JPS61116321A - Three-dimensional shape forming device - Google Patents

Three-dimensional shape forming device

Info

Publication number
JPS61116321A
JPS61116321A JP59237056A JP23705684A JPS61116321A JP S61116321 A JPS61116321 A JP S61116321A JP 59237056 A JP59237056 A JP 59237056A JP 23705684 A JP23705684 A JP 23705684A JP S61116321 A JPS61116321 A JP S61116321A
Authority
JP
Japan
Prior art keywords
resin material
dimensional shape
photocurable resin
dimensional
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237056A
Other languages
Japanese (ja)
Inventor
Takashi Morihara
隆 森原
Fumitaka Abe
安部 文▲たか▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59237056A priority Critical patent/JPS61116321A/en
Publication of JPS61116321A publication Critical patent/JPS61116321A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Abstract

PURPOSE:To simplify a device and to form a three-dimensional shape effectively for a short period by controlling the exposure energy of laser beams irradiated on a liquid light-curing resin material by a photomodulator. CONSTITUTION:A laser beam 22 radiated from a laser device 21 is modulated up to a prescribed light intensity by the photomodulator 24 on the basis of a three-dimensional shape information pattern signal stored in a signal control circuit 23, and then converted into a proper beam diameter through lenses 26, 27. The converted beam is polarized by a rotary polahedral mirror 28 controlled by a signal control circuit 23, scanned at a constant speed by an ftheta lens 29 and then irradiated on a liquid light-curing resin material 32 filling the inside of a resin storing vessel 31. In this case, a supporting board 33 mounting the vessel 31 is also moved on the basis of the three-dimensional shape information pattern signal, so that the resin is selectively exposed and cured also in the depth direction in addition to the surface of the resin material 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液状光硬化型樹脂材とレーザビーム照射手段に
より、立体地形図模型等の3次元立体情報を表示する立
体模型形状を形成する立体形状形成装置に係り、特に液
状光硬化型樹脂材に照射するレーザビームの露光エネル
ギーを可変制御することにより容易に立体形状が形成さ
れ、且つ装置構成を簡単にした装置構成に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a three-dimensional model for displaying three-dimensional information such as a three-dimensional topographical map model using a liquid photocurable resin material and a laser beam irradiation means. The present invention relates to a shape forming apparatus, and in particular to a device configuration in which a three-dimensional shape can be easily formed by variably controlling the exposure energy of a laser beam irradiated onto a liquid photocurable resin material, and the device configuration is simplified.

3次元的な立体情報を表示する方法として、ホログラフ
ィ−による立体視表示、透視図表示、投影図表示及び等
高線表示等が開発され、一般に広。
As methods for displaying three-dimensional stereoscopic information, stereoscopic display using holography, perspective view display, projection view display, contour line display, etc. have been developed and are generally widely used.

く用いられている。これらはホログラフィ−を除いて、
何れも3次元情報を2次元情報に変換する手順が含まれ
ており、表示した立体形状を直感的に把握し、充分に理
解し得るには必ずしも満足し得る技法とは言えない。
It is often used. These are, with the exception of holography,
All of these techniques include a procedure for converting three-dimensional information into two-dimensional information, and cannot necessarily be said to be a satisfactory technique for intuitively grasping and fully understanding the displayed three-dimensional shape.

この点、前記ホログラフィ−は視覚的、直感的に上記の
技法より極めて有利であるが、立体形状を得るのに再生
装置が必要であり、又、実在しない仮想物体を表示する
ことが困難である。
In this respect, the holography is visually and intuitively more advantageous than the above techniques, but it requires a reproduction device to obtain a three-dimensional shape, and it is difficult to display non-existent virtual objects. .

このようなことから立体情報を直感的に把握し理解し易
(表示するためには、模型等の立体形状を作成すること
が最善である。
For this reason, it is best to create a three-dimensional shape such as a model in order to intuitively grasp and understand three-dimensional information (in order to display it).

立体模型形状を比較的容易に形成する方法として、樹脂
材収容容器内に光硬化型樹脂材を段階的に供給し、該樹
脂材供給毎にその光硬化型樹脂材をレーザビーム照射手
段等により選択的に光硬化させて複雑な立体模型形状を
積層状に形成する方法が提案されている。
As a method for forming a three-dimensional model shape relatively easily, a photocurable resin material is supplied stepwise into a resin material storage container, and each time the resin material is supplied, the photocurable resin material is irradiated with a laser beam or the like. A method has been proposed in which a complex three-dimensional model shape is formed in a layered manner by selectively photocuring.

しかしこのような従来の形成方法にあっては、光硬化型
樹脂材をオーバーフロ一方式によって段階的に供給して
いるため、その供給機構が複雑化すると共に、供給時間
が全形成工程時間の大半を占める問題があり、樹脂供給
時間の短縮が要望されている。
However, in such conventional forming methods, the photocurable resin material is supplied in stages using an overflow method, which complicates the supply mechanism and increases the supply time to the total forming process time. This problem accounts for most of the problems, and there is a desire to shorten the resin supply time.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する模型形状を形成す
る方法としては、第7図に示すように液状の光硬化型樹
脂材3を充満した収容容器1内の昇降支持台2を所定寸
法分降下して該昇降支持台2上に一要分の光硬化型樹脂
材4をオーバーフローさせることにより供給する。
Conventionally, as a method of forming a model shape that displays three-dimensional stereoscopic information by using a photocurable resin material using a laser beam irradiation means, as shown in FIG. 7, a liquid photocurable resin material 3 is filled. The elevating support table 2 in the storage container 1 is lowered by a predetermined distance, and one portion of the photocurable resin material 4 is supplied by overflowing onto the elevating support table 2.

しかる後、−要分の光硬化型樹脂材4に対して、例えば
作成すべき模型形状を高さ方向に幾かの輪切り状に分割
した断面情報パターン信号の内の第1情報パターン信号
によってレーザビーム5、又は光硬化型樹脂材4側をx
、 y方向に移動走査してビーム照射を行い、選択的に
露光硬化せしめて第1硬化樹脂層4aを形成する。
After that, - the required photocurable resin material 4 is laser-irradiated with a first information pattern signal among cross-sectional information pattern signals obtained by dividing the model shape to be created into several slices in the height direction. Beam 5 or photocurable resin material 4 side x
, beam irradiation is performed while moving and scanning in the y direction, and the first cured resin layer 4a is selectively exposed and cured.

次に第8図に示すように再び前記昇降支持台2を所定寸
法分降下し、該昇降支持台2上の前記第1硬化樹脂層4
a上に新たな二層目の光硬化型樹脂材6を前記同様に供
給し、該光硬化型樹脂材6に対して第9図に示すように
第2情報パターン信号によって同様にレーザビーム5を
照射して、選択的に露光硬化せしめ、第2硬化樹脂層6
aを形成する。
Next, as shown in FIG. 8, the lifting support 2 is lowered again by a predetermined distance, and the first cured resin layer 4 on the lifting support 2 is lowered again.
A new second layer of photocurable resin material 6 is supplied on top of a in the same manner as above, and the photocurable resin material 6 is similarly exposed to the laser beam 5 by the second information pattern signal as shown in FIG. is selectively exposed and cured to form a second cured resin layer 6.
form a.

以下同様にして第10図に示すように該昇降支持台2上
の前記第2硬化樹脂層6a上に、更に新たな三層目の光
硬化型樹脂材7を供給し、該光硬化型樹脂材7に対して
第11図に示すように第3情報パターン信号によってレ
ーザビーム5を照射して、選択的に露光硬化せしめ、第
3硬化樹脂層7aを形成することにより、最終的に該液
状の光硬化型樹脂材3中に積層状の立体硬化樹脂像が形
成される。
Thereafter, in the same manner as shown in FIG. 10, a new third layer of photocurable resin material 7 is further supplied onto the second cured resin layer 6a on the lifting support table 2, and the photocurable resin As shown in FIG. 11, the material 7 is irradiated with the laser beam 5 according to the third information pattern signal to selectively cure the material 7 by exposure to form a third cured resin layer 7a, and finally the liquid A laminated three-dimensional cured resin image is formed in the photocurable resin material 3 .

この立体硬化樹脂像を液状光硬化型樹脂材3中より取り
出し、希アルカリ洗浄溶液で該液状光硬化型樹脂材3を
洗い流すことによって、第12図に示すように所望とす
る3次元的な立体情報を表示する模型形状8を作成して
いる。
This three-dimensional cured resin image is taken out from the liquid photocurable resin material 3, and by washing away the liquid photocurable resin material 3 with a dilute alkaline cleaning solution, a desired three-dimensional solid is created as shown in FIG. A model shape 8 for displaying information is being created.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記形成方法における液状光硬化型樹脂
材3の供給方法が、−要分だけ降下した昇降支持台2上
、或いは該昇降支持台2上の既に形成された硬化樹脂層
4a又は6a上に、第8図、第10図に示すように液状
光硬化型樹脂材4又は6を自然に流れ込ませる、所謂オ
ーバーフロ一方式により供給しているため、平坦な供給
樹脂面を得るのに該液状光硬化型樹脂材3の粘度との関
係と相俟って、かなりの供給時間を必要としている。
However, the method of supplying the liquid photocurable resin material 3 in the above-mentioned forming method is such that the liquid photocurable resin material 3 is supplied onto the elevating support 2 that has been lowered by a certain amount, or onto the cured resin layer 4a or 6a that has already been formed on the elevating support 2. As shown in FIGS. 8 and 10, the liquid photocurable resin material 4 or 6 is supplied by the so-called overflow method, in which it flows naturally. Coupled with the relationship with the viscosity of the photocurable resin material 3, this requires a considerable amount of supply time.

従って、上記のように立体形状を積層状に形成する場合
には、該液状光硬化型樹脂材3の全供給時間が、−要分
の樹脂材供給時間の層数倍となり、全形成工程時間に大
きく影響する不都合がある。
Therefore, when forming a three-dimensional shape in a layered manner as described above, the total supply time of the liquid photocurable resin material 3 is - the number of layers times the resin material supply time for the essential resin material, and the total forming process time is There are disadvantages that greatly affect the

又、段階的に設定される光硬化型樹脂材の表面が照射ビ
ームの焦点となるため、昇降支持台を昇降する可動部に
かなりの精度が要求され、これら駆動機構部が複雑化す
る欠点があった。
In addition, since the surface of the photocurable resin material, which is set in stages, becomes the focal point of the irradiation beam, considerable precision is required for the movable parts that move up and down the lifting support, and these drive mechanisms have the disadvantage of becoming complicated. there were.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、樹脂収容容器に収容された液状光硬化型
樹脂材に、レーザ光学系によりビーム照射を行って、該
光硬化型樹脂材を選択的に硬化させ、立体形状を形成す
る装置において、上記レーザ光学系における光変調器か
らなる光変調部を、信号制御回路からの形成すべき立体
形状の形状データ信号に基づいて駆動し、前記液状光硬
化型樹脂材に対する照射ビームの露光エネルギーを可変
制御し、露光・硬化層厚を変化させるようにした構成よ
り成る本発明による立体形状形成装置によって解決され
る。
The above problem occurs in an apparatus that selectively hardens a liquid photocurable resin material housed in a resin storage container by irradiating a beam with a laser optical system to form a three-dimensional shape. , the light modulation section consisting of the light modulator in the laser optical system is driven based on the shape data signal of the three-dimensional shape to be formed from the signal control circuit, and the exposure energy of the irradiation beam to the liquid photocurable resin material is controlled. This problem is solved by the three-dimensional shape forming apparatus according to the present invention, which is configured to variably control and change the exposed and cured layer thickness.

〔作用〕[Effect]

即ち、樹脂収容容器内に収容された液状光硬化型樹脂材
に、レーザ光学系によりビーム照射を行う際に、液状光
硬化型樹脂材の光硬化する厚さ、叩ち深さが照射光エネ
ルギーの大きさに依存する特性を利用して、前記レーザ
光学系における音響光学変調器を立体形状の形状データ
信号に基づいて駆動し、樹脂材表面に対するレーザビー
ムの選択的な走査、又はレーザビームに対して樹脂材側
を移動操作させることは勿論のこと、前記液状光硬化型
樹脂材に対する照射ビームの露光エネルギーを可変制御
して該樹脂材の露光硬化層厚(深さ)を部分的に変化さ
せることにより、液状光硬化型樹脂材を段階的に供給す
る機構を必要としない簡単な装置構成によって、所望と
する立体形状を短時間で容易に作成することができる。
That is, when a laser optical system irradiates a liquid photocurable resin material housed in a resin storage container with a beam, the thickness of the liquid photocurable resin material to be photocured and the striking depth are determined by the irradiation light energy. The acousto-optic modulator in the laser optical system is driven based on the shape data signal of the three-dimensional shape, and the laser beam is selectively scanned with respect to the surface of the resin material, or the laser beam is In addition to moving the resin material side, the exposure energy of the irradiation beam to the liquid photocurable resin material can be variably controlled to partially change the thickness (depth) of the exposed cured layer of the resin material. By doing so, a desired three-dimensional shape can be easily created in a short time with a simple device configuration that does not require a mechanism for supplying the liquid photocurable resin material in stages.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention.

同図において21はレーザビーム22を出射するレーザ
装置、23は信号制御回路、24は光変調器、25は反
射鏡、26.27はレンズ、28は回転多面鏡、29は
回転多面鏡28によって走査されるレーザビーム22を
照射面に対して等速度走査を行う機能を有するfθレン
ズ、30は走査用反射鏡、31は液状光硬化型樹脂材3
2を収容する樹脂収容容器、33は支持台、34は該支
持台33を矢印Aの方向に移動操作させる移動機構部で
ある。
In the figure, 21 is a laser device that emits a laser beam 22, 23 is a signal control circuit, 24 is an optical modulator, 25 is a reflecting mirror, 26, 27 is a lens, 28 is a rotating polygon mirror, and 29 is a rotating polygon mirror 28. An fθ lens having a function of uniformly scanning the irradiation surface with the laser beam 22 to be scanned; 30 is a scanning reflecting mirror; 31 is a liquid photocurable resin material 3;
2, 33 is a support stand, and 34 is a moving mechanism for moving the support stand 33 in the direction of arrow A.

前記光変調器24としては、音響光学効果、電気光学効
果及び磁気光学効果等を利用した変調器を適用すること
ができる。本実施例においては音響光学変調器が用いら
れ、レーザビーム22の光強度をブラッグ回折を利用し
て変調するもので、該光変調器24に対するレーザビー
ム220入射角が一定の状態では、第2図の駆動電力と
回折光の回折効率との関係特性図により示されるように
、駆動電力を制御することにより回折効率の制御が可能
である。
As the optical modulator 24, a modulator using an acousto-optic effect, an electro-optic effect, a magneto-optic effect, etc. can be applied. In this embodiment, an acousto-optic modulator is used to modulate the light intensity of the laser beam 22 using Bragg diffraction. As shown in the graph showing the relationship between the drive power and the diffraction efficiency of diffracted light, the diffraction efficiency can be controlled by controlling the drive power.

一方、レーザビーム22の照射に対する液状光硬化型樹
脂材32の露光硬化の深さ、即ち硬化層厚は、第3図に
示すようにビーム露光エネルギーEe (光強度)の増
加に伴って増加する。従って、上記光変調器24の特性
及び樹脂材32の光硬化厚さ特性より、所望とする光硬
化厚さとするための光変調器24の駆動電力特性を求め
ると第4図に示す特性が得られる。
On the other hand, the depth of exposure curing of the liquid photocurable resin material 32 upon irradiation with the laser beam 22, that is, the cured layer thickness increases as the beam exposure energy Ee (light intensity) increases, as shown in FIG. . Therefore, from the characteristics of the optical modulator 24 and the photocured thickness characteristics of the resin material 32, the driving power characteristics of the optical modulator 24 to obtain the desired photocured thickness are obtained, and the characteristics shown in FIG. 4 are obtained. It will be done.

従って、同図により形成すべき立体形状の形状データ信
号に基づき、光硬化厚さをXIとする樹脂材32部分に
対しては、光変調器24の駆動電力をPl、同じく光硬
化厚さをX2とする樹脂材32部分に対しては、光変調
器24の駆動電力をP2と言うように各樹脂材32部分
に対して所定光硬化厚さを得るに必要な駆動電力を予め
求めて、これらの対応関係データを、光変調器24を駆
動制御する信号制御回路23に記憶させておく。
Therefore, based on the shape data signal of the three-dimensional shape to be formed as shown in the figure, for the resin material 32 portion whose photocuring thickness is XI, the driving power of the optical modulator 24 is set to Pl, and the photocuring thickness is also set to For the resin material 32 portion designated as X2, the driving power required to obtain a predetermined photocured thickness for each resin material 32 portion is determined in advance, such that the driving power of the optical modulator 24 is P2. These correspondence relationship data are stored in the signal control circuit 23 that drives and controls the optical modulator 24.

更に、上記光変調器24で強度変調されたレーザビーム
22は、fθレンズ29によって照射面にその焦点を設
定することができ、該焦点でのレーザビーム径を微小径
とすることができると共に、ビーム露光エネルギーEe
の集中照射が可能となる。
Further, the laser beam 22 intensity-modulated by the optical modulator 24 can be focused on the irradiation surface by the fθ lens 29, and the diameter of the laser beam at the focus can be made minute. Beam exposure energy Ee
Concentrated irradiation is possible.

さて、上記した装置を適用して3次元的な立体情報を表
示する所望の立体模型形状を形成するには、前記第1図
に示すようにレーザ装置21から出射されたレーザビー
ム22は上記光変調器24において信号制御回路23に
記憶されている立体形状情報パターン信号、即ち第5図
に示す光硬化層厚データ(X)と、光照射位置データと
の関係データ及びそれと対応する第6図に示す駆動電力
と光照射時間との関係データに基づいて所定光強度に変
調制御され、レンズ26.27により適当なビーム径に
変換される。
Now, in order to apply the above-mentioned apparatus to form a desired three-dimensional model shape that displays three-dimensional stereoscopic information, the laser beam 22 emitted from the laser apparatus 21 as shown in FIG. The relationship data between the three-dimensional shape information pattern signal stored in the signal control circuit 23 in the modulator 24, that is, the photocured layer thickness data (X) shown in FIG. 5, and the light irradiation position data and the corresponding data shown in FIG. Modulation control is performed to a predetermined light intensity based on the relationship data between the driving power and the light irradiation time shown in , and the beam is converted to an appropriate beam diameter by lenses 26 and 27.

次に、同じく信号制御回路23によって制御された回転
多面鏡28によって偏向され、更にfθレンズ29によ
り等速度走査され、更に走査用反射鏡30により樹脂収
容容器31内に充満された液状光硬化型樹脂材32表面
上の走査線Bに焦点を結ぶ形で照射される。
Next, the liquid photocurable mold is deflected by a rotating polygon mirror 28 which is also controlled by the signal control circuit 23, scanned at a constant speed by an fθ lens 29, and then filled into a resin container 31 by a scanning reflector 30. The irradiation is focused on the scanning line B on the surface of the resin material 32.

この時、前記樹脂収容容器31を載置している支持台3
3も、信号制御回路23からの立体形状情報パターン信
号に基づいて移動機構部34が制御されて同時に矢印A
の方向に移動操作され、実際に前記第5図に示すように
樹脂材32表面のみならず深さ方向にも選択的に露光硬
化が行われる。
At this time, the support stand 3 on which the resin container 31 is placed
3, the movement mechanism section 34 is controlled based on the three-dimensional shape information pattern signal from the signal control circuit 23, and at the same time arrow A
In fact, as shown in FIG. 5, the resin material 32 is selectively exposed and cured not only on the surface but also in the depth direction.

従って、以上のように前記液状光硬化型樹脂材32中に
、通用した該樹脂材32の硬化特性と光変調器24の回
折効率及び立体形状の形成データ等に基づく立体硬化樹
脂像が形成される。
Therefore, as described above, a three-dimensional cured resin image is formed in the liquid photocurable resin material 32 based on the curing characteristics of the commonly used resin material 32, the diffraction efficiency of the light modulator 24, three-dimensional shape formation data, etc. Ru.

この立体硬化樹脂像を液状光硬化型樹脂材32中より取
り出し、希アルカリ洗浄溶液等で該液状光硬化型樹脂材
32を洗い流すことによって、所望とする3次元的な立
体情報を表示する立体模型形状を短時間で効率良く形成
することが可能となる。
This three-dimensional cured resin image is taken out from the liquid photocurable resin material 32 and the liquid photocurable resin material 32 is washed away with a dilute alkaline cleaning solution or the like, thereby creating a three-dimensional model that displays desired three-dimensional stereoscopic information. It becomes possible to form a shape efficiently in a short time.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、音響光学効果等を利用した光変調器
によって液状光硬化型樹脂材へ照射を与えるレーザビー
ムの露光エネルギーBeを制御することにより、液状光
硬化型樹脂材に対する光硬化層厚を変化させることがで
きるので、従来のように積層硬化、させる必要がなくな
り、装置構成が簡単化され、所望とする3次元的な立体
情報を表示する例えば立体地形図模型等の立体模型形状
を比較的短時間で効率良く容易に形成することが可能と
なる優れた利点を有する。
As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, the exposure energy Be of the laser beam applied to the liquid photocurable resin material is controlled by the optical modulator using the acousto-optic effect or the like. By doing this, the thickness of the photocuring layer for the liquid photocurable resin material can be changed, so there is no need to perform multilayer curing as in the past, simplifying the device configuration, and creating the desired three-dimensional shape. The present invention has an excellent advantage in that a three-dimensional model shape, such as a three-dimensional topographic map model, for displaying information can be formed efficiently and easily in a relatively short time.

又、従来の積層硬化方式による立体形状の形成方法によ
って原理的に実現不可能な、例えば滑らかな凹凸を有す
る立体形状の形成にも本装置により液状光硬化型樹脂材
へ照射を与えるレーザビームの光強度を前記光変調器で
アナログ的に強度変調することにより、容易に実現する
ことができる等、実用上価れた効果を奏する。
In addition, this device can also be used to form a three-dimensional shape with smooth unevenness, which is theoretically impossible to achieve using the conventional layer-curing method for forming a three-dimensional shape. By modulating the light intensity in an analog manner using the optical modulator, it is possible to easily achieve this, and it has practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図、 第2図は本発明に係る立体形状形成装置に適用された音
響光学変調器の駆動電力と回 折光の回折効率との関係の一例を示す 特性図、 第3図は音響光学光変調器によって変調されるレーザビ
ームの露光エネルギーと樹脂 材に対する光硬化層厚との関係の一例 を示す特性図、 第4図は樹脂材に対する光硬化層厚に対する音響光学変
調器の駆動電力との関係の一 例を示す特性図、 第5図及び第6図は立体形状形成データに対する音響光
学変調器の駆動電力との関係 の一例を示す特性図、 第7図乃至第12図は従来の立体模型形状の形成方法を
説明するための要部断面図であ る。 図中、21はレーザ装置、22はレーザビーム、23は
信号制御回路、24は光変調器、25は反射鏡、26゜
27はレンズ、2日は回転多面鏡、29はfθレレン、
30は走査用反射鏡、31は樹脂収容容器、32は液状
光硬化型樹脂材、33は支持台、34は移動機構部をそ
れぞれ示す。 第1図 第2!21 □ Ji’tftl宅か(w) 第3図 −番txネル’t’−Ee(mVcm”)@4rM → LJ?イビ1層7g (m?F+)第5図 第6図 →、を恍鼾叶閏(1) 第7図    第8図 第9図 第11図 第10図 り
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention, and FIG. FIG. 3 is a characteristic diagram showing an example of the relationship between the diffraction efficiency and the exposure energy of the laser beam modulated by the acousto-optic modulator and the photocured layer thickness for the resin material; The figure is a characteristic diagram showing an example of the relationship between the drive power of the acousto-optic modulator and the photocured layer thickness for the resin material. Figures 5 and 6 are the relationship between the drive power of the acousto-optic modulator and the three-dimensional shape formation data. Characteristic diagrams illustrating an example. FIGS. 7 to 12 are cross-sectional views of main parts for explaining a conventional method for forming a three-dimensional model shape. In the figure, 21 is a laser device, 22 is a laser beam, 23 is a signal control circuit, 24 is an optical modulator, 25 is a reflecting mirror, 26° and 27 are lenses, 2nd is a rotating polygon mirror, 29 is an fθ lens,
30 is a scanning reflecting mirror, 31 is a resin container, 32 is a liquid photocurable resin material, 33 is a support base, and 34 is a moving mechanism section. Figure 1 Figure 2! 21 □ Ji'tftl home? (w) Figure 3 - No. tx channel 't' - Ee (mVcm") @4rM → LJ? Ibi 1 layer 7g (m? F+) Figure 5 Figure 6 → , Snore Kano (1) Figure 7 Figure 8 Figure 9 Figure 11 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 樹脂収容容器に収容された液状光硬化型樹脂材に、レー
ザ光学系によりビーム照射を行って、該光硬化型樹脂材
を選択的に硬化させ、立体形状を形成する装置において
、上記レーザ光学系における光変調部を、信号制御回路
からの形成すべき立体形状の形状データ信号に基づいて
駆動し、前記液状光硬化型樹脂材に対する照射ビームの
露光エネルギーを可変制御し、露光・硬化層厚を変化さ
せるようにしたことを特徴とする立体形状形成装置。
In an apparatus for selectively curing a liquid photocurable resin material housed in a resin storage container by irradiating a beam with a laser optical system to selectively harden the photocurable resin material, the laser optical system described above The light modulation unit is driven based on the shape data signal of the three-dimensional shape to be formed from the signal control circuit, and the exposure energy of the irradiation beam to the liquid photocurable resin material is variably controlled, and the exposed and cured layer thickness is controlled. A three-dimensional shape forming device characterized by being configured to change.
JP59237056A 1984-11-09 1984-11-09 Three-dimensional shape forming device Pending JPS61116321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237056A JPS61116321A (en) 1984-11-09 1984-11-09 Three-dimensional shape forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237056A JPS61116321A (en) 1984-11-09 1984-11-09 Three-dimensional shape forming device

Publications (1)

Publication Number Publication Date
JPS61116321A true JPS61116321A (en) 1986-06-03

Family

ID=17009761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237056A Pending JPS61116321A (en) 1984-11-09 1984-11-09 Three-dimensional shape forming device

Country Status (1)

Country Link
JP (1) JPS61116321A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
JPH0321432A (en) * 1989-04-21 1991-01-30 E I Du Pont De Nemours & Co Shaping system for three- dimensional object
US5273691A (en) * 1988-04-18 1993-12-28 3D Systems, Inc. Stereolithographic curl reduction
US5772947A (en) * 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
JP2009160860A (en) * 2008-01-09 2009-07-23 Sony Corp Optical shaping apparatus, optical shaping method, and optically molded article
GB2503537B (en) * 2012-03-29 2015-10-07 Materials Solutions Ltd Apparatus and methods for additive-layer manufacturing of an article

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
US5273691A (en) * 1988-04-18 1993-12-28 3D Systems, Inc. Stereolithographic curl reduction
US5772947A (en) * 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
US6048188A (en) * 1988-04-18 2000-04-11 3D Systems, Inc. Stereolithographic curl reduction
JPH0321432A (en) * 1989-04-21 1991-01-30 E I Du Pont De Nemours & Co Shaping system for three- dimensional object
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
JPH0661847B2 (en) * 1989-04-21 1994-08-17 帝人製機株式会社 Stereoscopic image forming system
JP2009160860A (en) * 2008-01-09 2009-07-23 Sony Corp Optical shaping apparatus, optical shaping method, and optically molded article
US8348655B2 (en) 2008-01-09 2013-01-08 Sony Corporation Optical molding apparatus, optical molding method, and optically molded product
GB2503537B (en) * 2012-03-29 2015-10-07 Materials Solutions Ltd Apparatus and methods for additive-layer manufacturing of an article
US9314972B2 (en) 2012-03-29 2016-04-19 Materials Solutions Apparatus for additive layer manufacturing of an article
US10029333B2 (en) 2012-03-29 2018-07-24 Siemens Aktiengesellschaft Methods for additive-layer manufacturing of an article

Similar Documents

Publication Publication Date Title
JPS61114818A (en) Apparatus for forming solid configuration
US5536467A (en) Method and apparatus for producing a three-dimensional object
US6051179A (en) Apparatus and method for production of three-dimensional models by spatial light modulator
JPH0675925B2 (en) 3D shape forming device
RU2671740C1 (en) Stereolithographic device with improved optical unit
JPH02239921A (en) Formation of three-dimensional shape
JPH0321432A (en) Shaping system for three- dimensional object
JPS61114817A (en) Apparatus for forming solid configuration
US10442133B2 (en) Optical method and apparatus for fabricating a structured object
CN105856573A (en) High-precision and high-speed continuous 3D printer and printing method thereof
CN108983555B (en) Processing method for improving three-dimensional micro-nano structure based on composite scanning
JP2676838B2 (en) 3D image formation method
JPH02178022A (en) Forming device of cubic shape
JPS61116321A (en) Three-dimensional shape forming device
JPS61116322A (en) Three-dimensional shape forming device
JPS61225012A (en) Formation of three-dimensional configuration
US11433602B2 (en) Stereolithography machine with improved optical group
JP2002144437A (en) Apparatus and method for executing stereo lithography
JP3167821B2 (en) Stereolithography
JPS61116320A (en) Three-dimensional shape forming device
JPS61217219A (en) Three-dimensional configuration forming device
JPH1142714A (en) Light molding apparatus
JPH02251419A (en) Three-dimensional shape formation
JPS63145016A (en) Device for forming solid shape
JPH10249943A (en) Apparatus for stereo lithography