JP4049654B2 - 3D modeling apparatus and 3D modeling method - Google Patents

3D modeling apparatus and 3D modeling method Download PDF

Info

Publication number
JP4049654B2
JP4049654B2 JP2002325285A JP2002325285A JP4049654B2 JP 4049654 B2 JP4049654 B2 JP 4049654B2 JP 2002325285 A JP2002325285 A JP 2002325285A JP 2002325285 A JP2002325285 A JP 2002325285A JP 4049654 B2 JP4049654 B2 JP 4049654B2
Authority
JP
Japan
Prior art keywords
mirror
mirror device
controlling
fine movable
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325285A
Other languages
Japanese (ja)
Other versions
JP2004155156A5 (en
JP2004155156A (en
Inventor
徹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roland DG Corp
Original Assignee
Roland DG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roland DG Corp filed Critical Roland DG Corp
Priority to JP2002325285A priority Critical patent/JP4049654B2/en
Publication of JP2004155156A publication Critical patent/JP2004155156A/en
Publication of JP2004155156A5 publication Critical patent/JP2004155156A5/ja
Application granted granted Critical
Publication of JP4049654B2 publication Critical patent/JP4049654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は3次元造形装置およびその方法に関し、特に造形時間の短縮が図れる3次元造形装置およびその方法に関する。
【0002】
【従来の技術】
光造型、粉体造型、シート積層、などのラピットプロトタイピングマシンと呼ばれる造形法においては、モデルを細かな断面形状の集合体と考え、モデル全体をZ方向(上下方向)に一定の厚み(約0.1mm)でスライスし、その1断面データごとの造型物を重ね合せる(積層)ことで、モデルを造型している。
【0003】
そのような3次元造形装置がたとえば、下記の文献1に開示されている。
【0004】
従来の3次元造形方法について図8を参照して説明する。図8を参照して、従来の3次元造形方法においては、タンク51の上方の一側に設けられた紫外線レーザ光Lを射出するレーザ光源であるプロジェクタ57からのレーザ光Lの射出と、ミラー駆動機構59によって制御される偏向ミラー58の偏向角度とが制御回路60によって同期して駆動されるように構成されている。そして、プロジェクタ57からのレーザ光Lを偏向ミラー58により平面二次元方向に所要のパターンで走査することによってレーザ光Lでタンク51内に収納された光硬化性樹脂52の所望の部分を硬化させることによって所望の3次元造形を行っていた。
【0005】
【特許文献1】
特開平9−150459号公報(段落番号0009、0010、図1)
【0006】
【発明が解決しようとする課題】
上記のような、従来の単一ビーム光を機械式の走査機構で描画する手段では、その作業は1次元的であり1平面分の描画に多大な投影時間を要するとともに、2次元走査を行うために、複雑な機械駆動機構が必要であった。
【0007】
光学系の軽量化、簡素化による駆動系の負担軽減のため、光源にレーザを使用した場合は、一層厳しい安全上の配慮が必要になる、といった問題があった。
【0008】
この発明は上記のような問題点を解消するためになされたもので、トータル造型時間の短縮を図ることが出来る、3次元造形装置およびその方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
3次元造形装置は、光源と、光源からの光を受光するミラー装置とを含み、ミラー装置は行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーからなり、微細可動ミラーのそれぞれの反射面を任意に制御する手段とを含み、ミラー装置で反射された光は光硬化性材料に向けられる。
【0010】
電気信号を与えることにより、反射角度を変化させることができる複数の微細可動ミラーを有するミラー装置に光を照射し、各ミラーが反射角度を制御して、面光源として光硬化性材料に光が照射される。面光源を用いるため、ビームの2次元走査は不要になる。
【0011】
その結果、1平面毎の描画に必要な投影時間の大幅な短縮による高速造形が可能な3次元造形装置を提供することができる。
【0012】
また、光源にレーザを使う必要がないため、装置構造の簡略化と信頼性が向上する。
【0013】
さらに、微細可動ミラーを任意の角度に制御できるため、投影画像の調整が可能になり、所望の画像の投影が可能になる。
【0014】
好ましくは、制御手段は、微細可動ミラーのそれぞれの反射面を、全反射するものと、所望の角度で反射するものとに分けて制御する。微細可動ミラーのそれぞれの反射面を、全反射するものと、所望の角度で反射するものとに分けて制御することによって、光硬化性樹脂への照射量を制御する。その結果、滑らかな形状の3次元造形物が得られる。
【0015】
なお、予め3次元造形データを作成する手段を含み、制御手段は、作成された3次元造形データに基づいて複数の微細可動ミラーの反射角度を制御してもよい。
【0016】
さらに好ましくは、微細可動ミラーの各々の反射角度は各ミラーに投影すべき光の割合に応じて自動的に変動される。
【0017】
この発明の他の局面においては、行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーを有するデジタルミラー素子装置を用い、その反射光を光硬化性材料に照射することによって3次元形状物を造形する3次元造形方法である。3次元造形方法は、(a)微細可動ミラーの各々を任意の角度に制御するステップと、(b)光源からの光を前記デジタルミラー素子装置に照射するステップと、(c)ミラー装置によって照射された光硬化性材料の上に新たな光硬化性材料の層を形成するステップとを含み、(a)から(c)を繰り返すことによって3次元形状物を造形するステップとを含む。
【0018】
電気信号を与えることにより、反射角度を変化させることができる複数の微細可動ミラーを有するミラー装置に光を照射し、各ミラーが描画のための点画素に相当するように反射角度を制御して、面光源として光硬化性材料に光が照射される。面光源を用いるため、ビームの2次元走査は不要になる。
【0019】
その結果、1平面毎の描画に必要な投影時間の大幅な短縮による高速造形が可能な3次元造形方法を提供することができる。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して説明する。図1はこの発明にかかる3次元造形装置の1実施の形態を示す、全体構成を示す模式図である。
【0021】
図1を参照して、3次元造形装置20は、予め作成された描画データを入力する描画データ入力部21と、デジタルミラー素子(微細可動ミラー)22と、デジタルミラー(以下「DM」と省略する)素子22に光を照射する光源23と、光源23からの光を平行光にしてデジタルミラー素子に照射するレンズ24とデジタルミラー素子22からの反射光25を収束させるレンズ26と、光硬化性樹脂31を保持する光硬化性樹脂容器30とを含む。描画データ入力部21に入力された描画データは図示の無いメモリに格納される。
【0022】
デジタルミラー素子22はマトリックス状に配列された可動ミラー群22aと、可動ミラー群22aを行方向に制御する行制御部22bと、可動ミラー群22aを列方向に制御する列制御部22cと、行制御部22bおよび列制御部22cを制御する制御部22dとを含む。
【0023】
DM素子22を構成する可動ミラー群22aの各々の可動ミラーは、その反射面の角度を任意に設定可能であり、光源23からの反射光25を光硬化性樹脂容器30に収納された光硬化性樹脂液31に対して全反射させる角度から光硬化性樹脂液を照射しない角度まで変えることができる。
【0024】
ここで、各可動ミラーは描画のための点画素に相当するようにその反射角度を制御する。また、相当する画素位置の各可動ミラーの反射角度は画像データの明暗情報より任意に制御される。
【0025】
なお、描画データ入力部21には別途設けられた画像データ作成装置10から描画用の画像データが入力される。
【0026】
次に3次元造形装置20に画像データを供給する画像データ作成装置10の動作内容について図2および図3を参照して説明する。図2は画像データ作成装置10の動作内容を示すフローチャートであり、図3は動作の具体的内容を示す図である。図2を参照して、まず、まず3次元データの作成を行う(ステップS11、以下ステップを省略する)。
【0027】
具体的には、図3(A)に示すように、X軸、Y軸およびZ軸についての描画データを準備する。ここでは、たとえば、H型の柱状形状を作成するものとする。この3次元データはたとえばCAD等を用いて作成する。次に、作成された3次元データを一方向からの投影断面が連続する2次元データに展開する(S12)。具体的には、図3(B)に示すように、H型の柱状形状をZ軸方向に連続する「H」型の複数の2次元画像データに展開する。そして画像データとして3次元造形装置20の描画データ入力部21へ入力する(S13)。具体的には、連続した画像(ビットマップ)データとして3次元造形装置20に送出する。
【0028】
次に3次元造形装置20の動作について図4を参照して説明する。まず、描画データ入力部21から描画データを入力する(S21)。次いでDM素子22の制御を行い(S22)、光硬化性樹脂31のレベルの制御を行う(S23)。
【0029】
次に図4のS22で示したDM素子22の制御内容について説明する。図5はDM素子22の制御内容を示すフローチャートである。図5を参照して、まずマトリックス状の各DM素子の各々の初期化を行う(S31)。次いで、マトリックス状のDM素子の各点(i,j)毎のデータをS21で入力されたデータに応じて制御部22dが図示のないメモリから読出し(S32)、そのデータに応じて行制御部22bおよび列制御部22cを介して(i,j)点のミラー角度を決定する(S33)。そして光源23から光を照射し、液面33に光を反射させる(S34)。
【0030】
図6は光硬化性樹脂容器30の液面の変化状態を示す図である。まず図6(A)に示すように、DM素子からの反射光を22からの反射光で形成される形状画像を光硬化性材料の液面33に露光し1層目を形成する。次いで可動テーブル32を図示の無い駆動装置で一段引き下げ、硬化した1層目表面に光硬化性樹脂を浸透させ、2層目の硬化の準備を行う(図6(B))。以後、上記の工程を繰り返すことによって、所望の3次元形状を形成する。
【0031】
次に、DM素子22の具体的な制御方法について説明する。図7はDM素子の制御状態を作成された入力データ41と、それに対応する個々の可動ミラーの位置42との関係を示す模式図である。図7(A)はH字型のデータを入力した状態を示す図である。ここで入力データ41はH字型のデータを示し、このデータはこの場合は入力データを矩形で表現しうるため、入力データによって個々の可動ミラーのオンオフを制御できる。したがって、斜線で示した可動ミラーをオン、すなわち全反射するように制御すればよい。
【0032】
図7(B)は円形形状を作成する場合を示す図である。解像度にもよるが、この場合は描画データ入力部21へ入力された入力描画データ43と対応する各々の可動ミラーとを1:1で対応させると所望の画像を投影できない可能性がある。そこで、このような場合は、個々の可動ミラーについて全反射するもの(斜線で示す)と所望の角度で反射するもの(×で示す)とに分けて制御する。このように制御することによって、微調整が可能になり、解像度が大きい場合においても所望の形状に近い形状を作成できる。
【0033】
なお、この反射角度は1つの可動ミラーに投影すべき光の割合に応じて自動的に変動させるようにしてもよい。
【0034】
次に、この発明の他の実施形態について説明する。この実施の形態においては、個々の可動ミラーの照射角度を変化させる動作のオンオフ比率を制御し、光硬化性樹脂への照射量を制御することによって、分解能を変化させる。すなわち、オン比率を上げると単位時間あたりの硬化量は多く、オフ比率を上げると単位時間あたりの硬化量が少なくなり単純なオンオフに比べてより細かな硬化量の調整ができる。
【0035】
このように制御することにより、粗い分解能によって凹凸の形状に仕上がる造形物が、可動ミラーのオンオフの繰り返し比率により光量を変化できるので、滑らかな形状になる。
【0036】
上記実施の形態においては画像データ作成装置と3次元造形装置とを別装置として説明したが、これに限らず、装置として一体化させてもよい。
【0037】
図面を参照してこの発明の一実施形態を説明したが、本発明は、図示した実施形態に限定されるものではない。本発明と同一の範囲内において、または均等の形態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲内において、図示した実施形態に対して種々の変更を加えることが可能である。
【図面の簡単な説明】
【図1】 この発明の1実施の形態にかかる3次元造形装置の構成を示す模式図である。
【図2】 画像データ作成手順を示すフローチャートである。
【図3】 画像データ作成の具体的手順を示す模式図である。
【図4】 3次元造形装置の動作を示すフローチャートである。
【図5】 デジタルミラー素子の制御内容を示すフローチャートである。
【図6】 光硬化性樹脂の成形動作を示す模式図である。
【図7】 デジタルミラー素子の制御状態を作成された入力データと、それに対応する個々のミラーの位置との関係を示す模式図である。
【図8】 従来の3次元造形方法を示す図である。
【符号の説明】
10 画像データ作成装置、20 3次元造形装置、21 描画データ入力部、22 デジタルミラー(DM)素子、23 光源、24 レンズ、25 反射光、26 レンズ、30 光硬化性樹脂容器、31 光硬化性樹脂、32 テーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional modeling apparatus and method thereof, and more particularly, to a three-dimensional modeling apparatus and method thereof that can reduce modeling time.
[0002]
[Prior art]
In modeling methods called rapid prototyping machines such as optical molding, powder molding, sheet lamination, etc., the model is considered to be an assembly of fine cross-sectional shapes, and the entire model has a certain thickness in the Z direction (vertical direction) (about The model is formed by slicing at 0.1 mm) and superposing (stacking) the moldings for each cross-sectional data.
[0003]
Such a three-dimensional modeling apparatus is disclosed in the following document 1, for example.
[0004]
A conventional three-dimensional modeling method will be described with reference to FIG. Referring to FIG. 8, in the conventional three-dimensional modeling method, laser light L is emitted from projector 57, which is a laser light source for emitting ultraviolet laser light L provided on one side above tank 51, and a mirror. The deflection angle of the deflection mirror 58 controlled by the drive mechanism 59 is configured to be driven by the control circuit 60 in synchronization. Then, the laser light L from the projector 57 is scanned with a deflection mirror 58 in a two-dimensional plane in a predetermined pattern to cure a desired portion of the photocurable resin 52 stored in the tank 51 with the laser light L. As a result, desired three-dimensional modeling was performed.
[0005]
[Patent Document 1]
JP-A-9-150459 (paragraph numbers 0009 and 0010, FIG. 1)
[0006]
[Problems to be solved by the invention]
In the conventional means for drawing single beam light with a mechanical scanning mechanism as described above, the work is one-dimensional, and drawing of one plane requires a great amount of projection time and performs two-dimensional scanning. Therefore, a complicated mechanical drive mechanism is necessary.
[0007]
In order to reduce the burden on the drive system by reducing the weight and simplifying the optical system, there has been a problem that even more strict safety considerations are required when a laser is used as the light source.
[0008]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a three-dimensional modeling apparatus and method that can shorten the total molding time.
[0009]
[Means for Solving the Problems]
The three-dimensional modeling apparatus includes a light source and a mirror device that receives light from the light source. The mirror device is arranged in a matrix direction, and includes a plurality of fine movable mirrors that each receive an electric signal and change a reflection surface. Means for arbitrarily controlling the respective reflecting surfaces of the fine movable mirror, and the light reflected by the mirror device is directed to the photocurable material.
[0010]
By applying an electric signal, light is irradiated to a mirror device having a plurality of fine movable mirrors that can change the reflection angle, and each mirror controls the reflection angle, and light is applied to the photocurable material as a surface light source. Irradiated. Since a surface light source is used, two-dimensional scanning of the beam becomes unnecessary.
[0011]
As a result, it is possible to provide a three-dimensional modeling apparatus capable of high-speed modeling by greatly reducing the projection time required for drawing for each plane.
[0012]
Further, since it is not necessary to use a laser as the light source, the structure of the apparatus is simplified and the reliability is improved.
[0013]
Furthermore, since the fine movable mirror can be controlled to an arbitrary angle, the projection image can be adjusted, and a desired image can be projected.
[0014]
Preferably, the control means controls the respective reflecting surfaces of the fine movable mirror separately for those that totally reflect and those that reflect at a desired angle . The amount of irradiation to the photo-curable resin is controlled by controlling the respective reflecting surfaces of the fine movable mirror separately for those that are totally reflected and those that are reflected at a desired angle . As a result, a smooth three-dimensional structure is obtained.
[0015]
In addition, the control means may include a means for creating 3D modeling data in advance, and the control means may control the reflection angles of the plurality of fine movable mirrors based on the created 3D modeling data.
[0016]
More preferably, the reflection angle of each of the fine movable mirrors is automatically changed according to the ratio of light to be projected onto each mirror.
[0017]
In another aspect of the present invention, a digital mirror element device that is arranged in a matrix direction and has a plurality of fine movable mirrors each receiving an electric signal and changing a reflecting surface is used, and the reflected light is applied to a photocurable material. This is a three-dimensional modeling method for modeling a three-dimensional object by irradiation. The three-dimensional modeling method includes (a) a step of controlling each of the fine movable mirrors to an arbitrary angle, (b) a step of irradiating light from the light source to the digital mirror element device, and (c) irradiation by the mirror device. Forming a new layer of photocurable material on the photocurable material, and forming a three-dimensional shape by repeating (a) to (c).
[0018]
By applying an electrical signal, light is applied to a mirror device having a plurality of fine movable mirrors that can change the reflection angle, and the reflection angle is controlled so that each mirror corresponds to a point pixel for drawing. The light curable material is irradiated with light as a surface light source. Since a surface light source is used, two-dimensional scanning of the beam becomes unnecessary.
[0019]
As a result, it is possible to provide a three-dimensional modeling method capable of high-speed modeling by greatly reducing the projection time required for drawing for each plane.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an overall configuration of an embodiment of a three-dimensional modeling apparatus according to the present invention.
[0021]
Referring to FIG. 1, a three-dimensional modeling apparatus 20 is abbreviated as a drawing data input unit 21 for inputting drawing data created in advance, a digital mirror element (fine movable mirror) 22, and a digital mirror (hereinafter abbreviated as “DM”). A light source 23 for irradiating the element 22 with light, a lens 24 for collimating the light from the light source 23 and irradiating the digital mirror element, a lens 26 for converging the reflected light 25 from the digital mirror element 22, and photocuring And a photocurable resin container 30 that holds the curable resin 31. The drawing data input to the drawing data input unit 21 is stored in a memory (not shown).
[0022]
The digital mirror element 22 includes a movable mirror group 22a arranged in a matrix, a row control unit 22b that controls the movable mirror group 22a in the row direction, a column control unit 22c that controls the movable mirror group 22a in the column direction, And a control unit 22d for controlling the control unit 22b and the column control unit 22c.
[0023]
Each of the movable mirrors of the movable mirror group 22a constituting the DM element 22 can have an angle of the reflecting surface arbitrarily set, and the photocuring in which the reflected light 25 from the light source 23 is accommodated in the photocurable resin container 30. The angle can be changed from the angle at which the light is completely reflected to the curable resin liquid 31 to the angle at which the photocurable resin liquid is not irradiated.
[0024]
Here, each movable mirror controls its reflection angle so as to correspond to a point pixel for drawing. Further, the reflection angle of each movable mirror at the corresponding pixel position is arbitrarily controlled based on the brightness information of the image data.
[0025]
Note that image data for drawing is input to the drawing data input unit 21 from the image data creation device 10 provided separately.
[0026]
Next, the operation content of the image data creation apparatus 10 that supplies image data to the three-dimensional modeling apparatus 20 will be described with reference to FIGS. 2 and 3. FIG. 2 is a flowchart showing the operation content of the image data creation device 10, and FIG. 3 is a diagram showing the specific content of the operation. Referring to FIG. 2, first, three-dimensional data is first created (step S11, the following steps are omitted).
[0027]
Specifically, as shown in FIG. 3A, drawing data for the X axis, the Y axis, and the Z axis is prepared. Here, for example, an H-shaped columnar shape is created. This three-dimensional data is created using, for example, CAD. Next, the created three-dimensional data is developed into two-dimensional data in which projected sections from one direction are continuous (S12). Specifically, as shown in FIG. 3B, the H-shaped columnar shape is developed into a plurality of “H” -type two-dimensional image data continuous in the Z-axis direction. And it inputs into the drawing data input part 21 of the three-dimensional modeling apparatus 20 as image data (S13). Specifically, it is sent to the three-dimensional modeling apparatus 20 as continuous image (bitmap) data.
[0028]
Next, the operation of the three-dimensional modeling apparatus 20 will be described with reference to FIG. First, drawing data is input from the drawing data input unit 21 (S21). Next, the DM element 22 is controlled (S22), and the level of the photocurable resin 31 is controlled (S23).
[0029]
Next, the control content of the DM element 22 shown in S22 of FIG. 4 will be described. FIG. 5 is a flowchart showing the control contents of the DM element 22. Referring to FIG. 5, first, each of the matrix DM elements is initialized (S31). Next, the control unit 22d reads out the data for each point (i, j) of the matrix-like DM element from the memory (not shown) according to the data input in S21 (S32), and the row control unit according to the data. The mirror angle of the point (i, j) is determined via 22b and the column controller 22c (S33). And light is irradiated from the light source 23, and light is reflected on the liquid level 33 (S34).
[0030]
FIG. 6 is a diagram illustrating a change state of the liquid level of the photocurable resin container 30. First, as shown in FIG. 6A, a shape image formed by reflecting light from the DM element with the reflected light from 22 is exposed on the liquid surface 33 of the photocurable material to form a first layer. Next, the movable table 32 is pulled down by a driving device (not shown), and a photocurable resin is infiltrated into the cured first layer surface to prepare for the second layer curing (FIG. 6B). Thereafter, a desired three-dimensional shape is formed by repeating the above steps.
[0031]
Next, a specific control method for the DM element 22 will be described. FIG. 7 is a schematic diagram showing the relationship between the input data 41 in which the control state of the DM element is created and the positions 42 of the individual movable mirrors corresponding thereto. FIG. 7A shows a state in which H-shaped data is input. Here, the input data 41 indicates H-shaped data, and in this case, the input data can be represented by a rectangle, and therefore on / off of each movable mirror can be controlled by the input data. Therefore, it is only necessary to control the movable mirror indicated by hatching to be on, that is, totally reflected.
[0032]
FIG. 7B shows a case where a circular shape is created. Although depending on the resolution, in this case, if the input drawing data 43 input to the drawing data input unit 21 is associated with each of the corresponding movable mirrors in a 1: 1 ratio, a desired image may not be projected. Therefore, in such a case, control is performed separately for each movable mirror that is totally reflected (indicated by diagonal lines) and that is reflected at a desired angle (indicated by ×). By controlling in this way, fine adjustment is possible, and a shape close to a desired shape can be created even when the resolution is high.
[0033]
The reflection angle may be automatically changed according to the ratio of light to be projected onto one movable mirror.
[0034]
Next, another embodiment of the present invention will be described. In this embodiment, the resolution is changed by controlling the on / off ratio of the operation of changing the irradiation angle of each movable mirror and controlling the irradiation amount to the photocurable resin. That is, when the on-ratio is increased, the amount of curing per unit time is increased, and when the off-ratio is increased, the amount of curing per unit time is reduced, so that the amount of curing can be adjusted more finely than simple on-off.
[0035]
By controlling in this way, a modeled object that is finished in a concavo-convex shape with a rough resolution can have a smooth shape because the amount of light can be changed by the on / off repetition rate of the movable mirror.
[0036]
In the above embodiment, the image data creation apparatus and the three-dimensional modeling apparatus have been described as separate apparatuses. However, the present invention is not limited to this, and the apparatus may be integrated as an apparatus.
[0037]
Although one embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the illustrated embodiment. The present invention is not limited to the same scope or equivalent form. Various modifications can be made to the illustrated embodiment within the same scope or equivalent scope as the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a three-dimensional modeling apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a procedure for creating image data.
FIG. 3 is a schematic diagram showing a specific procedure for creating image data.
FIG. 4 is a flowchart showing the operation of the three-dimensional modeling apparatus.
FIG. 5 is a flowchart showing control contents of a digital mirror element.
FIG. 6 is a schematic diagram showing a molding operation of a photocurable resin.
FIG. 7 is a schematic diagram showing a relationship between input data for which a control state of a digital mirror element is created and positions of individual mirrors corresponding to the input data.
FIG. 8 is a diagram showing a conventional three-dimensional modeling method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Image data production apparatus, 20 3D modeling apparatus, 21 Drawing data input part, 22 Digital mirror (DM) element, 23 Light source, 24 Lens, 25 Reflected light, 26 Lens, 30 Photocurable resin container, 31 Photocurable Resin, 32 tables

Claims (4)

光源と、
前記光源からの光を受光するミラー装置とを含み、前記ミラー装置は行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーからなり、
前記微細可動ミラーのそれぞれの反射面を任意の角度に制御する制御手段とを含み、
前記ミラー装置で反射された光は光硬化性材料に向けられ、
前記制御手段は、前記微細可動ミラーのそれぞれの反射面を、全反射するものと、所望の角度で反射するものと、オフするものとに分けて、同時に制御する、3次元造形装置。
A light source;
A mirror device that receives light from the light source, the mirror device is arranged in a matrix direction, each of which comprises a plurality of fine movable mirrors that receive an electric signal and change a reflecting surface,
Control means for controlling each reflecting surface of the fine movable mirror to an arbitrary angle,
The light reflected by the mirror device is directed to the photocurable material,
The control means is a three-dimensional modeling apparatus that controls each of the reflecting surfaces of the fine movable mirror separately for one that totally reflects, one that reflects at a desired angle, and one that turns off .
行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーを有するミラー装置を用い、その反射光を光硬化性材料に照射することによって3次元形状物を造形する3次元造形方法であって、
(a)前記微細可動ミラーの各々を任意の角度に制御するステップと、
(b)光源からの光を前記ミラー装置に照射するステップと、
(c)前記ミラー装置によって照射された光硬化性材料の上に新たな光硬化性材料の層を形成するステップと、
(d)前記(a)〜(c)のステップを繰り返すステップとを含み、
前記制御するステップは、前記微細可動ミラーのそれぞれの反射面を、全反射するものと、所望の角度で反射するものと、オフするものとに分けて、同時に制御するステップを含む、3次元形状物を造形する3次元造形方法。
A three-dimensional shaped object is formed by irradiating the photocurable material with a mirror device that has a plurality of fine movable mirrors arranged in a matrix direction and each receiving an electric signal to change a reflecting surface. A 3D modeling method,
(A) controlling each of the fine movable mirrors to an arbitrary angle;
(B) irradiating the mirror device with light from a light source;
(C) forming a new layer of photocurable material on the photocurable material irradiated by the mirror device;
(D) repeating the steps (a) to (c),
The controlling step includes a step of controlling each reflecting surface of the fine movable mirror into a total reflecting portion, a reflecting portion at a desired angle, and a turning off portion, and simultaneously controlling the three-dimensional shape. A three-dimensional modeling method for modeling objects.
光源と、
前記光源からの光を受光するミラー装置とを含み、前記ミラー装置は行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーからなり、
前記微細可動ミラーのそれぞれの反射面を任意の角度に制御する制御手段とを含み、
前記ミラー装置で反射された光は光硬化性材料に向けられ、
前記制御手段は、前記微細可動ミラーの照射角度をオンに維持する時間とオフに維持する時間との比率を制御する、3次元造形装置。
A light source;
A mirror device that receives light from the light source, and the mirror device is arranged in a matrix direction, each of which includes a plurality of fine movable mirrors that receive an electric signal and change a reflection surface,
Control means for controlling each reflecting surface of the fine movable mirror to an arbitrary angle,
The light reflected by the mirror device is directed to the photocurable material,
The said control means is a three-dimensional modeling apparatus which controls the ratio of the time which maintains the irradiation angle of the said fine movable mirror on, and the time which maintains it off .
行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーを有するミラー装置を用い、その反射光を光硬化性材料に照射することによって3次元形状物を造形する3次元造形方法であって、
(a)前記微細可動ミラーの各々を任意の角度に制御するステップと、
(b)光源からの光を前記ミラー装置に照射するステップと、
(c)前記ミラー装置によって照射された光硬化性材料の上に新たな光硬化性材料の層を形成するステップと、
(d)前記(a)〜(c)のステップを繰り返すステップとを含み、
前記制御するステップは、前記微細可動ミラーの照射角度をオンに維持する時間とオフに維持する時間との比率を制御するステップを含む、3次元形状物を造形する3次元造形方法。
A three-dimensional shaped object is formed by irradiating a photocurable material with a mirror device having a plurality of fine movable mirrors arranged in a matrix direction and each receiving an electric signal to change a reflecting surface. A 3D modeling method,
(A) controlling each of the fine movable mirrors to an arbitrary angle;
(B) irradiating the mirror device with light from a light source;
(C) forming a new layer of photocurable material on the photocurable material irradiated by the mirror device;
(D) repeating the steps (a) to (c),
The step of controlling includes a step of controlling a ratio of a time during which the irradiation angle of the fine movable mirror is kept on and a time during which the fine movable mirror is kept off .
JP2002325285A 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method Expired - Fee Related JP4049654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325285A JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325285A JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Publications (3)

Publication Number Publication Date
JP2004155156A JP2004155156A (en) 2004-06-03
JP2004155156A5 JP2004155156A5 (en) 2005-10-27
JP4049654B2 true JP4049654B2 (en) 2008-02-20

Family

ID=32804565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325285A Expired - Fee Related JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Country Status (1)

Country Link
JP (1) JP4049654B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590774B1 (en) * 2014-10-16 2016-02-19 한국생산기술연구원 A head module for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
KR101612254B1 (en) 2014-10-30 2016-04-15 한국생산기술연구원 A multi-channel head assembly for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
US9633470B2 (en) 2014-11-11 2017-04-25 Roland Dg Corporation Generating slice data representing a cross section cut from a three-dimensional modeled object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214797A (en) * 2005-02-02 2006-08-17 Furukawa Electric Co Ltd:The Bending testing machine for wire harness
CN105666885A (en) * 2016-04-18 2016-06-15 周宏志 Partitioned photocuring 3D printing forming method, system and device based on DLP
TWI597153B (en) * 2016-06-07 2017-09-01 台達電子工業股份有限公司 Three-Dimensional Printer and Imaging System Thereof
CN115284609B (en) * 2022-08-01 2024-06-18 深圳市金石三维打印科技有限公司 Component surface smooth printing method, device and equipment of photo-curing 3D printer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590774B1 (en) * 2014-10-16 2016-02-19 한국생산기술연구원 A head module for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
KR101612254B1 (en) 2014-10-30 2016-04-15 한국생산기술연구원 A multi-channel head assembly for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
WO2016068598A1 (en) * 2014-10-30 2016-05-06 한국생산기술연구원 Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
US10810788B2 (en) 2014-10-30 2020-10-20 Korea Institute Of Industrial Technology Multichannel head assembly for three-dimensional modeling apparatus, having polygon mirror rotating in single direction, and three-dimensional modeling apparatus using same
US9633470B2 (en) 2014-11-11 2017-04-25 Roland Dg Corporation Generating slice data representing a cross section cut from a three-dimensional modeled object

Also Published As

Publication number Publication date
JP2004155156A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4525424B2 (en) Stereolithography method
US8666142B2 (en) System and method for manufacturing
JP6058819B2 (en) 3D object production
JP4957242B2 (en) Stereolithography equipment
JP5024001B2 (en) Stereolithography apparatus and stereolithography method
US20180029299A1 (en) Additive manufacturing with offset stitching
US11230057B2 (en) 3D printing with variable voxel sizes
JP2008027438A (en) Method and device for producing three-dimensional object, and computer and data carrier useful thereof
KR20150118105A (en) Production of a volume object by lithography, having improved spatial resolution
JP2010089364A (en) Three-dimensional shaping apparatus
JP2004249508A (en) Stereolithography apparatus
CN114474732A (en) Data processing method, system, 3D printing method, device and storage medium
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JP2676838B2 (en) 3D image formation method
JP2009083240A (en) Optical molding apparatus
US11919235B2 (en) Techniques for generation and direction of light in additive fabrication and related systems and methods
JP2002210834A (en) Three-dimensional shaping apparatus and method therefor
JPH04113828A (en) Manufacture of large-sized stereo-resin model and device therefor
JPS63145016A (en) Device for forming solid shape
WO2018062008A1 (en) Device for three-dimensional modeling, method for manufacturing three-dimensional object, and program for three-dimensional modeling
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
KR101918979B1 (en) Apparatus for printing 3-dimensonal object using both laser scanner and dlp projector
JPS6299753A (en) Formation of three-dimensional shape
JP2021094753A (en) Optical modeling apparatus, and optical molding method using the apparatus
JPH09141749A (en) Forming of three-dimensional image and device therefor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4049654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees