JP2004155156A - Three-dimensionally shaping method and device - Google Patents

Three-dimensionally shaping method and device Download PDF

Info

Publication number
JP2004155156A
JP2004155156A JP2002325285A JP2002325285A JP2004155156A JP 2004155156 A JP2004155156 A JP 2004155156A JP 2002325285 A JP2002325285 A JP 2002325285A JP 2002325285 A JP2002325285 A JP 2002325285A JP 2004155156 A JP2004155156 A JP 2004155156A
Authority
JP
Japan
Prior art keywords
mirror
light
light source
dimensional
mirror device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325285A
Other languages
Japanese (ja)
Other versions
JP2004155156A5 (en
JP4049654B2 (en
Inventor
Toru Matsumura
徹 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roland DG Corp
Original Assignee
Roland DG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roland DG Corp filed Critical Roland DG Corp
Priority to JP2002325285A priority Critical patent/JP4049654B2/en
Publication of JP2004155156A publication Critical patent/JP2004155156A/en
Publication of JP2004155156A5 publication Critical patent/JP2004155156A5/ja
Application granted granted Critical
Publication of JP4049654B2 publication Critical patent/JP4049654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimentionally shaping device capable of shortening a total molding time. <P>SOLUTION: The three-dimentionally shaping device 20 contains a light source 23 and a mirror device 22 to receive light from the light source 23. The mirror device 22 contains a plurality of finely movable mirror groups 22a which are arranged in row and column directions to receive an electric signal to change each reflecting face, and a control unit 22d to optionally control each mirror face of the finely movable mirror groups 22a. The light reflected on the mirror device 22 is directed toward a photosetting material 31. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は3次元造形装置およびその方法に関し、特に造形時間の短縮が図れる3次元造形装置およびその方法に関する。
【0002】
【従来の技術】
光造型、粉体造型、シート積層、などのラピットプロトタイピングマシンと呼ばれる造形法においては、モデルを細かな断面形状の集合体と考え、モデル全体をZ方向(上下方向)に一定の厚み(約0.1mm)でスライスし、その1断面データごとの造型物を重ね合せる(積層)ことで、モデルを造型している。
【0003】
そのような3次元造形装置がたとえば、下記の文献1に開示されている。
【0004】
従来の3次元造形方法について図8を参照して説明する。図8を参照して、従来の3次元造形方法においては、タンク51の上方の一側に設けられた紫外線レーザ光Lを射出するレーザ光源であるプロジェクタ57からのレーザ光Lの射出と、ミラー駆動機構59によって制御される偏向ミラー58の偏向角度とが制御回路60によって同期して駆動されるように構成されている。そして、プロジェクタ57からのレーザ光Lを偏向ミラー58により平面二次元方向に所要のパターンで走査することによってレーザ光Lでタンク51内に収納された光硬化性樹脂52の所望の部分を硬化させることによって所望の3次元造形を行っていた。
【0005】
【特許文献1】
特開平9−150459号公報(段落番号0009、0010、図1)
【0006】
【発明が解決しようとする課題】
上記のような、従来の単一ビーム光を機械式の走査機構で描画する手段では、その作業は1次元的であり1平面分の描画に多大な投影時間を要するとともに、2次元走査を行うために、複雑な機械駆動機構が必要であった。
【0007】
光学系の軽量化、簡素化による駆動系の負担軽減のため、光源にレーザを使用した場合は、一層厳しい安全上の配慮が必要になる、といった問題があった。
【0008】
この発明は上記のような問題点を解消するためになされたもので、トータル造型時間の短縮を図ることが出来る、3次元造形装置およびその方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
3次元造形装置は、光源と、光源からの光を受光するミラー装置とを含み、ミラー装置は行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーからなり、微細可動ミラーのそれぞれの反射面を任意に制御する手段とを含み、ミラー装置で反射された光は光硬化性材料に向けられる。
【0010】
電気信号を与えることにより、反射角度を変化させることができる複数の微細可動ミラーを有するミラー装置に光を照射し、各ミラーが反射角度を制御して、面光源として光硬化性材料に光が照射される。面光源を用いるため、ビームの2次元走査は不要になる。
【0011】
その結果、1平面毎の描画に必要な投影時間の大幅な短縮による高速造形が可能な3次元造形装置を提供することができる。
【0012】
また、光源にレーザを使う必要がないため、装置構造の簡略化と信頼性が向上する。
【0013】
さらに、微細可動ミラーを任意の角度に制御できるため、投影画像の調整が可能になり、所望の画像の投影が可能になる。
【0014】
好ましくは、制御手段は、微細可動ミラーの各々の反射角度を変化させる動作の繰り返しスピードを制御する。微細可動ミラーの各々の反射角度を変化させる動作の繰り返しスピードを制御することによって、光硬化性樹脂への照射量を制御する。その結果、滑らかな形状の3次元造形物が得られる。
【0015】
なお、予め3次元造形データを作成する手段を含み、制御手段は、作成された3次元造形データに基づいて複数の微細可動ミラーの反射角度を制御してもよい。
【0016】
さらに好ましくは、微細可動ミラーの各々の反射角度は各ミラーに投影すべき光の割合に応じて自動的に変動される。
【0017】
この発明の他の局面においては、行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーを有するデジタルミラー素子装置を用い、その反射光を光硬化性材料に照射することによって3次元形状物を造形する3次元造形方法である。3次元造形方法は、(a)微細可動ミラーの各々を任意の角度に制御するステップと、(b)光源からの光を前記デジタルミラー素子装置に照射するステップと、(c)ミラー装置によって照射された光硬化性材料の上に新たな光硬化性材料の層を形成するステップとを含み、(a)から(c)を繰り返すことによって3次元形状物を造形するステップとを含む。
【0018】
電気信号を与えることにより、反射角度を変化させることができる複数の微細可動ミラーを有するミラー装置に光を照射し、各ミラーが描画のための点画素に相当するように反射角度を制御して、面光源として光硬化性材料に光が照射される。面光源を用いるため、ビームの2次元走査は不要になる。
【0019】
その結果、1平面毎の描画に必要な投影時間の大幅な短縮による高速造形が可能な3次元造形方法を提供することができる。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態を図面を参照して説明する。図1はこの発明にかかる3次元造形装置の1実施の形態を示す、全体構成を示す模式図である。
【0021】
図1を参照して、3次元造形装置20は、予め作成された描画データを入力する描画データ入力部21と、デジタルミラー素子(微細可動ミラー)22と、デジタルミラー(以下「DM」と省略する)素子22に光を照射する光源23と、光源23からの光を平行光にしてデジタルミラー素子に照射するレンズ24とデジタルミラー素子22からの反射光25を収束させるレンズ26と、光硬化性樹脂31を保持する光硬化性樹脂容器30とを含む。描画データ入力部21に入力された描画データは図示の無いメモリに格納される。
【0022】
デジタルミラー素子22はマトリックス状に配列された可動ミラー群22aと、可動ミラー群22aを行方向に制御する行制御部22bと、可動ミラー群22aを列方向に制御する列制御部22cと、行制御部22bおよび列制御部22cを制御する制御部22dとを含む。
【0023】
DM素子22を構成する可動ミラー群22aの各々の可動ミラーは、その反射面の角度を任意に設定可能であり、光源23からの反射光25を光硬化性樹脂容器30に収納された光硬化性樹脂液31に対して全反射させる角度から光硬化性樹脂液を照射しない角度まで変えることができる。
【0024】
ここで、各可動ミラーは描画のための点画素に相当するようにその反射角度を制御する。また、相当する画素位置の各可動ミラーの反射角度は画像データの明暗情報より任意に制御される。
【0025】
なお、描画データ入力部21には別途設けられた画像データ作成装置10から描画用の画像データが入力される。
【0026】
次に3次元造形装置20に画像データを供給する画像データ作成装置10の動作内容について図2および図3を参照して説明する。図2は画像データ作成装置10の動作内容を示すフローチャートであり、図3は動作の具体的内容を示す図である。図2を参照して、まず、まず3次元データの作成を行う(ステップS11、以下ステップを省略する)。
【0027】
具体的には、図3(A)に示すように、X軸、Y軸およびZ軸についての描画データを準備する。ここでは、たとえば、H型の柱状形状を作成するものとする。この3次元データはたとえばCAD等を用いて作成する。次に、作成された3次元データを一方向からの投影断面が連続する2次元データに展開する(S12)。具体的には、図3(B)に示すように、H型の柱状形状をZ軸方向に連続する「H」型の複数の2次元画像データに展開する。そして画像データとして3次元造形装置20の描画データ入力部21へ入力する(S13)。具体的には、連続した画像(ビットマップ)データとして3次元造形装置20に送出する。
【0028】
次に3次元造形装置20の動作について図4を参照して説明する。まず、描画データ入力部21から描画データを入力する(S21)。次いでDM素子22の制御を行い(S22)、光硬化性樹脂31のレベルの制御を行う(S23)。
【0029】
次に図4のS22で示したDM素子22の制御内容について説明する。図5はDM素子22の制御内容を示すフローチャートである。図5を参照して、まずマトリックス状の各DM素子の各々の初期化を行う(S31)。次いで、マトリックス状のDM素子の各点(i,j)毎のデータをS21で入力されたデータに応じて制御部22dが図示のないメモリから読出し(S32)、そのデータに応じて行制御部22bおよび列制御部22cを介して(i,j)点のミラー角度を決定する(S33)。そして光源23から光を照射し、液面33に光を反射させる(S34)。
【0030】
図6は光硬化性樹脂容器30の液面の変化状態を示す図である。まず図6(A)に示すように、DM素子からの反射光を22からの反射光で形成される形状画像を光硬化性材料の液面33に露光し1層目を形成する。次いで可動テーブル32を図示の無い駆動装置で一段引き下げ、硬化した1層目表面に光硬化性樹脂を浸透させ、2層目の硬化の準備を行う(図6(B))。以後、上記の工程を繰り返すことによって、所望の3次元形状を形成する。
【0031】
次に、DM素子22の具体的な制御方法について説明する。図7はDM素子の制御状態を作成された入力データ41と、それに対応する個々の可動ミラーの位置42との関係を示す模式図である。図7(A)はH字型のデータを入力した状態を示す図である。ここで入力データ41はH字型のデータを示し、このデータはこの場合は入力データを矩形で表現しうるため、入力データによって個々の可動ミラーのオンオフを制御できる。したがって、斜線で示した可動ミラーをオン、すなわち全反射するように制御すればよい。
【0032】
図7(B)は円形形状を作成する場合を示す図である。解像度にもよるが、この場合は描画データ入力部21へ入力された入力描画データ43と対応する各々の可動ミラーとを1:1で対応させると所望の画像を投影できない可能性がある。そこで、このような場合は、個々の可動ミラーについて全反射するもの(斜線で示す)と所望の角度で反射するもの(×で示す)とに分けて制御する。このように制御することによって、微調整が可能になり、解像度が大きい場合においても所望の形状に近い形状を作成できる。
【0033】
なお、この反射角度は1つの可動ミラーに投影すべき光の割合に応じて自動的に変動させるようにしてもよい。
【0034】
次に、この発明の他の実施形態について説明する。この実施の形態においては、個々の可動ミラーの照射角度を変化させる動作のオンオフ比率を制御し、光硬化性樹脂への照射量を制御することによって、分解能を変化させる。すなわち、オン比率を上げると単位時間あたりの硬化量は多く、オフ比率を上げると単位時間あたりの硬化量が少なくなり単純なオンオフに比べてより細かな硬化量の調整ができる。
【0035】
このように制御することにより、粗い分解能によって凹凸の形状に仕上がる造形物が、可動ミラーのオンオフの繰り返し比率により光量を変化できるので、滑らかな形状になる。
【0036】
上記実施の形態においては画像データ作成装置と3次元造形装置とを別装置として説明したが、これに限らず、装置として一体化させてもよい。
【0037】
図面を参照してこの発明の一実施形態を説明したが、本発明は、図示した実施形態に限定されるものではない。本発明と同一の範囲内において、または均等の形態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲内において、図示した実施形態に対して種々の変更を加えることが可能である。
【図面の簡単な説明】
【図1】この発明の1実施の形態にかかる3次元造形装置の構成を示す模式図である。
【図2】画像データ作成手順を示すフローチャートである。
【図3】画像データ作成の具体的手順を示す模式図である。
【図4】3次元造形装置の動作を示すフローチャートである。
【図5】デジタルミラー素子の制御内容を示すフローチャートである。
【図6】光硬化性樹脂の成形動作を示す模式図である。
【図7】デジタルミラー素子の制御状態を作成された入力データと、それに対応する個々のミラーの位置との関係を示す模式図である。
【図8】従来の3次元造形方法を示す図である。
【符号の説明】10 画像データ作成装置、20 3次元造形装置、21 描画データ入力部、22 デジタルミラー(DM)素子、23 光源、24 レンズ、25 反射光、26 レンズ、30 光硬化性樹脂容器、31 光硬化性樹脂、32 テーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a three-dimensional printing apparatus and a method thereof, and more particularly to a three-dimensional printing apparatus and a method thereof capable of shortening a printing time.
[0002]
[Prior art]
In a molding method called a rapid prototyping machine such as stereolithography, powder molding, sheet lamination, etc., a model is considered to be an aggregate having a small cross-sectional shape, and the entire model is fixed to a certain thickness (approximately in a vertical direction). The model is formed by slicing at 0.1 mm) and superimposing (stacking) the moldings for each one section data.
[0003]
Such a three-dimensional printing apparatus is disclosed in, for example, the following document 1.
[0004]
A conventional three-dimensional printing method will be described with reference to FIG. Referring to FIG. 8, in the conventional three-dimensional modeling method, emission of laser light L from projector 57, which is a laser light source that emits ultraviolet laser light L provided on one side above tank 51, and mirrors The configuration is such that the deflection angle of the deflection mirror 58 controlled by the drive mechanism 59 is synchronously driven by the control circuit 60. Then, a desired portion of the photo-curable resin 52 stored in the tank 51 is cured by the laser beam L by scanning the laser beam L from the projector 57 in a required pattern in a plane two-dimensional direction by the deflection mirror 58. Thus, desired three-dimensional modeling has been performed.
[0005]
[Patent Document 1]
JP-A-9-150459 (paragraph numbers 0009 and 0010, FIG. 1)
[0006]
[Problems to be solved by the invention]
In the conventional means for drawing a single light beam with a mechanical scanning mechanism as described above, the operation is one-dimensional, and requires a long projection time to draw one plane and performs two-dimensional scanning. Therefore, a complicated mechanical drive mechanism was required.
[0007]
In order to reduce the load on the drive system by reducing the weight and simplifying the optical system, when a laser is used as the light source, there is a problem that stricter safety considerations are required.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a three-dimensional molding apparatus and a method thereof capable of reducing the total molding time.
[0009]
[Means for Solving the Problems]
The three-dimensional printing apparatus includes a light source and a mirror device that receives light from the light source, and the mirror device is arranged in a matrix direction, and includes a plurality of fine movable mirrors each receiving an electric signal and changing a reflection surface. Means for arbitrarily controlling the respective reflecting surfaces of the fine movable mirror, and the light reflected by the mirror device is directed to the photocurable material.
[0010]
By applying an electric signal, a mirror device having a plurality of fine movable mirrors that can change the reflection angle is irradiated with light, and each mirror controls the reflection angle, and the light is applied to the photocurable material as a surface light source. Irradiated. The use of a surface light source eliminates the need for two-dimensional scanning of the beam.
[0011]
As a result, it is possible to provide a three-dimensional modeling apparatus capable of performing high-speed modeling by greatly reducing the projection time required for drawing for each plane.
[0012]
Further, since it is not necessary to use a laser as a light source, the structure of the device is simplified and the reliability is improved.
[0013]
Further, since the fine movable mirror can be controlled to an arbitrary angle, the projection image can be adjusted, and a desired image can be projected.
[0014]
Preferably, the control means controls a repetition speed of an operation of changing a reflection angle of each of the fine movable mirrors. By controlling the repetition speed of the operation of changing the reflection angle of each of the micro movable mirrors, the irradiation amount on the photocurable resin is controlled. As a result, a three-dimensional structure having a smooth shape is obtained.
[0015]
It should be noted that the control means may include means for creating three-dimensional printing data in advance, and the control means may control the reflection angles of the plurality of fine movable mirrors based on the created three-dimensional printing data.
[0016]
More preferably, the reflection angle of each of the fine movable mirrors is automatically changed according to the proportion of light to be projected on each mirror.
[0017]
In another aspect of the present invention, a digital mirror element device having a plurality of fine movable mirrors arranged in a matrix direction, each of which receives an electric signal and changes a reflection surface is used, and the reflected light is applied to a photocurable material. This is a three-dimensional forming method of forming a three-dimensional object by irradiation. The three-dimensional printing method includes: (a) controlling each of the micro movable mirrors to an arbitrary angle; (b) irradiating light from a light source to the digital mirror element device; and (c) irradiating with the mirror device. Forming a new layer of the photocurable material on the photocurable material obtained, and forming a three-dimensional object by repeating (a) to (c).
[0018]
By applying an electric signal, the mirror device having a plurality of fine movable mirrors capable of changing the reflection angle is irradiated with light, and the reflection angle is controlled so that each mirror corresponds to a point pixel for drawing. Light is irradiated to the photocurable material as a surface light source. The use of a surface light source eliminates the need for two-dimensional scanning of the beam.
[0019]
As a result, it is possible to provide a three-dimensional printing method capable of performing high-speed printing by greatly reducing the projection time required for drawing for each plane.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an overall configuration of a three-dimensional printing apparatus according to an embodiment of the present invention.
[0021]
Referring to FIG. 1, a three-dimensional printing apparatus 20 includes a drawing data input unit 21 for inputting drawing data created in advance, a digital mirror element (micro movable mirror) 22, and a digital mirror (hereinafter abbreviated as “DM”). A) a light source 23 for irradiating the element 22 with light; a lens 24 for converting the light from the light source 23 into parallel light to irradiate the digital mirror element; a lens 26 for converging the reflected light 25 from the digital mirror element 22; And a photo-curable resin container 30 that holds the conductive resin 31. The drawing data input to the drawing data input unit 21 is stored in a memory (not shown).
[0022]
The digital mirror element 22 includes a movable mirror group 22a arranged in a matrix, a row control unit 22b for controlling the movable mirror group 22a in the row direction, a column control unit 22c for controlling the movable mirror group 22a in the column direction, And a control unit 22d that controls the control unit 22b and the column control unit 22c.
[0023]
Each of the movable mirrors of the movable mirror group 22a constituting the DM element 22 can freely set the angle of the reflection surface thereof, and reflects the reflected light 25 from the light source 23 in the photocurable resin container 30 in the photocurable resin container 30. The angle can be changed from the angle at which the resin 31 is totally reflected to the angle at which the photocurable resin is not irradiated.
[0024]
Here, the reflection angle of each movable mirror is controlled so as to correspond to a point pixel for drawing. The reflection angle of each movable mirror at the corresponding pixel position is arbitrarily controlled based on the brightness information of the image data.
[0025]
In addition, image data for drawing is input to the drawing data input unit 21 from the separately provided image data creating device 10.
[0026]
Next, the operation of the image data creating apparatus 10 for supplying image data to the three-dimensional printing apparatus 20 will be described with reference to FIGS. FIG. 2 is a flowchart showing the operation content of the image data creating apparatus 10, and FIG. 3 is a diagram showing the specific content of the operation. With reference to FIG. 2, first, three-dimensional data is created (step S11, steps are omitted hereafter).
[0027]
Specifically, as shown in FIG. 3A, drawing data for the X axis, the Y axis, and the Z axis is prepared. Here, for example, an H-shaped columnar shape is created. The three-dimensional data is created using, for example, CAD. Next, the created three-dimensional data is developed into two-dimensional data having a continuous projected cross section from one direction (S12). Specifically, as shown in FIG. 3B, the H-shaped columnar shape is developed into a plurality of “H” -shaped two-dimensional image data continuous in the Z-axis direction. Then, the image data is input to the drawing data input unit 21 of the three-dimensional printing apparatus 20 (S13). Specifically, the image data is sent to the three-dimensional printing apparatus 20 as continuous image (bitmap) data.
[0028]
Next, the operation of the three-dimensional printing apparatus 20 will be described with reference to FIG. First, drawing data is input from the drawing data input unit 21 (S21). Next, the DM element 22 is controlled (S22), and the level of the photocurable resin 31 is controlled (S23).
[0029]
Next, control contents of the DM element 22 shown in S22 of FIG. 4 will be described. FIG. 5 is a flowchart showing the control contents of the DM element 22. Referring to FIG. 5, first, each of the DM elements in a matrix is initialized (S31). Next, the control unit 22d reads data for each point (i, j) of the matrix DM element from a memory (not shown) in accordance with the data input in S21 (S32), and in accordance with the data, a row control unit. The mirror angle at the point (i, j) is determined via the column controller 22b and the column controller 22c (S33). Then, light is emitted from the light source 23, and the light is reflected on the liquid surface 33 (S34).
[0030]
FIG. 6 is a diagram illustrating a change state of the liquid level of the photocurable resin container 30. First, as shown in FIG. 6A, a first image is formed by exposing the shape image formed by the reflected light from the DM element to the liquid surface 33 of the photo-curable material by using the reflected light from the DM element 22. Next, the movable table 32 is lowered one step by a driving device (not shown), and a photocurable resin is penetrated into the surface of the cured first layer to prepare for curing of the second layer (FIG. 6B). Thereafter, a desired three-dimensional shape is formed by repeating the above steps.
[0031]
Next, a specific control method of the DM element 22 will be described. FIG. 7 is a schematic diagram showing the relationship between the input data 41 in which the control state of the DM element is created and the position 42 of each movable mirror corresponding thereto. FIG. 7A shows a state in which H-shaped data is input. Here, the input data 41 indicates H-shaped data, and in this case, since the input data can be represented by a rectangle, the ON / OFF of each movable mirror can be controlled by the input data. Therefore, it is sufficient to control such that the movable mirror indicated by oblique lines is turned on, that is, totally reflected.
[0032]
FIG. 7B illustrates a case where a circular shape is created. Although depending on the resolution, in this case, if the input drawing data 43 input to the drawing data input unit 21 and the corresponding movable mirrors correspond to each other on a 1: 1 basis, a desired image may not be projected. Therefore, in such a case, the control is separately performed for each of the movable mirrors, that is, one that totally reflects (shown by oblique lines) and one that reflects at a desired angle (shown by X). By performing such control, fine adjustment is possible, and a shape close to a desired shape can be created even when the resolution is large.
[0033]
The reflection angle may be automatically changed according to the ratio of light to be projected on one movable mirror.
[0034]
Next, another embodiment of the present invention will be described. In this embodiment, the resolution is changed by controlling the on / off ratio of the operation for changing the irradiation angle of each movable mirror and controlling the irradiation amount on the photocurable resin. In other words, increasing the ON ratio increases the amount of curing per unit time, and increasing the OFF ratio decreases the amount of curing per unit time, making it possible to finely adjust the amount of curing compared to a simple ON / OFF.
[0035]
By controlling in this manner, the shaped object that is finished in a concave and convex shape with a coarse resolution can change the amount of light according to the on / off repetition ratio of the movable mirror, and thus has a smooth shape.
[0036]
In the above embodiment, the image data creating apparatus and the three-dimensional modeling apparatus are described as separate apparatuses. However, the present invention is not limited to this, and may be integrated as an apparatus.
[0037]
One embodiment of the present invention has been described with reference to the drawings, but the present invention is not limited to the illustrated embodiment. It is not limited to the same range as the present invention or to an equivalent form. Various changes can be made to the illustrated embodiment within the same or equivalent scope as the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a three-dimensional printing apparatus according to one embodiment of the present invention.
FIG. 2 is a flowchart illustrating an image data creation procedure.
FIG. 3 is a schematic diagram showing a specific procedure for creating image data.
FIG. 4 is a flowchart showing an operation of the three-dimensional printing apparatus.
FIG. 5 is a flowchart showing control contents of a digital mirror element.
FIG. 6 is a schematic view showing a molding operation of a photocurable resin.
FIG. 7 is a schematic diagram showing a relationship between input data in which a control state of a digital mirror element is created and positions of individual mirrors corresponding to the input data.
FIG. 8 is a diagram showing a conventional three-dimensional printing method.
[Description of Signs] 10 image data creation device, 20 three-dimensional modeling device, 21 drawing data input unit, 22 digital mirror (DM) element, 23 light source, 24 lens, 25 reflected light, 26 lens, 30 photo-curable resin container , 31 light curable resin, 32 tables

Claims (3)

光源と、
前記光源からの光を受光するミラー装置とを含み、前記ミラー装置は行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーからなり、
前記微細可動ミラーのそれぞれの反射面を任意の角度に制御する制御手段とを含み、
前記ミラー装置で反射された光は光硬化性材料に向けられる、3次元造形装置。
A light source,
A mirror device that receives light from the light source, wherein the mirror device is arranged in a matrix direction, each of which comprises a plurality of fine movable mirrors that receive an electric signal and change the reflection surface,
Control means for controlling each reflection surface of the fine movable mirror to an arbitrary angle,
A three-dimensional modeling device, wherein the light reflected by the mirror device is directed to a photocurable material.
前記制御手段は、前記微細可動ミラーの各々の反射角度を変化させる動作の繰り返しスピードを制御する、請求項1に記載の3次元造形装置。The three-dimensional modeling apparatus according to claim 1, wherein the control unit controls a repetition speed of an operation of changing a reflection angle of each of the fine movable mirrors. 行列方向に配置され、それぞれが電気信号を受けて反射面を変化させる複数の微細可動ミラーを有するミラー装置を用い、その反射光を光硬化性材料に照射することによって3次元形状物を造形する3次元造形方法であって、
(a)前記微細可動ミラーの各々を任意の角度に制御するステップと、
(b)光源からの光を前記ミラー装置に照射するステップと、
(c)前記ミラー装置によって照射された光硬化性材料の上に新たな光硬化性材料の層を形成するステップとを含み、前記(a)〜(c)のステップを繰り返すことによって3次元形状物を造形する3次元造形方法。
A three-dimensionally shaped object is formed by irradiating the photo-curable material with the reflected light, using a mirror device having a plurality of fine movable mirrors each arranged in a matrix direction and changing a reflection surface by receiving an electric signal. A three-dimensional modeling method,
(A) controlling each of the fine movable mirrors to an arbitrary angle;
(B) irradiating the mirror device with light from a light source;
(C) forming a new layer of a photocurable material on the photocurable material irradiated by the mirror device, and repeating the steps (a) to (c) to form a three-dimensional shape. A three-dimensional modeling method for modeling objects.
JP2002325285A 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method Expired - Fee Related JP4049654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325285A JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325285A JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Publications (3)

Publication Number Publication Date
JP2004155156A true JP2004155156A (en) 2004-06-03
JP2004155156A5 JP2004155156A5 (en) 2005-10-27
JP4049654B2 JP4049654B2 (en) 2008-02-20

Family

ID=32804565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325285A Expired - Fee Related JP4049654B2 (en) 2002-11-08 2002-11-08 3D modeling apparatus and 3D modeling method

Country Status (1)

Country Link
JP (1) JP4049654B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214797A (en) * 2005-02-02 2006-08-17 Furukawa Electric Co Ltd:The Bending testing machine for wire harness
CN105666885A (en) * 2016-04-18 2016-06-15 周宏志 Partitioned photocuring 3D printing forming method, system and device based on DLP
TWI597153B (en) * 2016-06-07 2017-09-01 台達電子工業股份有限公司 Three-Dimensional Printer and Imaging System Thereof
CN115284609A (en) * 2022-08-01 2022-11-04 深圳市金石三维打印科技有限公司 Smooth printing method, device and equipment for component surface of photocuring 3D printer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101590774B1 (en) * 2014-10-16 2016-02-19 한국생산기술연구원 A head module for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
KR101612254B1 (en) 2014-10-30 2016-04-15 한국생산기술연구원 A multi-channel head assembly for 3D printer comprising polygon mirrors rotating in single direction, and a scanning method therewith and a 3D printer therewith
JP6474995B2 (en) 2014-11-11 2019-02-27 ローランドディー.ジー.株式会社 Slice data creation device, slice data creation method, program, and computer-readable recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214797A (en) * 2005-02-02 2006-08-17 Furukawa Electric Co Ltd:The Bending testing machine for wire harness
CN105666885A (en) * 2016-04-18 2016-06-15 周宏志 Partitioned photocuring 3D printing forming method, system and device based on DLP
TWI597153B (en) * 2016-06-07 2017-09-01 台達電子工業股份有限公司 Three-Dimensional Printer and Imaging System Thereof
CN115284609A (en) * 2022-08-01 2022-11-04 深圳市金石三维打印科技有限公司 Smooth printing method, device and equipment for component surface of photocuring 3D printer

Also Published As

Publication number Publication date
JP4049654B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4957242B2 (en) Stereolithography equipment
JP5018076B2 (en) Stereolithography apparatus and stereolithography method
JP5024001B2 (en) Stereolithography apparatus and stereolithography method
JP5293993B2 (en) Stereolithography apparatus and stereolithography method
JP6058819B2 (en) 3D object production
US20180029299A1 (en) Additive manufacturing with offset stitching
JP2009132126A (en) Optical shaping apparatus and optical shaping method
JP2006272916A (en) Optical shaping method
KR20150118105A (en) Production of a volume object by lithography, having improved spatial resolution
JP2010089364A (en) Three-dimensional shaping apparatus
JP2009132127A (en) Optical shaping apparatus and optical shaping method
JP2009113293A (en) Optical modeling apparatus and optical modeling method
JP2009113294A (en) Optical modeling apparatus and optical modeling method
JP2009083240A (en) Optical molding apparatus
CN114474732A (en) Data processing method, system, 3D printing method, device and storage medium
JP5071114B2 (en) Stereolithography apparatus and stereolithography method
Vladić et al. Vat photopolymerization
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JP2008162189A (en) Optical shaping apparatus
CN101332649B (en) Light-cured quick forming device and method based on reflection-type liquid crystal light valve
JP2002210834A (en) Three-dimensional shaping apparatus and method therefor
WO2018062008A1 (en) Device for three-dimensional modeling, method for manufacturing three-dimensional object, and program for three-dimensional modeling
KR101918979B1 (en) Apparatus for printing 3-dimensonal object using both laser scanner and dlp projector
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
JPS63145016A (en) Device for forming solid shape

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4049654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees