JP4296355B2 - Manufacturing method of sintered metal powder parts - Google Patents

Manufacturing method of sintered metal powder parts Download PDF

Info

Publication number
JP4296355B2
JP4296355B2 JP2007279567A JP2007279567A JP4296355B2 JP 4296355 B2 JP4296355 B2 JP 4296355B2 JP 2007279567 A JP2007279567 A JP 2007279567A JP 2007279567 A JP2007279567 A JP 2007279567A JP 4296355 B2 JP4296355 B2 JP 4296355B2
Authority
JP
Japan
Prior art keywords
irradiation
light beam
modeling
metal powder
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007279567A
Other languages
Japanese (ja)
Other versions
JP2009108350A (en
Inventor
喜万 東
勲 不破
諭 阿部
裕彦 峠山
徳雄 吉田
俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2007279567A priority Critical patent/JP4296355B2/en
Priority to PCT/JP2008/069215 priority patent/WO2009054445A1/en
Priority to US12/739,299 priority patent/US20100233012A1/en
Priority to EP08842800.8A priority patent/EP2221132B2/en
Priority to CN2008801132373A priority patent/CN101835554B/en
Publication of JP2009108350A publication Critical patent/JP2009108350A/en
Application granted granted Critical
Publication of JP4296355B2 publication Critical patent/JP4296355B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属粉末に光ビームの照射を行なって造形する金属粉末焼結部品の製造方法に関する。 The present invention relates to a manufacturing method of the metal powder sintered component to shape by performing irradiation of the light beam on the metal powder.

従来から、金属粉末で形成した粉末層に光ビームを照射し、粉末層を溶融して焼結層を形成し、その焼結層の上に新たな粉末層を形成して光ビームを照射することを繰り返して金属粉末焼結部品を製造する製造装置が知られている。図18に、このような金属粉末焼結部品製造装置の一構成を示す。金属粉末焼結部品製造装置101は、金属粉末111を供給する材料タンク121と、粉末層112が敷かれる造形プレート123と、造形プレート123を保持し、上下に昇降する造形テーブル124と、材料タンク121の金属粉末111を造形プレート123の上に敷くワイパ126と、光ビームLを発振する光ビーム発振器131と、光ビーム発振器131からの光ビームLを粉末層112に照射し走査する走査ヘッド137と、金属粉末焼結部品製造装置の動作を制御する制御部105を備えている。   Conventionally, a light beam is irradiated onto a powder layer formed of metal powder, the powder layer is melted to form a sintered layer, and a new powder layer is formed on the sintered layer and irradiated with the light beam. A manufacturing apparatus for manufacturing a metal powder sintered part by repeating this process is known. FIG. 18 shows one configuration of such a metal powder sintered part manufacturing apparatus. The metal powder sintered component manufacturing apparatus 101 includes a material tank 121 for supplying the metal powder 111, a modeling plate 123 on which the powder layer 112 is laid, a modeling table 124 that holds the modeling plate 123 and moves up and down, and a material tank. A wiper 126 laying 121 metal powder 111 on the modeling plate 123, a light beam oscillator 131 that oscillates the light beam L, and a scanning head 137 that irradiates and scans the powder layer 112 with the light beam L from the light beam oscillator 131. And the control part 105 which controls operation | movement of a metal powder sintered component manufacturing apparatus is provided.

走査ヘッド137は、光ビームLを集光する集光レンズ138と、光ビームLを反射する回転自在な2枚の走査ミラー134と、走査ミラー134の回転の角度制御を行うスキャナ135とを備えている。制御部105は、光ビーム発振器131に光ビームLを発振させ、発振された光ビームLを集光レンズ138によって集光する。そして、スキャナ135によって走査ミラー134を回転させ、集光された光ビームLを走査ミラー134によって反射して粉末層112に照射し、金属粉末111を焼結させ焼結層113を形成する。   The scanning head 137 includes a condenser lens 138 that collects the light beam L, two rotatable scanning mirrors 134 that reflect the light beam L, and a scanner 135 that controls the rotation angle of the scanning mirror 134. ing. The control unit 105 causes the light beam oscillator 131 to oscillate the light beam L, and condenses the oscillated light beam L by the condenser lens 138. Then, the scanning mirror 134 is rotated by the scanner 135, the condensed light beam L is reflected by the scanning mirror 134 and irradiated to the powder layer 112, the metal powder 111 is sintered, and the sintered layer 113 is formed.

しかし、このような金属粉末焼結部品製造装置においては、照射高さが一定なので、光ビームLの走査精度を調整することができない。図19は照射高さと照射面積の関係を示す。照射高さを高さH2から高さH1にすると、走査ミラー134の回転による照射位置の変化が小さくなるので、光ビームLの走査精度が良くなる。一方、照射高さを高さH1から高さH2にすると、光ビームLの走査精度は悪くなるが、走査速度は速くなる。   However, in such a metal powder sintered part manufacturing apparatus, since the irradiation height is constant, the scanning accuracy of the light beam L cannot be adjusted. FIG. 19 shows the relationship between irradiation height and irradiation area. When the irradiation height is changed from the height H2 to the height H1, the change in the irradiation position due to the rotation of the scanning mirror 134 is reduced, so that the scanning accuracy of the light beam L is improved. On the other hand, when the irradiation height is changed from the height H1 to the height H2, the scanning accuracy of the light beam L is deteriorated, but the scanning speed is increased.

また、プロッタ式の金属粉末焼結部品製造装置が知られている。図20に、このような金属粉末焼結部品製造装置の一構成を示す。金属粉末焼結部品製造装置201は光ビームLを発振する光ビーム発振器231と、光ビームLを反射する2枚のX反射ミラー232、Y反射ミラー233と、反射された光ビームLを集光する光学部234と、粉末層212が敷かれた造形タンク225と、X反射ミラー232をX方向に移動させるX移動軸235と、Y反射ミラー233をY方向に移動させるY移動軸236と、を備えている。光ビーム発振器231から発振された光ビームLは、X反射ミラー232とY反射ミラー233とによって反射し、光学部234によって集光されて粉末層212に照射し、X移動軸235とY移動軸236によって粉末層212上を走査する。   Also, a plotter type metal powder sintered part manufacturing apparatus is known. FIG. 20 shows one configuration of such a metal powder sintered part manufacturing apparatus. The metal powder sintered component manufacturing apparatus 201 collects the light beam oscillator 231 that oscillates the light beam L, the two X reflection mirrors 232 and Y reflection mirrors 233 that reflect the light beam L, and the reflected light beam L. An optical unit 234, a modeling tank 225 on which the powder layer 212 is laid, an X movement axis 235 that moves the X reflection mirror 232 in the X direction, a Y movement axis 236 that moves the Y reflection mirror 233 in the Y direction, It has. The light beam L oscillated from the light beam oscillator 231 is reflected by the X reflection mirror 232 and the Y reflection mirror 233, collected by the optical unit 234, and irradiated to the powder layer 212, and the X movement axis 235 and the Y movement axis. 236 scans the powder layer 212.

しかし、このような金属粉末焼結部品製造装置201においては、光ビームLの走査精度が悪い。図21は、光ビーム発振器231からの光ビームLの照射角度と、照射位置の関係を示す。光ビームLの光軸長が長いので、光ビーム発振器231からの光ビームLの照射角度が少しずれるだけで、照射位置の誤差が大きく、走査精度は悪い。図22は、X反射ミラー232の移動方向と光ビームLの光軸とのズレと、照射位置の関係を示す。X反射ミラー232の移動方向が光ビームLの光軸と少しずれるだけで、移動距離が長くなるほど照射位置の誤差が大きく、走査精度は悪い。Y反射ミラー233の移動方向が光ビームLの光軸とずれても、照射位置の誤差は大きくなる。   However, in such a metal powder sintered component manufacturing apparatus 201, the scanning accuracy of the light beam L is poor. FIG. 21 shows the relationship between the irradiation angle of the light beam L from the light beam oscillator 231 and the irradiation position. Since the optical axis length of the light beam L is long, only a slight deviation of the irradiation angle of the light beam L from the light beam oscillator 231 causes a large error in irradiation position and poor scanning accuracy. FIG. 22 shows the relationship between the deviation between the moving direction of the X reflection mirror 232 and the optical axis of the light beam L, and the irradiation position. The moving direction of the X reflecting mirror 232 is slightly deviated from the optical axis of the light beam L. As the moving distance increases, the irradiation position error increases and the scanning accuracy is poor. Even if the moving direction of the Y reflecting mirror 233 deviates from the optical axis of the light beam L, the error of the irradiation position becomes large.

また、光ビーム発振器と光ビームを照射する走査ヘッドとが、粉末層と平行な1方向に移動して光ビームを走査する金属粉末焼結部品製造装置が知られている(例えば特許文献1参照)。   Further, there is known a metal powder sintered part manufacturing apparatus in which a light beam oscillator and a scanning head for irradiating a light beam move in one direction parallel to the powder layer to scan the light beam (see, for example, Patent Document 1). ).

しかしながら、特許文献1に示されるような金属粉末焼結部品製造装置においても、照射高さは一定なので、光ビームの照射精度を調整することができない。
特開2004−122489号公報
However, even in the metal powder sintered component manufacturing apparatus as disclosed in Patent Document 1, the irradiation height is constant, so that the irradiation accuracy of the light beam cannot be adjusted.
JP 2004-122489 A

本発明は、上記問題を解消するものであり、照射面積が広く、かつ光ビームの走査精度が良い金属粉末焼結部品の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems , and to provide a method for producing a sintered metal powder component having a wide irradiation area and good scanning accuracy of a light beam .

上記目的を達成するために請求項1の発明は、造形プレートに金属粉末を供給して粉末層を形成する粉末層形成手段と、前記粉末層形成手段により形成された粉末層の所定の箇所に光ビームを照射して該粉末層を焼結させ焼結層を形成する光ビーム照射手段と、前記各手段の動作を制御する制御部と、を備え、前記粉末層の形成と、前記焼結層の形成とを繰り返すことにより複数の焼結層が一体化した造形物を形成して三次元形状の金属粉末焼結部品を製造する製造装置を用いた金属粉末焼結部品の製造方法であって、前記光ビーム照射手段は、前記光ビームを反射して走査する少なくとも2枚の角度制御できる走査ミラーを有する走査ヘッドを備え、前記走査ヘッドは前記光ビームの照射平面に対して法線方向に移動するものであり、前記照射平面を複数の造形領域に分割し、この分割された各造形領域に順に光ビームを照射させ、前記分割は、照射平面の下に形成されている焼結層の各造形領域間の境界と、前記照射平面の各造形領域間の境界とが重ならないように行うものである。 In order to achieve the above-mentioned object, the invention of claim 1 includes a powder layer forming means for supplying a metal powder to a modeling plate to form a powder layer, and a predetermined portion of the powder layer formed by the powder layer forming means. A light beam irradiation means for irradiating the light beam to sinter the powder layer to form a sintered layer; and a control unit for controlling the operation of each means, and forming the powder layer and the sintering This is a method for producing a metal powder sintered part using a production apparatus for producing a three-dimensional shaped metal powder sintered part by forming a molded product in which a plurality of sintered layers are integrated by repeating layer formation. The light beam irradiating means includes a scanning head having at least two scanning mirrors that reflect and scan the light beam, and the scanning head is in a normal direction with respect to the irradiation plane of the light beam. is intended to move in, the The firing plane is divided into a plurality of modeling regions, and each of the divided modeling regions is irradiated with a light beam in order, and the division is performed between a boundary between the modeling regions of the sintered layer formed below the irradiation plane. The boundary between the modeling regions on the irradiation plane is not overlapped .

請求項2の発明は、請求項1に記載の金属粉末焼結部品の製造方法おいて、前記走査ヘッドは、さらに前記照射平面に対して平行ないずれの方向にも移動するものである。According to a second aspect of the present invention, in the method for manufacturing a metal powder sintered part according to the first aspect, the scanning head further moves in any direction parallel to the irradiation plane.

請求項3の発明は、請求項1又は請求項2に記載の金属粉末焼結部品の製造方法おいて、前記造形物の形成の途中に、該造形物の表面部の表層及び不要部分を少なくとも1回以上繰り返して切削する切削手段を備え、前記切削手段は、前記照射平面に対して平行な方向と法線方向とに移動するミーリングヘッドを有し、前記走査ヘッドは、前記ミーリングヘッドを移動させるミーリングヘッド移動手段によって移動するものである。According to a third aspect of the present invention, in the method for manufacturing a metal powder sintered part according to the first or second aspect, at least a surface layer and an unnecessary portion of the surface portion of the modeled object are formed during the formation of the modeled object. A cutting means for repeatedly cutting at least once, the cutting means having a milling head that moves in a direction parallel to the irradiation plane and a normal direction; and the scanning head moves the milling head It is moved by the milling head moving means.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の金属粉末焼結部品の製造方法おいて、前記制御部は、前記走査ヘッドが前記照射平面に最も近い照射高さに位置する場合の光ビームの照射位置及び集光径を設定値に補正する第1の補正データと、前記走査ヘッドが前記照射平面から最も遠い照射高さに位置する場合の光ビームの照射位置及び集光径を設定値に補正する第2の補正データとを有し、前記走査ヘッドが任意の照射高さに位置するときの補正データを、前記第1の補正データ及び第2の補正データから補間して算出し、この算出した補正データを用いて光ビームを照射するものである。According to a fourth aspect of the present invention, in the method for manufacturing a metal powder sintered part according to any one of the first to third aspects, the control unit is configured to provide an irradiation height at which the scanning head is closest to the irradiation plane. First correction data for correcting the irradiation position of the light beam and the condensed diameter when set to the set value to the set value, and irradiation of the light beam when the scanning head is positioned at the irradiation height farthest from the irradiation plane And correction data when the scanning head is positioned at an arbitrary irradiation height, the first correction data and the second correction data. It is calculated by interpolation from the data, and the light beam is irradiated using the calculated correction data.

請求項5の発明は、請求項1乃至請求項4のいずれか一項に記載の金属粉末焼結部品の製造方法おいて、前記走査ヘッドは、造形物表面部分には、前記照射平面に近い位置から光ビームを照射し、造形物中心部分には、前記照射平面から遠い位置から光ビームを照射するものである。According to a fifth aspect of the present invention, in the method for manufacturing a sintered metal powder part according to any one of the first to fourth aspects, the scanning head is close to the irradiation plane on the surface of the modeled object. A light beam is irradiated from a position, and the center portion of the modeled object is irradiated with a light beam from a position far from the irradiation plane.

請求項6の発明は、請求項1乃至請求項3のいずれか一項に記載の金属粉末焼結部品の製造方法おいて、前記制御部は、予め定められた複数の照射高さから、光ビームの照射位置及び集光径を設定値に補正するそれぞれの照射高さに応じた補正データに基づいて前記走査ヘッドに光ビームを照射させるものである。According to a sixth aspect of the present invention, in the method for manufacturing a metal powder sintered part according to any one of the first to third aspects, the control unit is configured to generate light from a plurality of predetermined irradiation heights. The scanning head is irradiated with a light beam based on correction data corresponding to each irradiation height for correcting the irradiation position of the beam and the focused diameter to set values.

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の金属粉末焼結部品の製造方法おいて、前記照射平面を複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に順に光ビームを照射させるものである。The invention of claim 7 is the method for producing a sintered metal powder part according to any one of claims 1 to 6, wherein the irradiation plane is divided into a plurality of modeling regions, and each of the divided areas is divided. In the modeling area, the modeling areas that are not adjacent to each other are sequentially irradiated with the light beam.

請求項8の発明は、請求項1乃至請求項6のいずれか一項に記載の金属粉末焼結部品の製造方法おいて、前記照射平面を、造形される造形物の中心部分、表面部分、及び前記中心部分と表面部分の間の中間部分の各々に対応する構成領域に区分し、これら区分された各構成領域をさらに複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に順に光ビームを照射させるものである。Invention of Claim 8 is a manufacturing method of the metal-powder sintered component as described in any one of Claims 1 thru | or 6. WHEREIN: The said irradiation plane is made into the center part, surface part of the molded article to be modeled, And each of the intermediate regions between the central portion and the surface portion is divided into component regions, and each of the divided component regions is further divided into a plurality of modeling regions. In this case, light beams are irradiated in order on modeling regions that are not adjacent to each other.

請求項1の発明によれば、走査ヘッドが照射平面に対して法線方向に移動し、照射高さを変えることができるので、走査ヘッドの照射高さを変えて、光ビームの走査精度を調整することができる。また、走査ヘッドの照射高さを変えて、光ビームの集光径を調整することができる。また、照射平面の下に形成されている焼結層の各造形領域間の境界と、前記照射平面の各造形領域間の境界とが重ならないように照射平面が分割されているので、造形物の各造形領域間の強度が強くなる。 According to the first aspect of the present invention, since the scanning head can move in the normal direction with respect to the irradiation plane and the irradiation height can be changed, the irradiation height of the scanning head can be changed to improve the scanning accuracy of the light beam. Can be adjusted. In addition, the condensing diameter of the light beam can be adjusted by changing the irradiation height of the scanning head. In addition, since the irradiation plane is divided so that the boundary between the modeling areas of the sintered layer formed below the irradiation plane and the boundary between the modeling areas of the irradiation plane do not overlap, The strength between each modeling area becomes stronger.

請求項2の発明によれば、走査ヘッドが照射平面に対して平行に移動するので照射面積を広くすることができ、大きな金属粉末焼結部品を製造することができる。また、照射高さが低くてよいので、光ビームの走査精度が良く、造形物の表面切削量が少なくなり、加工時間が短縮される。According to the invention of claim 2, since the scanning head moves in parallel with the irradiation plane, the irradiation area can be widened, and a large metal powder sintered part can be manufactured. Moreover, since irradiation height may be low, the scanning accuracy of a light beam is good, the surface cutting amount of a molded article decreases, and processing time is shortened.

請求項3の発明によれば、走査ヘッドをミーリングヘッドに固定させて移動させるので、金属粉末焼結部品の製造装置の構成が簡単になり、低コストにすることができる。According to the invention of claim 3, since the scanning head is fixed to the milling head and moved, the structure of the metal powder sintered part manufacturing apparatus is simplified and the cost can be reduced.

請求項4の発明によれば、走査ヘッドの任意の照射高さにおける、光ビームの照射位置及び集光径を設定値に補正する補正データを容易に求めることができるので、光ビームの走査精度が良くなる。According to the fourth aspect of the present invention, the correction data for correcting the irradiation position and the condensed diameter of the light beam at the arbitrary irradiation height of the scanning head can be easily obtained, so that the scanning accuracy of the light beam can be obtained. Will be better.

請求項5の発明によれば、造形物表面部分は、照射平面に近い位置から光ビームを照射するので、光ビームの走査精度が良くなり、このため、造形物表面の切削量を少なくすることができるので、切削時間が短くなり加工時間が短縮される。また、造形物中心部分は走査精度が低く焼結密度も低くてよいので、照射平面に遠い位置から照射し、走査速度を速くすることができ、加工時間を短縮することができる。According to the invention of claim 5, since the surface of the modeled object is irradiated with the light beam from a position close to the irradiation plane, the scanning accuracy of the light beam is improved, and therefore the cutting amount on the surface of the modeled object is reduced. Therefore, the cutting time is shortened and the machining time is shortened. Further, since the center portion of the modeled object may have a low scanning accuracy and a low sintering density, the irradiation plane can be irradiated from a position far away, the scanning speed can be increased, and the processing time can be shortened.

請求項6の発明によれば、予め定められた複数の照射高さから光ビームを照射するので、造形物の走査精度や走査速度の必要性に応じて光ビームの照射条件を容易に変えることができ、加工時間が短縮される。According to the invention of claim 6, since the light beam is irradiated from a plurality of predetermined irradiation heights, the irradiation condition of the light beam can be easily changed according to the necessity of the scanning accuracy and the scanning speed of the modeled object. And processing time is shortened.

請求項7の発明によれば、互いに隣接しない造形領域に順に光ビームを照射するので、焼結熱の熱溜まりが造形物に発生せず、造形物の熱歪を防ぎ、造形物の加工精度が良くなる。According to the invention of claim 7, since the light beams are sequentially irradiated to the modeling regions that are not adjacent to each other, the heat accumulation of the sintering heat does not occur in the modeled product, the thermal distortion of the modeled product is prevented, and the processing accuracy of the modeled product Will be better.

請求項8の発明によれば、照射平面が複数の造形領域に分割されており、造形領域に応じた照射高さにすることができるので、造形物の表面部分の照射高さを低くすることにより、表面部分の走査精度が良くなる。また、互いに隣接しない造形領域に順に光ビームを照射するので、焼結熱の熱溜まりが造形物に発生せず、造形物の熱歪が防がれる。これらにより、大きな造形物を高精度に造形することができる。According to the invention of claim 8, since the irradiation plane is divided into a plurality of modeling areas and can be set to the irradiation height corresponding to the modeling area, the irradiation height of the surface portion of the modeled object is reduced. Thus, the scanning accuracy of the surface portion is improved. In addition, since the light beams are sequentially irradiated to the modeling regions that are not adjacent to each other, a heat accumulation of sintering heat does not occur in the modeled product, and thermal distortion of the modeled product is prevented. By these, a big modeling thing can be modeled with high precision.

本発明の製造方法に係る金属粉末焼結部品製造装置(以下、本装置と記す)について、図面を参照して説明する。
(第1の実施形態)
図1及び図2は、第1の実施形態に係る本装置の構成を示し、図3は本装置における走査ヘッドの光学カバーを取り外した光ビーム照射部の構成を示している。本装置1は、金属粉末11を供給して粉末層12を形成する粉末層形成部(粉末層形成手段)2と、粉末層形成部2により形成された粉末層12の所定の箇所に光ビームを照射して粉末層12を焼結させ焼結層13を形成する光ビーム照射部(光ビーム照射手段)3と、焼結層13が積層一体化された三次元形状の造形物を切削する切削部(切削手段)4と、各部の動作を制御する制御部5と、を備えている。本明細書においては、金属粉末焼結部品の製造工程中における形態を造形物とよんでいる。
A metal powder sintered part manufacturing apparatus (hereinafter referred to as the present apparatus) according to a manufacturing method of the present invention will be described with reference to the drawings.
(First embodiment)
1 and 2 show the configuration of the apparatus according to the first embodiment, and FIG. 3 shows the configuration of a light beam irradiation unit from which the optical cover of the scanning head in the apparatus is removed. The apparatus 1 supplies a metal beam 11 to a powder layer forming part (powder layer forming means) 2 for forming a powder layer 12 and a light beam to a predetermined portion of the powder layer 12 formed by the powder layer forming part 2. The three-dimensional shaped object in which the sintered layer 13 is laminated and integrated with the light beam irradiation unit (light beam irradiation means) 3 that sinters the powder layer 12 to form the sintered layer 13. A cutting section (cutting means) 4 and a control section 5 that controls the operation of each section are provided. In this specification, the form in the manufacturing process of a metal powder sintered part is called a molded article.

粉末層形成部2は、金属粉末を供給する材料タンク21と、材料タンク21の金属粉末を上昇させる材料テーブル22と、粉末層12が敷かれる造形プレート23と、造形プレート23を保持し、上下に昇降する造形テーブル24と、造形テーブル24を囲む造形タンク25と、材料タンク21の金属粉末を造形プレート23の上に敷くワイパ26と、ワイパ26を移動させるワイパ移動軸27を有している。光ビーム照射部3は、光ビームを発振する光ビーム発振器31と、発振された光ビームLを送る光ファイバ32と、集光レンズ(図示なし)等を有して光ファイバ32から受けた光ビームLを粉末層に集光する光学部33とを有している。光ビーム発振器31は、例えば、炭酸ガスレーザやYAGレーザ、ファイバーレーザの発振器である。光ビーム照射部3は、また、光学部33からの光ビームLを反射する回転自在な2枚の走査ミラー34と、走査ミラー34の回転の角度制御を行うスキャナ35とを備えている。制御部5は、スキャナ35を介して走査ミラー34の回転角度を調整し、光ビームLを粉末層12の上を走査する。光学部33、走査ミラー34、スキャナ35は光学カバー36によって覆われており、光学カバー36と共に走査ヘッド37を構成している。   The powder layer forming unit 2 holds a material tank 21 for supplying metal powder, a material table 22 for raising the metal powder in the material tank 21, a modeling plate 23 on which the powder layer 12 is laid, and a modeling plate 23. A modeling table 24 that moves up and down, a modeling tank 25 that surrounds the modeling table 24, a wiper 26 that spreads the metal powder of the material tank 21 on the modeling plate 23, and a wiper moving shaft 27 that moves the wiper 26. . The light beam irradiation unit 3 includes a light beam oscillator 31 that oscillates a light beam, an optical fiber 32 that transmits the oscillated light beam L, a condensing lens (not shown), and the like. And an optical unit 33 that focuses the beam L onto the powder layer. The light beam oscillator 31 is, for example, a carbon dioxide laser, YAG laser, or fiber laser oscillator. The light beam irradiation unit 3 also includes two rotatable scanning mirrors 34 that reflect the light beam L from the optical unit 33, and a scanner 35 that controls the rotation angle of the scanning mirror 34. The controller 5 adjusts the rotation angle of the scanning mirror 34 via the scanner 35, and scans the light beam L over the powder layer 12. The optical unit 33, the scanning mirror 34, and the scanner 35 are covered with an optical cover 36, and constitute a scanning head 37 together with the optical cover 36.

走査ヘッド37は、走査ヘッド37zによって光ビームの照射平面に対し法線方向に移動する。切削部4は、造形物を切削する切削工具41と切削工具41を回転保持するミーリングヘッド42を備えている。ミーリングヘッド42はミーリングヘッドZ軸42zに固定されており、ミーリングヘッドZ軸42z、ミーリングヘッドX軸42x及びミーリングヘッドY軸42yによって、光ビームの照射平面に対して法線方向及び平行な方向に移動する。ミーリングヘッドZ軸42z、ミーリングヘッドX軸42x及びミーリングヘッドY軸42yは、ミーリングヘッド移動部(ミーリングヘッド移動手段)43を構成する。光ビームの照射平面はチャンバ(図示せず)によって覆われており、チャンバ内は金属粉末が酸化しないように、例えば窒素ガスのような不活性ガスによって満たされている。不活性ガスの供給は、チャンバ内の酸素濃度等を測定することにより管理される。   The scanning head 37 is moved in the normal direction with respect to the irradiation plane of the light beam by the scanning head 37z. The cutting unit 4 includes a cutting tool 41 for cutting a modeled object and a milling head 42 for rotating and holding the cutting tool 41. The milling head 42 is fixed to the milling head Z-axis 42z, and the milling head Z-axis 42z, the milling head X-axis 42x, and the milling head Y-axis 42y are moved in a direction normal to and parallel to the irradiation plane of the light beam. Moving. The milling head Z-axis 42z, the milling head X-axis 42x and the milling head Y-axis 42y constitute a milling head moving part (milling head moving means) 43. The irradiation plane of the light beam is covered with a chamber (not shown), and the inside of the chamber is filled with an inert gas such as nitrogen gas so that the metal powder is not oxidized. The supply of the inert gas is managed by measuring the oxygen concentration in the chamber.

このように構成された本装置1の動作について説明する。図4(a)乃至(c)は、この動作の時系列状態を示す。最初に、造形プレート23の上面と造形タンク25の上面との段差が長さΔtになるように、造形テーブル24を下降させ、ワイパ26によって材料テーブル22上の金属粉末11を造形プレート23上に供給し、粉末層12を形成する(図4(a))。   The operation of the apparatus 1 configured as described above will be described. 4A to 4C show the time series state of this operation. First, the modeling table 24 is lowered so that the step between the upper surface of the modeling plate 23 and the upper surface of the modeling tank 25 has a length Δt, and the metal powder 11 on the material table 22 is placed on the modeling plate 23 by the wiper 26. Then, the powder layer 12 is formed (FIG. 4A).

続いて、走査ヘッド37は、走査ミラーを回転させて、光ビームLを粉末層12に走査させ、粉末層12を溶融し、焼結層13を形成する(図4(b))。続いて、走査ヘッド37は、図4(a)及び(b)の動作を繰り返して粉末層12と焼結層13の形成を繰り返し、焼結層13を積層する。焼結層13が所定の厚みになると、ミーリングヘッド42の切削工具41によって造形物の表面部の表層及び不要部分を切削する(図4(c))。このような動作を繰り返して、金属粉末焼結部品を製造する。   Subsequently, the scanning head 37 rotates the scanning mirror to cause the light beam L to scan the powder layer 12, melt the powder layer 12, and form the sintered layer 13 (FIG. 4B). Subsequently, the scanning head 37 repeats the operations of FIGS. 4A and 4B to repeat the formation of the powder layer 12 and the sintered layer 13, thereby laminating the sintered layer 13. When the sintered layer 13 has a predetermined thickness, the surface layer and the unnecessary portion of the surface portion of the modeled object are cut by the cutting tool 41 of the milling head 42 (FIG. 4C). Such an operation is repeated to manufacture a metal powder sintered part.

図5(a)及び(b)は、走査ヘッド37の照射高さHと光ビームLの走査精度の関係を示す。図5(a)は走査ヘッド37の照射高さHが高い場合を示し、図5(b)は照射高さHが低い場合を示す。走査ヘッド37から照射される光ビームLが同一角度θ振れた場合、照射高さHが高い方が光ビームLの振幅幅は大きくなるので、光ビームLの走査精度は悪くなる。   5A and 5B show the relationship between the irradiation height H of the scanning head 37 and the scanning accuracy of the light beam L. FIG. FIG. 5A shows a case where the irradiation height H of the scanning head 37 is high, and FIG. 5B shows a case where the irradiation height H is low. When the light beam L emitted from the scanning head 37 is swung by the same angle θ, the amplitude width of the light beam L becomes larger as the irradiation height H is higher, so that the scanning accuracy of the light beam L becomes worse.

このように走査ヘッド37の照射高さを変えることにより、光ビームLの走査精度を変えることができる。高い走査精度が必要な場合には、走査ヘッド37の照射高さHを低くし、走査精度が必要でない場合には、走査ヘッド37の照射高さHを高くして光ビームLを照射する。   Thus, the scanning accuracy of the light beam L can be changed by changing the irradiation height of the scanning head 37. When high scanning accuracy is required, the irradiation height H of the scanning head 37 is lowered. When scanning accuracy is not required, the irradiation height H of the scanning head 37 is increased and the light beam L is irradiated.

図6(a)乃至(c)は、走査ヘッド37の照射高さHと、光ビームLの集光径Dとの関係を示す。図6(a)は、走査ヘッド37の照射高さHが標準よりも高い場合の集光径Dを、図6(b)は照射高さHが標準の場合の集光径Dを、図6(c)は、照射高さHが標準よりも低い場合の集光径Dを示す。照射高さHが標準よりも高い場合には、照射高さHが標準の場合よりも集光径Dは大きくなり、照射高さHが標準よりも低い場合には、照射高さHが標準の場合よりも集光径Dは小さくなる。集光レンズ等の条件を同一のままで、照射高さHを変えることにより、集光径Dを容易に調整することができる。このように、造形物の必要に応じて照射高さHを変えることにより、光ビームLの走査精度と集光径を容易に調整することができるので、加工時間を短縮することができる。   6A to 6C show the relationship between the irradiation height H of the scanning head 37 and the condensed diameter D of the light beam L. FIG. FIG. 6A shows the condensing diameter D when the irradiation height H of the scanning head 37 is higher than the standard, and FIG. 6B shows the condensing diameter D when the irradiation height H is the standard. 6 (c) shows the light collection diameter D when the irradiation height H is lower than the standard. When the irradiation height H is higher than the standard, the condensing diameter D is larger than when the irradiation height H is standard, and when the irradiation height H is lower than the standard, the irradiation height H is standard. The condensing diameter D is smaller than in the case of. The condensing diameter D can be easily adjusted by changing the irradiation height H while maintaining the same conditions for the condensing lens and the like. As described above, by changing the irradiation height H according to the necessity of the modeled object, the scanning accuracy and the focused diameter of the light beam L can be easily adjusted, so that the processing time can be shortened.

(第2の実施形態)
本発明の第2の実施形態に係る本装置について図7を参照して説明する。図7は本装置の構成を示す。図7において、前述の実施形態と同一の構成物には同一番号を付し、説明を略す(以下、同様)。本実施形態の本装置1は、第1の実施形態の構成に加えて光ビームの照射平面に平行でX方向に移動する走査ヘッドX軸37xと、照射平面に平行でY方向に移動する走査ヘッドY軸37yを備えている。走査ヘッドZ軸37zは走査ヘッドY軸37yに接続されており、走査ヘッド37は走査ヘッドZ軸37zに保持されている。この構成により、走査ヘッド37は、照射平面に対して法線方向のみならず、照射平面に対して平行な方向にも移動することができる。
(Second Embodiment)
The apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 7 shows the configuration of this apparatus. In FIG. 7, the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted (the same applies hereinafter). In addition to the configuration of the first embodiment, the apparatus 1 of the present embodiment includes a scanning head X axis 37x that moves in the X direction parallel to the irradiation plane of the light beam, and a scanning that moves in the Y direction parallel to the irradiation plane. A head Y axis 37y is provided. The scanning head Z-axis 37z is connected to the scanning head Y-axis 37y, and the scanning head 37 is held on the scanning head Z-axis 37z. With this configuration, the scanning head 37 can move not only in the normal direction to the irradiation plane but also in a direction parallel to the irradiation plane.

本装置1においては、走査ヘッド37を照射平面に対して平行な方向に移動させることができるので、走査ヘッド37と照射平面との距離が近いままで、大きな面積の走査が可能になり、大きな金属粉末焼結部品を製造できる。走査ヘッド37と照射平面との距離が近いので、光ビームLの走査精度が悪くならず、造形物の寸法精度が良い。造形物の寸法精度が良いので、切削工具41による切削量が少なくなり、切削時間が短くなって加工時間が短縮される。   In the present apparatus 1, since the scanning head 37 can be moved in a direction parallel to the irradiation plane, a large area can be scanned while the distance between the scanning head 37 and the irradiation plane is kept short. Metal powder sintered parts can be manufactured. Since the distance between the scanning head 37 and the irradiation plane is short, the scanning accuracy of the light beam L does not deteriorate, and the dimensional accuracy of the modeled object is good. Since the dimensional accuracy of the modeled object is good, the amount of cutting by the cutting tool 41 is reduced, the cutting time is shortened, and the processing time is shortened.

(第3の実施形態)
本発明の第3の実施形態に係る本装置について図面を参照して説明する。図8は、本装置1の構成を示す。本実施形態において走査ヘッド37はミーリングヘッド42に固定されている。走査ヘッド37はミーリングヘッドX軸42x、ミーリングヘッドY軸42y、及びミーリングヘッドZ軸42zによって、光ビームの照射平面に対して平行な方向と法線方向に移動する。
(Third embodiment)
A device according to a third embodiment of the present invention will be described with reference to the drawings. FIG. 8 shows the configuration of the apparatus 1. In the present embodiment, the scanning head 37 is fixed to the milling head 42. The scanning head 37 moves in a direction parallel to the irradiation plane of the light beam and a normal direction by the milling head X-axis 42x, the milling head Y-axis 42y, and the milling head Z-axis 42z.

このように走査ヘッド37をミーリングヘッド42に固定させて移動させるので、走査ヘッド37を移動させるための走査ヘッドX軸、走査ヘッドY軸、及び走査ヘッドZ軸が不要となり、本装置の構成が簡単になり、低コストにすることができる。また、走査ヘッド37は、造形物の表面部等の切削中は不要なので、切削動作を開始する前にミーリングヘッド42から取り外し、切削動作が終了して光ビームLを照射する前にミーリングヘッド42に取り付けてもよい。このように、切削動作中に走査ヘッド37を取り外すことにより、切削動作中のミーリングヘッド42の急激な加速度運動によって走査ヘッド37が故障する虞が少なくなる。   Since the scanning head 37 is moved while being fixed to the milling head 42 in this way, the scanning head X-axis, the scanning head Y-axis, and the scanning head Z-axis for moving the scanning head 37 become unnecessary, and the configuration of this apparatus is reduced. It becomes simple and can be made low-cost. Further, since the scanning head 37 is unnecessary during the cutting of the surface portion or the like of the modeled object, the scanning head 37 is removed from the milling head 42 before the cutting operation is started, and the milling head 42 is irradiated before the irradiation of the light beam L after the cutting operation is completed. You may attach to. As described above, by removing the scanning head 37 during the cutting operation, the possibility that the scanning head 37 breaks down due to the rapid acceleration motion of the milling head 42 during the cutting operation is reduced.

(第4の実施形態)
本発明の第4の実施形態に係る本装置について図面を参照して説明する。図9(a)及び(b)は走査ヘッド37からの光ビームの照射状態を示し、図9(a)は照射高さHが最も高い状態を、図9(b)は、照射高さHが最も低い状態を示す。本実施形態における本装置の構成は第2の実施形態と同等である。本装置の制御部は、走査ヘッド37の照射高さHを変更して光ビームLを照射するときは、走査ヘッド37の照射高さHに応じて、光ビームLの照射位置及び集光径Dを設定値に補正しなければならない。照射位置の補正は走査ミラー34の回転角度によって行い、集光径Dの補正は光学部33内の集光レンズの位置等によって行う。
(Fourth embodiment)
A device according to a fourth embodiment of the present invention will be described with reference to the drawings. 9A and 9B show the irradiation state of the light beam from the scanning head 37, FIG. 9A shows the state where the irradiation height H is the highest, and FIG. 9B shows the irradiation height H. Indicates the lowest state. The configuration of this apparatus in this embodiment is the same as that of the second embodiment. When changing the irradiation height H of the scanning head 37 and irradiating the light beam L, the control unit of this apparatus, according to the irradiation height H of the scanning head 37, the irradiation position and condensing diameter of the light beam L D must be corrected to the set value. The irradiation position is corrected by the rotation angle of the scanning mirror 34, and the condensing diameter D is corrected by the position of the condensing lens in the optical unit 33.

本実施形態においては、照射高さHが最も高い位置と最も低い位置での、照射位置の補正データ(ΔX、ΔY)と集光径の補正データ(ΔZ)を求める。照射高さHが最も高い位置での補正データを第1の補正データとし、照射高さHが最も低い位置での補正データを第2の補正データとする。この補正は、照射面積Rと集光径を同一にして行う。そして、走査ヘッド37の任意高さHにおける補正データを、その高さに応じて、第1の補正データ及び第2の補正データから補間して求める。例えば、第1の補正データのΔXが0.1mmで、第2の補正データのΔXが0.2mmである場合、照射高さが最も高い位置と最も低い位置のちょうど中間であるときのΔXの補正データは0.15mmとなる。このように、走査ヘッド37の任意の照射高さHにおける、光ビームLの照射位置及び集光径を設定値に補正する補正データを容易に求めることができるので、光ビームLの走査精度が良くなる。   In the present embodiment, correction data (ΔX, ΔY) and correction data (ΔZ) of the light collection diameter at the position where the irradiation height H is highest and lowest are obtained. The correction data at the position with the highest irradiation height H is defined as first correction data, and the correction data at the position with the lowest irradiation height H is defined as second correction data. This correction is performed by making the irradiation area R and the light collection diameter the same. Then, correction data at an arbitrary height H of the scanning head 37 is obtained by interpolating from the first correction data and the second correction data according to the height. For example, when ΔX of the first correction data is 0.1 mm and ΔX of the second correction data is 0.2 mm, ΔX when the irradiation height is exactly halfway between the highest position and the lowest position. The correction data is 0.15 mm. As described above, since the correction data for correcting the irradiation position and condensing diameter of the light beam L at the arbitrary irradiation height H of the scanning head 37 to the set values can be easily obtained, the scanning accuracy of the light beam L is improved. Get better.

(第5の実施形態)
本発明の第5の実施形態に係る本装置について図面を参照して説明する。図10は造形物の垂直断面を示す。本実施形態における本装置の構成は第2の実施形態と同等である。本実施形態においては、光ビームの照射を次のように行う。造形物14を表面部分V1、中心部分V3、及び表面部分と中心部分の間の中間部分V2の構成領域に区分する。そして、焼結密度をそれぞれの構成領域で変え、表面部分V1では98%以上、中間部分V2では70〜90%、中心部分V3では60〜80%とする。焼結密度は、光ビームの集光径によって変化させることができる。
(Fifth embodiment)
A device according to a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 10 shows a vertical cross section of the shaped object. The configuration of this apparatus in this embodiment is the same as that of the second embodiment. In this embodiment, light beam irradiation is performed as follows. The modeled object 14 is divided into constituent regions of a surface portion V1, a center portion V3, and an intermediate portion V2 between the surface portion and the center portion. Then, the sintered density is changed in each constituent region, and is 98% or more in the surface portion V1, 70 to 90% in the intermediate portion V2, and 60 to 80% in the central portion V3. The sintering density can be changed depending on the condensed diameter of the light beam.

表面部分V1は造形後の表面切削量を少なくするために、高精度に走査する必要があるので照射高さを低くする。そして、照射高さを低くし集光径を小さくすることにより、面積当たりの照射エネルギが大きくなるので、焼結密度が高くなる。中心部分V3は、照射位置がずれても造形物の寸法精度に影響がなく、走査精度は低くてもよいので、照射高さを高くする。そして、照射高さを高くし集光径を大きくすることにより、面積当たりの照射エネルギが小さくなるので、焼結密度が低くなる。また、照射高さが高いので、走査ミラーの回転角速度が、照射高さが低い場合と同じでも、光ビームの走査速度は速くなり、焼結密度を低くすることができる。そして、中間部分V2を照射する場合は、表面部分V1を照射する照射高さと中心部分V3を照射する照射高さとの間の照射高さで照射する。焼結密度は、また、レーザ出力、走査速度、走査ピッチ、によって変化させてもよい。   Since the surface portion V1 needs to be scanned with high accuracy in order to reduce the amount of surface cutting after modeling, the irradiation height is lowered. Then, by lowering the irradiation height and reducing the light collection diameter, the irradiation energy per area increases, so that the sintering density increases. Even if the irradiation position shifts, the central portion V3 does not affect the dimensional accuracy of the modeled object, and the scanning accuracy may be low, so the irradiation height is increased. Then, by increasing the irradiation height and increasing the light condensing diameter, the irradiation energy per area decreases, so the sintering density decreases. In addition, since the irradiation height is high, the scanning speed of the light beam is increased and the sintered density can be lowered even when the rotation angular velocity of the scanning mirror is the same as when the irradiation height is low. And when irradiating the intermediate part V2, it irradiates with the irradiation height between the irradiation height which irradiates the surface part V1, and the irradiation height which irradiates the center part V3. The sintered density may also be varied by laser power, scan speed, scan pitch.

このように、造形物表面部分は、照射高さを低くして照射するので、光ビームの走査精度が良い。走査精度が良いと表面の切削量が少なくなるので、切削時間が短くなり加工時間が短縮される。また、造形物中心部分は走査精度が低く、焼結密度も低くてよいので、照射高さを高くして走査速度を早くすることができ、加工時間を短縮することができる。   As described above, since the surface of the modeled object is irradiated with the irradiation height lowered, the scanning accuracy of the light beam is good. If the scanning accuracy is good, the amount of cutting on the surface is reduced, so that the cutting time is shortened and the machining time is shortened. In addition, since the center portion of the modeled object has low scanning accuracy and low sintering density, the irradiation height can be increased to increase the scanning speed, and the processing time can be shortened.

(第6の実施形態)
本発明の第6の実施形態に係る本装置について図11を参照して説明する。図11(a)乃至(c)は走査ヘッド37からの光ビームの照射状態を示す。本実施形態における本装置の構成は第2の実施形態と同等である。本実施形態においては、複数の照射高さを予め定めておき、それぞれの照射高さに応じた補正データに基づいて前記走査ヘッドに光ビームを照射させる。図11は照射高さを3水準定めた場合の例を示し、図11(a)は、照射高さHが高い場合の、図11(b)は、照射高さHが中位の場合の、図11(c)は、照射高さHが低い場合の照射状態を示す。それぞれの照射高さでの、照射位置の補正データ(ΔX、ΔY)と集光径の補正データ(ΔZ)を求める。この補正は、照射面積Rと集光径を同一にして行う。そして、照射速度を早くする場合には高い位置で、高い照射精度が必要な場合には低い位置で、通常の照射条件でよい場合には中位の高さの位置で光ビームを照射する。
(Sixth embodiment)
The apparatus according to the sixth embodiment of the present invention will be described with reference to FIG. 11A to 11C show the irradiation state of the light beam from the scanning head 37. FIG. The configuration of this apparatus in this embodiment is the same as that of the second embodiment. In this embodiment, a plurality of irradiation heights are determined in advance, and the scanning head is irradiated with a light beam based on correction data corresponding to each irradiation height. FIG. 11 shows an example in which three levels of irradiation height are set, FIG. 11A shows a case where the irradiation height H is high, and FIG. 11B shows a case where the irradiation height H is medium. FIG. 11C shows an irradiation state when the irradiation height H is low. Irradiation position correction data (ΔX, ΔY) and condensing diameter correction data (ΔZ) at each irradiation height are obtained. This correction is performed by making the irradiation area R and the light collection diameter the same. The light beam is irradiated at a high position when the irradiation speed is increased, at a low position when high irradiation accuracy is required, and at a medium height position when normal irradiation conditions are acceptable.

このように、予め定められた複数の照射高さから光ビームを照射するので、造形物の走査精度や走査速度の必要性に応じて光ビームの照射条件を容易に変えることができ、加工時間を短縮することができる。   Thus, since the light beam is irradiated from a plurality of predetermined irradiation heights, the irradiation conditions of the light beam can be easily changed according to the necessity of the scanning accuracy and the scanning speed of the modeled object, and the processing time Can be shortened.

(第7の実施形態)
本発明の第7の実施形態に係る本装置について図12を参照して説明する。図12は照射平面の平面視を示す。照射平面が複数の造形領域に分割されている。造形領域中の数字は、説明のために付した造形領域の番号である。本実施形態では照射平面を複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に走査ヘッドを順に走査ヘッドX軸及び走査ヘッドY軸によって移動させ、走査ミラーを回転させて光ビームを造形領域に走査する。図12の照射平面では、例えば造形領域の番号1,5,3,4,2,6の順に繰り返して光ビームの照射を行う。互いに隣接しない造形領域に順に光ビームを照射するので、焼結熱の熱溜まりが造形物に発生せず、造形物の熱歪を防ぎ、造形物の寸法精度が良くなる。
(Seventh embodiment)
The apparatus according to the seventh embodiment of the present invention will be described with reference to FIG. FIG. 12 shows a plan view of the irradiation plane. The irradiation plane is divided into a plurality of modeling regions. The number in the modeling area is the number of the modeling area given for explanation. In this embodiment, the irradiation plane is divided into a plurality of modeling regions, and the scanning head is sequentially moved to the modeling regions that are not adjacent to each other by the scanning head X axis and the scanning head Y axis. The mirror is rotated to scan the light beam with the light beam. In the irradiation plane of FIG. 12, for example, the light beam is irradiated repeatedly in the order of the modeling area numbers 1, 5, 3, 4, 2, and 6. Since the light beams are sequentially irradiated to the modeling regions that are not adjacent to each other, the heat accumulation of sintering heat does not occur in the modeled object, the thermal distortion of the modeled object is prevented, and the dimensional accuracy of the modeled object is improved.

次に、第7の実施形態の第1の変形例について図面を参照して説明する。図13(a)は照射平面の平面視を示し、図13(b)は造形物の垂直断面を示す。図13(a)中の造形領域中の数字は、説明のために付した造形領域の番号である。本変形例では、照射平面を複数の造形領域に分割し、この分割された造形領域に走査ヘッドを順に移動させて光ビームを造形領域に走査する。そして、この分割は、照射平面の下に形成されている焼結層の各造形領域間の境界と、これから光ビームを照射する照射平面の各造形領域間の境界とが重ならないように行う。図13(a)及び(b)では、造形領域の番号1,3,2,4の順に繰り返して光ビームの照射を行うが、各造形領域間の境界は、図13(b)に示すように、重なる上下の焼結層で位置が異なり、境界が上下の焼結層で重ならない。   Next, a first modification of the seventh embodiment will be described with reference to the drawings. Fig.13 (a) shows the planar view of an irradiation plane, FIG.13 (b) shows the vertical cross section of a molded article. The numbers in the modeling area in FIG. 13A are the numbers of the modeling areas given for explanation. In this modification, the irradiation plane is divided into a plurality of modeling regions, and the scanning head is sequentially moved to the divided modeling regions to scan the modeling region with the light beam. And this division is performed so that the boundary between each modeling area | region of the sintered layer currently formed under the irradiation plane and the boundary between each modeling area | region of the irradiation plane which irradiates a light beam from now on do not overlap. 13 (a) and 13 (b), the light beam is repeatedly irradiated in the order of the modeling area numbers 1, 3, 2, and 4, but the boundary between the modeling areas is as shown in FIG. 13 (b). Further, the positions of the overlapping upper and lower sintered layers are different, and the boundary does not overlap with the upper and lower sintered layers.

図14は、光ビーム照射の時系列状態を示す。図中の粉末層12を一点鎖線で区分した領域の数字は、説明のために付した造形領域の番号である。走査ヘッド37は最初、造形領域1上に位置し、造形領域1に光ビームを照射する(図14(a))。続いて、走査ヘッド37は造形領域3上に移動し、造形領域3に光ビームを照射する(図14(b))。続いて、同様に造形領域2、4に光ビームを照射し、第1層を焼結する(図14(c)、(d))。続いて、第2層の造形領域1に照射を行うが、このとき、造形領域1と造形領域2との境界の位置を第1層での境界の位置とはずらして光ビームを照射する(図14(e))。続いて、走査ヘッド37は造形領域3上に移動し、第1層での境界の位置とはずらして造形領域3に光ビームを照射する(図14(f))。続いて、同様に造形領域2、4に光ビームを照射し、第2層を焼結する(図14(g)、(h))。   FIG. 14 shows a time-series state of light beam irradiation. The number of the area | region which divided the powder layer 12 in the figure with the dashed-dotted line is the number of the modeling area | region attached | subjected for description. The scanning head 37 is initially positioned on the modeling area 1 and irradiates the modeling area 1 with a light beam (FIG. 14A). Subsequently, the scanning head 37 moves onto the modeling area 3 and irradiates the modeling area 3 with a light beam (FIG. 14B). Subsequently, the modeling regions 2 and 4 are similarly irradiated with a light beam to sinter the first layer (FIGS. 14C and 14D). Subsequently, the modeling area 1 of the second layer is irradiated, and at this time, the light beam is irradiated with the position of the boundary between the modeling area 1 and the modeling area 2 being shifted from the position of the boundary of the first layer ( FIG. 14 (e)). Subsequently, the scanning head 37 moves onto the modeling region 3 and irradiates the modeling region 3 with a light beam, shifted from the position of the boundary in the first layer (FIG. 14 (f)). Subsequently, the modeling regions 2 and 4 are similarly irradiated with a light beam to sinter the second layer (FIGS. 14G and 14H).

図15(a)は、このようにして形成した造形物14の構成を、図15(b)は、各焼結層の造形領域の境界を揃えた場合の造形物14の構成を示す。このように、照射平面の下に形成されている焼結層の各造形領域間の境界と、照射平面の各造形領域間の境界とが重ならないように照射平面が分割されているので、造形物の造形領域間の強度が強くなる。   FIG. 15A shows the configuration of the shaped article 14 formed in this way, and FIG. 15B shows the configuration of the shaped article 14 when the boundaries of the shaped regions of the respective sintered layers are aligned. In this way, since the irradiation plane is divided so that the boundary between each modeling area of the sintered layer formed below the irradiation plane and the boundary between each modeling area of the irradiation plane do not overlap, The strength between the modeling areas of objects increases.

次に、第7の実施形態の第2の変形例について説明する。図16(a)は造形物の水平断面を、図16(b)は造形物の垂直断面を示し、図16(c)は造形物の造形領域の一部分を分離して示す。図中の造形領域中の数字は、説明のために付した造形領域の番号である。本変形例では、照射平面を造形される造形物の中心部分、表面部分、及び中心部分と表面部分の間の中間部分の各々に対応する構成領域に区分し、これら区分された各構成領域をさらに複数の造形領域に分割している。そして、第7の実施形態と同様に、この分割された各造形領域の内で、互いに隣接しない造形領域に走査ヘッドを順に移動させ、走査ミラーを回転させて光ビームを造形領域に走査する。互いに隣接しない造形領域に順に光ビームを照射するので、焼結熱の熱溜まりが造形物に発生せず、造形物の熱歪が防がれて、造形物の寸法精度が良くなる。   Next, a second modification of the seventh embodiment will be described. 16A shows a horizontal cross section of the modeled object, FIG. 16B shows a vertical cross section of the modeled object, and FIG. 16C shows a part of the modeled area of the modeled object separately. The numbers in the modeling area in the figure are the numbers of the modeling areas given for explanation. In this modification, the irradiation plane is divided into constituent areas corresponding to the center part, the surface part, and the intermediate part between the central part and the surface part of the modeled object to be modeled. Furthermore, it is divided into a plurality of modeling regions. Then, similarly to the seventh embodiment, the scanning head is sequentially moved to the modeling areas that are not adjacent to each other among the divided modeling areas, and the scanning mirror is rotated to scan the modeling area. Since the light beams are sequentially irradiated to the modeling regions that are not adjacent to each other, heat accumulation of sintering heat does not occur in the modeled object, the thermal distortion of the modeled object is prevented, and the dimensional accuracy of the modeled object is improved.

本変形例では、光ビームの照射を、例えば造形領域の1,6,9,2,8,10,4,7,12,3,5,11の順に繰り返して行なう。そして、焼結密度をそれぞれの構成領域で変え、表面部分は98%以上、中間部分は70〜90%、中心部分は60〜80%とする。光ビームの照射高さは、上述した第5の実施形態と同様に、表面部分は照射高さを低くし、中心部分は照射高さを高くし、中間部分は中位の照射高さにする。これにより、表面部分は照射高さが低いので、走査精度が良く、集光径が小さくなって焼結密度が高くなる。また、中心部分は、照射高さが高いので走査速度を速くし、焼結密度が低くなる。このように、造形物の熱歪が防がれ、造形物表面部分の光ビームの走査精度が良いので、大きな造形物を高精度に造形することができる。   In this modification, light beam irradiation is repeatedly performed in the order of, for example, 1, 6, 9, 2, 8, 10, 4, 7, 12, 3, 5, 11 in the modeling area. Then, the sintered density is changed in each constituent region, and the surface portion is 98% or more, the intermediate portion is 70 to 90%, and the central portion is 60 to 80%. As in the fifth embodiment described above, the irradiation height of the light beam is such that the irradiation height of the surface portion is lowered, the irradiation height is increased at the center portion, and the middle irradiation height is set at the intermediate portion. . Thereby, since the irradiation height is low on the surface portion, the scanning accuracy is good, the condensing diameter is reduced, and the sintering density is increased. Further, since the central portion has a high irradiation height, the scanning speed is increased and the sintered density is lowered. Thus, since the thermal distortion of the modeled object is prevented and the scanning accuracy of the light beam on the surface of the modeled object is good, a large modeled object can be modeled with high accuracy.

この第2の変形例において、構成領域間の境界を第1の変形例のように造形領域の分割を、照射平面の下に形成されている焼結層の各造形領域間の境界と、これから光ビームを照射する照射平面の各造形領域間の境界とが重ならないように行なってもよい。図17は、そのように分割した図16(c)の中心部分の造形領域3の形状を示す。造形領域3と他の造形領域との境界の位置が焼結層によって異なり、重なる上下の焼結層で境界が重ならない。この中心部の造形領域が隣接する中間部の造形領域に入り込んでいる部分の焼結密度は中心部の焼結密度にする。これにより、造形領域間の強度が増すので、造形物が強固になる。   In this second modification, the boundary between the constituent areas is divided into the modeling areas as in the first modification, and the boundary between each modeling area of the sintered layer formed below the irradiation plane, You may carry out so that the boundary between each modeling area | region of the irradiation plane which irradiates a light beam may not overlap. FIG. 17 shows the shape of the modeling region 3 in the central portion of FIG. The position of the boundary between the modeling area 3 and another modeling area differs depending on the sintered layer, and the boundary does not overlap between the upper and lower sintered layers. The sintering density of the portion where the modeling area in the central part enters the adjacent modeling area is set to the sintering density in the central part. Thereby, since the intensity | strength between modeling area | regions increases, a molded article becomes firm.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、照射平面を覆うチャンバ内は真空雰囲気としてもよく、この場合においても、チャンバ内を不活性ガスで満たした場合と同等の効果を得ることができる。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the inside of the chamber covering the irradiation plane may be a vacuum atmosphere, and in this case, the same effect as that obtained when the chamber is filled with an inert gas can be obtained.

本発明の第1の実施形態に係る本装置の斜視図。1 is a perspective view of the apparatus according to a first embodiment of the present invention. 同本装置の構成図。The block diagram of the same apparatus. 同本装置の光ビーム照射部の斜視図。The perspective view of the light beam irradiation part of the same apparatus. 同本装置における製造方法を時系列に示す図。The figure which shows the manufacturing method in the same apparatus in time series. 同本装置における照射高さと走査精度の関係を示す図。The figure which shows the relationship between the irradiation height and scanning precision in the same apparatus. 同本装置における照射高さと集光径の関係を示す図。The figure which shows the relationship between the irradiation height and the condensing diameter in the same apparatus. 本発明の第2の実施形態に係る本装置の構成図。The block diagram of this apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る本装置の構成図。The block diagram of this apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る本装置における光ビームの照射状態を示す図。The figure which shows the irradiation state of the light beam in this apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る本装置における造形物の垂直断面図。The vertical sectional view of the modeling thing in this device concerning a 5th embodiment of the present invention. 本発明の第6の実施形態に係る本装置における光ビームの照射状態を示す図。The figure which shows the irradiation state of the light beam in this apparatus which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る本装置における照射平面の平面図。The top view of the irradiation plane in this apparatus concerning the 7th Embodiment of this invention. (a)は同本装置の第1の変形例における照射平面の平面図、(b)は同変形例における造形物の垂直断面図。(A) is a top view of the irradiation plane in the 1st modification of this apparatus, (b) is a vertical sectional view of the molded article in the same modification. 同変形例における製造方法を時系列に示す図。The figure which shows the manufacturing method in the modification in time series. 同変形例における造形物の斜視図。The perspective view of the molded article in the modification. (a)は本発明の第7の実施形態に係る本装置の第2の変形例における造形物の水平断面図、(b)は同造形物の垂直断面図、(c)は同造形物の斜視図。(A) is a horizontal sectional view of a modeled object in the second modification of the apparatus according to the seventh embodiment of the present invention, (b) is a vertical sectional view of the modeled object, and (c) is a modeled object. Perspective view. 同造形物の一部の斜視図。The perspective view of a part of the same shaped article. 従来の第1の本装置の構成図。The block diagram of the conventional 1st this apparatus. 同本装置における光ビームの照射状態を示す図。The figure which shows the irradiation state of the light beam in the same apparatus. 従来の第2の本装置の斜視図。The perspective view of the conventional 2nd this apparatus. 同本装置における光ビームの照射角度と、照射位置の関係を示す図。The figure which shows the relationship between the irradiation angle of the light beam in this same apparatus, and an irradiation position. 同本装置における反射ミラーの移動方向のズレと、照射位置の関係を示す図。The figure which shows the shift | offset | difference of the moving direction of the reflective mirror in the same apparatus, and the relationship of an irradiation position.

符号の説明Explanation of symbols

1 金属粉末焼結部品製造装置
12 粉末層
13 焼結層
14 造形物
2 粉末層形成部(粉末層形成手段)
23 造形プレート
3 光ビーム照射部(光ビーム照射手段)
34 走査ミラー
37 走査ヘッド
4 切削部(切削手段)
42 ミーリングヘッド
43 ミーリングヘッド移動部(ミーリングヘッド移動手段)
5 制御部
L 光ビーム
DESCRIPTION OF SYMBOLS 1 Metal powder sintered component manufacturing apparatus 12 Powder layer 13 Sintered layer 14 Modeling thing 2 Powder layer formation part (powder layer formation means)
23 Modeling plate 3 Light beam irradiation part (light beam irradiation means)
34 Scanning mirror 37 Scanning head 4 Cutting part (cutting means)
42 Milling Head 43 Milling Head Moving Unit (Milling Head Moving Unit)
5 Control unit L Light beam

Claims (8)

造形プレートに金属粉末を供給して粉末層を形成する粉末層形成手段と、前記粉末層形成手段により形成された粉末層の所定の箇所に光ビームを照射して該粉末層を焼結させ焼結層を形成する光ビーム照射手段と、前記各手段の動作を制御する制御部と、を備え、前記粉末層の形成と、前記焼結層の形成とを繰り返すことにより複数の焼結層が一体化した造形物を形成して三次元形状の金属粉末焼結部品を製造する製造装置を用いた金属粉末焼結部品の製造方法であって、
前記光ビーム照射手段は、前記光ビームを反射して走査する少なくとも2枚の角度制御できる走査ミラーを有する走査ヘッドを備え、
前記走査ヘッドは前記光ビームの照射平面に対して法線方向に移動するものであり、
前記照射平面を複数の造形領域に分割し、この分割された各造形領域に順に光ビームを照射させ、
前記分割は、照射平面の下に形成されている焼結層の各造形領域間の境界と、前記照射平面の各造形領域間の境界とが重ならないように行うことを特徴とする金属粉末焼結部品の製造方法。
A powder layer forming means for supplying a metal powder to the modeling plate to form a powder layer, and a predetermined portion of the powder layer formed by the powder layer forming means is irradiated with a light beam to sinter and burn the powder layer. A light beam irradiating means for forming a binder layer, and a controller for controlling the operation of each of the means, and a plurality of sintered layers are formed by repeating the formation of the powder layer and the formation of the sintered layer. A method for producing a metal powder sintered part using a production apparatus for producing a three-dimensional shaped metal powder sintered part by forming an integrated shaped article,
The light beam irradiating means comprises a scanning head having at least two scanning mirrors that can control the angle by reflecting and scanning the light beam,
The scanning head moves in a normal direction with respect to the irradiation plane of the light beam,
The irradiation plane is divided into a plurality of modeling areas, and each divided modeling area is irradiated with a light beam in order,
The division is performed such that the boundary between the modeling regions of the sintered layer formed below the irradiation plane does not overlap with the boundary between the modeling regions of the irradiation plane. A method of manufacturing a bonded part.
前記走査ヘッドは、さらに前記照射平面に対して平行ないずれの方向にも移動することを特徴とする請求項1に記載の金属粉末焼結部品の製造方法。  The method of manufacturing a metal powder sintered component according to claim 1, wherein the scanning head further moves in any direction parallel to the irradiation plane. 前記造形物の形成の途中に、該造形物の表面部の表層及び不要部分を少なくとも1回以上繰り返して切削する切削手段を備え、  In the middle of the formation of the modeled object, provided with a cutting means for repeatedly cutting the surface layer and the unnecessary portion of the modeled part at least once or more,
前記切削手段は、前記照射平面に対して平行な方向と法線方向とに移動するミーリングヘッドを有し、  The cutting means has a milling head that moves in a direction parallel to the irradiation plane and a normal direction,
前記走査ヘッドは、前記ミーリングヘッドを移動させるミーリングヘッド移動手段によって移動することを特徴とする請求項1又は請求項2に記載の金属粉末焼結部品の製造方法。  The method of manufacturing a metal powder sintered part according to claim 1, wherein the scanning head is moved by a milling head moving unit that moves the milling head.
前記制御部は、前記走査ヘッドが前記照射平面に最も近い照射高さに位置する場合の光ビームの照射位置及び集光径を設定値に補正する第1の補正データと、  The control unit includes first correction data for correcting an irradiation position and a focused diameter of a light beam to a set value when the scanning head is positioned at an irradiation height closest to the irradiation plane;
前記走査ヘッドが前記照射平面から最も遠い照射高さに位置する場合の光ビームの照射位置及び集光径を設定値に補正する第2の補正データとを有し、  Second correction data for correcting the irradiation position and the focused diameter of the light beam to a set value when the scanning head is positioned at the irradiation height farthest from the irradiation plane;
前記走査ヘッドが任意の照射高さに位置するときの補正データを、前記第1の補正データ及び第2の補正データから補間して算出し、この算出した補正データを用いて光ビームを照射することを特徴とする請求項1乃至請求項3のいずれか一項に記載の金属粉末焼結部品の製造方法。  Correction data when the scanning head is positioned at an arbitrary irradiation height is calculated by interpolating from the first correction data and the second correction data, and a light beam is irradiated using the calculated correction data. The method for producing a metal powder sintered part according to any one of claims 1 to 3, wherein:
前記走査ヘッドは、造形物表面部分には、前記照射平面に近い位置から光ビームを照射し、造形物中心部分には、前記照射平面から遠い位置から光ビームを照射することを特徴とする請求項1乃至請求項4のいずれか一項に記載の金属粉末焼結部品の製造方法。  The scanning head irradiates a surface of a model with a light beam from a position close to the irradiation plane, and irradiates a center of the model with a light beam from a position far from the irradiation plane. The manufacturing method of the metal-powder sintered component as described in any one of Claims 1 thru | or 4. 前記制御部は、予め定められた複数の照射高さから、光ビームの照射位置及び集光径を設定値に補正するそれぞれの照射高さに応じた補正データに基づいて前記走査ヘッドに光ビームを照射させることを特徴とする請求項1乃至請求項3のいずれか一項に記載の金属粉末焼結部品の製造方法。  The control unit corrects the light beam irradiation position and the condensing diameter to a set value from a plurality of predetermined irradiation heights based on correction data corresponding to the irradiation heights. The method of manufacturing a metal powder sintered part according to any one of claims 1 to 3, wherein the metal powder is sintered. 前記照射平面を複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に順に光ビームを照射させることを特徴とする請求項1乃至請求項6のいずれか一項に記載の金属粉末焼結部品の製造方法。  7. The irradiation plane is divided into a plurality of modeling regions, and a light beam is sequentially irradiated to modeling regions that are not adjacent to each other among the divided modeling regions. A method for producing a metal powder sintered part according to one item. 前記照射平面を、造形される造形物の中心部分、表面部分、及び前記中心部分と表面部分の間の中間部分の各々に対応する構成領域に区分し、これら区分された各構成領域をさらに複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に順に光ビームを照射させることを特徴とする請求項1乃至請求項6のいずれか一項に記載の金属粉末焼結部品の製造方法。  The irradiation plane is divided into constituent areas corresponding to the center part, the surface part, and the intermediate part between the center part and the surface part of the modeled object to be modeled, and a plurality of these divided constituent areas are further provided. 8. The light beam is irradiated in order to the modeling regions that are not adjacent to each other in each of the divided modeling regions. Manufacturing method of metal powder sintered parts.
JP2007279567A 2007-10-26 2007-10-26 Manufacturing method of sintered metal powder parts Expired - Fee Related JP4296355B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007279567A JP4296355B2 (en) 2007-10-26 2007-10-26 Manufacturing method of sintered metal powder parts
PCT/JP2008/069215 WO2009054445A1 (en) 2007-10-26 2008-10-23 Production device and production method of metal powder sintered component
US12/739,299 US20100233012A1 (en) 2007-10-26 2008-10-23 Manufacturing equipment and manufacturing method for metal powder sintered component
EP08842800.8A EP2221132B2 (en) 2007-10-26 2008-10-23 Production device and production method of metal powder sintered component
CN2008801132373A CN101835554B (en) 2007-10-26 2008-10-23 Production device and production method of metal powder sintered component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007279567A JP4296355B2 (en) 2007-10-26 2007-10-26 Manufacturing method of sintered metal powder parts

Publications (2)

Publication Number Publication Date
JP2009108350A JP2009108350A (en) 2009-05-21
JP4296355B2 true JP4296355B2 (en) 2009-07-15

Family

ID=40777157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007279567A Expired - Fee Related JP4296355B2 (en) 2007-10-26 2007-10-26 Manufacturing method of sintered metal powder parts

Country Status (1)

Country Link
JP (1) JP4296355B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857377B2 (en) * 2009-12-18 2012-01-18 株式会社アマダ 3D object manufacturing equipment
CN104428084B (en) * 2012-07-09 2016-08-31 松下知识产权经营株式会社 The manufacture method of three dimensional structure
CN109177153B (en) 2013-06-10 2021-03-30 瑞尼斯豪公司 Selective laser curing apparatus and method
GB201310398D0 (en) 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
JP6030597B2 (en) * 2014-04-04 2016-11-24 株式会社松浦機械製作所 Three-dimensional modeling apparatus and manufacturing method of three-dimensional shaped object
JP5795657B1 (en) * 2014-04-04 2015-10-14 株式会社松浦機械製作所 Additive manufacturing apparatus and additive manufacturing method
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
JP6483551B2 (en) * 2015-07-03 2019-03-13 株式会社アスペクト Powder bed fusion unit
JP6412838B2 (en) * 2015-08-03 2018-10-24 日新製鋼株式会社 Painted metal strip production facility

Also Published As

Publication number Publication date
JP2009108350A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP4296354B2 (en) Manufacturing method of sintered metal powder parts
JP4296355B2 (en) Manufacturing method of sintered metal powder parts
EP2221132A1 (en) Production device and production method of metal powder sintered component
JP4916392B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
KR102444026B1 (en) Multi-beam additive manufacturing
KR101950534B1 (en) Layered manufacturing device and method
EP3305459B1 (en) Laser welding method, laser welding conditions determining method, and laser welding system
CA3101121C (en) Three-dimensional shaping method and three-dimensional shaping apparatus
JP4770838B2 (en) Manufacturing method of three-dimensional shaped object
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
JP2017179575A (en) Three-dimensional molding device and three-dimensional molding method
JP4947588B2 (en) Manufacturing equipment for 3D shaped objects
CN111922339A (en) 3D printing method and device for powder bed
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP2001301045A (en) Rapid prototyping apparatus
US11872759B2 (en) Lamination molding apparatus
EP1671739B1 (en) Laser beam machine
JP6533817B2 (en) Modeling method and modeling object
JP2019203145A (en) Lamination molding method and lamination molding device for laminated molding
JP6887926B2 (en) Manufacturing method of three-dimensional structure and manufacturing equipment of three-dimensional structure
CN116786842A (en) 3D printing method for controlling specific orientation of crystal, control system and equipment thereof
KR100794062B1 (en) Laser material processing system, program creating device and laser material processing method
JP2024014443A (en) Manufacturing method for three-dimensional objects
JP2024037869A (en) Processing system and processing method

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

R150 Certificate of patent or registration of utility model

Ref document number: 4296355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees