JPS61114817A - Apparatus for forming solid configuration - Google Patents

Apparatus for forming solid configuration

Info

Publication number
JPS61114817A
JPS61114817A JP59237054A JP23705484A JPS61114817A JP S61114817 A JPS61114817 A JP S61114817A JP 59237054 A JP59237054 A JP 59237054A JP 23705484 A JP23705484 A JP 23705484A JP S61114817 A JPS61114817 A JP S61114817A
Authority
JP
Japan
Prior art keywords
resin material
photocurable resin
curable resin
supply
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237054A
Other languages
Japanese (ja)
Inventor
Takashi Morihara
隆 森原
Fumitaka Abe
安部 文▲たか▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59237054A priority Critical patent/JPS61114817A/en
Publication of JPS61114817A publication Critical patent/JPS61114817A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To shorten significantly the supplying time of a liquid photo-curable resin material, by providing means for supplying the photo-curable resin material uniformly onto a photo-curable resin surface from an opening section having a prescribed width that is elongate in a prescribed direction. CONSTITUTION:The supply of a certain amount of a liquid photo-curable resin material 31 is started from a supply port 35 spaced a distance l apart from the main scanning position of a laser beam 22 in the subscanning direction. From the point where the distance l or over is moved, the curing by exposure is carried out successively and selectively by the main scanning of the modulated laser beam 22, based upon a cross- section information pattern. When the resin material supply port 35 reaches the end of a container 30 and the curing by exposure is completed, the supply of the liquid photo-curable resin material 31 is stopped, and the subscanning of the resin holding container 30 is also stopped. Then the resin holding container 30 is lowered by a distance corresponding to the thickness of the liquid photo-curable resin material 31 that will be subjected to curing by exposure, and is returned to its original prescribed position, and the level adjustment is carried out such that an ftheta lens 28 is positioned at the focus position. The step is repeated to place layers of the exposed and cured resin successively, the resulting solid cured resin image is removed, and the liquid photo-curable resin material 31 is washed away.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光硬化型樹脂材にレーザビーム走査手段を用い
て選択的に露光硬化を行い、3次元立体情報を表示する
立体模型形状を形成する立体形状形成装置に係り、特に
光硬化型樹脂材の供給手段の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of selectively exposing and curing a photocurable resin material using a laser beam scanning means to form a three-dimensional model shape that displays three-dimensional three-dimensional information. The present invention relates to a three-dimensional shape forming apparatus, and particularly relates to an improvement in a means for supplying a photocurable resin material.

3次元的な立体情報を表示する方法として、ホログラフ
ィ−による立体視表示、透視図表示、投影図表示及び等
高線表示等が開発され、一般に広く用いられている。こ
れらはホログラフィ−を除いて、何れも3次元情報を2
次元情報に変換する手順が含まれており、表示した立体
形状を直感的に把握し、充分に理解し得るには必ずしも
満足し得る技法とは言えない。
As methods for displaying three-dimensional stereoscopic information, stereoscopic display using holography, perspective view display, projection view display, contour line display, etc. have been developed and are generally widely used. With the exception of holography, all of these methods can convert three-dimensional information into two
It includes a procedure for converting into dimensional information, and is not necessarily a satisfactory technique for intuitively grasping and fully understanding the displayed three-dimensional shape.

この点、前記ホログラフィ−は視覚的、直感的に上記の
技法より極めて有利であるが、立体形状を得るのに再生
装置が必要であり、又、実在しない仮想物体を表示する
ことが困難である。
In this respect, the holography is visually and intuitively more advantageous than the above techniques, but it requires a reproduction device to obtain a three-dimensional shape, and it is difficult to display non-existent virtual objects. .

このようなことから立体情報を直感的に把握し理解し易
く表示するためには、模型等の立体形状を作成すること
が最善であることから、模型的な立体形状を比較的容易
に形成する方法として、樹脂材収容容器内に光硬化型樹
脂材を段階的に供給し、該樹脂材供給毎にその光硬化型
樹脂材をレーザビーム照射手段により選択的に光硬化さ
せて複雑な立体模型形状を積層状に形成する方法が提案
されている。
For this reason, in order to grasp 3D information intuitively and display it in an easy-to-understand manner, it is best to create a 3D shape such as a model, so it is relatively easy to create a 3D shape like a model. As a method, a photocurable resin material is supplied stepwise into a resin material storage container, and each time the resin material is supplied, the photocurable resin material is selectively photocured by a laser beam irradiation means to create a complex three-dimensional model. A method of forming a shape in a layered manner has been proposed.

しかしこのような従来の形成方法にあっては、光硬化型
樹脂材を段階的に供給するのに、オーバ−フロ一方式を
用いているため、供給に長時間を要し、全形成工程時間
に大きく影響する問題があり、樹脂供給時間の短縮が要
望されている。
However, in this conventional forming method, an overflow method is used to supply the photocurable resin material in stages, so it takes a long time to supply the material, and the entire forming process takes a long time. There is a problem that greatly affects the process, and there is a desire to shorten the resin supply time.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する模型形状を形成す
る方法としては、第12図に示すように液状の光硬化型
樹脂材3を充満した収容容器l内の昇降支持台2を所定
寸法分降下して該昇降支持台2上に一要分の光硬化型樹
脂材4をオーバーフローさせることにより供給する。
Conventionally, as a method for forming a model shape that displays three-dimensional information using a laser beam irradiation means using a photocurable resin material, as shown in FIG. 12, a liquid photocurable resin material 3 is filled. The elevating support table 2 in the storage container l is lowered by a predetermined distance, and one portion of the photocurable resin material 4 is supplied by overflowing onto the elevating support table 2.

しかる後、−要分の光硬化型樹脂材4に対して、例えば
作成すべき模型形状を幾つかの輪切り状に分割した断面
情報パターン信号の内の第1情報パターン信号によって
レーザビーム5を照射して、選択的に露光硬化せしめて
第1硬化樹脂層4aを形成する。
After that, - the laser beam 5 is irradiated onto the photocurable resin material 4 of the essential parts, for example, using the first information pattern signal among the cross-sectional information pattern signals obtained by dividing the model shape to be created into several slices; The first cured resin layer 4a is then selectively exposed and cured.

次に第13図に示すように再び前記昇降支持台2を所定
寸法分降下し、該昇降支持台z上の前記第1硬化樹脂層
4a上に新たな二層目の光硬化型樹脂材6を前記同様に
供給し、該光硬化型樹脂材6に対して第14図に示すよ
うに第2情報パターン信号によってレーザビーム5を照
射して、選択的に露光硬化せしめ、第2硬化樹脂層6a
を形成する。
Next, as shown in FIG. 13, the lifting support 2 is lowered by a predetermined distance again, and a new second layer of photocurable resin material 6 is placed on the first cured resin layer 4a on the lifting support z. is supplied in the same manner as described above, and as shown in FIG. 14, the photocurable resin material 6 is irradiated with the laser beam 5 according to the second information pattern signal to selectively expose and cure it, thereby forming a second cured resin layer. 6a
form.

以下同様にして第15図に示すように該昇降支持台2上
の前記第2!l’化樹脂mBa上に、更に新たな三層目
の光硬化型樹脂材7を供給し、咳光硬化型樹脂材7に対
して第16図に示すように第3情報パターン信号によっ
てレーザビーム5を照射して、選択的に露光硬化せしめ
、第3硬化樹脂層7aを形成することにより、最終的に
該液状の光硬化型樹脂材3中に積層状の立体硬化樹脂像
が形成される。
Thereafter, in the same manner as shown in FIG. 15, the second! A new third layer of photocurable resin material 7 is further supplied onto the l'-cured resin mBa, and a laser beam is applied to the photocurable resin material 7 according to the third information pattern signal as shown in FIG. 5 is selectively exposed and cured to form a third cured resin layer 7a, a laminated three-dimensional cured resin image is finally formed in the liquid photocurable resin material 3. .

この立体硬化樹脂像を液状光硬化型樹脂材3中より取り
出し、希アルカリ洗浄溶液で該液状光硬化型樹脂材3を
洗い流すことによって、第17図に示すように所望とす
る3次元的な立体情報を表示する模型形状8を作成して
いる。
This three-dimensional cured resin image is taken out from the liquid photocurable resin material 3, and by washing away the liquid photocurable resin material 3 with a dilute alkaline cleaning solution, a desired three-dimensional solid image is created as shown in FIG. A model shape 8 for displaying information is being created.

(発明が解決しようとする問題点) しかしながら、上記形成方法における液状光硬化型樹脂
材3の供給方法が、−要分だけ降下した昇降支持台2上
、或いは該昇降支持台2上の既に形成された硬化樹脂層
4a又は6a上に、第13図、第15図に示すように液
状光硬化型樹脂材4又は6を自然に流れ込ませる、所謂
オーバーフロ一方式により供給しているため、平坦な供
給樹脂面を得るのに該液状光硬化型樹脂材3の粘度との
関係と相俟ワて、かなりの供給時間を必要としている。
(Problems to be Solved by the Invention) However, the method for supplying the liquid photocurable resin material 3 in the above-mentioned forming method is not suitable for supplying the liquid photocurable resin material 3 onto the elevating support 2 that has been lowered by a certain amount, or on the elevating support 2 that has already been formed on the elevating support 2. As shown in FIGS. 13 and 15, the liquid photocurable resin material 4 or 6 is supplied by a so-called overflow method, in which the liquid photocurable resin material 4 or 6 is naturally flowed onto the cured resin layer 4a or 6a. Coupled with the relationship with the viscosity of the liquid photocurable resin material 3, a considerable amount of supply time is required to obtain a sufficient supply resin surface.

従って、上記のように立体形状を積層状に形成する場合
には、該液状光硬化型樹脂材3の全供給時間が、−要分
の樹脂材供給時間の層数倍となり、全形成工程時間に太
き(影響する問題がある。
Therefore, when forming a three-dimensional shape in a layered manner as described above, the total supply time of the liquid photocurable resin material 3 is - the number of layers times the resin material supply time for the essential resin material, and the total forming process time is thick (there are problems that affect it).

又、用いられる液状光硬化型樹脂材3の粘度が高くなる
と供給時間が増大することは勿論のこと、各液状光硬化
型樹脂材層の厚さを薄く制御することが困難となり、形
成工程の高速化、高精度化に大きな障害となっている。
In addition, as the viscosity of the liquid photocurable resin material 3 increases, not only does the supply time increase, but it also becomes difficult to control the thickness of each liquid photocurable resin layer, which slows down the formation process. This is a major obstacle to increasing speed and precision.

更に、既に露光硬化された硬化樹脂層4a、 6a上に
液状光硬化型樹脂材3を供給する場合、各硬化樹脂層の
体積、又は表面積が一定でないため、各層の樹脂材供給
時間が異なり、当該立体形状の全形成工程の制御が容易
でないといった欠点があった。
Furthermore, when supplying the liquid photocurable resin material 3 onto the cured resin layers 4a and 6a that have already been exposed and cured, since the volume or surface area of each cured resin layer is not constant, the resin material supply time for each layer is different. There is a drawback that it is not easy to control the entire process of forming the three-dimensional shape.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、光硬化型樹脂材にレーザビーム光学系に
よりビーム照射を行って、該光硬化型樹脂材を選択的に
硬化せしめ、立体形状を形成する装置において、所定方
向に細長い所定幅開口部より、光硬化型樹脂材を前記光
硬化型樹脂表面に均一に供給する手段を有する構成より
成る本発明による立体形状形成装置によって解決される
The above-mentioned problem can be solved by using a device that irradiates a photocurable resin material with a beam using a laser beam optical system to selectively harden the photocurable resin material to form a three-dimensional shape. Partly, the problem is solved by the three-dimensional shape forming apparatus according to the present invention, which comprises means for uniformly supplying a photocurable resin material to the surface of the photocurable resin.

〔作用〕 即ち、樹脂収容容器に光硬化型樹脂材を供給する樹脂供
給手段の供給口を、該樹脂収容容器の光硬化型樹脂材面
に対するレーザビーム主走査方向に細長い形状の開口部
とし、該開口部を樹脂収容容器上にレーザビーム主走査
方向と平行に配置し、立体形状を形成するに際し、前記
樹脂収容容器を副走査台により移動すると同時に前記樹
脂材供給口より光硬化型樹脂材を樹脂収容容器内に供給
すると共に、その供給された光硬化型樹脂材面にし−ザ
ビームを選択的に主走査して露光硬化せしめることによ
り、樹脂収容容器に対する光硬化型樹脂材の供給を安定
にかつ短時間で行うことができ、更に所望とする立体形
状を高速に作成することが可能となる。
[Function] That is, the supply port of the resin supply means for supplying the photocurable resin material to the resin storage container is made into an elongated opening in the laser beam main scanning direction with respect to the photocurable resin material surface of the resin storage container, When forming a three-dimensional shape by arranging the opening on the resin container in parallel with the main scanning direction of the laser beam, the resin container is moved by the sub-scanning table and at the same time a photocurable resin material is supplied from the resin material supply port. The supply of photocurable resin material to the resin storage container is stabilized by supplying the photocurable resin material into the resin storage container and exposing and curing the surface of the supplied photocurable resin material by selectively scanning the main beam with the beam. This can be done quickly and in a short time, and furthermore, it becomes possible to create a desired three-dimensional shape at high speed.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention.

同図において21はレーザビーム22を出射するレーザ
装置、23は例えば音響光学効果、電気光学効果、或い
は磁気光学効果等の機能素子を用いた光変調器、24は
反射鏡、25.26はレンズ、27は回転多面鏡、28
は回転多面鏡27によって走査されるレーザビーム22
を、照射面に対して等速度走査する機能を有するfθレ
ンズであり、該fθレンズ28によって照射面にレーザ
ビーム22の焦点を設定することができると共に、該焦
点でのレーザビーム径を微小径とすることができ、ビー
ムエネルギーの集中照射が可能となる。29は走査用反
射鏡である。
In the figure, 21 is a laser device that emits a laser beam 22, 23 is an optical modulator using a functional element such as an acousto-optic effect, an electro-optic effect, or a magneto-optic effect, 24 is a reflecting mirror, and 25 and 26 are lenses. , 27 is a rotating polygon mirror, 28
is the laser beam 22 scanned by the rotating polygon mirror 27
is an fθ lens that has a function of scanning the irradiation surface at a constant speed, and the fθ lens 28 can set the focus of the laser beam 22 on the irradiation surface, and the diameter of the laser beam at the focus can be reduced to a minute diameter. This allows concentrated irradiation of beam energy. 29 is a scanning reflecting mirror.

又、30は液状光硬化性樹脂材31を収容する樹脂収容
容器、32は支持台、33は該支持台32を矢印Aの方
向に移動走査すると共に、矢印Bで示す上下方向にも微
動調整出来る副走査機構部であり、更に34は該樹脂収
容容器30の光硬化型樹脂材面に対するレーザビーム主
走査方向に細長い供給口(開口部)35を有する樹脂材
供給機構部である。
Further, 30 is a resin storage container containing a liquid photocurable resin material 31, 32 is a support stand, and 33 is a support stand 32 that is moved and scanned in the direction of arrow A, and also finely adjusted in the up and down direction as shown by arrow B. Furthermore, 34 is a resin material supply mechanism section having a supply port (opening) 35 elongated in the main scanning direction of the laser beam with respect to the photocurable resin material surface of the resin container 30.

このような構成において、上記レーザ装置21から出射
したレーザビーム22は光変調器23で変調され、レン
ズ25.28により適当なビーム径に変換されたビーム
22は回転多面鏡27によって偏向され、更にfθレン
ズ28によって等速走査され、走査用反射鏡29により
樹脂収容容器30の光硬化型樹脂材面上に焦点を結ぶ形
で照射される。
In such a configuration, the laser beam 22 emitted from the laser device 21 is modulated by the optical modulator 23, the beam 22 is converted into an appropriate beam diameter by the lens 25, 28, is deflected by the rotating polygon mirror 27, and is further The light is scanned at a constant speed by the fθ lens 28, and is irradiated in a focused manner onto the photocurable resin material surface of the resin container 30 by the scanning reflecting mirror 29.

さて、上記した装置を通用して3次元的な立体情報を表
示する所望の立体模型形状を形成するには、先ず第2図
に示すように支持台32上に載置された樹脂収容容器3
0の副走査と、該樹脂収容容器30上にレーザビーム2
2の主走査位置より副走査方向に間隔lだけ離間して配
設された樹脂材供給機構部34の細長い形状の供給口3
5より、一定量の液状光硬化型樹脂材31の供給を開始
する。
Now, in order to form a desired three-dimensional model shape for displaying three-dimensional three-dimensional information using the above-described apparatus, first, as shown in FIG.
0 sub-scanning and a laser beam 2 on the resin container 30.
The elongated supply port 3 of the resin material supply mechanism section 34 is arranged at a distance l from the main scanning position of No. 2 in the sub-scanning direction.
5, the supply of a certain amount of liquid photocurable resin material 31 is started.

次に第3図に示すように樹脂収容容器30が副走査によ
り該樹脂材31の供給開始位置より間隔4以上移動した
時点より、該供給された液状光硬化型樹脂材層31に対
して図示しない形状信号制御回路からの作成すべき立体
模型形状を幾つかの輪切り状に分割した断面情報パター
ン信号に基づいて、変調されたレーザビーム22の主走
査による光照射により順次選択的に露光硬化が行われる
Next, as shown in FIG. 3, from the time when the resin storage container 30 has moved by a distance of 4 or more from the supply start position of the resin material 31 by sub-scanning, the resin storage container 30 is moved from the supply start position of the resin material 31 by an interval of 4 or more. Based on the cross-sectional information pattern signal obtained by dividing the three-dimensional model shape to be created into several slices from the shape signal control circuit, the light irradiation is performed selectively in sequence by light irradiation by main scanning of the modulated laser beam 22. It will be done.

即ち、樹脂材供給口35からの液状光硬化型樹脂材31
の供給とレーザビーム22の主走査による露光硬化が同
時に平行して行われる。
That is, the liquid photocurable resin material 31 from the resin material supply port 35
Supply and exposure curing by main scanning of the laser beam 22 are performed simultaneously and in parallel.

やがて第4図に示すように前記樹脂材供給口35が該収
容容器30の端に達し所定パターンの露光硬化が終了す
ると、液状光硬化型樹脂材31の供給が停止し、樹脂収
容容器30の副走査も停止する。
Eventually, as shown in FIG. 4, when the resin material supply port 35 reaches the end of the container 30 and the exposure and curing of the predetermined pattern is completed, the supply of the liquid photocurable resin material 31 is stopped and the resin material supply port 35 reaches the end of the container 30. Sub-scanning also stops.

次に第5図に示すように液状光硬化型樹脂材31の供給
・露光硬化を行う樹脂材要分の厚さ寸法だけ副走査機構
部33により樹脂収容容器3oを降下させると共に、該
樹脂収容容器30を第6図に示すように当初の所定位置
へ迅速に戻し、更に次層の表面が走査反射鏡29を介し
てfθレンズ28の焦点位置となるようにレベル調整を
行う。
Next, as shown in FIG. 5, the resin storage container 3o is lowered by the sub-scanning mechanism 33 by the thickness of the resin material that is to be supplied and exposed to light to cure the liquid photocurable resin material 31, and the resin storage container 3o is The container 30 is quickly returned to its original predetermined position as shown in FIG. 6, and the level is adjusted so that the surface of the next layer becomes the focus position of the fθ lens 28 via the scanning reflector 29.

以下、上記第2図乃至第6図により説明した工程を繰り
返し、露光硬化樹脂層を順次積層してこの積層状の立体
硬化樹脂像を液状光硬化型樹脂材31中より取り出し、
例えば希アルカリ洗浄溶液等により液状光硬化型樹脂材
31を洗い流すことによって、所望とする3次元的な立
体情報を表示する立体模型形状を比較的短時間で効率よ
く形成することが可能となる。
Hereinafter, the steps explained with reference to FIGS. 2 to 6 above are repeated, the exposed and cured resin layers are sequentially laminated, and this laminated three-dimensional cured resin image is taken out from the liquid photocurable resin material 31.
For example, by washing away the liquid photocurable resin material 31 with a dilute alkaline cleaning solution or the like, it becomes possible to efficiently form a three-dimensional model shape that displays desired three-dimensional stereoscopic information in a relatively short time.

即ち、本実施例においては液状光硬化型樹脂材31の供
給と、レーザビーム22照射による露光硬化とが殆ど同
時に平行して行われるので、液状光硬化型樹脂材31面
に対する副走査方向の平均露光領域幅をLとした時、L
に対してlを小さくすることにより、液状光硬化型樹脂
材31の供給時間は殆ど無視することができ、露光時間
と樹脂収容容器30を当初の所定位置への返戻操作時間
等のみの短、時間で立体形状を形成することが出来る。
That is, in this embodiment, since the supply of the liquid photocurable resin material 31 and the exposure curing by the laser beam 22 irradiation are performed almost simultaneously and in parallel, the average of the sub-scanning direction for the surface of the liquid photocurable resin material 31 is When the exposure area width is L, L
By making l small, the supply time of the liquid photocurable resin material 31 can be almost ignored, and only the exposure time and the operation time for returning the resin storage container 30 to its original predetermined position are shortened. Three-dimensional shapes can be formed in time.

尚、樹脂収容容器30に対して供給される液状光硬化型
樹脂材層の層厚については、樹脂材供給機構部34の細
長い形状の供給口35における開口部の長さをW、単位
時間当たりの供給量をS、樹脂収容容器30の副走査方
向への移動速度をVとすると、開口部の長さWと樹脂収
容容器30の幅が等しい場合、供給される液状光硬化型
樹脂材層の層厚りは次式で表される。
Regarding the layer thickness of the liquid photocurable resin material layer supplied to the resin storage container 30, the length of the opening in the elongated supply port 35 of the resin material supply mechanism section 34 is determined by W, per unit time. When the supply amount of is S and the moving speed of the resin storage container 30 in the sub-scanning direction is V, when the length W of the opening and the width of the resin storage container 30 are equal, the supplied liquid photocurable resin material layer The layer thickness of is expressed by the following formula.

h=s/(w−v) 即ち、樹脂材の供給量Sを一定とすることにより、液状
光硬化型樹脂材を均一な層厚に供給することができる。
h=s/(w-v) That is, by keeping the supply amount S of the resin material constant, the liquid photocurable resin material can be supplied to have a uniform layer thickness.

第7図乃至第11図は本発明に係る立体形状形成装置の
他の実施例構造及び立体形状を形成する動作を順に説明
する一実施例を示す要部断面図であり、第2図乃至第6
図と同等部分には同一符号を付した。
7 to 11 are main part sectional views showing an embodiment of the three-dimensional shape forming apparatus according to the present invention, which sequentially explains the structure and operation of forming a three-dimensional shape, and FIGS. 6
Parts equivalent to those in the figure are given the same reference numerals.

本実施例が第2図乃至第6図による実施例と異なる点は
、樹脂材供給機構部34の細長い形状の樹脂材供給口を
、液状光硬化型樹脂材層に照射するレーザビームの主走
査領域を挟んでその両側に設けた構成とし、樹脂収容容
器30が載置された副走査台33の移動走査方向に応じ
てこれら両供給口の何れか一方より選択的に液状光硬化
型樹脂材を樹脂収容容器30内に供給するようにしたこ
とである。
This embodiment differs from the embodiments shown in FIGS. 2 to 6 in that the main scanning of the laser beam that irradiates the elongated resin material supply port of the resin material supply mechanism section 34 onto the liquid photocurable resin material layer. The liquid photocurable resin material is selectively supplied from either of these supply ports depending on the scanning direction of movement of the sub-scanning table 33 on which the resin storage container 30 is placed. is supplied into the resin storage container 30.

即ち、第7図に示すように支持台32上に載置された樹
脂収容容器30の副走査すると共に、該樹脂収容容器3
0上にレーザビーム22の主走査位置を挟んで所定間隙
をもって対向配設された樹脂材供給機構部34の2つの
細長い形状の供給口41.42の内の一方の、例えば供
給口42より第8図に示すように一定量の液状光硬化型
樹脂材31の供給を開始する。
That is, as shown in FIG. 7, while sub-scanning the resin container 30 placed on the support stand 32, the resin container 3
For example, one of the two elongated supply ports 41 and 42 of the resin material supply mechanism section 34 which are disposed facing each other with a predetermined gap across the main scanning position of the laser beam 22 on the As shown in FIG. 8, supply of a certain amount of liquid photocurable resin material 31 is started.

この樹脂材供給開始後、該供給された液状光硬化型樹脂
材層31に対して、図示しない形状信号制御回路からの
作成すべき立体模型形状を幾つかの輪切り状に分割した
断面情報パターン信号に基づいて変調されたレーザビー
ム22の主走査による光照射によって選択的に露光硬化
を行う。
After the resin material supply starts, a cross-sectional information pattern signal is sent from a shape signal control circuit (not shown) to the supplied liquid photocurable resin material layer 31, which is obtained by dividing the three-dimensional model shape to be created into several slices. Exposure and curing is selectively performed by light irradiation by main scanning of the laser beam 22 modulated based on.

即ち、樹脂材供給口42からの液状光硬化型樹脂材31
の供給とレーザビーム22の主走査による露光硬化が同
時に平行して行われる。
That is, the liquid photocurable resin material 31 from the resin material supply port 42
Supply and exposure curing by main scanning of the laser beam 22 are performed simultaneously and in parallel.

やがて第9図に示すように前記樹脂材供給口42が該収
容容器30の端に達し所定パターンの露光硬化が終了す
ると、液状光硬化型樹脂材31の供給が停止され、樹脂
収容容器30の副走査も停止する。
Eventually, as shown in FIG. 9, when the resin material supply port 42 reaches the end of the container 30 and the exposure and curing of the predetermined pattern is completed, the supply of the liquid photocurable resin material 31 is stopped and the resin material supply port 42 reaches the end of the container 30. Sub-scanning also stops.

次に第10図に示すように液状光硬化型樹脂材31の供
給・露光硬化を行う樹脂材要分の厚さ寸法だけ副走査機
構部33により樹脂収容容器30を降下させると共に、
次層の表面が走査反射鏡29を介してfθレンズ28の
焦点位置となるようにレベル調整を行う。
Next, as shown in FIG. 10, the resin storage container 30 is lowered by the sub-scanning mechanism 33 by the thickness of the resin material for which the liquid photocurable resin material 31 is supplied and exposed and cured.
Level adjustment is performed so that the surface of the next layer becomes the focal point of the fθ lens 28 via the scanning reflector 29.

しかる後、第11図に示すように樹脂収容容器30を前
記副走査方向とは逆方向に副走査を行い、他方の供給口
41より一定量の液状光硬化型樹脂材31の供給を開始
し、断面情報パターン信号に基づいて変調されたレーザ
ビーム22の主走査による光照射によって選択的に露光
硬化を平行して行う。
Thereafter, as shown in FIG. 11, the resin storage container 30 is sub-scanned in a direction opposite to the sub-scanning direction, and a certain amount of liquid photocurable resin material 31 is started to be supplied from the other supply port 41. , selective exposure hardening is performed in parallel by light irradiation by main scanning of the laser beam 22 modulated based on the cross-sectional information pattern signal.

以下、これらの工程を繰り返して、露光硬化樹脂層を順
次積層し、この積層状の立体硬化樹脂像を液状光硬化型
樹脂材31中より取り出し、例えば希アルカリ洗浄溶液
等により液状光硬化型樹脂材31を洗い流すことによっ
て、所望とする3次元立体情報を表示する立体模型形状
を、前記実施例の場合よりも更に短時間で効率よく形成
することが可能となる。
Hereinafter, these steps are repeated to sequentially stack the exposed and cured resin layers, and the layered three-dimensional cured resin image is taken out of the liquid photocurable resin material 31, and the liquid photocurable resin is washed with a dilute alkaline cleaning solution, for example. By washing away the material 31, it becomes possible to form a three-dimensional model shape displaying desired three-dimensional three-dimensional information more efficiently and in a shorter time than in the embodiment described above.

即ち、本実施例では液状光硬化型樹脂材31面に対する
レーザビーム22の副走査が往復走査となるため、該樹
脂収容容器30を副走査毎に当初の所定位置へ返戻操作
する必要が無くなり、その殆どが露光硬化走査時間とい
った短時間で立体形状が形状される利点がある。
That is, in this embodiment, since the sub-scanning of the laser beam 22 on the surface of the liquid photocurable resin material 31 is a reciprocating scan, there is no need to return the resin container 30 to the initial predetermined position for each sub-scanning. Most of them have the advantage that three-dimensional shapes can be formed in a short time, such as the exposure and curing scanning time.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、樹脂収容容器に対する液状光硬化型
樹脂材の供給時間が大きく短縮されると共に、粘度の大
きい液状光硬化型樹脂材等においても均一な薄い層厚に
安定供給することが可能となる等、所望とする3次元的
な立体情報を表示する立体模型形状を液状光硬化型樹脂
材により高速に、かつ精度良く形成することが可能とな
る優れた利点を有する。
As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, the time for supplying the liquid photocurable resin material to the resin storage container is greatly shortened, and the liquid photocurable resin material with high viscosity is It is possible to stably supply a thin layer with a uniform thickness even when using a liquid photocurable resin material, and to quickly and accurately form a three-dimensional model shape that displays desired three-dimensional information using a liquid photocurable resin material. This has the advantage of making it possible to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図、 第2図乃至第6図は本発明に係る立体形状形成装置によ
り立体形状を形成する動作の一実施例を順に説明する要
部断面図、 第7図乃至第11図は本発明に係る立体形状形成装置の
他の実施例構造及び立体形状を形成する動作の一実施例
を順に説明する要部断面図、第12図乃至第17図は従
来の立体形状の形成方法を示す説明図である。 図中、21はレーザ装置、22はレーザビーム、23は
光変調器、24は反射鏡、25.26はレンズ、27は
回転多面鏡、28はfθレンズ、29は走査用反射鏡、
30は樹脂収容容器、31は液状光硬化型樹脂材、32
は支持台、33は副走査機構部、34は樹脂材供給機構
部、35.41.42は樹脂材供給口をそれぞれ示す。 第1111 第23    第3s 第4図      第5図 第6図     第7図 第8rgJ      第9図 第10図      第11図 第12囚      第13図 第14閃     第15図 第16図
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention, and FIGS. 2 to 6 are examples of operations for forming a three-dimensional shape by the three-dimensional shape forming apparatus according to the present invention. FIGS. 7 to 11 are cross-sectional views of main parts sequentially illustrating other embodiments of the three-dimensional shape forming apparatus according to the present invention and one embodiment of the operation of forming a three-dimensional shape. FIGS. , FIGS. 12 to 17 are explanatory diagrams showing a conventional method for forming a three-dimensional shape. In the figure, 21 is a laser device, 22 is a laser beam, 23 is an optical modulator, 24 is a reflecting mirror, 25 and 26 are lenses, 27 is a rotating polygon mirror, 28 is an fθ lens, 29 is a scanning reflecting mirror,
30 is a resin storage container, 31 is a liquid photocurable resin material, 32
33 is a sub-scanning mechanism section, 34 is a resin material supply mechanism section, and 35, 41, and 42 are resin material supply ports, respectively. 1111 23rd 3s Figure 4 Figure 5 Figure 6 Figure 7 Figure 8rgJ Figure 9 Figure 10 Figure 11 Figure 12 Prisoner Figure 13 Figure 14 Flash Figure 15 Figure 16

Claims (1)

【特許請求の範囲】[Claims] 光硬化型樹脂材にレーザビーム光学系によりビーム照射
を行って、該光硬化型樹脂材を選択的に硬化せしめ、立
体形状を形成する装置において、所定方向に細長い所定
幅開口部より光硬化型樹脂材を前記光硬化型樹脂表面に
均一に供給する手段を有することを特徴とする立体形状
形成装置。
In an apparatus that irradiates a photocurable resin material with a beam using a laser beam optical system to selectively harden the photocurable resin material and form a three-dimensional shape, the photocurable resin material is exposed through an opening of a predetermined width elongated in a predetermined direction. A three-dimensional shape forming apparatus comprising means for uniformly supplying a resin material to the surface of the photocurable resin.
JP59237054A 1984-11-09 1984-11-09 Apparatus for forming solid configuration Pending JPS61114817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237054A JPS61114817A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237054A JPS61114817A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Publications (1)

Publication Number Publication Date
JPS61114817A true JPS61114817A (en) 1986-06-02

Family

ID=17009727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237054A Pending JPS61114817A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Country Status (1)

Country Link
JP (1) JPS61114817A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
JPS63141724A (en) * 1986-12-04 1988-06-14 Fujitsu Ltd Forming three dimensional shape
JPH01232025A (en) * 1988-03-14 1989-09-18 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH02111529A (en) * 1988-10-19 1990-04-24 Matsushita Electric Works Ltd Forming method of three-dimensional form
JPH02116537A (en) * 1988-10-26 1990-05-01 Matsushita Electric Works Ltd Photo-setting resin and method for forming three-dimensional shape
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
EP0435102A2 (en) * 1989-12-23 1991-07-03 BASF Aktiengesellschaft Method for producing build-up parts
US5139711A (en) * 1989-12-25 1992-08-18 Matsushita Electric Works, Ltd. Process of and apparatus for making three dimensional objects
US5238614A (en) * 1991-05-28 1993-08-24 Matsushita Electric Words, Ltd., Japan Process of fabricating three-dimensional objects from a light curable resin liquid
US5432045A (en) * 1992-05-28 1995-07-11 Cmet, Inc. Photo-solidification modeling apparatus and photo-solidification modeling method having an improved recoating process
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
EP1413446A3 (en) * 2002-10-23 2004-07-28 Konica Minolta Holdings, Inc. Ink jet printer with photo-curing system
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069B1 (en) * 1984-08-08 1993-11-18 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
JPS63141724A (en) * 1986-12-04 1988-06-14 Fujitsu Ltd Forming three dimensional shape
JPH0669724B2 (en) * 1986-12-04 1994-09-07 富士通株式会社 3D shape forming method
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
JPH01232025A (en) * 1988-03-14 1989-09-18 Mitsui Eng & Shipbuild Co Ltd Optical shaping method
JPH0698686B2 (en) * 1988-03-14 1994-12-07 三井造船株式会社 Optical modeling method
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5891382A (en) * 1988-09-26 1999-04-06 3D System, Inc. Recoating of stereolithographic layers
US6048487A (en) * 1988-09-26 2000-04-11 3D Systems, Inc. Recoating stereolithographic layers
JPH02111529A (en) * 1988-10-19 1990-04-24 Matsushita Electric Works Ltd Forming method of three-dimensional form
JPH02116537A (en) * 1988-10-26 1990-05-01 Matsushita Electric Works Ltd Photo-setting resin and method for forming three-dimensional shape
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
EP0435102A2 (en) * 1989-12-23 1991-07-03 BASF Aktiengesellschaft Method for producing build-up parts
US5139711A (en) * 1989-12-25 1992-08-18 Matsushita Electric Works, Ltd. Process of and apparatus for making three dimensional objects
US6340297B1 (en) * 1990-03-01 2002-01-22 Dsm N.V. Solid imaging apparatus with coating station
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US6174156B1 (en) 1990-03-01 2001-01-16 Dsm N.V. Solid imaging apparatus and method with coating station
US6733267B2 (en) 1990-03-01 2004-05-11 Dsm Desotech, Inc. Solid imaging apparatus and method with coating station
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5238614A (en) * 1991-05-28 1993-08-24 Matsushita Electric Words, Ltd., Japan Process of fabricating three-dimensional objects from a light curable resin liquid
US5432045A (en) * 1992-05-28 1995-07-11 Cmet, Inc. Photo-solidification modeling apparatus and photo-solidification modeling method having an improved recoating process
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
EP1413446A3 (en) * 2002-10-23 2004-07-28 Konica Minolta Holdings, Inc. Ink jet printer with photo-curing system
US7097297B2 (en) 2002-10-23 2006-08-29 Konica Minolta Holdings Inc. Ink jet printer, and image printing apparatus having the printer
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
US11623398B2 (en) 2018-01-26 2023-04-11 General Electric Company Multi-level vat for additive manufacturing

Similar Documents

Publication Publication Date Title
JPS61114817A (en) Apparatus for forming solid configuration
JPS61114818A (en) Apparatus for forming solid configuration
JP2715527B2 (en) 3D shape forming method
US5536467A (en) Method and apparatus for producing a three-dimensional object
CN105856573A (en) High-precision and high-speed continuous 3D printer and printing method thereof
JP2737195B2 (en) 3D shape forming device
JPH0675925B2 (en) 3D shape forming device
JP2676838B2 (en) 3D image formation method
JPS61116322A (en) Three-dimensional shape forming device
JPS61217219A (en) Three-dimensional configuration forming device
JPS61116320A (en) Three-dimensional shape forming device
JPS63141725A (en) Apparatus for forming three dimensional shape
JPH10249943A (en) Apparatus for stereo lithography
JPH0224121A (en) Optical shaping method
JPS63145016A (en) Device for forming solid shape
JPS63141724A (en) Forming three dimensional shape
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JP3166130B2 (en) Optical shaping apparatus and shaping method
JPS61116321A (en) Three-dimensional shape forming device
JPS6299753A (en) Formation of three-dimensional shape
JP2676912B2 (en) 3D shape forming device
JP3170832B2 (en) Optical molding method
JPH05169551A (en) Method of forming three-dimensional image
JPH08238678A (en) Optically molding machine
JPH09141749A (en) Forming of three-dimensional image and device therefor