquid surface direction, and each of the laser beams scanned by each optical scanner is directed to the liquid surface. A large 3D object that is assigned to each divided region of the whole, and in which the laser beam of each optical scanner is used to scan the slice cross-sectional portion of the 3D model that exists across or independently of each divided region. How to make resin models. 2. At least two optical scanners are arranged above the liquid surface of the photocurable resin liquid, spaced apart in the liquid surface direction, and each laser beam scanned by each optical scanner is irradiated to a different location on the liquid surface. A method for manufacturing a large three-dimensional resin model, characterized in that a plurality of independent scanning lines of slice cross-sectional shapes in the same slice layer of the three-dimensional model are shared by the laser beams of each of the optical scanners. 3. At least two optical scanners are arranged above the liquid surface of the photocurable resin liquid, spaced apart in the liquid surface direction, and each laser beam scanned by each optical scanner is irradiated to a different location on the liquid surface. A method for producing a large three-dimensional resin model, characterized in that a continuous scanning line along the slice cross-sectional shape of the three-dimensional model is divided into small sections, and the scanning of each small section is shared by the laser beam of each of the optical scanners. 4. A large liquid tank filled with a photocuring resin liquid, a Z-direction moving device for raising and lowering a work table placed in the liquid in this liquid tank, and a plurality of devices spaced apart in the liquid surface direction above the liquid tank. Mirrors are arranged to wave the laser beam from each laser light source in the X-Y direction along the liquid surface, and hold cross-sectional data obtained by slicing a three-dimensional design model into many thin cross-sectional bodies, and store the above-described cross-sectional data according to the cross-sectional data. A manufacturing apparatus for a large three-dimensional resin model, comprising a control device that controls a plurality of mirrors and controls the Z-direction moving device when switching between layers. 5. A large liquid tank filled with a photocuring resin liquid, a Z-direction moving device for raising and lowering a work table placed in the liquid in this liquid tank, and a plurality of devices spaced apart in the liquid surface direction above the liquid tank. A projector that irradiates the liquid surface with a laser beam from a laser light source, an X-Y direction moving device that moves the projector along the liquid surface, and a three-dimensional design model that is sliced into many thin cross-sectional layers. X- of the plurality of projectors according to the cross-sectional data
A manufacturing apparatus for a large three-dimensional resin model, comprising a control device that controls a Y-direction moving device and a control device that controls the Z-direction moving device when switching between layers.
JP2232466A 1990-09-04 1990-09-04 Manufacture of large-sized stereo-resin model and device therefor Pending JPH04113828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232466A JPH04113828A (en) 1990-09-04 1990-09-04 Manufacture of large-sized stereo-resin model and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232466A JPH04113828A (en) 1990-09-04 1990-09-04 Manufacture of large-sized stereo-resin model and device therefor

Publications (1)

Publication Number Publication Date
JPH04113828A true JPH04113828A (en) 1992-04-15

Family

ID=16939737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232466A Pending JPH04113828A (en) 1990-09-04 1990-09-04 Manufacture of large-sized stereo-resin model and device therefor

Country Status (1)

Country Link
JP (1) JPH04113828A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506563A (en) * 1993-12-15 1997-06-30 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー Thermal transfer printing
JP2002144437A (en) * 2000-11-16 2002-05-21 Teijin Seiki Co Ltd Apparatus and method for executing stereo lithography
JP2007504016A (en) * 2003-08-29 2007-03-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Fabrication of 3D multi-material components by inkjet printing
JP2009006509A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Method and apparatus for manufacture of three-dimensional article
JP2011251320A (en) * 2010-06-03 2011-12-15 Stanley Electric Co Ltd Method for producing resin molded article and laser beam irradiation device
JP2015530285A (en) * 2012-07-27 2015-10-15 フェニックス システム Apparatus and manufacturing method for manufacturing three-dimensional solid object using lamination
EP2875897B1 (en) 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
US10178362B2 (en) 2017-01-18 2019-01-08 Roland Dg Corporation Non-transitory computer-readable medium, host device, and array determination method
US10335901B2 (en) 2013-06-10 2019-07-02 Renishaw Plc Selective laser solidification apparatus and method
US10399145B2 (en) 2013-06-11 2019-09-03 Renishaw Plc Additive manufacturing apparatus and method
US11440098B2 (en) 2018-12-27 2022-09-13 Layerwise Nv Three-dimensional printing system optimizing contour formation for multiple energy beams

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506563A (en) * 1993-12-15 1997-06-30 インペリアル ケミカル インダストリーズ パブリック リミティド カンパニー Thermal transfer printing
JP2002144437A (en) * 2000-11-16 2002-05-21 Teijin Seiki Co Ltd Apparatus and method for executing stereo lithography
JP4582894B2 (en) * 2000-11-16 2010-11-17 ナブテスコ株式会社 Optical three-dimensional modeling apparatus and modeling method
JP2007504016A (en) * 2003-08-29 2007-03-01 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Fabrication of 3D multi-material components by inkjet printing
JP2009006509A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Method and apparatus for manufacture of three-dimensional article
JP2011251320A (en) * 2010-06-03 2011-12-15 Stanley Electric Co Ltd Method for producing resin molded article and laser beam irradiation device
JP2015530285A (en) * 2012-07-27 2015-10-15 フェニックス システム Apparatus and manufacturing method for manufacturing three-dimensional solid object using lamination
US10201962B2 (en) 2012-07-27 2019-02-12 Phenix Systems Device for manufacturing three-dimensional objects using superimposed layers, and associated method of manufacture
US10335901B2 (en) 2013-06-10 2019-07-02 Renishaw Plc Selective laser solidification apparatus and method
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US10399145B2 (en) 2013-06-11 2019-09-03 Renishaw Plc Additive manufacturing apparatus and method
EP2875897B1 (en) 2013-11-21 2016-01-20 SLM Solutions Group AG Method of and device for controlling an irradiation system for producing a three-dimensional workpiece
US10178362B2 (en) 2017-01-18 2019-01-08 Roland Dg Corporation Non-transitory computer-readable medium, host device, and array determination method
US11440098B2 (en) 2018-12-27 2022-09-13 Layerwise Nv Three-dimensional printing system optimizing contour formation for multiple energy beams
US11679564B2 (en) 2018-12-27 2023-06-20 Layerwise Nv Three-dimensional printing system optimizing contour formation for multiple energy beams

Similar Documents

Publication Publication Date Title
JP6449465B2 (en) Surface exposure rapid prototyping method and apparatus using enhanced digital light processing technology
US5536467A (en) Method and apparatus for producing a three-dimensional object
JP5024001B2 (en) Stereolithography apparatus and stereolithography method
JPH02239921A (en) Formation of three-dimensional shape
JP5023975B2 (en) Stereolithography apparatus and stereolithography method
JP2002331591A (en) Stereolithography
EP3868545B1 (en) 3d printing of an intraocular lens having smooth, curved surfaces
KR101798533B1 (en) Molding apparatus and method by the 3d printer
JPH04113828A (en) Manufacture of large-sized stereo-resin model and device therefor
CN105666885A (en) Partitioned photocuring 3D printing forming method, system and device based on DLP
JP2010089438A (en) Method for forming slice image and shaping device
JP2009113294A (en) Optical modeling apparatus and optical modeling method
EP3551435B1 (en) Stereolithography machine with improved optical group
JP2000263650A (en) Stereo lithographic apparatus
JPS61116322A (en) Three-dimensional shape forming device
JPS63145016A (en) Device for forming solid shape
CN116277958A (en) 3D printing forming method and device based on linear light source
KR20170096504A (en) Apparatus for printing 3-dimensonal object based on laser scanner for large area using machining
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
WO2018062008A1 (en) Device for three-dimensional modeling, method for manufacturing three-dimensional object, and program for three-dimensional modeling
JPS61217219A (en) Three-dimensional configuration forming device
CN105904727A (en) DLP-based photocuring 3D printing forming method, system and device
JPH05169551A (en) Method of forming three-dimensional image
JPS63139729A (en) Forming device for stereoscopic shape
JPH07232383A (en) Three-dimensional optical shaping method and apparatus