JPS61217219A - Three-dimensional configuration forming device - Google Patents

Three-dimensional configuration forming device

Info

Publication number
JPS61217219A
JPS61217219A JP60059083A JP5908385A JPS61217219A JP S61217219 A JPS61217219 A JP S61217219A JP 60059083 A JP60059083 A JP 60059083A JP 5908385 A JP5908385 A JP 5908385A JP S61217219 A JPS61217219 A JP S61217219A
Authority
JP
Japan
Prior art keywords
resin material
supply
resin
laser beam
liquid photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059083A
Other languages
Japanese (ja)
Inventor
Takashi Morihara
隆 森原
Fumitaka Abe
文隆 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60059083A priority Critical patent/JPS61217219A/en
Publication of JPS61217219A publication Critical patent/JPS61217219A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Abstract

PURPOSE:To control to supply liquid photo-setting resin material uniformly with a predetermined thickness even though the viscosity of the liquid photo-setting type resin material is different by a method wherein a means to supply the resin material uniformly on the surface of the photo-setting type resin from a resin material supplying unit, in which a plurality of openings are arranged in one row in a predetermined direction. CONSTITUTION:Predetermined amount of liquid photo-setting type resin material 31 is supplied from the auxiliary scanning of a resin accommodating vessel 30 and the plurality of openings 34 of the resin material supplying unit 33, arranged with a distance (l) from the main scanning position of laser beams 22 whereby the supply of the liquid photo-setting resin material 31 from the plurality of openings 34 and exposure setting by the main scanning of the laser beams 22 are effected simultaneously in parallel substantially. Subsequently, the resin accommodating vessel 30 is descended by an auxiliary scanning table 32 by the size of the layer of resin material in which the supply and exposure setting of the liquid photo-setting type resin material 31 are effected and the resin accommodating vessel 30 is returned to a predetermined initial position, further, a level is adjusted so that the surface of next layer comes to the focus of ftheta lense 28 through a scan reflecting mirror 29.

Description

【発明の詳細な説明】 〔概 要〕 昇降可能でレーザビームの主走査方向と直交する方向に
副走査される副走査台上の、樹脂収容容器内の液状光硬
化型樹脂材に対して、レーザビーム光学系からのレーザ
ビームを主走査しながら照射を行い、該光硬化型樹脂材
を選択的に硬化せしめ、立体形状を形成する装置におい
て、上記樹脂収容容器上に、レーザビームの主走査方向
に複数の開口が列設された樹脂材供給部を配置し、該樹
脂収容容器が副走査方向に移動すると同時に、前記樹脂
材供給部の複数の開口より、樹脂収容容器内の供給面に
液状光硬化型樹脂材を短時間で均一に供給するようにし
て、立体模型形状の形成を高速化すること。
[Detailed Description of the Invention] [Summary] With respect to a liquid photocurable resin material in a resin storage container on a sub-scanning table that can be raised and lowered and is sub-scanned in a direction perpendicular to the main scanning direction of a laser beam, In the apparatus for selectively curing the photocurable resin material by irradiating it with a laser beam from a laser beam optical system while scanning the laser beam in the main scanning direction, the laser beam is irradiated with the main scanning beam on the resin container. A resin material supply section having a plurality of openings arranged in a row in the direction is arranged, and at the same time as the resin container moves in the sub-scanning direction, the resin material supply section has a plurality of openings in the resin material supply section. To speed up the formation of a three-dimensional model shape by uniformly supplying a liquid photocurable resin material in a short time.

〔産業上の利用分野〕[Industrial application field]

本発明は液状光硬化型樹脂材にレーザビーム光学系を用
いて選択的に露光硬化を行い、3次元立体情報を表示す
る立体模型形状を形成する立体形状形成装置に係り、特
に液状光硬化型樹脂材の供給手段の改良に関するもので
ある。
The present invention relates to a three-dimensional shape forming apparatus that selectively exposes and cures a liquid photocurable resin material using a laser beam optical system to form a three-dimensional model shape that displays three-dimensional information, and particularly relates to a liquid photocurable resin material. This invention relates to an improvement in a means for supplying a resin material.

3次元的な立体情報を表示する方法として、ホログラフ
ィ−による立体視表示、透視図表示、投影図表示及び等
高線表示等が開発され、一般に広く用いられている。こ
れらはホログラフィ−を除いて、何れも3次元情報を2
次元情報に変換する手順が含まれており、表示した立体
形状を直感的に把握し、充分に理解し得るには必ずしも
満足し得る技法とは言えない。
As methods for displaying three-dimensional stereoscopic information, stereoscopic display using holography, perspective view display, projection view display, contour line display, etc. have been developed and are generally widely used. With the exception of holography, all of these methods can convert three-dimensional information into two
It includes a procedure for converting into dimensional information, and is not necessarily a satisfactory technique for intuitively grasping and fully understanding the displayed three-dimensional shape.

この点、1i前記ホログラフィ−は視覚的、直感的に上
記の技法より極めて有利であるが、立体形状を(υるの
に再生装置が必要であり、又、実在しない仮想物体を表
示することが困難である。
In this respect, holography is visually and intuitively more advantageous than the above-mentioned techniques, but it requires a reproduction device to reproduce three-dimensional shapes, and it is difficult to display virtual objects that do not exist. Have difficulty.

このようなことから立体情報を直感的に把握し理解し易
く表示するためには、模型等の立体形状を作成すること
が最善であり、模型的な立体形状を佳較的容易に形成す
る方法として、樹脂材収容容器内に液状光硬化型樹脂材
を段階的に供給し、該樹脂供給肋間その液状光硬化型樹
脂材をレーデビーム照射手段により選択的に光硬化させ
て複雑な立体模型形状を積層状に形成する方法が提案さ
れている。
For this reason, in order to grasp 3D information intuitively and display it in an easy-to-understand manner, it is best to create a 3D shape such as a model, and it is a relatively easy method to create a 3D shape like a model. A liquid photocurable resin material is supplied stepwise into a resin material storage container, and the liquid photocurable resin material between the resin supply ribs is selectively photocured by a Lede beam irradiation means to form a complex three-dimensional model shape. A method of forming in a layered manner has been proposed.

しかしこのような従来の形成方法にあっては、液状光硬
化型l(脂材を段階的に供給するのに、オーバーフロ一
方i(を用いているため、該樹脂材の流入速度、手用化
に手間どり、供給に長時間を要し、全形成工程時間に大
きく影響する問題があり、樹脂供給肋間の短縮が要望さ
れている。
However, in such conventional forming methods, since an overflow one (i) is used to supply the liquid light curing type l (resin material in stages), the inflow speed of the resin material, manual There are problems in that it is troublesome to process, takes a long time to supply, and greatly affects the overall forming process time, so there is a desire to shorten the resin supply gap.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する模型形状を形成す
る方法としては、第5図fatに示すように液状の光硬
化型樹脂材3を充満した収容容器1内の昇降ステージ2
を所定寸法分降下して、該昇降ステージ2」二に一要分
の液状光硬化型樹脂材4をオーバーフローさせることに
より供給する。
Conventionally, as a method for forming a model shape that displays three-dimensional information using a laser beam irradiation means using a photocurable resin material, a liquid photocurable resin material 3 is used as shown in FIG. Lifting stage 2 inside filled container 1
is lowered by a predetermined dimension, and one portion of the liquid photocurable resin material 4 is supplied by overflowing to the elevating stage 2''.

しかる後、−要分の液状光硬化型樹脂材4に対して、例
えば作成すべき模型形状を幾つかの輪切り状に分割した
断面情報データ信号の内の、第1情報データ信号によっ
てレーザビーム5を照射して、選択的に露光硬化せしめ
、第1硬化樹脂層4aを形成する。
After that, the laser beam 5 is applied to the liquid photocurable resin material 4 in accordance with a first information data signal, for example, which is a cross-sectional information data signal obtained by dividing the model shape to be created into several slices. is selectively exposed and cured to form a first cured resin layer 4a.

次に第5図(blに示すように再び前記昇降ステージ2
を所定寸法分降下し、該昇降ステージ2上の前記第1硬
化樹脂層4a上に新たな二層目の液状光硬化型樹脂材6
を前記同様に供給し、該光硬化型樹脂材6に対して第5
図FC+に示すように第2情報データ信号によってレー
ザビーム5を照射して、選択的に露光硬化・υしめ、第
2硬化樹脂層6aを形成する。
Next, as shown in FIG.
is lowered by a predetermined dimension, and a new second layer of liquid photocurable resin material 6 is placed on the first cured resin layer 4a on the lifting stage 2.
is supplied in the same manner as above, and the fifth
As shown in FIG. FC+, a laser beam 5 is irradiated in response to a second information data signal to selectively expose and harden the resin layer 6a to form a second cured resin layer 6a.

以ド同様にして第5図(dlに示すように該第2硬化+
114脂層6 a−1=、に、更に新たな三層目の液状
光硬化型4JJ脂祠7を供給し、該光硬化型樹脂材7に
対して第5図+fi+に示すように第3情報データ信号
によってレーデビーム5を照射して、選択的に露光硬化
せしめ、第3硬化樹脂層7aを形成することにより、最
終的に該液状の光硬化型樹脂材3中に積層状の立体硬化
樹脂像が形成される。
Thereafter, as shown in FIG. 5 (dl), the second curing +
114 resin layer 6a-1=, a new third layer of liquid photo-curing type 4JJ grease 7 is supplied, and the third layer is applied to the photo-curing resin material 7 as shown in FIG. 5+fi+. By irradiating the radar beam 5 according to the information data signal and selectively exposing and curing to form the third cured resin layer 7a, a laminated three-dimensional cured resin is finally formed in the liquid photocurable resin material 3. An image is formed.

この立体硬化樹脂像を液状光硬化型樹脂材3中より俄り
出し、希アルカリ洗浄溶液等で該液状光硬化4月AI脂
材3を洗い流すことによって、第5図fflに示すよう
に所望とする3次元的な立体情報を表示する模型形状8
を作成している。
This three-dimensional cured resin image is protruded from the liquid photocurable resin material 3, and by washing off the liquid photocurable resin material 3 with a dilute alkaline cleaning solution or the like, a desired image is obtained as shown in FIG. Model shape 8 that displays three-dimensional three-dimensional information
is being created.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記形成方法における液状光硬化型樹脂
材3の供給方法が、−要分だけ降下した昇降ステージ2
」二、或いは該昇降ステージ2上の既に形成された硬化
樹脂層4a又は6a上に、第5図(bl、第5図(dl
に示すように液状光硬化型樹脂材4又は6を自然に流れ
込ませる、所謂オーバーフロ一方式により供給している
ため、平坦な供給樹脂面を得るのに該液状光硬化型樹脂
材3の粘度との関係と相俟って、かなりの供給時間を必
要としている。
However, the method of supplying the liquid photocurable resin material 3 in the above-mentioned forming method is such that the elevating stage 2 is lowered by -
2, or on the already formed cured resin layer 4a or 6a on the lifting stage 2, as shown in FIG.
As shown in the figure, since the liquid light-curing resin material 4 or 6 is supplied by the so-called overflow method in which it flows naturally, the viscosity of the liquid light-curing resin material 3 is not sufficient to obtain a flat supply resin surface. This, combined with the relationship with the company, requires a considerable amount of supply time.

従って、上記のように立体形状を積層状に形成する場合
には、該液状光硬化型樹脂材3の全供給時間が、−要分
の樹脂材供給時間の層数倍となり、全形成工程時間に大
きく影響する問題がある。
Therefore, when forming a three-dimensional shape in a layered manner as described above, the total supply time of the liquid photocurable resin material 3 is - the number of layers times the resin material supply time for the essential resin material, and the total forming process time is There is a problem that has a big impact on

又、用いられる液状光硬化型樹脂材3の粘度が高くなる
と供給時間が増大することは勿論のこと、各液状光硬化
型樹脂材層の厚さを薄く制御することが困難となり、形
成工程の高速化、高精度化に大きな障害となっている。
In addition, as the viscosity of the liquid photocurable resin material 3 increases, not only does the supply time increase, but it also becomes difficult to control the thickness of each liquid photocurable resin layer, which slows down the formation process. This is a major obstacle to increasing speed and precision.

更に、既に露光硬化された硬化樹脂層4a、 6a上に
液状光硬化型樹脂材3を供給する場合、各硬化樹脂層の
体積、又は表面積が一定でないため、各層の樹脂材供給
時間が異なり、当該立体形状の全形成工程の制御が容易
でないといった欠点があった。
Furthermore, when supplying the liquid photocurable resin material 3 onto the cured resin layers 4a and 6a that have already been exposed and cured, since the volume or surface area of each cured resin layer is not constant, the resin material supply time for each layer is different. There was a drawback that it was not easy to control the entire process of forming the three-dimensional shape.

本発明は、上記従来の欠点に鑑みてなされたもので、そ
の目的とするところは、供給すべき液状光硬化型樹脂材
の粘度が異なっても所定の厚さに均一番こ供給制御が可
能で、かつ供給時間の短縮を図った構造の樹脂材供給部
を有する新規な立体形状形成装置を提供することにある
The present invention has been made in view of the above-mentioned conventional drawbacks, and its purpose is to be able to control the supply of a uniform paste to a predetermined thickness even if the viscosity of the liquid photocurable resin material to be supplied differs. It is an object of the present invention to provide a novel three-dimensional shape forming apparatus having a resin material supply section having a structure in which the supply time is shortened.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、本発明は第1図に示すよう
に昇降可能でレーザビーム22の主走査方向と直交する
方向に副走査される、副走査台32上の樹脂収容容器3
0内の液状光硬化型樹脂材31に対して、レーザ装置2
1、光変調器23、反射鏡24、レンズ25.26、回
転多面鏡27、fθレンズ28及び走査用反射鏡29か
らなるレーザビーム光学系からのレーザビーム22を主
走査しながら照射を行い、該光硬化型樹脂材31を選択
的に硬化せしめ、立体形状を形成する装置において、上
記樹脂収容容器30に例えばレーザビーム22の主走査
方向に複数の開口が列設された樹脂材供給部33を配置
し、該樹脂収容容器30が副走査方向に移動すると同時
に該容器30内に、前記樹脂材供給部33の複数の開口
より液状光硬化型樹脂材31を供給するように構成され
ている。
In order to achieve the above object, the present invention provides a resin storage container 3 on a sub-scanning stage 32, which is movable up and down and sub-scanned in a direction orthogonal to the main scanning direction of the laser beam 22, as shown in FIG.
0, the laser device 2
1. Irradiation is performed while main scanning with a laser beam 22 from a laser beam optical system consisting of an optical modulator 23, a reflecting mirror 24, lenses 25, 26, a rotating polygon mirror 27, an fθ lens 28, and a scanning reflecting mirror 29, In the apparatus for selectively curing the photocurable resin material 31 to form a three-dimensional shape, the resin material supply section 33 has a plurality of openings lined up in the resin container 30 in the main scanning direction of the laser beam 22, for example. is arranged, and the liquid photocurable resin material 31 is supplied into the container 30 from the plurality of openings of the resin material supply section 33 at the same time as the resin storage container 30 moves in the sub-scanning direction. .

〔作用〕[Effect]

このような樹脂材供給部33の配置構成によれば、立体
形状を形成するに際し、前記樹脂収容容器30が副走査
方向に移動すると同時に、前記樹脂材供給部33の複数
の開口より液状光硬化型樹脂材31が均等に流出され、
樹脂収容容器30内に均一に供給される。
According to this arrangement of the resin material supply section 33, when forming a three-dimensional shape, at the same time as the resin container 30 moves in the sub-scanning direction, liquid photocuring is carried out from the plurality of openings of the resin material supply section 33. The mold resin material 31 is evenly poured out,
The resin is uniformly supplied into the resin container 30.

樹脂材供給の均一化は、前記樹脂材供給部33における
複数の開口の間隔及び大きさ等を中央部と両側部で種々
に変化させて最適化させることができる。
Uniformity of the resin material supply can be optimized by variously changing the intervals and sizes of the plurality of openings in the resin material supply section 33 at the center and both sides.

その供給と略並行して該光硬化型樹脂材31面にレーザ
ビーム22を選択的に主走査して露光硬化させる。以下
このような工程を繰り返すことにより、樹脂収容容器3
0に対して、液状光硬化型樹脂材を均一に、かつ短時間
で供給すると共に、所定の積層状の樹脂硬化立体形状を
高速に作成することが可能となる。
Substantially in parallel with the supply, the laser beam 22 is selectively main-scanned over the surface of the photocurable resin material 31 to expose and cure it. By repeating these steps, the resin storage container 3
0, it becomes possible to supply a liquid photocurable resin material uniformly and in a short time, and to create a predetermined laminated resin-cured three-dimensional shape at high speed.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention.

同図において21はレーザビーム22を出射するレーザ
装置、23は例えば音響光学効果、電気光学効果、或い
は磁気光学効果等の機能素子を用いた光変調器、24は
反射鏡、25.26はレンズ、27は回転多面鏡、28
は回転多面鏡27によって走査されるレーデビーム22
を走査用反射鏡29を介して照射面に対し、等速度走査
する機能を有する「θレンズであり、該fθレンズ28
によって照射面にレーザビーム22の焦点を設定するこ
とができると共に、該焦点でのレーザビーム径を微小径
とすることができ、ビームエネルギーの集中照射が可能
となる。
In the figure, 21 is a laser device that emits a laser beam 22, 23 is an optical modulator using a functional element such as an acousto-optic effect, an electro-optic effect, or a magneto-optic effect, 24 is a reflecting mirror, and 25 and 26 are lenses. , 27 is a rotating polygon mirror, 28
is the radar beam 22 scanned by the rotating polygon mirror 27
The fθ lens 28
As a result, the focus of the laser beam 22 can be set on the irradiation surface, and the diameter of the laser beam at the focus can be made very small, making it possible to irradiate concentrated beam energy.

又、30は液状光硬化型樹脂材31を収容する樹脂収容
容器、32は副走査台であり、該樹脂収容容器台30を
矢印Aの方向に移動走査すると共に、矢印Bで示す上下
方向に昇降調整可能となっている。
Further, 30 is a resin storage container that accommodates the liquid photocurable resin material 31, and 32 is a sub-scanning table, which moves and scans the resin storage container table 30 in the direction of arrow A and in the vertical direction shown by arrow B. It is adjustable up and down.

更に33は樹脂材供給部であり、第2図の部分拡大斜視
図に示すように前記樹脂収容容器30の光硬化型樹脂材
面に対して、レーザビーム22の主走査方向に複数の開
口34が列設されている。
Furthermore, 33 is a resin material supply section, which has a plurality of openings 34 in the main scanning direction of the laser beam 22 with respect to the photocurable resin material surface of the resin container 30, as shown in the partially enlarged perspective view of FIG. are installed in a row.

該複数の開口34としては、その大きさ及び配設間隔を
均等にした場合の例について図示しているが、必要に応
じてこれら開口34の大きさ及び配設間隔等を、中央部
と両側部で種々に変化させることで、樹脂収容容器30
内の光硬化型樹脂材面に対して、樹脂材31の供給流出
量を均一に最適化させることができる。
The figure shows an example in which the plurality of openings 34 are equal in size and spacing, but if necessary, the size and spacing of the openings 34 can be changed between the center and both sides. By making various changes in the parts, the resin storage container 30
The supply and outflow amount of the resin material 31 can be uniformly optimized with respect to the photocurable resin material surface inside.

このように樹脂材供給部33の開口34を複数に列設し
た所以は、例えば該開口をレーザビーム22の主走査方
向に細長い単数の開口とした場合、細長い開口の中央部
と両側部とでは、樹脂材31の供給圧力差やそれに起因
する流出量の差などにより均等に供給することが雌しい
からである。
The reason why a plurality of apertures 34 of the resin material supply section 33 are arranged in a row is that, for example, when the aperture is a single elongated aperture in the main scanning direction of the laser beam 22, the central part and both sides of the elongated aperture are different. This is because it is desirable to supply the resin material 31 evenly due to the difference in supply pressure of the resin material 31 and the resulting difference in the outflow amount.

さて、このような装置構成によって3次元的な立体情報
を表示する所定の立体模型形状を形成するには、先ず第
3図[alに示すように副走査台32上に載置された樹
脂収容容器30の副走査と、該樹脂収容容器30上にレ
ーザビーム22の主走査位置より副走査方向に間隔βだ
け離間して配設された樹脂材供給部33の複数の開口3
4より、一定量の液状光硬化型樹脂材31の供給を開始
する。
Now, in order to form a predetermined three-dimensional model shape for displaying three-dimensional three-dimensional information using such an apparatus configuration, first, as shown in FIG. sub-scanning of the container 30 and a plurality of openings 3 of the resin material supply unit 33 disposed on the resin storage container 30 at a distance β in the sub-scanning direction from the main scanning position of the laser beam 22.
4, the supply of a certain amount of liquid photocurable resin material 31 is started.

次に第3図(blに示すように樹脂収容容器30が副走
査により該樹脂材31の供給開始位置より間隔l以」二
移動した時点から、該供給された液状光硬化型樹脂材層
31に対して図示しない形成信号制御回路からの作成す
べき立体模型形状を幾つかの輪切り状に分割した立体形
状データ信号に基づいて、変調されたレーザビーム22
の主走査による光照射により順次選択的に露光硬化が行
われる。
Next, as shown in FIG. 3 (bl), from the point in time when the resin container 30 has moved from the supply start position of the resin material 31 by a distance l"2 by sub-scanning, the supplied liquid photocurable resin material layer 31 The laser beam 22 is modulated based on a three-dimensional shape data signal obtained by dividing the three-dimensional model shape to be created into several slices from a formation signal control circuit (not shown).
Exposure and curing is sequentially and selectively performed by light irradiation by main scanning.

即ち、前記複数の開口34からの液状光硬化型樹脂材3
1の供給とレーザビーム22の主走査による露光硬化が
略同時に並行して行われる。
That is, the liquid photocurable resin material 3 from the plurality of openings 34
1 and exposure curing by main scanning of the laser beam 22 are performed substantially simultaneously and in parallel.

やがて第3図fclに示すように前記樹脂材供給部33
が該収容容器30の端に達し、所定形状パターンの露光
硬化が終了すると、液状光硬化型樹脂材31の供給を停
止すると共に、樹脂収容容器30の副走査も停止する。
Eventually, as shown in FIG. 3 fcl, the resin material supply section 33
When it reaches the end of the storage container 30 and the exposure curing of the predetermined shape pattern is completed, the supply of the liquid photocurable resin material 31 is stopped, and the sub-scanning of the resin storage container 30 is also stopped.

次に第3図(d+に示すように液状光硬化型樹脂材31
の供給・露光硬化を行う樹脂材要分の厚さ寸法だけ副走
査台32により樹脂収容容器30を降下させると共に、
該樹脂収容容器30を第3図(e)に示すように当初の
所定位置へ迅速に戻し、更に次層の表面が走査反射鏡2
9を介してfθレンズ28の焦点位置となるようにレヘ
ル調整を行う。
Next, as shown in FIG. 3 (d+), the liquid photocurable resin material 31
The resin storage container 30 is lowered by the sub-scanning table 32 by the thickness of the resin material that is to be supplied and exposed to light and cured.
The resin container 30 is quickly returned to its original predetermined position as shown in FIG.
9, level adjustment is performed so that the focal position of the fθ lens 28 is reached.

以下、上記第3図(al乃至第3図(81により説明し
た工程を繰り返し、露光硬化樹脂層を順次積層してこの
積層状の立体硬化樹脂像を液状光硬化型樹脂材31中よ
り取り出し、例えば希アルカリ洗浄溶液等により液状光
硬化型樹脂材31を洗い流すことによって、所望とする
3次元的な立体情報を表示する立体模型形状を比較的短
時間で効率よく形成することが可能となる。
Hereinafter, the steps explained in FIGS. 3(al) to 3(81) are repeated, the exposed and cured resin layers are sequentially laminated, and this laminated three-dimensional cured resin image is taken out from the liquid photocurable resin material 31. For example, by washing away the liquid photocurable resin material 31 with a dilute alkaline cleaning solution or the like, it becomes possible to efficiently form a three-dimensional model shape that displays desired three-dimensional stereoscopic information in a relatively short time.

即ち、本実施例においては液状光硬化型樹脂材31の供
給と、レーザビーム22照射による露光硬化とが殆ど同
時に並行して行われるので、液状光硬化型樹脂材31面
に対する副走査方向の平均露光領域幅を1、とした時、
I5に対してβを小さくすることにより、実質的な液状
光硬化型樹脂材31の供給時間は僅かに初期供給時のみ
となり、殆ど無視することができ、露光時間と樹脂収容
容器30の初期定位置への返戻を柴作時間等のみの短時
間で立体形状を形成することが出来る。
That is, in this embodiment, since the supply of the liquid photocurable resin material 31 and the exposure curing by the laser beam 22 irradiation are performed almost simultaneously and in parallel, the average of the sub-scanning direction for the surface of the liquid photocurable resin material 31 is When the exposure area width is 1,
By reducing β with respect to I5, the actual supply time of the liquid photocurable resin material 31 is only for the initial supply, and can be almost ignored, and the exposure time and the initial setting of the resin container 30 are A three-dimensional shape can be formed in a short period of time, such as the time it takes to return to position.

尚、樹脂収容容器30に対して供給される液状光硬化型
樹脂材層の層厚制御については、樹脂収容容器30の副
走査方向への移動速度Vを一定とした場合、樹脂材31
の単位時間当たりの供給MSを制御することにより、液
状光硬化型樹脂材を所定の層厚に、均一に供給すること
ができる。
Regarding the layer thickness control of the liquid photocurable resin material layer supplied to the resin storage container 30, when the moving speed V of the resin storage container 30 in the sub-scanning direction is constant, the resin material 31
By controlling the supply MS per unit time, the liquid photocurable resin material can be uniformly supplied to a predetermined layer thickness.

第4図は本発明に係る立体形状形成装置の他の実施例構
造及び立体形状を形成する動作を順に説明する要部断面
図であり、第3図と同等部分には同一符号を付した。
FIG. 4 is a main part sectional view sequentially explaining the structure of another embodiment of the three-dimensional shape forming apparatus according to the present invention and the operation of forming a three-dimensional shape, and the same reference numerals are given to the same parts as in FIG. 3.

本実施例が第3図による実施例と異なる点は、複数の開
口34をそれぞれ備えた2つの樹脂材供給部33a、 
33bを、液状光硬化型樹脂材31面に照射するレーザ
ビームの主走査領域を挟んでその両側に設けた構成とし
、樹脂収容容器30が載置された副走査台33の移動走
査方向に応して該移動走査方向側の該供給部33a、又
は33bを選択して、液状光硬化型樹脂材を樹脂収容容
器30内に供給するようにしたことである。
This embodiment differs from the embodiment shown in FIG.
33b is provided on both sides of the main scanning area of the laser beam irradiated onto the surface of the liquid photocurable resin material 31, and is configured to correspond to the movement scanning direction of the sub-scanning table 33 on which the resin storage container 30 is placed. Then, the supply section 33a or 33b on the moving scanning direction side is selected to supply the liquid photocurable resin material into the resin container 30.

このような装置構成によって3次元的な立体情報を表示
する所定の立体模型形状を形成するには、先ず、第4図
(alに示すように副走査台32上に載置された樹脂収
容容器30を矢印方向に副走査すると共に、該樹脂収容
容器30上にレーザビーム22の主走査位置を挟んで所
定間隙をもって対向配設された2つの樹脂材供給部33
a’、 33bの内の一方の樹脂材供給部33aの複数
の開口34より第4図山)に示すように一定量の液状光
硬化型樹脂材31の供給を開始する。
In order to form a predetermined three-dimensional model shape for displaying three-dimensional three-dimensional information using such an apparatus configuration, first, as shown in FIG. 30 is sub-scanned in the direction of the arrow, and two resin material supply units 33 are disposed oppositely on the resin container 30 with a predetermined gap across the main scanning position of the laser beam 22.
A certain amount of the liquid photocurable resin material 31 is started to be supplied from the plurality of openings 34 of one of the resin material supply parts 33a of 33a and 33b as shown in FIG.

この樹脂材供給開始後、該供給された液状光硬化型樹脂
材層31に対して、図示しない形状信号制御回路からの
作成すべき立体模型形状を幾つかの輪切り状に分割した
立体形状データ信号に基づい°ζ変調されたレーザビー
ム22の主走査による光照射によって選択的に露光硬化
を行う。
After the resin material supply starts, a three-dimensional shape data signal is sent from a shape signal control circuit (not shown) to the supplied liquid photocurable resin material layer 31, which is a three-dimensional model shape to be created divided into several slices. Exposure and curing is selectively performed by light irradiation by main scanning of the laser beam 22 modulated by °ζ based on the following.

即ち、樹脂材供給部33aの複数の開口34からの液状
光硬化型樹脂+A31の供給と、レーザビーム22の主
走査による露光硬化が同時に略並行して行われる・ やがて第4図tc+に示すように前記樹脂材供給部33
aが該収容容器30の端に達し所定パターンの露光硬化
が終了すると、液状光硬化型樹脂材31の供給が停止さ
れると共に、樹脂収容容器30の副走査も停止する。
That is, the supply of the liquid photocurable resin +A31 from the plurality of openings 34 of the resin material supply section 33a and the exposure curing by the main scanning of the laser beam 22 are performed simultaneously and almost in parallel. The resin material supply section 33
When a reaches the end of the storage container 30 and the exposure curing of the predetermined pattern is completed, the supply of the liquid photocurable resin material 31 is stopped, and the sub-scanning of the resin storage container 30 is also stopped.

次に第4図+dlに示すように液状光硬化型樹脂材31
の供給・露光硬化を行う樹脂材要分の厚さ寸法だけ副走
査台32により樹脂収容容器30を降下させて、次層の
表面が走査反射鏡29を介してfθレンズ28の焦点位
置となるようにレヘル調整を行う。
Next, as shown in FIG. 4+dl, the liquid photocurable resin material 31
The resin storage container 30 is lowered by the sub-scanning table 32 by the thickness of the resin material that is to be supplied and exposed and cured, and the surface of the next layer becomes the focus position of the fθ lens 28 via the scanning reflector 29. Adjust the level as shown.

しかる後、第4図telに示すように樹脂収容容器30
を前記副走査方向とは逆方向に副走査を行い、他方の樹
脂材供給部33bの複数の開口34より一定量の液状光
硬化型樹脂材31の供給を開始し、その樹脂材31面に
同しく立体形状データ信号に基づいて変調されたレーザ
ビーム22の主走査による光照射によって、選択的に露
光硬化を略並行して行う。
After that, as shown in FIG. 4, the resin container 30 is
is sub-scanned in the opposite direction to the sub-scanning direction, and a certain amount of liquid photocurable resin material 31 is started to be supplied from the plurality of openings 34 of the other resin material supply section 33b, and the surface of the resin material 31 is Similarly, selective exposure and curing is performed substantially in parallel by light irradiation by main scanning of the laser beam 22 modulated based on the three-dimensional shape data signal.

以下、これらの工程を繰り返して、露光硬化樹脂層を順
次積層し、この積層状の立体硬化樹脂像を液状光硬化型
樹脂材31中より取り出し、例えば希アルカリ洗浄溶液
等により液状光硬化型樹脂材31を洗い流すことによっ
て、所望とする3次元立体情報を表示する立体模型形状
を、極めて短時間で効率よく形成することが可能となる
Hereinafter, these steps are repeated to sequentially stack the exposed and cured resin layers, and the layered three-dimensional cured resin image is taken out of the liquid photocurable resin material 31, and the liquid photocurable resin is washed with a dilute alkaline cleaning solution, for example. By washing away the material 31, it becomes possible to efficiently form a three-dimensional model shape that displays desired three-dimensional information in an extremely short time.

即ち、本実施例では液状光硬化型樹脂材31面に対する
前記樹脂+A31の供給と、レーザビーム22走査位置
の副走査が往復走査となるため、該樹脂収容容器30を
副走査毎に初期定位置へ返戻操作する必要が無くなり、
その殆どが露光硬化走査時間のみとなるため、前記実施
例の場合よりも更に短時間で立体形状が形状される利点
がある。
That is, in this embodiment, since the supply of the resin +A31 to the surface of the liquid photocurable resin material 31 and the sub-scanning of the scanning position of the laser beam 22 are reciprocating scanning, the resin container 30 is moved to the initial fixed position in each sub-scanning. There is no need to return to
Since most of the time is just the exposure and curing scanning time, there is an advantage that the three-dimensional shape can be formed in a shorter time than in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、樹脂収容容器に対する液状光硬化型
樹脂材の供給時間が大幅に短縮されると共に、粘度の大
きい液状光硬化型樹脂材等においても均一な薄い層厚に
安定供給することが可能となる等、種々の3次元的な立
体情報を表示する立体模型形状を液状光硬化型樹脂材に
より高速に、かつ精度良く形成することが可能となる優
れた利点を有する。
As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, the time required to supply the liquid photocurable resin material to the resin storage container is significantly shortened, and the liquid photocurable resin material with high viscosity It is possible to stably supply materials with a uniform thin layer thickness, etc., and form three-dimensional models that display various three-dimensional information quickly and accurately using liquid photocurable resin materials. This has the advantage of making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図、 第2図は本発明に係る立体形状形成装置における樹脂材
供給部の一実施例を示す要部 拡大斜視図、 第3図は本発明に係る立体形状形成装置により立体形状
を形成する動作の一実施例を 順に示す要部断面図、 第4図は本発明に係る立体形状形成装置の他の実施例構
造及び立体形状を形成する動 作の一実施例を順に示す要部断面図、  ”第5図は従
来の立体形状の形成方法を説明する、  要部断面図陽
ある。 第1図乃至第4図番こおいて、 21はレーザ装置、22はレーザビーム、23は光変調
器、24は反射鏡、25.26はレン。 ズ、27は回転多面鏡、28はfθレンズ、29は走査
用反射鏡、30は樹脂収容容器、31は液状光硬化型樹
脂材、32は副走査台、33、33a、 33bは樹脂
材供給部、34は複数の開口牽それぞれ示す。 冒 1’;IA− 吊   塚 ゼ←
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention, and FIG. 2 is an enlarged perspective view of essential parts showing an embodiment of a resin material supply section in a three-dimensional shape forming apparatus according to the present invention. Figure 3 is a cross-sectional view of a main part sequentially showing one embodiment of the operation of forming a three-dimensional shape by the three-dimensional shape forming device according to the present invention, and FIG. 4 is another embodiment of the three-dimensional shape forming device according to the present invention. FIG. 5 is a cross-sectional view of a main part sequentially showing an example of a structure and an operation for forming a three-dimensional shape. In this number, 21 is a laser device, 22 is a laser beam, 23 is an optical modulator, 24 is a reflecting mirror, 25.26 is a lens, 27 is a rotating polygon mirror, 28 is an fθ lens, and 29 is a scanning reflection. 30 is a resin storage container, 31 is a liquid photocurable resin material, 32 is a sub-scanning table, 33, 33a, 33b are resin material supply parts, and 34 is a plurality of openings. Tsukaze←

Claims (1)

【特許請求の範囲】[Claims] 液状光硬化型樹脂材(31)にレーザビーム光学系によ
りレーザビーム(22)を照射して、その樹脂材(31
)を選択的に硬化せしめ、立体形状を形成する装置にお
いて、所定方向に複数の開口(34)が列設された樹脂
材供給部(33)より、前記樹脂材(31)を前記光硬
化型樹脂表面に均一に供給する手段を有することを特徴
とする立体形状形成装置。
A liquid photocurable resin material (31) is irradiated with a laser beam (22) by a laser beam optical system, and the resin material (31) is irradiated with a laser beam (22) by a laser beam optical system.
) is selectively cured to form a three-dimensional shape, the resin material (31) is supplied to the photocurable mold from a resin material supply section (33) in which a plurality of openings (34) are arranged in a row in a predetermined direction. A three-dimensional shape forming device characterized by having a means for uniformly supplying resin to a surface.
JP60059083A 1985-03-22 1985-03-22 Three-dimensional configuration forming device Pending JPS61217219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059083A JPS61217219A (en) 1985-03-22 1985-03-22 Three-dimensional configuration forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059083A JPS61217219A (en) 1985-03-22 1985-03-22 Three-dimensional configuration forming device

Publications (1)

Publication Number Publication Date
JPS61217219A true JPS61217219A (en) 1986-09-26

Family

ID=13103095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059083A Pending JPS61217219A (en) 1985-03-22 1985-03-22 Three-dimensional configuration forming device

Country Status (1)

Country Link
JP (1) JPS61217219A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
WO1991012120A1 (en) * 1990-02-15 1991-08-22 3D Systems, Inc. Method of and apparatus for forming a solid three-dimensional article from a liquid medium
US5071337A (en) * 1990-02-15 1991-12-10 Quadrax Corporation Apparatus for forming a solid three-dimensional article from a liquid medium
US5204124A (en) * 1990-10-09 1993-04-20 Stanley Secretan Continuous extruded bead object fabrication apparatus
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
EP0171069B1 (en) * 1984-08-08 1993-11-18 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
US6048487A (en) * 1988-09-26 2000-04-11 3D Systems, Inc. Recoating stereolithographic layers
US5891382A (en) * 1988-09-26 1999-04-06 3D System, Inc. Recoating of stereolithographic layers
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
US5667820A (en) * 1990-02-15 1997-09-16 3D Systems, Inc. Apparatus for making a solid three-dimensional article from a liquid medium
US5885511A (en) * 1990-02-15 1999-03-23 3D Systems, Inc. Method of making a solid three-dimensional article from a liquid medium
US5071337A (en) * 1990-02-15 1991-12-10 Quadrax Corporation Apparatus for forming a solid three-dimensional article from a liquid medium
WO1991012120A1 (en) * 1990-02-15 1991-08-22 3D Systems, Inc. Method of and apparatus for forming a solid three-dimensional article from a liquid medium
US5204124A (en) * 1990-10-09 1993-04-20 Stanley Secretan Continuous extruded bead object fabrication apparatus
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis

Similar Documents

Publication Publication Date Title
JPS61114818A (en) Apparatus for forming solid configuration
JPS61114817A (en) Apparatus for forming solid configuration
WO1996000422A1 (en) Programmable mask for producing three-dimensional objects
CN105856573A (en) High-precision and high-speed continuous 3D printer and printing method thereof
JPH0675925B2 (en) 3D shape forming device
JPS61217219A (en) Three-dimensional configuration forming device
CN111421815A (en) D L P3D bioprinter
JPS61116322A (en) Three-dimensional shape forming device
JP3252859B2 (en) Three-dimensional shape forming apparatus and three-dimensional shape forming method
JP4828028B2 (en) 3D modeling apparatus and 3D modeling method
JPS63141725A (en) Apparatus for forming three dimensional shape
JPS61116320A (en) Three-dimensional shape forming device
JPH10249943A (en) Apparatus for stereo lithography
JPS63145016A (en) Device for forming solid shape
CN109203468A (en) A kind of rapid photocuring 3D printing device
JPS63141724A (en) Forming three dimensional shape
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JPS6299753A (en) Formation of three-dimensional shape
JP3556358B2 (en) Uniform surface exposure type photo-curing modeling equipment
JPS61116321A (en) Three-dimensional shape forming device
CN113276408A (en) Continuous photocuring forming additive manufacturing device in liquid and manufacturing method thereof
JPH07290578A (en) Optical shaping apparatus
JPH07232383A (en) Three-dimensional optical shaping method and apparatus
JPS6223719A (en) Apparatus for forming three dimensional shape
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor