JPH09141749A - Forming of three-dimensional image and device therefor - Google Patents

Forming of three-dimensional image and device therefor

Info

Publication number
JPH09141749A
JPH09141749A JP8265376A JP26537696A JPH09141749A JP H09141749 A JPH09141749 A JP H09141749A JP 8265376 A JP8265376 A JP 8265376A JP 26537696 A JP26537696 A JP 26537696A JP H09141749 A JPH09141749 A JP H09141749A
Authority
JP
Japan
Prior art keywords
dimensional image
resin liquid
photocurable resin
micromirrors
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8265376A
Other languages
Japanese (ja)
Inventor
Yoshitaka Chigi
慶隆 千木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M S TEC KK
Original Assignee
M S TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M S TEC KK filed Critical M S TEC KK
Priority to JP8265376A priority Critical patent/JPH09141749A/en
Publication of JPH09141749A publication Critical patent/JPH09141749A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a high-precision three-dimensional image in a short time and make it possible to apply it to an ultraviolet curing resin. SOLUTION: Three-dimensional image slice data is prepared which consists of a plurality of three-dimensional images obtained by slicing a three-dimensional image to be formed at a specified slicing interval in a specified direction. The three-dimensional image slice data is entered into a digital micromirror device 2, then each of micromirrors is operated in a tilted state in accordance with the three-dimensional slice data, and a reflected light from each of the micromirrors is emitted to a photocuring resin solution 7. Thus a cured film is formed which has a shape corresponding to the three-dimensional image slice data and a thickness equal to a specified slice interval. Further, the cured film is allowed to settle by a specified slice interval. Each of the cured films is laminated by repeating the above sequence of operating steps to form a three-dimensional image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、立体像の造形方
法及びその装置に関し、特に立体像を高精度に造形でき
るようにした方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic image forming method and apparatus, and more particularly to a method and apparatus capable of forming a stereoscopic image with high accuracy.

【0002】[0002]

【従来の技術】例えば、樹脂成型品を製造する場合、木
型や金型を製作する前に試作を行うことが多く、かかる
試作の方法には種々な方法が提案されている。
2. Description of the Related Art For example, when a resin molded product is manufactured, a trial production is often carried out before a wooden mold or a metal mold is produced, and various trial production methods have been proposed.

【0003】その一例には、紫外線レザー装置から延び
る光ファイバーの先端から細いレーザー光を放出させ、
3次元CADからのデータを基にX−Yテーブルを移動
させ、画像をペンで塗りつぶすようにレーザー光を走査
して紫外線硬化樹脂の表面を照射させることによって硬
化膜を形成し、この硬化膜を降下させながら上述の走査
繰り返し、立体像を造形する方法が知られている。
For example, a thin laser beam is emitted from the tip of an optical fiber extending from an ultraviolet laser device,
Based on the data from the three-dimensional CAD, the XY table is moved, a laser beam is scanned so that the image is filled with a pen, and the surface of the ultraviolet curing resin is irradiated to form a cured film. A method of forming a three-dimensional image by repeating the above scanning while descending is known.

【0004】また、CADのスライス画像を透過型液晶
に映し、背後の光源によってその画像を硬化性樹脂液面
に一括投影することことによって硬化膜を形成し、かか
る操作を繰り返して立体像を造形する方式もある。
Further, a CAD slice image is projected on a transmissive liquid crystal, and the image is collectively projected on the curable resin liquid surface by a light source behind to form a cured film, and a stereoscopic image is formed by repeating such operations. There is also a method.

【0005】[0005]

【発明が解決しようとする課題】しかし、前者の造形方
法ではコーヒーカップ程度の簡単な立体像を造形するの
に一昼夜もかかかる等、造形時間が非常に長くなり、し
かも複雑なインターフェイスを必要とするという問題が
あった。
However, in the former modeling method, it takes a whole day and night to model a simple three-dimensional image of a coffee cup, and the modeling time becomes very long, and a complicated interface is required. There was a problem of doing.

【0006】また、後者の方法では造形時間は短いもの
の、使用する液晶が紫外線に弱いことから、現在主流と
なっている紫外線硬化樹脂への適用ができず、又液晶の
大きさやドットの大きさとの関係で造形した立体像の精
度が著しく悪いという問題があった。
In the latter method, although the molding time is short, the liquid crystal used is weak against ultraviolet rays, so that it cannot be applied to the ultraviolet curable resin which is the mainstream at present, and the size of the liquid crystal and the size of the dots are different. However, there is a problem that the precision of the three-dimensional image formed is extremely poor due to the above relationship.

【0007】本発明は、かかる問題点に鑑み、短い時間
で高精度の立体像を造形でき、しかも紫外線硬化樹脂へ
の適用を可能とした立体像の造形方法を提供することを
課題とする。
In view of such problems, it is an object of the present invention to provide a three-dimensional image forming method capable of forming a high-precision three-dimensional image in a short time and applicable to an ultraviolet curable resin.

【0008】[0008]

【課題を解決するための手段】そこで、本発明に係る立
体像の造形方法は、造形すべき立体像を所定方向に所定
スライス間隔でスライスした立体像スライスデータを作
成し、立体像スライスデータをディジタルマイクロミラ
ーデバイス(以下、DMDという)に入力し、その複数
の各微小ミラーを立体像スライスデータに応じて傾動さ
せ、DMDの各微小ミラーからの反射光を槽内の光硬化
性樹脂液に投影して立体像スライスデータに対応した形
状でかつ所定スライス間隔の厚みを有する硬化膜を形成
し、この硬化膜を所定スライス間隔だけ沈降させ、上述
の一連の操作を繰り返して硬化膜を積層して立体像を造
形するようにしたことを特徴とする。
In order to solve the problems, therefore, a stereoscopic image forming method according to the present invention creates stereoscopic image slice data by slicing a stereoscopic image to be formed at a predetermined slice interval in a predetermined direction, and creates the stereoscopic image slice data. It is input to a digital micromirror device (hereinafter referred to as DMD), each of the plurality of micromirrors is tilted according to the stereoscopic image slice data, and the reflected light from each of the DMD micromirrors is converted into a photocurable resin liquid in the tank. A hardened film having a shape corresponding to the stereoscopic image slice data and having a thickness of a predetermined slice interval is projected, and the hardened film is allowed to settle at a predetermined slice interval, and the hardened film is laminated by repeating the series of operations described above. The feature is that a three-dimensional image is modeled by using.

【0009】立体像スライスデータは対応する硬化膜を
形成する毎に作成してもよいが、作業が煩雑となる。そ
こで、複数の全ての立体像スライスデータを予め作成し
ておき、硬化膜が形成される毎に順次DMDに与えるよ
うにするのが好ましい。
The three-dimensional image slice data may be created each time the corresponding cured film is formed, but the work becomes complicated. Therefore, it is preferable that all of the plurality of stereoscopic image slice data be created in advance and be sequentially given to the DMD each time the cured film is formed.

【0010】立体像スライスデータは三次元CADで立
体像を作成し、それに基づいて作成してもよく、又他の
処理装置、例えば頭部手術前の検討において使用する頭
蓋骨模型を造形する場合にはCTスキャンやMRIのデ
ータから作成してもよい。
The three-dimensional image slice data may be created based on a three-dimensional image created by three-dimensional CAD, or in the case of modeling another processing device, for example, a skull bone model used in the examination before head surgery. May be created from CT scan or MRI data.

【0011】光硬化性樹脂には緩速硬化樹脂と急速硬化
樹脂とがある。緩速硬化樹脂の場合には微小ミラーから
の反射光を所定時間、例えば10秒程度投射しないと樹
脂が硬化しない。従って、光源からDMDに連続的に光
の入射させることができ、光源を頻繁にON・OFFす
ることによる光源の劣化を防止できる。他方、急速硬化
樹脂の場合には反射光を照射すると樹脂液が直ぐに硬化
し、硬化膜を沈降させる余裕を確保する必要がある。そ
こで、膜形成後に反射光が光硬化性樹脂液に投影されな
いように全ての微小ミラーを傾動させるか、又は微小ミ
ラーへの光の入射を停止するのがよい。
The photocurable resin includes a slow-curing resin and a fast-curing resin. In the case of the slow curing resin, the resin is not cured unless the reflected light from the micro mirror is projected for a predetermined time, for example, about 10 seconds. Therefore, light can be continuously incident on the DMD from the light source, and deterioration of the light source due to frequent ON / OFF of the light source can be prevented. On the other hand, in the case of a quick-curing resin, it is necessary to secure a margin for allowing the resin liquid to cure immediately upon irradiation with reflected light and allowing the cured film to settle. Therefore, it is preferable to tilt all the micromirrors so that the reflected light is not projected onto the photocurable resin liquid after forming the film, or to stop the incidence of light on the micromirrors.

【0012】立体像スライスデータはスライス間隔を小
さいほど造形精度がアップするが、作業が煩雑となるの
で、通常の造形の場合には0.1mm〜0.3mm程度
が適当である。また、1つの立体像をスライスする場合
に、同一形状が連続する箇所については大きなスライス
間隔を採用することもできる。即ち、1つの立体像を造
形する場合、スライス間隔を一定としてもよく、異なる
スライス間隔でスライスしてもよい。
As for the three-dimensional image slice data, the smaller the slice interval is, the higher the modeling accuracy becomes, but the work becomes complicated. Therefore, about 0.1 mm to 0.3 mm is suitable for normal modeling. Further, when slicing one stereoscopic image, a large slice interval can be adopted for a portion where the same shape continues. That is, when one stereoscopic image is formed, the slice interval may be constant or may be sliced at different slice intervals.

【0013】また、上述の造形方法は光源、DMD、光
硬化性樹脂液の槽及び硬化膜を支持して沈降させるアク
チュエータという比較的簡単な装置で行うことができ
る。即ち、本発明によれば、光硬化性樹脂液が貯留され
た槽と、該槽の側方に設けられ、光の投影にて形成され
る光硬化性樹脂液の硬化膜を支持して所定距離だけ沈降
させるアクチュエータと、2次元に配列されたメモリー
アレイの各メモリーセル上に微小ミラーを配置してな
り、上記複数の各微小ミラーを上記メモリーアレイに入
力される立体像スライスデータに応じて傾動させ、該複
数の微小ミラーからの反射光を上記槽の光硬化性樹脂液
に投影して光硬化性樹脂液の硬化膜を立体像スライスデ
ータに対応した形状に形成するDMDと、該DMDの微
小ミラーに光を入射する光源とを備えた立体像の造形装
置を提供することができる。
The above-described molding method can be performed by a relatively simple device including a light source, a DMD, a photocurable resin liquid tank, and an actuator for supporting and sedimenting a cured film. That is, according to the present invention, the tank in which the photocurable resin liquid is stored and the cured film of the photocurable resin liquid which is provided on the side of the tank and formed by projection of light are supported to be predetermined. An actuator that settles down by a distance and micromirrors are arranged on each memory cell of a two-dimensionally arranged memory array, and the plurality of micromirrors are arranged according to the stereoscopic image slice data input to the memory array. A DMD that tilts and projects reflected light from the plurality of micromirrors onto the photocurable resin liquid in the tank to form a cured film of the photocurable resin liquid into a shape corresponding to stereoscopic image slice data, and the DMD. It is possible to provide a three-dimensional image forming apparatus including a light source that makes light incident on the micro mirror.

【0014】DMDの微小ミラーからの反射光は光硬化
性樹脂液の液面に直接投影してもよいが、結像精度を高
める上で、投影レンズを設けて複数の微小ミラーからの
反射光を光硬化性樹脂液に投影するのが好ましい。ま
た、アクチャエータは油圧シリンダやエアーシリンダ等
を使用してもよいが、上述のように高精度の沈降が望ま
しいので、下記実施形態に示されるような、ボールネジ
とモータとで構成される、いわゆるZ軸ステージを採用
するのがよい。
The reflected light from the micromirrors of the DMD may be directly projected onto the liquid surface of the photocurable resin liquid, but in order to improve the image forming accuracy, a projection lens is provided to reflect the light reflected from the plurality of micromirrors. Is preferably projected onto the photocurable resin liquid. Further, a hydraulic cylinder, an air cylinder, or the like may be used as the actuator, but since it is desirable to settle down with high accuracy as described above, a so-called Z, which is composed of a ball screw and a motor as shown in the following embodiment, is used. It is good to adopt an axial stage.

【0015】[0015]

【作用及び発明の効果】本発明によれば、DMDを利用
することにより立体像をスライスした形状を一括に形成
し、これを積層して立体像を造形しているので、従来の
レーザー方式のように細いレーザー光でスライス面を塗
りつぶす方式に比し、造形時間を大幅に短縮でき、従来
の最も代表的なHeーcdレーザーを用いた造形方法に
比し、1/10倍以下に短縮できることが確認された。
また、DMDを用いているので、紫外線硬化樹脂にも適
用できる。
According to the present invention, the DMD is used to collectively form a sliced shape of a three-dimensional image and the three-dimensional images are laminated to form a three-dimensional image. Compared with the method of filling the sliced surface with a thin laser beam like this, the modeling time can be greatly shortened, and it can be shortened to 1/10 times or less as compared with the most typical conventional modeling method using a He-cd laser. Was confirmed.
Further, since DMD is used, it can be applied to an ultraviolet curable resin.

【0016】また、造形精度については、DMDの微小
ミラー数は190万画素程度あり、液晶に比して非常に
多く、しかも液晶のように大きなセルの仕切がなく、さ
らにはコントラストが数倍程度よく、従来の液晶方式に
比して造形精度を大幅に向上でき、液晶方式の場合には
一般に精度が±0.3mmであるのに対し、レーザー方
式と同レベルの、精度±0.1mmとなることが確認さ
れた。
Regarding the molding accuracy, the number of micromirrors of DMD is about 1.9 million pixels, which is much larger than that of liquid crystal, and there is no large cell partition like liquid crystal, and the contrast is about several times. Well, compared with the conventional liquid crystal system, the molding accuracy can be greatly improved. In the case of the liquid crystal system, the accuracy is generally ± 0.3 mm, while the accuracy is ± 0.1 mm, which is the same level as the laser system. It was confirmed that

【0017】さらに、装置コストについては、従来のレ
ーザー方式のような複雑なインターフェイスを必要とせ
ず、装置自体も簡単に構成できるので、大幅な低コスト
化を達成できる。
Further, regarding the apparatus cost, since the apparatus itself can be simply constructed without requiring a complicated interface unlike the conventional laser system, a significant cost reduction can be achieved.

【0018】[0018]

【発明の実施の形態】以下、本発明を図面に示す具体例
に基づいて詳細に説明する。図1は本発明の好ましい実
施形態を示す。図において、タンク(槽)6には緩速硬
化性の光硬化性樹脂液7が貯留され、該タンク6の側方
にはZ軸ステージ8が立設され、該Z軸ステージ8はボ
ールネジとモータとで構成され、高精度の送りができる
ようになっている。このZ軸ステージ8にはテーブル9
が取付けられてZ軸ステージ8によって下方に送られる
ようになっており、上記Z軸ステージ8及びテーブル9
によって光硬化性樹脂液の硬化膜を支持して硬化膜の厚
みと等しい距離だけ沈降させるアクチュエータが構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to specific examples shown in the drawings. FIG. 1 shows a preferred embodiment of the present invention. In the figure, a slow-curing photocurable resin liquid 7 is stored in a tank (tank) 6, and a Z-axis stage 8 is erected on the side of the tank 6, and the Z-axis stage 8 is a ball screw. It is composed of a motor and can feed with high precision. This Z-axis stage 8 has a table 9
Is attached and is sent downward by the Z-axis stage 8.
The actuator is configured to support the cured film of the photocurable resin liquid and settle it by a distance equal to the thickness of the cured film.

【0019】タンク6の上方にはDMD2及び投影レン
ズ4が上下方向にかつ光硬化性樹脂液7の液面と対面し
て配置され、該DMD2は約190万のメモリーセルを
2次元に配列してメモリーアレイとなし、各メモリーセ
ル上にアルミニウムの微小ミラーを形成して構成され、
微小ミラー間隔は約17μmとなっている。このDMD
2には斜め下方からランプ光源1の光が連続的に入射さ
れるようになっている。DMD2の反対側には光吸収板
3が配置され、これはDMD2による画像作成に必要な
反射光以外の光を吸収するようになっている。
A DMD 2 and a projection lens 4 are arranged above the tank 6 in the vertical direction and facing the surface of the photocurable resin liquid 7. The DMD 2 has about 1.9 million memory cells arranged two-dimensionally. Memory array, formed by forming aluminum micro mirrors on each memory cell,
The distance between the minute mirrors is about 17 μm. This DMD
The light of the lamp light source 1 is continuously incident on the beam 2 from diagonally below. A light absorbing plate 3 is arranged on the opposite side of the DMD 2, and absorbs light other than the reflected light necessary for image formation by the DMD 2.

【0020】次に、造形方法について説明する。図2は
DMD2による画像形成の原理図を示す。まず、三次元
CADで造形すべき立体像を作成し、該立体像の縦方向
に所定のスラスイ間隔、例えば0.2mmずつスライス
した像のデータである複数の立体像スライスデータを作
成する。この1つの立体像スライスデータをDMD2に
入力する。ここで、DMD2は最近開発された、いわゆ
る空間光変調素子であって、面上に多数の微小ミラーを
有し、その個々の微小ミラーの角度が電気信号により変
化するデバイスである。従って、DMD2の複数の各微
小ミラーは入力された立体像スライスデータに応じて傾
動する。かかる複数の微小ミラーにランプ光源1から光
を入射すると、複数の微小ミラーで構成されるミラー面
上に仮想スライス原像1aが形成され、その反射光が投
影レンズ4を経てスクリーン5に投影されてスライス形
状の画像2aが結像される。
Next, the modeling method will be described. FIG. 2 shows the principle of image formation by the DMD 2. First, a three-dimensional image to be modeled is created by three-dimensional CAD, and a plurality of three-dimensional image slice data that is data of an image obtained by slicing a predetermined slice interval, for example, 0.2 mm in the vertical direction of the three-dimensional image. This one stereoscopic image slice data is input to the DMD 2. Here, the DMD 2 is a so-called spatial light modulator that has been recently developed, and is a device that has a large number of micromirrors on its surface, and the angle of each micromirror is changed by an electric signal. Therefore, each of the plurality of micromirrors of the DMD 2 tilts according to the input stereoscopic image slice data. When the light from the lamp light source 1 is incident on the plurality of minute mirrors, a virtual slice original image 1a is formed on the mirror surface composed of the plurality of minute mirrors, and the reflected light is projected on the screen 5 through the projection lens 4. As a result, a slice-shaped image 2a is formed.

【0021】そこで、上述の原理を利用し、スクリーン
5の代わりに、光硬化性樹脂液7の液面に立体スライス
データに応じた画像を形成する。すると、光硬化性樹脂
液7は投影されたスライス形状の画像3aの部分のみが
硬化し、立体像スライスデータに応じた形状の硬化膜が
形成される。この時、テーブル9の表面と光硬化性樹脂
液7の液面との間がスライス間隔、即ち0.2mmと等
しい距離となるように設定するとともに、その距離の間
の光硬化性樹脂液7が硬化するように照射時間を設定す
ると、硬化膜の厚みをスライス間隔と等しくできる。
Therefore, using the above-described principle, an image corresponding to the three-dimensional slice data is formed on the liquid surface of the photocurable resin liquid 7 instead of the screen 5. Then, only the portion of the projected slice-shaped image 3a of the photocurable resin liquid 7 is cured, and a cured film having a shape corresponding to the stereoscopic image slice data is formed. At this time, the distance between the surface of the table 9 and the liquid surface of the photocurable resin liquid 7 is set to be equal to the slice interval, that is, 0.2 mm, and the photocurable resin liquid 7 between the distances is set. If the irradiation time is set so that the cured film is cured, the thickness of the cured film can be made equal to the slice interval.

【0022】こうして硬化膜が形成されると、Z軸ステ
ージ8を作動させてテーブル9を硬化膜の厚みだけ降下
させて硬化膜を沈降させ、後は上記の操作を繰り返す
と、硬化膜が順次積層されて立体像を造形できる。な
お、この時の投影レンズ4と光硬化性樹脂7の液面との
間の距離は一定であることが重要であるので、光硬化性
樹脂7の液面位置を一定に制御する。
When the cured film is formed in this manner, the Z-axis stage 8 is operated to lower the table 9 by the thickness of the cured film to cause the cured film to settle. After that, when the above operation is repeated, the cured film is sequentially formed. It can be stacked to form a three-dimensional image. Since it is important that the distance between the projection lens 4 and the liquid surface of the photocurable resin 7 at this time is constant, the liquid surface position of the photocurable resin 7 is controlled to be constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の好ましい実施形態における立体像
の造形装置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a three-dimensional image forming apparatus according to a preferred embodiment of the present invention.

【図2】 上記装置の原理を説明するための図であ
る。
FIG. 2 is a diagram for explaining the principle of the above device.

【符号の説明】[Explanation of symbols]

1 ランプ光源 2 DMD(ディジタルマイクロミラーデバイス) 4 投影レンズ 6 タンク(槽) 7 光硬化性樹脂液 8 Z軸ステージ(アクチュエータ) 9 テーブル(アクチュエータ) 1 Lamp Light Source 2 DMD (Digital Micromirror Device) 4 Projection Lens 6 Tank (Tank) 7 Photocurable Resin Liquid 8 Z-Axis Stage (Actuator) 9 Table (Actuator)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 造形すべき立体像を所定方向に所定スラ
イス間隔でスライスした複数の立体像スライスデータを
作成し、 立体像スライスデータをディジタルマイクロミラーデバ
イスに入力し、その複数の各微小ミラーを立体像スライ
スデータに応じて傾動させ、該ディジタルマイクロミラ
ーデバイスの各微小ミラーからの反射光を槽内の光硬化
性樹脂液に投影して上記立体像スライスデータに対応し
た形状でかつ上記所定スライス間隔の厚みを有する硬化
膜を形成し、該硬化膜を上記所定スライス間隔だけ沈降
させ、 上述の一連の操作を繰り返して硬化膜を積層して上記立
体像を造形するようにしたことを特徴とする立体像の造
形方法。
1. A plurality of three-dimensional image slice data obtained by slicing a three-dimensional image to be modeled in a predetermined direction at predetermined slice intervals, inputting the three-dimensional image slice data to a digital micromirror device, and setting each of the plurality of micromirrors. Tilt according to the stereoscopic image slice data, and the reflected light from each micromirror of the digital micromirror device is projected on the photocurable resin liquid in the tank to have a shape corresponding to the stereoscopic image slice data and the predetermined slice. A cured film having an interval thickness is formed, the cured film is allowed to settle by the predetermined slice interval, and the cured film is laminated by repeating the series of operations described above to form the three-dimensional image. How to make a three-dimensional image.
【請求項2】 上記光硬化性樹脂液が緩速硬化する樹脂
液であり、光源から上記ディジタルマイクロミラーデバ
イスに連続的に光の入射させるようにした請求項1記載
の立体像の造形方法。
2. The method for forming a three-dimensional image according to claim 1, wherein the photocurable resin liquid is a resin liquid that cures slowly, and light is continuously incident on the digital micromirror device from a light source.
【請求項3】 上記光硬化性樹脂液が急速硬化する樹脂
液であり、膜形成後に反射光が上記光硬化性樹脂液に投
影されないように全ての上記微小ミラーを傾動させる
か、又は上記微小ミラーへの光の入射を停止するように
した請求項1記載の立体像の造形方法。
3. The photocurable resin liquid is a resin liquid that is rapidly cured, and all of the micro mirrors are tilted or the micro mirrors are tilted so that reflected light is not projected onto the photo curable resin liquid after film formation. The three-dimensional image forming method according to claim 1, wherein the incidence of light on the mirror is stopped.
【請求項4】 光硬化性樹脂液が貯留された槽と、 該槽の近傍に設けられ、光の投影にて形成される光硬化
性樹脂液の硬化膜を支持して硬化膜の厚みと等しい距離
だけ沈降させるアクチュエータと、 2次元に配列されたメモリーアレイの各メモリーセル上
に微小ミラーを配置してなり、上記複数の各微小ミラー
を上記メモリーアレイに入力される立体像スライスデー
タに応じて傾動させ、該複数の微小ミラーからの反射光
を上記槽の光硬化性樹脂液に投影して光硬化性樹脂液の
硬化膜を立体像スライスデータに対応した形状に形成す
るディジタルマイクロミラーデバイスと、 該ディジタルマイクロミラーデバイスの微小ミラーに光
を入射する光源とを備えたことを特徴とする立体像の造
形装置。
4. A tank in which the photocurable resin liquid is stored, and a thickness of the cured film which is provided in the vicinity of the tank and supports the cured film of the photocurable resin liquid formed by projection of light. An actuator that sinks the same distance and micromirrors are arranged on each memory cell of a two-dimensionally arranged memory array, and the plurality of micromirrors are arranged according to the stereoscopic image slice data input to the memory array. Digital micromirror device for tilting the light and projecting the reflected light from the plurality of micromirrors onto the photocurable resin liquid in the tank to form a cured film of the photocurable resin liquid into a shape corresponding to the stereoscopic image slice data. And a light source for making light incident on the micromirrors of the digital micromirror device.
【請求項5】 上記複数の微小ミラーからの反射光を上
記槽の光硬化性樹脂液に投影する投影レンズを更に備え
た請求項4記載の立体像の造形装置。
5. The three-dimensional image forming apparatus according to claim 4, further comprising a projection lens that projects reflected light from the plurality of micromirrors onto the photocurable resin liquid in the tank.
JP8265376A 1995-09-22 1996-09-13 Forming of three-dimensional image and device therefor Pending JPH09141749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8265376A JPH09141749A (en) 1995-09-22 1996-09-13 Forming of three-dimensional image and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1146995 1995-09-22
JP7-11469 1995-09-22
JP8265376A JPH09141749A (en) 1995-09-22 1996-09-13 Forming of three-dimensional image and device therefor

Publications (1)

Publication Number Publication Date
JPH09141749A true JPH09141749A (en) 1997-06-03

Family

ID=26346896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8265376A Pending JPH09141749A (en) 1995-09-22 1996-09-13 Forming of three-dimensional image and device therefor

Country Status (1)

Country Link
JP (1) JPH09141749A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005575A1 (en) * 1999-07-15 2001-01-25 Edward Jefferson Horne Production method and device for photo-cured shaped matter
JP2001188354A (en) * 1999-12-28 2001-07-10 Asahi Kasei Corp Method for manufacturing photosensitive resin letterpress and apparatus for manufacturing the same
JP2002268230A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Method and device for manufacturing photosensitive resin letterpress
JP2008155650A (en) * 2001-04-20 2008-07-10 Envisiontec Gmbh Apparatus for manufacturing three-dimensional object

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005575A1 (en) * 1999-07-15 2001-01-25 Edward Jefferson Horne Production method and device for photo-cured shaped matter
JP2001188354A (en) * 1999-12-28 2001-07-10 Asahi Kasei Corp Method for manufacturing photosensitive resin letterpress and apparatus for manufacturing the same
JP2002268230A (en) * 2001-03-09 2002-09-18 Asahi Kasei Corp Method and device for manufacturing photosensitive resin letterpress
JP4698044B2 (en) * 2001-03-09 2011-06-08 旭化成イーマテリアルズ株式会社 Manufacturing method and apparatus for photosensitive resin relief printing plate
JP2008155650A (en) * 2001-04-20 2008-07-10 Envisiontec Gmbh Apparatus for manufacturing three-dimensional object
JP4705963B2 (en) * 2001-04-20 2011-06-22 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device for generating a three-dimensional object

Similar Documents

Publication Publication Date Title
US7088432B2 (en) Dynamic mask projection stereo micro lithography
EP2186625B1 (en) Method for manufacturing a three-dimensional object
EP0549993B1 (en) Stereolithographic apparatus and method of forming a model
JP5088114B2 (en) Stereolithography equipment
JP5293993B2 (en) Stereolithography apparatus and stereolithography method
JP5234315B2 (en) Stereolithography apparatus and stereolithography method
CN104956672B (en) Three dimensional object is constructed
JP2002331591A (en) Stereolithography
JP2003039564A (en) Apparatus for forming three-dimensional matter
JP2010179496A (en) Photo-fabrication apparatus and molding base
JP2009132127A (en) Optical shaping apparatus and optical shaping method
JP2009132124A (en) Optical shaping apparatus and optical shaping method
CN105856573A (en) High-precision and high-speed continuous 3D printer and printing method thereof
JP2009113294A (en) Optical modeling apparatus and optical modeling method
JPS61114817A (en) Apparatus for forming solid configuration
JP2009083240A (en) Optical molding apparatus
Vladić et al. Vat photopolymerization
JP2009160861A (en) Optical shaping apparatus and optical shaping method
CN113119459B (en) Calibration system and method of 3D printing equipment and 3D printing equipment
JPH09141749A (en) Forming of three-dimensional image and device therefor
JPS63141725A (en) Apparatus for forming three dimensional shape
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JPS61217219A (en) Three-dimensional configuration forming device
JP2009166448A (en) Optical shaping apparatus and optical shaping method
JPS6299753A (en) Formation of three-dimensional shape