JP2001301045A - Rapid prototyping apparatus - Google Patents

Rapid prototyping apparatus

Info

Publication number
JP2001301045A
JP2001301045A JP2000117318A JP2000117318A JP2001301045A JP 2001301045 A JP2001301045 A JP 2001301045A JP 2000117318 A JP2000117318 A JP 2000117318A JP 2000117318 A JP2000117318 A JP 2000117318A JP 2001301045 A JP2001301045 A JP 2001301045A
Authority
JP
Japan
Prior art keywords
data
rapid prototyping
product
axis
coordinate conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000117318A
Other languages
Japanese (ja)
Inventor
Akiyoshi Honda
暁良 本田
Katsunori Takeuchi
克典 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000117318A priority Critical patent/JP2001301045A/en
Publication of JP2001301045A publication Critical patent/JP2001301045A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PROBLEM TO BE SOLVED: To enhance the roundness or cylindricalness of a product having an axisymmetric shape or the like by enhancing the molding accuracy of an arcuate part. SOLUTION: A rapid prototyping apparatus forms a product having a predetermined shape by controlling the position of a laser irradiator 4. The laser irradiation is arranged in a state movable so as to relatively approach and separate from a table 7 supporting a shaped article in an z-axis direction, on the basis of three-dimensional coordinates data obtained by the coordinates transformation of the STL data of the shaped article formed on the basis of three-dimensional data, as a mean for the coordinates transformation of the STL data. A cylindrical coordinates transformation means for transforming the STL data to cylindrical coordinates data is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光造形法、溶融物
積層法及び粉末焼結法等に用いられるラピッドプロトタ
イピング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rapid prototyping apparatus used for an optical molding method, a melt lamination method, a powder sintering method, and the like.

【0002】[0002]

【従来の技術】光造形法(Stereolithography)に用いる
ラピッドプロトタイピング装置は、造形ヘッド部から可
視光レーザ等をスキャニングミラー或いはXYプロッタ
で光硬化性樹脂液の表面にスキャニング照射して一層分
の平板を生成し、前層との接合をレーザによる硬化深さ
を積層ピッチより大きくすることで行うようにしたもの
であり、成形物は光硬化性樹脂液中で順次降下する支持
テーブル面上に固定されている。
2. Description of the Related Art A rapid prototyping apparatus used in stereolithography is a method in which a visible light laser or the like is scanned and irradiated on the surface of a photocurable resin liquid from a modeling head by a scanning mirror or an XY plotter to form a flat plate. Is formed, and the bonding with the front layer is performed by making the curing depth by laser larger than the lamination pitch, and the molded product is fixed on the support table surface that descends sequentially in the photocurable resin liquid Have been.

【0003】溶融物積層法(Fused Deposition)に用い
るラピッドプロトタイピング装置は、加熱溶融状態の樹
脂をxyz駆動される造形ヘッド部(微細ノズル)から
押し出して支持テーブル上で3次元構造物を形成するよ
うにしたものであり、また、粉末焼結法(Laser Sinteri
ng) に用いるラピッドプロトタイピング装置は、樹脂粉
末を造形ヘッド部から照射された炭酸ガスレーザのスキ
ャニングにより溶融焼結させて平板を形成し、次層との
接合を、光造形法と同じく、粉末容器の支持テーブルを
積層ピッチ分降下させて次の粉末層を成形物上に載せ、
水平方向の接合と同時に溶融させることで行うようにし
たものである。粉末焼結法は、原料粉末として、ポリカ
ーボネイトやナイロン等を造形物に必要な特性に合わせ
て比較的簡単に交換できるため、一台の装置で多種の材
料を使い分けることができ、また、鋳物砂や金属粉に樹
脂をコーティングし、この層を溶融焼結することで、無
機材料や金属製の造形物も作成することができる。
A rapid prototyping apparatus used for a fused deposition method extrudes a resin in a heated and molten state from a shaping head (fine nozzle) driven by xyz to form a three-dimensional structure on a support table. The powder sintering method (Laser Sinteri
The rapid prototyping device used for ng) melts and sinters the resin powder by scanning with a carbon dioxide laser irradiated from the modeling head to form a flat plate, and joins the next layer with the powder container in the same way as in the stereolithography method. Lower the support table by the stacking pitch and place the next powder layer on the molded product,
This is performed by melting simultaneously with the joining in the horizontal direction. In the powder sintering method, as a raw material powder, polycarbonate, nylon, and the like can be exchanged relatively easily according to the characteristics required for a molded article, so that one apparatus can use a variety of materials, and casting sand can be used. By coating resin or metal powder with a resin and fusing and sintering this layer, it is possible to create an inorganic material or a metal model.

【0004】これらのラピッドプロトタイピング装置
は、光造形法及び粉末焼結法では、造形ヘッド部(レー
ザ照射部)がXY移動テーブルやミラー首振りでxy駆
動、支持テーブルがz昇降(造形中は降下のみ)とさ
れ、溶融物積層法では、造形ヘッド部(微細ノズル)が
XY移動テーブルでxy駆動及びz昇降、支持ーブルが
z固定とされており、いずれの場合も3次元CADデー
タ等を基に作成された造形物の断面輪郭データ(例えば
STLデータ)を入力データとし、造形ヘッド部及び支
持テーブルの相対的なx,y,zの位置を前記入力デー
タを座標変換して得られた直交座標データに基づいて制
御することにより、所定形状の製品を作成するようにし
ている。
In these rapid prototyping apparatuses, in the optical shaping method and the powder sintering method, the shaping head (laser irradiating part) is driven xy by an XY moving table or a mirror swing, and the support table is moved up and down z (during shaping). In the melt lamination method, the shaping head (fine nozzle) is XY-driven by the XY moving table, z is moved up and down, and the support table is fixed at z. In each case, three-dimensional CAD data etc. The cross-sectional contour data (for example, STL data) of the modeled object created based on the input data is used as input data, and the relative x, y, and z positions of the modeling head and the support table are obtained by performing coordinate conversion on the input data. By controlling based on the orthogonal coordinate data, a product having a predetermined shape is created.

【0005】[0005]

【発明が解決しようとする課題】上記従来のラピッドプ
ロトタイピング装置においては、造形ヘッド部及び支持
テーブルの相対的なx,y,zの位置をSTLデータ等
の入力データを座標変換して得られた直交座標データに
基づいて制御するようにしているため、例えば、直方体
形状、或いは直方体を組み合わせた形状を作成する場合
では、成形時の造形ヘッド部の動く方向と製品の輪郭形
状が一致するので成形精度に悪影響を及ぼすことはな
い。しかしながら、円筒や円錐等の軸対称形状等を作成
する場合では、円弧部分の成形で成形精度に悪影響を及
ぼすことがある。
In the above-mentioned conventional rapid prototyping apparatus, the relative x, y, and z positions of the modeling head and the support table can be obtained by performing coordinate conversion on input data such as STL data. For example, in the case of creating a rectangular parallelepiped shape or a shape combining a rectangular parallelepiped, the moving direction of the shaping head portion during molding matches the contour shape of the product. There is no adverse effect on the molding accuracy. However, in the case of forming an axially symmetric shape such as a cylinder or a cone, shaping of an arc portion may adversely affect the forming accuracy.

【0006】即ち、造形ヘッド部の位置制御はxyの座
標を追いながらとなるので、円弧を描く場合にぎざぎざ
の形状となり、しかも、xy方向の動きは円弧の角度に
よりxの変化量が多かったり、yの変化量が多かったり
など、基準円に対してあるパターンで形状のくずれを生
じるため、製品の真円度精度が劣化するばかりか、実際
の製品は積層して作成するので、円筒度の精度劣化を及
ぼすという不都合が生じる。
That is, since the position control of the modeling head portion follows the coordinates of xy, the shape becomes jagged when drawing an arc, and the movement in the xy direction has a large variation in x depending on the angle of the arc. , Y change amount, etc., the shape of a certain pattern is distorted with respect to a reference circle, so not only the accuracy of the roundness of the product is degraded, but also the actual product is formed by lamination, However, there is an inconvenience that the accuracy is deteriorated.

【0007】本発明はこのような不都合を解消するため
になされたものであり、円弧部分の成形精度を高めて軸
対称形状等の製品の真円度及び円筒度の精度向上を図る
ことができるラピッドプロトタイピング装置を提供する
ことを目的とする。
The present invention has been made in order to solve such inconveniences, and it is possible to improve the accuracy of forming a circular arc portion and improve the accuracy of roundness and cylindricity of a product having an axisymmetric shape or the like. It is an object to provide a rapid prototyping device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係るラピッドプロトタイピング装置は、
造形物を支持するテーブルに対してz軸方向に相対的に
接近離間移動可能に配置された造形ヘッド部の位置を、
3次元データを基に作成された造形物の断面輪郭データ
を座標変換して得られた3次元座標データに基づいて制
御することにより、所定形状の製品を作成するラピッド
プロトタイピング装置において、前記断面輪郭データを
座標変換する手段として、該断面輪郭データを円筒座標
データに変換する円筒座標変換手段を備えたことを特徴
とする。
To achieve the above object, a rapid prototyping apparatus according to claim 1 is provided.
The position of the modeling head portion arranged to be relatively close to and movable in the z-axis direction with respect to the table supporting the modeling object,
In a rapid prototyping apparatus for producing a product having a predetermined shape by controlling based on three-dimensional coordinate data obtained by performing coordinate conversion on cross-sectional contour data of a modeled object created based on three-dimensional data, As means for performing coordinate conversion on the contour data, there is provided a cylindrical coordinate conversion means for converting the cross-sectional contour data into cylindrical coordinate data.

【0009】請求項2に係るラピッドプロトタイピング
装置は、造形物を支持するテーブルに対してz軸方向に
相対的に接近離間移動可能に配置された造形ヘッド部の
位置を、3次元データを基に作成された造形物の断面輪
郭データを座標変換して得られた3次元座標データに基
づいて制御することにより、所定形状の製品を作成する
ラピッドプロトタイピング装置において、前記支持テー
ブル上の造形物をz軸周りに回転させる回転駆動手段を
備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a rapid prototyping apparatus which determines a position of a modeling head portion which is relatively close to and movable in a z-axis direction with respect to a table for supporting a modeling object based on three-dimensional data. In the rapid prototyping apparatus for producing a product having a predetermined shape by controlling based on three-dimensional coordinate data obtained by performing coordinate conversion on the cross-sectional contour data of the molded object created in the above, the molded object on the support table Is provided with a rotation driving means for rotating around the z-axis.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は本発明の第1の態様の実施の
形態であるラピッドプロトタイピング装置を説明するた
めの概略装置構成図、図2はレーザ照射部の詳細斜視
図、図3は本発明の第2の態様の実施の形態であるラピ
ッドプロトタイピング装置を説明するための概略装置構
成図、図4はレーザ照射部の詳細斜視図、図5は造形中
の製品を支えるサポートを説明するための説明図、図6
は本発明の他の実施の形態であるラピッドプロトタイピ
ング装置を説明するための概略装置構成図である。な
お、各実施の形態共に、光造形法に用いるラピッドプロ
トタイピング装置を例に採る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram illustrating the configuration of a rapid prototyping apparatus according to a first embodiment of the present invention, FIG. 2 is a detailed perspective view of a laser irradiation unit, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a schematic device configuration diagram for explaining a rapid prototyping device which is an embodiment of the aspect, FIG. 4 is a detailed perspective view of a laser irradiation unit, FIG. 5 is an explanatory diagram for explaining a support for supporting a product being formed, FIG.
FIG. 4 is a schematic device configuration diagram for describing a rapid prototyping device according to another embodiment of the present invention. In each of the embodiments, a rapid prototyping apparatus used in the optical shaping method is taken as an example.

【0011】まず、図1及び図2を参照して、本発明の
第1の態様の実施の形態であるラピッドプロトタイピン
グ装置から説明すると、図1及び図2において符号1は
UVレーザ、2はシャッタ、3は光ファイバー、4は造
形ヘッド部としてのレーザ照射部、41は回転角に応じ
てx軸方向にレーザビームを偏光させるx軸ガルバノミ
ラー、42はx軸ガルバノミラー41の回転を制御する
x軸偏光制御装置、43は回転角に応じてy軸方向にレ
ーザビームを偏光させるy軸ガルバノミラー、44はy
軸ガルバノミラー43の回転を制御するy軸偏光制御装
置、45は集束レンズ、5はレーザ照射部4のxy軸方
向の位置を制御するXY移動テーブル、6はレーザ照射
部4の下方に配置された光硬化性樹脂液の貯液槽、7は
貯液槽6内の光硬化性樹脂液中で成形物をz軸方向に昇
降自在に支持する支持テーブル、8は支持テーブル7の
z軸方向の位置を制御するz軸位置制御装置、10はx
軸偏光制御装置42、y軸偏光制御装置44、XY移動
テーブル5及びz軸位置制御装置8の駆動を制御するコ
ントローラである。
First, a description will be given of a rapid prototyping apparatus according to an embodiment of the first aspect of the present invention with reference to FIGS. 1 and 2. In FIGS. A shutter 3, an optical fiber 4, a laser irradiating unit 4 as a modeling head unit, an x-axis galvanometer mirror 41 for polarizing a laser beam in the x-axis direction according to a rotation angle, and a control unit 42 for controlling the rotation of the x-axis galvanometer mirror 41 An x-axis polarization controller 43 is a y-axis galvanometer mirror that polarizes the laser beam in the y-axis direction according to the rotation angle, and 44 is y
A y-axis polarization control device that controls the rotation of the axis galvanometer mirror 43, 45 is a focusing lens, 5 is an XY moving table that controls the position of the laser irradiation unit 4 in the xy-axis direction, and 6 is disposed below the laser irradiation unit 4. Is a liquid storage tank for the photocurable resin liquid, 7 is a support table for supporting the molded product in the photocurable resin liquid in the liquid storage tank 6 so as to be able to move up and down in the z-axis direction, and 8 is the z-axis direction of the support table 7 Position control device for controlling the position of
The controller controls the driving of the axis polarization controller 42, the y-axis polarization controller 44, the XY movement table 5, and the z-axis position controller 8.

【0012】コントローラ10は、この実施の形態で
は、3次元CADデータを基に作成された造形物の断面
輪郭データ(例えば造形対象物のサーフェイスデータで
あるSTLデータ)を入力データとしたもので、この入
力データを基に製品(造形対象物)のz軸方向の積層ピ
ッチ毎のスライスデータを作成するスライスデータ作成
手段11と、該スライスデータ作成手段11により作成
された積層ピッチ毎のスライスデータを円筒座標データ
(rcosθ, rsinθ,z) に変換して円筒座標系のNCプロ
グラムを生成する円筒座標変換手段12と、円筒座標変
換手段12によって得られた円筒座標系のNCプログラ
ムに基づいてx軸偏光制御装置42、y軸偏光制御装置
44、XY移動テーブル5及びz軸位置制御装置8の駆
動を制御する駆動制御手段13とを備える。
In this embodiment, the controller 10 uses, as input data, cross-sectional contour data of a modeled object created based on three-dimensional CAD data (for example, STL data which is surface data of a modeled object). Slice data creating means 11 for creating slice data for each stacking pitch in the z-axis direction of the product (modeling object) based on the input data, and slice data for each stacking pitch created by the slice data creating means 11 A cylindrical coordinate conversion means 12 for converting into cylindrical coordinate data (rcosθ, rsinθ, z) to generate a cylindrical coordinate NC program, and an x-axis based on the cylindrical coordinate NC program obtained by the cylindrical coordinate conversion means 12 Drive control means for controlling the driving of the polarization controller 42, the y-axis polarization controller 44, the XY movement table 5, and the z-axis position controller 8. Equipped with a 3 and.

【0013】円筒座標変換手段12によるスライスデー
タから円筒座標データへの変換は所定の処理プログラム
を実行することにより行う。この処理プログラムは独自
に開発したものを用いても良いし、汎用の市販ソフトを
用いても良い。駆動制御手段13は、XY移動テーブル
5のxy軸方向の各駆動装置に対する円筒座標データ
(rcosθ, rsinθ)並びにx軸偏光制御装置42及びy
軸偏光制御装置44に対する円筒座標データ(rcosθ,
rsinθ)を出力してレーザ照射部4のxy軸方向の位
置、及びレーザビームのxy軸方向の位置を制御すると
共に、z軸位置制御装置8に対する積層ピッチ毎(降下
ピッチ毎)の円筒座標データ(z)を出力して支持テー
ブル7のz軸方向の降下位置を制御する。これにより、
レーザ照射部4から貯液槽6内の光硬化性樹脂液の表面
にレーザビームをスキャニング照射して一層分の平板を
生成し、次いで、積層ピッチに応じて支持テーブル7を
降下させてレーザビームによる硬化深さを大きくし、前
層との接合を行う。
The conversion from slice data to cylindrical coordinate data by the cylindrical coordinate conversion means 12 is performed by executing a predetermined processing program. As this processing program, a program developed independently may be used, or general-purpose commercial software may be used. The drive control means 13 includes cylindrical coordinate data (rcosθ, rsinθ) for each drive device in the xy-axis direction of the XY movement table 5, and the x-axis polarization control device 42 and y
Cylindrical coordinate data (rcosθ,
rsinθ) to control the position of the laser irradiation unit 4 in the xy-axis direction and the position of the laser beam in the xy-axis direction, and to provide the z-axis position controller 8 with cylindrical coordinate data for each lamination pitch (for each descent pitch). (Z) is output to control the descent position of the support table 7 in the z-axis direction. This allows
The surface of the photocurable resin liquid in the liquid storage tank 6 is scanned and irradiated with a laser beam from the laser irradiation unit 4 to generate one flat plate, and then the support table 7 is lowered in accordance with the lamination pitch to thereby lower the laser beam. To increase the hardening depth and bond with the front layer.

【0014】そして、レーザビームによる光硬化性樹脂
液の表面のスキャニング照射及び積層ピッチに応じた支
持テーブル7の降下を積層数に応じて繰り返すことによ
り、所定形状の製品が作成される。上記の説明から明ら
かなように、この実施の形態では、レーザ照射部4及び
支持テーブル7の相対的なx,y,zの位置をSTLデ
ータ等の入力データを座標変換して得られた円筒座標デ
ータに基づいて制御するようにしているため、円弧部分
を滑らかに成形することができ、この結果、円弧部分の
成形精度が高まって軸対称形状等の製品の真円度及び円
筒度の精度向上を図ることができる。
[0014] By repeating the scanning irradiation of the surface of the photocurable resin liquid with the laser beam and the lowering of the support table 7 according to the lamination pitch in accordance with the number of laminations, a product having a predetermined shape is produced. As is clear from the above description, in this embodiment, the relative x, y, and z positions of the laser irradiation unit 4 and the support table 7 are converted into cylinders obtained by performing coordinate conversion on input data such as STL data. Since the control is performed based on the coordinate data, the arc portion can be formed smoothly, and as a result, the forming accuracy of the arc portion is increased, and the accuracy of the roundness and the cylindricity of the product such as the axisymmetric shape is increased. Improvement can be achieved.

【0015】次に、図3及び図4を参照して、本発明の
第2の態様の実施の形態であるラピッドプロトタイピン
グ装置を説明する。なお、上記第1の態様の実施の形態
と重複する部分については各図に同一符号を付して説明
を省略する。この実施の形態のラピッドプロトタイピン
グ装置は、x軸偏光制御装置42、y軸偏光制御装置4
4、XY移動テーブル5及びz軸位置制御装置8の駆動
を制御するコントローラ100の座標変換手段が直交座
標変換手段101である点、及び貯液槽6が回転駆動装
置(回転駆動手段)102によってz軸周り(中心軸周
り)に回転駆動される点で上記第1の態様の実施の形態
と相違する。
Next, a rapid prototyping apparatus according to a second embodiment of the present invention will be described with reference to FIGS. In addition, the same reference numerals are given to the respective portions in the same portions as those in the embodiment of the first aspect, and the description is omitted. The rapid prototyping device of this embodiment includes an x-axis polarization controller 42, a y-axis polarization controller 4
4. The point that the coordinate conversion means of the controller 100 that controls the driving of the XY movement table 5 and the z-axis position control device 8 is the orthogonal coordinate conversion means 101, and the liquid storage tank 6 is rotated by the rotation driving device (rotation driving device) 102. The third embodiment is different from the first embodiment in that it is driven to rotate around the z-axis (around the center axis).

【0016】直交座標変換手段101は、スライスデー
タ作成手段11により作成された積層ピッチ毎のスライ
スデータを直交座標データ(x, y,z) に変換して直
交座標系のNCプログラムを生成する。回転駆動装置1
02は貯液槽6の底部中央部に配置されており、この回
転駆動装置102によって貯液槽6をz軸周り(中心軸
周り)に回転駆動することにより、支持テーブル7上の
造形物(樹脂)がz軸周りに回転するようになってい
る。
The orthogonal coordinate conversion means 101 converts the slice data for each lamination pitch created by the slice data creation means 11 into orthogonal coordinate data (x, y, z) to generate an NC program of an orthogonal coordinate system. Rotary drive 1
Numeral 02 is disposed at the center of the bottom of the liquid storage tank 6, and the rotary driving device 102 drives the liquid storage tank 6 to rotate around the z-axis (around the central axis), thereby forming a model ( (Resin) rotates around the z-axis.

【0017】駆動制御手段13は、回転駆動装置102
のON・OFFタイミング及び回転速度等を制御すると
共に、直交座標変換手段101によって得られた直交座
標系のNCプログラムに基づいてx軸偏光制御装置4
2、y軸偏光制御装置44、XY移動テーブル5及びz
軸位置制御装置8の駆動を制御するようになっており、
回転駆動装置102によって貯液槽6をz軸周り(中心
軸周り)に回転駆動しつつ、XY移動テーブル5のxy
軸方向の各駆動装置に対する直交座標データ(x,y)
並びにx軸偏光制御装置42及びy軸偏光制御装置44
に対する直交座標データ(x,y)を出力してレーザ照
射部4及びレーザビームをx軸又はy軸方向に沿って移
動させると共に、z軸位置制御装置8に対する積層ピッ
チ毎(降下ピッチ毎)の直交座標データ(z)を出力し
て支持テーブル7のz軸方向の降下位置を制御する。
The drive control means 13 includes a rotary drive 102
ON / OFF timing, rotation speed, etc. of the X-axis polarization controller 4 based on the NC program of the orthogonal coordinate system obtained by the orthogonal coordinate converter 101.
2, y-axis polarization controller 44, XY moving table 5 and z
The drive of the shaft position control device 8 is controlled,
While rotating the liquid storage tank 6 around the z-axis (around the center axis) by the rotation drive device 102, the xy movement table 5
Cartesian coordinate data (x, y) for each driving device in the axial direction
And an x-axis polarization controller 42 and a y-axis polarization controller 44
To output the orthogonal coordinate data (x, y) to the laser irradiation unit 4 and the laser beam along the x-axis or y-axis direction, and to the z-axis position controller 8 for each lamination pitch (for each descent pitch). The rectangular coordinate data (z) is output to control the lowering position of the support table 7 in the z-axis direction.

【0018】これにより、レーザ照射部4から貯液槽6
内の光硬化性樹脂液の表面にレーザビームをスキャニン
グ照射して一層分の平板を生成し、次いで、積層ピッチ
に応じて支持テーブル7を降下させてレーザビームによ
る硬化深さを大きくし、前層との接合を行う。そして、
レーザビームによる光硬化性樹脂液の表面のスキャニン
グ照射及び積層ピッチに応じた支持テーブル7の降下を
積層数に応じて繰り返すことにより、所定形状の製品が
作成される。
As a result, the laser irradiation unit 4 moves the liquid storage tank 6
The surface of the photocurable resin liquid in the inside is irradiated with a laser beam by scanning to generate a flat plate for one layer, and then the support table 7 is lowered according to the lamination pitch to increase the curing depth by the laser beam. Bond with the layer. And
By repeating the scanning irradiation of the surface of the photocurable resin liquid by the laser beam and the descent of the support table 7 according to the lamination pitch according to the number of laminations, a product having a predetermined shape is produced.

【0019】このようにこの実施の形態では、支持テー
ブル7上の造形物(樹脂)をz軸周りに回転させつつ、
レーザ照射部4及びレーザビームをx軸又はy軸方向に
沿って移動させるようにしているので、軸対称形状の製
品を容易に作成することができ、しかも、円弧部分を滑
らかに成形することができるので、円弧部分の成形精度
が高まって軸対称形状等の製品の真円度及び円筒度の精
度向上を図ることができる。
As described above, in this embodiment, the object (resin) on the support table 7 is rotated about the z-axis while
Since the laser irradiation unit 4 and the laser beam are moved along the x-axis or y-axis direction, an axially symmetric product can be easily produced, and the arc portion can be smoothly formed. Since the molding accuracy of the arc portion is increased, the accuracy of the roundness and the cylindricity of a product having an axisymmetric shape or the like can be improved.

【0020】なお、本発明の実施の形態は、上記の例に
限定されるものではなく、種々の変形が可能である。例
えば、上記第2の態様の実施の形態において、コントロ
ーラ100の直交座標変換手段101を上記第1の態様
の実施の形態で採用した円筒座標変換手段12に変更し
てもよい。このような構成を採用することにより、図5
に示すように、製品200の底部形状が不安定な場合等
に成形中の製品形状を保つ(支える)サポート201の
形状を容易に同心円筒をベースとしたものにすることが
できるため、軸対称形状の製品をバランスよく支えるこ
とができ、しかも、サポート201を外した後に生じる
製品200のバランスの崩れや残留応力による変形を小
さくすることができるので、真円度、円筒度の崩れが小
さくなって最終製品の精度向上に寄与することができ
る。
The embodiment of the present invention is not limited to the above example, and various modifications are possible. For example, in the embodiment of the second aspect, the rectangular coordinate conversion means 101 of the controller 100 may be changed to the cylindrical coordinate conversion means 12 employed in the embodiment of the first aspect. By adopting such a configuration, FIG.
As shown in (1), since the shape of the support 201 that maintains (supports) the product shape during molding when the bottom shape of the product 200 is unstable can be easily made based on a concentric cylinder, it is axisymmetric. It is possible to support the shaped product in a well-balanced manner, and furthermore, it is possible to reduce the imbalance and the deformation due to the residual stress of the product 200 after the support 201 is removed, so that the roundness and the cylindricity are reduced. Thus, the accuracy of the final product can be improved.

【0021】また、上記第1又は第2の態様の実施の形
態において、コントローラ10又は100に代えて、円
筒座標変換手段12及び直交座標変換手段101の両方
の座標変換手段を備えたコントローラを採用するように
してもよい。図6に、上記第2の態様の実施の形態に採
用したコントローラ100を円筒座標変換手段12及び
直交座標変換手段101の両方の座標変換手段を備えた
コントローラ300に変更した場合の例を示す。この場
合、製品の形状に応じて、円筒座標データを用いるか、
或いは直交座標データを用いるかを切替手段301によ
って選択し、選択した所望の座標データに基づいて製品
を作成する。切替手段301はキーボードやマウス等の
操作により、スライスデータ作成手段11により作成さ
れた積層ピッチ毎のスライスデータを円筒座標変換手段
12又は直交座標変換手段101に出力する。
Further, in the embodiment of the first or second aspect, a controller having both cylindrical coordinate converting means 12 and rectangular coordinate converting means 101 is employed instead of the controller 10 or 100. You may make it. FIG. 6 shows an example in which the controller 100 employed in the embodiment of the second aspect is changed to a controller 300 having both cylindrical coordinate conversion means 12 and rectangular coordinate conversion means 101. In this case, depending on the shape of the product, use cylindrical coordinate data,
Alternatively, the switching means 301 selects whether to use orthogonal coordinate data, and creates a product based on the selected desired coordinate data. The switching unit 301 outputs slice data for each lamination pitch created by the slice data creating unit 11 to the cylindrical coordinate transforming unit 12 or the orthogonal coordinate transforming unit 101 by operating a keyboard, a mouse, or the like.

【0022】更に、上記各実施の形態では、3次元CA
Dデータを基に作成された造形物のSTLデータを入力
データとしているが、例えばSTLデータの出力機能を
持たないグラフィックワークステーション等の場合は、
3次元描写データを中間フォーマットとしてDXF,I
GES或いはSTEPデータに変換し、この変換データ
を専用のコンピュータでSTLデータに変換してラピッ
ドプロトタイピング装置に出力するか、又はラピッドプ
ロトタイピング装置内でSTLデータに変換するように
してもよい。
Further, in each of the above embodiments, the three-dimensional CA
The STL data of the modeled object created based on the D data is used as the input data. For example, in the case of a graphic workstation or the like that does not have an STL data output function,
DXF, I using 3D rendering data as intermediate format
The data may be converted into GES or STEP data, and the converted data may be converted into STL data by a dedicated computer and output to a rapid prototyping device, or may be converted into STL data in a rapid prototyping device.

【0023】更に、上記各実施の形態では、光造形法に
用いるラピッドプロトタイピング装置を例に採ったが、
これに限定されず、溶融物積層法、粉末焼結法或いは切
削加工に用いるラピッドプロトタイピング装置に本発明
を適用してもよいのは勿論である。
Further, in each of the above-described embodiments, the rapid prototyping apparatus used in the stereolithography method is taken as an example.
The present invention is not limited to this, and it goes without saying that the present invention may be applied to a rapid prototyping apparatus used for a melt lamination method, a powder sintering method, or a cutting process.

【0024】[0024]

【発明の効果】上記の説明から明らかなように、本発明
によれば、円弧部分の成形精度を高めて軸対称形状等の
製品の真円度及び円筒度の精度向上を図ることができる
という効果が得られる。
As is apparent from the above description, according to the present invention, it is possible to improve the precision of the circularity and cylindricity of products having an axisymmetric shape or the like by increasing the molding accuracy of the arc portion. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の態様の実施の形態であるラピッ
ドプロトタイピング装置を説明するための概略装置構成
図である。
FIG. 1 is a schematic device configuration diagram illustrating a rapid prototyping device according to an embodiment of a first aspect of the present invention.

【図2】レーザ照射部の詳細斜視図である。FIG. 2 is a detailed perspective view of a laser irradiation unit.

【図3】本発明の第2の態様の実施の形態であるラピッ
ドプロトタイピング装置を説明するための概略装置構成
図である。
FIG. 3 is a schematic configuration diagram illustrating a rapid prototyping apparatus according to a second embodiment of the present invention;

【図4】レーザ照射部の詳細斜視図である。FIG. 4 is a detailed perspective view of a laser irradiation unit.

【図5】造形中の製品を支えるサポートを説明するため
の説明図、
FIG. 5 is an explanatory diagram for explaining a support for supporting a product being formed,

【図6】本発明の他の実施の形態であるラピッドプロト
タイピング装置を説明するための概略装置構成図であ
る。
FIG. 6 is a schematic device configuration diagram for explaining a rapid prototyping device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…UVレーザ 2…シャッタ 3…光ファイバー 4…レーザ照射部(造形ヘッド部) 5…XY移動テーブル 6…光硬化性樹脂液の貯液槽 7…支持テーブル 8…z軸位置制御装置 10,100,300…コントローラ 11…スライスデータ作成手段 12…円筒座標変換手段 13…駆動制御手段 101…直交座標変換手段 102…回転駆動装置(回転駆動手段) 200…製品 201…サポート DESCRIPTION OF SYMBOLS 1 ... UV laser 2 ... Shutter 3 ... Optical fiber 4 ... Laser irradiation part (modeling head part) 5 ... XY moving table 6 ... Reservoir for photocurable resin liquid 7 ... Support table 8 ... Z-axis position control device 10,100 , 300 ... Controller 11 ... Slice data creation means 12 ... Cylindrical coordinate conversion means 13 ... Drive control means 101 ... Cartesian coordinate conversion means 102 ... Rotation driving device (rotation driving means) 200 ... Product 201 ... Support

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 造形物を支持するテーブルに対してz軸
方向に相対的に接近離間移動可能に配置された造形ヘッ
ド部の位置を、3次元データを基に作成された造形物の
断面輪郭データを座標変換して得られた3次元座標デー
タに基づいて制御することにより、所定形状の製品を作
成するラピッドプロトタイピング装置において、 前記断面輪郭データを座標変換する手段として、該断面
輪郭データを円筒座標データに変換する円筒座標変換手
段を備えたことを特徴とするラピッドプロトタイピング
装置。
1. A position of a modeling head portion which is relatively movable in a z-axis direction with respect to a table for supporting a modeling object, and a cross-sectional profile of the modeling object created based on three-dimensional data. In a rapid prototyping apparatus that creates a product having a predetermined shape by controlling based on three-dimensional coordinate data obtained by performing coordinate conversion on data, as a means for performing coordinate conversion on the cross-sectional contour data, A rapid prototyping device comprising a cylindrical coordinate conversion means for converting into cylindrical coordinate data.
【請求項2】 造形物を支持するテーブルに対してz軸
方向に相対的に接近離間移動可能に配置された造形ヘッ
ド部の位置を、3次元データを基に作成された造形物の
断面輪郭データを座標変換して得られた3次元座標デー
タに基づいて制御することにより、所定形状の製品を作
成するラピッドプロトタイピング装置において、 前記支持テーブル上の造形物をz軸周りに回転させる回
転駆動手段を備えたことを特徴とするラピッドプロトタ
イピング装置。
2. The position of a shaping head portion that is relatively movable in the z-axis direction with respect to a table that supports the shaping object, and the position of the shaping head section is based on three-dimensional data. In a rapid prototyping apparatus for creating a product having a predetermined shape by controlling based on three-dimensional coordinate data obtained by performing coordinate conversion on data, a rotary drive for rotating a modeled object on the support table around the z-axis. A rapid prototyping device, characterized by comprising means.
JP2000117318A 2000-04-19 2000-04-19 Rapid prototyping apparatus Pending JP2001301045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117318A JP2001301045A (en) 2000-04-19 2000-04-19 Rapid prototyping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117318A JP2001301045A (en) 2000-04-19 2000-04-19 Rapid prototyping apparatus

Publications (1)

Publication Number Publication Date
JP2001301045A true JP2001301045A (en) 2001-10-30

Family

ID=18628650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117318A Pending JP2001301045A (en) 2000-04-19 2000-04-19 Rapid prototyping apparatus

Country Status (1)

Country Link
JP (1) JP2001301045A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304148C (en) * 2001-11-22 2007-03-14 北京工业大学 Selective laser evaporating-sintering technology and system for quickly shaping thin wall with powder material
WO2009054445A1 (en) * 2007-10-26 2009-04-30 Panasonic Electric Works Co., Ltd. Production device and production method of metal powder sintered component
CN104190934A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Method for preparing laser rapid forming niobium tungsten alloy spraying pipe
CN104190933A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Method for preparing laser rapid forming rhenium spraying pipe
CN104190932A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Manufacturing method of ceramic matrix composite nozzle throat nickel alloy strengthening ring
EP2857139A1 (en) * 2013-09-04 2015-04-08 MTU Aero Engines GmbH Device for laser processing materials with a laser head movable along a space direction
DE102014210201A1 (en) * 2014-05-28 2015-12-03 Schaeffler Technologies AG & Co. KG Bearing arrangement and associated manufacturing method
JP2016135581A (en) * 2015-01-25 2016-07-28 泰 金田 Three-dimensional print method for creating minute irregularities on three-dimensional body surface
JP2016522761A (en) * 2013-04-26 2016-08-04 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Selective laser melting system
EP3219472A1 (en) 2016-03-17 2017-09-20 Ricoh Company, Ltd. Information processing apparatus, modeling system, and information processing method
CN107214410A (en) * 2017-08-02 2017-09-29 北京航空航天大学 A kind of rotary large thin-wall ring increasing material manufacturing device
WO2018096963A1 (en) * 2016-11-24 2018-05-31 ソニー株式会社 Information processing device, shaping apparatus, information processing method, and program
JP2020019271A (en) * 2018-07-24 2020-02-06 株式会社リコー Molding apparatus and molding method of three-dimensional object

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304148C (en) * 2001-11-22 2007-03-14 北京工业大学 Selective laser evaporating-sintering technology and system for quickly shaping thin wall with powder material
WO2009054445A1 (en) * 2007-10-26 2009-04-30 Panasonic Electric Works Co., Ltd. Production device and production method of metal powder sintered component
EP2221132B1 (en) 2007-10-26 2016-11-30 Panasonic Intellectual Property Management Co., Ltd. Production device and production method of metal powder sintered component
JP2016522761A (en) * 2013-04-26 2016-08-04 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Selective laser melting system
US10576581B2 (en) 2013-09-04 2020-03-03 MTU Aero Engines AG Apparatus for laser materials processing
US10201875B2 (en) 2013-09-04 2019-02-12 MTU Aero Engines AG Apparatus for laser materials processing
EP2857139A1 (en) * 2013-09-04 2015-04-08 MTU Aero Engines GmbH Device for laser processing materials with a laser head movable along a space direction
US9839977B2 (en) 2013-09-04 2017-12-12 MTU Aero Engines AG Apparatus for laser materials processing
US10161457B2 (en) 2014-05-28 2018-12-25 Schaeffler Technologies AG & Co. KG Bearing arrangement and corresponding production process
DE102014210201A1 (en) * 2014-05-28 2015-12-03 Schaeffler Technologies AG & Co. KG Bearing arrangement and associated manufacturing method
CN104190932A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Manufacturing method of ceramic matrix composite nozzle throat nickel alloy strengthening ring
CN104190933A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Method for preparing laser rapid forming rhenium spraying pipe
CN104190934A (en) * 2014-09-10 2014-12-10 太仓派欧技术咨询服务有限公司 Method for preparing laser rapid forming niobium tungsten alloy spraying pipe
JP2016135581A (en) * 2015-01-25 2016-07-28 泰 金田 Three-dimensional print method for creating minute irregularities on three-dimensional body surface
EP3219472A1 (en) 2016-03-17 2017-09-20 Ricoh Company, Ltd. Information processing apparatus, modeling system, and information processing method
US10324454B2 (en) 2016-03-17 2019-06-18 Ricoh Company, Ltd. Information processing apparatus, modeling system, and information processing method
WO2018096963A1 (en) * 2016-11-24 2018-05-31 ソニー株式会社 Information processing device, shaping apparatus, information processing method, and program
JP2018083354A (en) * 2016-11-24 2018-05-31 ソニー株式会社 Information processor, shaping device, information processing method, and program
US11155038B2 (en) 2016-11-24 2021-10-26 Sony Corporation Information processing apparatus, modeling apparatus, and information processing method
CN107214410A (en) * 2017-08-02 2017-09-29 北京航空航天大学 A kind of rotary large thin-wall ring increasing material manufacturing device
JP2020019271A (en) * 2018-07-24 2020-02-06 株式会社リコー Molding apparatus and molding method of three-dimensional object
JP7183763B2 (en) 2018-07-24 2022-12-06 株式会社リコー Three-dimensional object modeling apparatus and modeling method

Similar Documents

Publication Publication Date Title
US6861613B1 (en) Device and method for the preparation of building components from a combination of materials
CN107428082B (en) Automatic generation method and control instruction generation unit for control instruction of generation type layer-by-layer construction device
CN101885063B (en) Laser cladding forming device and laser cladding forming method of metal part
KR100271208B1 (en) Selective infiltration manufacturing method and apparatus
US20170252806A1 (en) Additive manufacturing system and method for additive manufacturing of components
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
US6207097B1 (en) Method for manufacturing physical objects using precision stereolithography
JP4661551B2 (en) Three-dimensional shaped object manufacturing equipment
EP1151849A1 (en) Forming three-dimensional objects by controlled photocuring
JP6384826B2 (en) Three-dimensional additive manufacturing apparatus, three-dimensional additive manufacturing method, and three-dimensional additive manufacturing program
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
KR20160109866A (en) Apparatus and method for 3d printing
JP2001301045A (en) Rapid prototyping apparatus
CN106182772B (en) Multiple material rapid prototyping molding machine and method
JP2009108350A (en) Method of manufacturing metal powder sintered component
CN205058616U (en) Single three -dimensional solidification system of printing in laser instrument duplex position
Rooks Rapid tooling for casting prototypes
CN108025362B (en) Control device and method for controlling deflection of laser beam
JPH04169222A (en) Optical solidifying and shaping apparatus
JP7466504B2 (en) SYSTEM AND METHOD FOR ADDITIVELY MANUFACTURING COMPONENTS USING MULTIPLE MANU
KR20160116167A (en) Forming device for three-dimensional structure and forming method thereof
Tsao et al. Freeform additive manufacturing by vari-directional vari-dimensional material deposition
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2018065366A (en) A method for setting the scan trajectory range of a 3d printer by using a laser
KR20170096504A (en) Apparatus for printing 3-dimensonal object based on laser scanner for large area using machining