JP2008306614A - トランスインピーダンスアンプ - Google Patents

トランスインピーダンスアンプ Download PDF

Info

Publication number
JP2008306614A
JP2008306614A JP2007153590A JP2007153590A JP2008306614A JP 2008306614 A JP2008306614 A JP 2008306614A JP 2007153590 A JP2007153590 A JP 2007153590A JP 2007153590 A JP2007153590 A JP 2007153590A JP 2008306614 A JP2008306614 A JP 2008306614A
Authority
JP
Japan
Prior art keywords
circuit
transimpedance amplifier
phase
signal
voltage signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007153590A
Other languages
English (en)
Inventor
Koichi Sano
公一 佐野
Makoto Nakamura
誠 中村
Yoshikazu Muto
美和 武藤
Satoshi Tsunashima
聡 綱島
Koichi Murata
浩一 村田
Masatoshi Jiyuubayashi
正俊 十林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2007153590A priority Critical patent/JP2008306614A/ja
Publication of JP2008306614A publication Critical patent/JP2008306614A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

【課題】光電気変換した電流信号を電圧信号に変換増幅する際に信号歪みが少ないトランスインピーダンスアンプを提供する。
【解決手段】トランスインピーダンスアンプコア210にて受光素子10からの入力電流をインピーダンス変換して増幅した単相の電圧信号としてインタフェース回路230を介して単相−差動変換回路220の正相入力端子側に入力する一方、トランスインピーダンスアンプコア210と出力インピーダンスを同一の値に設定したリファレンス回路240からの参照電圧をインタフェース回路230を介して単相−差動変換回路220の逆相入力端子側に入力することにより、正相・逆相の差動電圧信号を出力する。リファレンス回路240を、トランスインピーダンスアンプコア210と同一の回路構成とし、入力端子を開放した状態とし、かつ、リファレンス回路240から出力される高周波数成分を減衰させるフィルタ回路241を備えた構成とする。
【選択図】図2

Description

本発明は、トランスインピーダンスアンプに関し、特に、光受信回路において、受光素子が光電気変換した電流信号を受信して電圧信号に変換増幅する際の信号歪みの低減が可能なトランスインピーダンスアンプに関する。
高速データ伝送を可能とする光伝送システム、光インターコネクション、パッシブ・オプティカル・ネットワーク(PON)システム等の光伝送回路については、特許文献1,2,3にも記載されているように、光信号を電気信号に変換する光受信回路において、トランスインピーダンスアンプが用いられる。ここで、トランスインピーダンスアンプは、受信した光信号を、受光素子により光電気変換して得られた入力電流Iinを入力として、帰還抵抗の値に比例するトランスインピーダンス利得によって、インピーダンス変換して出力電圧信号Voutに変換して出力するものである。
トランスインピーダンスアンプは、一般的に、入力は単相であるが、高周波数領域で安定した動作を確保すべく、出力電圧信号Voutを正相と逆相との両相の差動出力電圧信号とするために、トランスインピーダンスアンプ内で単相−差動変換を行う必要がある。
図6に、従来のトランスインピーダンスアンプ300の基本構成を示す。このトランスインピーダンスアンプ300は、トランスインピーダンスアンプコア310と単相−差動変換回路320とインタフェース回路330とによって構成されている。トランスインピーダンスアンプコア310は、受光素子10から入力されてくる電流信号をインピーダンス変換して電圧信号として出力する際に、当該トランスインピーダンスアンプコア310の出力を入力端子側に帰還抵抗を介して帰還することにより、帰還抵抗の値に比例するトランスインピーダンス利得の電圧信号(単相)を出力する。
インタフェース回路330は、トランスインピーダンスアンプコア310からの電圧信号の入力を、容量結合とするとともに、単相−差動変換回路320へのDCバイアスを設定するために、容量332と、電源−GND間を抵抗分割したDCバイアス回路331とを用いて構成されている。
ここで、単相−差動変換回路320の正相入力側は、トランスインピーダンスアンプコア310と容量332を介して接続したインタフェース回路330の接続点と接続され、単相−差動変換回路320の逆相入力側は、インタフェース回路330の抵抗分割により設定された参照電圧に接続される構成としている。
つまり、図6に示す従来のトランスインピーダンスアンプ300においては、受光素子10からの電流信号Iinは、トランスインピーダンスアンプコア310により帰還抵抗の値に比例する利得に増幅した単相の電圧信号に変換した後、インタフェース回路330を介して、単相−差動変換回路320の正相入力側に入力することによって、逆相入力側に入力されている参照電圧と比較された差動動作を行わせて、正相電圧信号と逆相電圧信号との両相電圧信号からなる差動出力電圧信号Voutとして出力される。
次に、図7には、図6とは異なる従来のトランスインピーダンスアンプ400の基本構成を示している。このトランスインピーダンスアンプ400は、図6のトランスインピーダンスアンプ300の単相−差動変換回路320の逆相入力側を接続するインタフェース回路330の接続点とグラウンドGND(アース)等の低インピーダンス電位源との間に容量410をさらに接続した構成としている。
つまり、図7に示す従来のトランスインピーダンスアンプ400においては、図6のトランスインピーダンスアンプ300と同様の動作を行って、受光素子10からの入力電流信号Iinを帰還抵抗の値に比例した両相の差動出力電圧信号Voutとして出力するが、単相−差動変換回路320の逆相入力側に接続するインタフェース回路330の接続点に、高周波数成分を除去するための容量410をさらに接続することによって、差動動作を行う際の線形動作を維持させ、差動出力電圧信号Voutの波形歪みを抑制するようにしている。
特開平11−205051号公報 特開平06−232655号公報 特開2002−76793号公報
図8に、図6の回路構成のトランスインピーダンスアンプ300の利得特性を示している。なお、図8には、トランスインピーダンスアンプ300からの差動出力電圧信号の振幅が小さい領域つまり小信号時におけるシミュレーション結果を示している。
トランスインピーダンスアンプ300の小信号特性は、図8に示すように、高周波数領域になるにつれて、利得が劣化していくのみならず、差動出力電圧信号の正相・逆相のそれぞれの利得特性も異なったものになってしまう。これは、単相−差動変換回路320の逆相に入力される参照電圧レベルが、高周波数領域になるにつれて、トランスインピーダンスアンプコア310からの電圧信号の直流成分との差分が大きくなっていくためである。したがって、このままの状態で、差動出力電圧信号を後段の増幅回路(ポストアンプ等)で増幅した場合、大きな波形歪みを引き起こしてしまうという問題がある。
図9、図10には、図7の回路構成のトランスインピーダンスアンプ400の利得特性、群遅延特性をそれぞれ示している。図9、図10についても、トランスインピーダンスアンプ400からの差動出力電圧信号の振幅が小さい小信号時におけるシミュレーション結果を示している。
容量410を単相−差動変換回路320の逆相入力側にさらに接続した図7のトランスインピーダンスアンプ400の場合、図9に示すように、図6のトランスインピーダンスアンプ300に比し、利得特性に関する小信号特性としては、利得の劣化や正相・逆相の利得のずれを抑制することができ、大幅な改善を見込むことができる。
しかしながら、単相−差動変換回路320の逆相入力側を、容量410を介してグラウンドGND(アース)に接地したとしても、トランスインピーダンスアンプ400のIC内のグラウンドGND(アース)は、実際には、ボンディングワイヤ等のインダクタンス成分の影響を受けて、広い周波数帯域において、必ずしも低インピーダンスが確保されているとはいえない。さらには、単相−差動変換回路320側から見て、トランスインピーダンスアンプコア310が接続される正相入力側と容量410が接続される逆相入力側との両者の入力インピーダンスの値が異なっている。この結果、利得の周波数特性としてピーキングが生じてしまう。
周波数特性にピーキングが発生するということは、位相が回転するということを意味しており、図10の群遅延特性に示すように、位相回転の増大により群遅延偏差が大きくなってしまう。
一般に、トランスインピーダンスアンプにより電圧信号として出力する信号が、NRZ(Non−Return−to−Zero)信号フォーマットのデジタル光通信に適用される場合であれば、信号歪みや群遅延偏差は、或る程度は許容される。しかし、アナログ光通信等の場合のように、入出力線形性・信号波形再現性が強く要求されるアプリケーションに適用される場合には、信号歪みは大きな課題となる。特に、FM信号を扱う場合は、図10のように、群遅延偏差が大きいということは、復調特性を大きく劣化させる原因となり、信号歪みが増大し、信号品質上の問題がある。
本発明は、かくのごとき問題に鑑みてなされたものであり、本発明が解決しようとする課題は、光電気変換した電流信号を電圧信号に変換増幅する際の信号歪みが少ないトランスインピーダンスアンプを提供することにある。
本発明は、前述の課題を解決するために、以下のごとき各技術手段から構成されている。
第1の技術手段は、入力端子に入力された電流信号をインピーダンス変換して電圧信号として出力するトランスインピーダンスアンプコアと、出力インピーダンスが前記トランスインピーダンスアンプコアの出力インピーダンスと同じ値に設定され、前記電圧信号と比較するための参照電圧を出力するリファレンス回路と、単相の前記電圧信号を入力して差動電圧信号に変換して出力する単相−差動変換回路と、前記トランスインピーダンスアンプコアおよび前記リファレンス回路と前記単相−差動変換回路とを接続する、入力が容量結合のインタフェース回路と、を少なくとも備えたトランスインピーダンスアンプであって、前記単相−差動変換回路の正相入力側が、前記トランスインピーダンスアンプコアと接続した前記インタフェース回路の接続点に接続され、前記単相−差動変換回路の逆相入力側が、前記リファレンス回路と接続した前記インタフェース回路の接続点に接続されることを特徴とする。
第2の技術手段は、前記第1の技術手段に記載のトランスインピーダンスアンプにおいて、前記リファレンス回路は、前記トランスインピーダンスアンプコアと同一の回路構成であり、かつ、入力端子は開放され、かつ、当該リファレンス回路から出力される前記参照電圧の高周波数成分を減衰させるフィルタ回路を備えていることを特徴とする。
第3の技術手段は、前記第2の技術手段に記載のトランスインピーダンスアンプにおいて、前記リファレンス回路に備えられた前記フィルタ回路が、当該リファレンス回路の入出力間に接続される容量で構成されることを特徴とする。
第4の技術手段は、前記第1ないし第3の技術手段のいずれかに記載のトランスインピーダンスアンプにおいて、前記トランスインピーダンスアンプコア、前記単相−差動変換回路、前記リファレンス回路を構成するトランジスタ素子が、バイポーラ・トランジスタまたは電界効果型トランジスタであることを特徴とする。
本発明のごときリファレンス回路を備えた回路構成からなるトランスインピーダンスアンプによれば、リファレンス回路の出力インピーダンスをトランスインピーダンスアンプコアと等しい値に設定することにより、信号歪みが少ない単相−差動変換回路を備えたトランスインピーダンスアンプを実現することができる。
さらに、リファレンス回路を、トランスインピーダンスアンプコアと同一の回路構成とするとともに、入力を開放とし、かつ、高周波数成分を減衰させるフィルタ回路を備えた構成とすることにより、外部変動(プロセス変動・温度変動・電圧変動)にも影響されにくく、信号歪みがより少ないトランスインピーダンスアンプを実現することができる。
以下に、本発明に係るトランスインピーダンスアンプの最良の実施形態について、その一例を、図面を参照しながら詳細に説明する。
(本発明の特徴)
本発明に係る実施形態の説明に先立って、本発明の特徴についてまず説明する。本発明は、高速データ伝送を行うための光受信回路に適用されるトランスインピーダンスアンプに関するものであり、受光素子が光電気変換した電流信号をインピーダンス変換増幅して正相・逆相の差動電圧信号として出力する際の、信号歪みの低減を可能とするものである。本発明に係るトランスインピーダンスアンプは、電流信号を電圧信号に変換増幅するトランスインピーダンスアンプコアと同じ値の出力インピーダンスを有するリファレンス回路を差動変換時の逆相入力側に備えることを特徴としている。
つまり、本発明に係るトランスインピーダンスアンプは、入力端子に入力された電流をインピーダンス変換して電圧信号として出力するトランスインピーダンスアンプコアと、出力インピーダンスが前記トランスインピーダンスアンプコアの出力インピーダンスと同じ値に設定され、前記電圧信号と比較するための参照電圧を出力するリファレンス回路と、単相の前記電圧信号を正相・逆相の差動電圧信号に変換して出力する単相−差動変換回路と、前記トランスインピーダンスアンプコアおよび前記リファレンス回路と前記単相−差動変換回路とを接続する、入力が容量結合のインタフェース回路と、を少なくとも備え、前記単相−差動変換回路の正相入力側が、前記トランスインピーダンスアンプコアと接続した前記インタフェース回路の接続点に接続され、前記単相−差動変換回路の逆相入力側が、前記リファレンス回路と接続した前記インタフェース回路の接続点に接続されることを特徴としている。
なお、前記リファレンス回路が、前記トランスインピーダンスアンプコアと同一の回路構成であり、かつ、入力を開放し、かつ、当該リファレンス回路から出力される前記参照電圧の高周波数成分を減衰させるフィルタ回路を入出力間に容量を接続して構成とするようにしても良い。
また、以下の説明においては、前記トランスインピーダンスアンプコア、前記単相−差動変換回路、前記リファレンス回路を構成するトランジスタ素子として、バイポーラ・トランジスタを用いている場合について説明するが、本発明は、かかる場合のみに限らず、電界効果型トランジスタであっても良い。
かくのごとき本発明の特徴を有するトランスインピーダンスアンプとすることにより、信号歪みや群遅延偏差の小さな出力特性を有する電圧信号を得ることができ、トランスインピーダンスアンプを高周波信号やFM信号などのアナログ光通信分野に対しても、好適に適用することが可能になる。
(第1の実施形態)
図1に、本発明に係るトランスインピーダンスアンプにおける第1の実施形態の回路構成を示す。
図1に示すトランスインピーダンスアンプ100は、光伝送システム、アナログ光通信、FM光通信等の光伝送回路において、受光素子10で受信した光ファイバからの光信号を電気信号に変換する光受信回路内で用いられる。
図1に示すように、トランスインピーダンスアンプ100は、主な回路構成として、トランスインピーダンスアンプコア110、単相−差動変換回路120、インタフェース回路130、トランスインピーダンスアンプコア110と同じ値の出力インピーダンスを有するリファレンス回路140を少なくとも備えている。
トランスインピーダンスアンプコア110は、入力端子が受光素子10の出力端子に接続されていて、受光素子10から出力された入力電流信号Iinをインピーダンス変換して電圧信号(単相)として出力する際に、当該トランスインピーダンスアンプコア110の出力を入力端子側に帰還抵抗を介して帰還することにより、帰還抵抗の値に比例するトランスインピーダンス利得によって信号増幅を行い、入力電流Iinに応じて変化する出力電圧信号をインタフェース回路130に対して出力する。
リファレンス回路140は、インタフェース回路130を介して後段に接続した単相−差動変換回路120において、トランスインピーダンスアンプコア110からの出力電圧信号と比較するための参照電圧を出力するものであり、本リファレンス回路140では、インタフェース回路130の入力側つまり当該リファレンス回路140の出力端子側から観測した当該リファレンス回路140の出力インピーダンスが、トランスインピーダンスアンプコア110の出力端子側から観測した当該トランスインピーダンスアンプコア110の出力インピーダンスと同じ値に設定されている。
インタフェース回路130は、入力が容量結合の構成からなり、トランスインピーダンスアンプコア110と単相−差動変換回路120の正相入力側とを、また、リファレンス回路140と単相−差動変換回路120の逆相入力側とを、それぞれ、容量132を介して接続するものであり、さらに、単相−差動変換回路120の正相入力側および逆相入力側の入力DCバイアスを設定するために、電源−グラウンドGND(アース)間を抵抗分割等により電圧分割するDCバイアス回路131を備えている。
単相−差動変換回路120は、インタフェース回路130の差動出力端子それぞれが正相・逆相の差動入力端子に接続されており、当該単相−差動変換回路120の差動入力端子に入力された電圧を差動増幅して、単相−差動変換回路120の差動出力端子から増幅した差動出力電圧信号として出力する回路である。すなわち、単相−差動変換回路120の正相入力側は、トランスインピーダンスアンプコア110と容量132を介して接続したインタフェース回路130の接続点と接続され、単相−差動変換回路120の逆相入力側は、リファレンス回路140と容量132を介して接続したインタフェース回路130の接続点と接続されており、インタフェース回路130の接続点それぞれは、DCバイアス回路131により、入力DCバイアスが調整されている。
以上の構成からなる図1に示すトランスインピーダンスアンプ100においては、受光素子10からの電流信号Iinは、トランスインピーダンスアンプコア110により帰還抵抗の値に比例する利得に増幅した単相の電圧信号に変換した後、インタフェース回路130を介して、単相−差動変換回路120の正相入力側に入力することによって、逆相入力側に入力されているリファレンス回路140からの出力電圧すなわち参照電圧と比較された差動動作が行われる結果、正相電圧信号と逆相電圧信号との両相電圧信号からなる差動電圧信号が差動出力電圧信号Voutとして出力される。
ここで、図1に示すトランスインピーダンスアンプ100においては、前述のように、リファレンス回路140の出力インピーダンスの値が、トランスインピーダンスアンプコア110の出力インピーダンスと同一の値に設定されている。
したがって、単相−差動変換回路120の差動動作時において、リファレンス回路140とインタフェース回路130からの参照電圧の電圧レベルが、トランスインピーダンスアンプコア110からの電圧信号の信号レベルの直流成分から大きく変動することを抑制することができ、利得特性の劣化が少ない正相・逆相の電圧信号を得ることができる。而して、アナログ光通信などの入出力信号の線形性、信号波形の再現性を強く要求されるようなアプリケーションにも適用可能な差動出力電圧信号を得ることができる。
(第2の実施形態)
図2に、本発明に係るトランスインピーダンスアンプにおける第2の実施形態の回路構成を示す。
図2に示すトランスインピーダンスアンプ200も、図1のトランスインピーダンスアンプ100と同様、光伝送システム、アナログ光通信、FM光通信等の光伝送回路において、受光素子10で受信した光ファイバからの光信号を電気信号に変換する光受信回路内で用いられる。
図2に示すように、トランスインピーダンスアンプ200は、主な回路構成として、図1のトランスインピーダンスアンプ100と同様に、トランスインピーダンスアンプコア210、単相−差動変換回路220、インタフェース回路230、トランスインピーダンスアンプコア210と同じ値の出力インピーダンスを有するリファレンス回路240を少なくとも備えているが、図1のトランスインピーダンスアンプ100とは異なり、リファレンス回路240は、トランスインピーダンスアンプコア210と同一の回路構成で、かつ、入力端子が開放され、かつ、当該リファレンス回路240がインタフェース回路230に対して出力する電圧信号の高周波数成分を減衰させるフィルタ回路241を含んで構成されている。
トランスインピーダンスアンプコア210は、図1のトランスインピーダンスアンプコア110と同様、入力端子が受光素子10の出力端子に接続されていて、受光素子10から出力された入力電流信号Iinをインピーダンス変換して電圧信号(単相)として出力する際に、当該トランスインピーダンスアンプコア210の出力を入力端子側に帰還抵抗を介して帰還することにより、帰還抵抗の値に比例するトランスインピーダンス利得によって信号増幅を行い、入力電流Iinに応じて変化する出力電圧信号をインタフェース回路230に対して出力する。
リファレンス回路240は、図1のリファレンス回路140の場合と同様、インタフェース回路230を介して後段に接続した単相−差動変換回路220において、トランスインピーダンスアンプコア210からの出力電圧信号と比較するための参照電圧を出力するものであり、本リファレンス回路240においても、インタフェース回路230の入力側つまり当該リファレンス回路240の出力端子側から観測した当該リファレンス回路240の出力インピーダンスを、トランスインピーダンスアンプコア210の出力端子側から観測した当該トランスインピーダンスアンプコア210の出力インピーダンスと同じ値に設定される。
しかし、リファレンス回路240は、図1のリファレンス回路140とは異なり、入力端子が開放された、トランスインピーダンスアンプコア210と同じ回路構成とするとともに、さらに、当該リファレンス回路240には、当該リファレンス回路240がインタフェース回路230に対して出力する電圧信号つまり参照電圧の高周波数成分を減衰させるためのフィルタ回路241をさらに備えている。なお、フィルタ回路241は、図2に示す本実施形態においては、リファレンス回路240の入出力間に接続された容量によって実現している。
インタフェース回路230は、図1のインタフェース回路130と同様であり、入力が容量結合の構成からなり、トランスインピーダンスアンプコア210と単相−差動変換回路220の正相入力側とを、また、リファレンス回路240と単相−差動変換回路220の逆相入力側とを、それぞれ、容量232を介して接続するものであり、さらに、単相−差動変換回路220の正相入力側および逆相入力側の入力DCバイアスを設定するために、電源−グラウンドGND(アース)間を抵抗分割等により電圧分割するDCバイアス回路231を備えている。
単相−差動変換回路220は、図1の単相−差動変換回路120と同様、インタフェース回路230の差動出力端子それぞれが正相・逆相の差動入力端子に接続されており、当該単相−差動変換回路220の差動入力端子に入力された電圧を差動増幅して、単相−差動変換回路220の差動出力端子から増幅した差動出力電圧信号として出力する回路である。すなわち、単相−差動変換回路220の正相入力側は、トランスインピーダンスアンプコア210と容量232を介して接続したインタフェース回路230の接続点と接続され、単相−差動変換回路220の逆相入力側は、リファレンス回路240と容量232を介して接続したインタフェース回路230の接続点と接続されており、インタフェース回路230の接続点それぞれは、DCバイアス回路231により、入力DCバイアスが調整されている。
以上の構成からなる図2に示すトランスインピーダンスアンプ200においては、図1のトランスインピーダンスアンプ100と同様、受光素子10からの電流信号Iinは、トランスインピーダンスアンプコア210により帰還抵抗の値に比例する利得に増幅した単相の電圧信号に変換した後、インタフェース回路230を介して、単相−差動変換回路220の正相入力側に入力することによって、逆相入力側に入力されているリファレンス回路240からの出力電圧すなわち参照電圧と比較された差動動作が行われる結果、正相電圧信号と逆相電圧信号との両相電圧信号からなる差動電圧信号が差動出力電圧信号Voutとして出力される。
ここで、図2に示すトランスインピーダンスアンプ200においては、前述のように、リファレンス回路240は、受光素子10からの電流信号Iinに応じて増幅変換した電圧信号が出力されるトランスインピーダンスアンプコア210と全く同一の回路構成からなっており、その出力インピーダンスの値が、すべての周波数領域において、トランスインピーダンスアンプコア210の出力インピーダンスと全く同一の値に設定されるとともに、リファレンス回路240から出力される高周波数成分をフィルタ回路241によって除去している。
したがって、トランスインピーダンスアンプ200は、単相−差動変換回路220の差動動作時において、リファレンス回路240とインタフェース回路230からの参照電圧の電圧レベルが、トランスインピーダンスアンプコア210からの電圧信号の信号レベルの直流成分から大きく変動することをより確実に抑制することができ、外部変動(プロセス変動・温度変動・電圧変動)にも影響されにくく、利得特性の劣化がより少ない正相・逆相の電圧信号を得ることができる。而して、アナログ光通信などの入出力信号の線形性、信号波形の再現性を強く要求されるようなアプリケーションにも適用可能な差動出力電圧信号を得ることができる。
次に、前述した各実施形態のトランスインピーダンスアンプ100,200の小信号時における利得の周波数ピーキング特性、群遅延偏差特性に関するシミュレーション結果について、図3〜図5を用いて説明する。
一般に、トランスインピーダンスアンプ100,200から出力される差動出力電圧信号Voutの振幅を大きくしようとすると、トランスインピーダンスアンプコア110,210や単相−差動変換回路120,220を構成するバイポーラ・トランジスタに流す電流を大きくする必要がある。しかし、バイポーラ・トランジスタに大きな電流を流すためには、サイズが大きいバイポーラ・トランジスタを用いることが必須であり、回路規模が大型化するのみならず、バイポーラ・トランジスタの入力容量が増大してしまう。この結果、トランスインピーダンスアンプ100,200に利用可能な信号の周波数帯域が制限されてしまい、高速動作を得ることができなくなる。
このため、トランスインピーダンスアンプ100,200からの差動出力電圧信号Voutは、一般的には、比較的小さな振幅の小信号として出力して、しかる後、後段のポストアンプ等で必要なレベルまで増幅するという構成が採用されており、トランスインピーダンスアンプ100,200においては、小信号時における利得特性・群遅延偏差特性が重要である。
図3、図4には、第2の実施形態として図2に示すトランスインピーダンスアンプ200の小信号特性について示している。つまり、図3は、トランスインピーダンスアンプ200の小信号時の利得の周波数ピーキング特性を示すシミュレーション結果であり、図4は、トランスインピーダンスアンプ200の小信号時の群遅延偏差特性を示すシミュレーション結果である。
本発明に係る第2の実施形態の図2のトランスインピーダンスアンプ200においては、小信号特性として図3の利得特性に示すように、図8や図9の従来技術における利得特性の場合よりも、利得の周波数ピーキングの改善が図られ、広い周波数帯域に亘って平坦性を有する利得特性が得られるとともに、さらに、図4に示すように、図10の従来技術における群遅延特性の場合よりも、位相回転が抑制され、群遅延偏差が大幅に減少した低群遅延偏差特性が得られていることが分かる。
第1の実施形態の図1のトランスインピーダンスアンプ100についても、リファレンス回路140の出力インピーダンスをトランスインピーダンスアンプコア110と同一の値に設定しているので、図3、図4とほぼ同様の傾向の利得特性が得られる。
また、図5に、図2のトランスインピーダンスアンプ200のリファレンス回路240にフィルタ回路241を備えるか否かによって、雑音特性に与える影響について、入力換算雑音電流密度(A/√Hz)を用いて示している。なお、図5には、図2に示すフィルタ回路241を付与した回路構成の場合とフィルタ回路241を付与しない回路構成の場合とともに、比較のために、従来技術の図7のトランスインピーダンスアンプ400の回路構成の場合についても示している。
図2のトランスインピーダンスアンプ200の回路構成において、リファレンス回路240のフィルタ回路241を備えていないリファレンス回路の場合には、図5に示すように、リファレンス回路で発生した高周波数成分の雑音が単相−差動変換回路220にそのまま入力されてしまい、トランスインピーダンスアンプ200全体としての雑音特性を悪化させている。
一方、図2のトランスインピーダンスアンプ200のように、フィルタ回路241を備えたリファレンス回路240においては、当該リファレンス回路240にて発生した高周波数成分の雑音がフィルタ回路241により除去されるので、雑音特性が大幅に改善されて、従来技術の図6のトランスインピーダンスアンプ400とほぼ同等の雑音特性が実現されていることがわかる。
したがって、図2のトランスインピーダンスアンプ200のごとき回路構成を採用することにより、雑音特性を確保しつつ、広い周波数帯域に亘ってピーキングを改善して平坦な利得特性を実現するととともに、群遅延特性を大幅に改善することが可能となる。而して、アナログ光通信等の入出力信号の線形性や信号波形の再現性が強く要求されるアプリケーションに対しても好適に適用することが可能なトランスインピーダンスアンプを提供することができる。
本発明に係るトランスインピーダンスアンプの第1の実施の形態の回路構成を示す回路図である。 本発明に係るトランスインピーダンスアンプの第2の実施の形態の回路構成を示す回路図である。 図2のトランスインピーダンスアンプの小信号時の利得の周波数ピーキング特性を示す小信号解析(利得)シミュレーション結果のグラフである。 図2のトランスインピーダンスアンプの小信号時の群遅延偏差特性を示す小信号解析(群遅延)シミュレーション結果のグラフである。 図2のトランスインピーダンスアンプにおけるリファレンス回路内のフィルタ回路の有無による雑音特性への影響を示す小信号解析(入力換算雑音電流密度)シミュレーション結果のグラフである。 トランスインピーダンスアンプの従来の回路構成を示す回路図である。 トランスインピーダンスアンプの従来の図6とは異なる回路構成を示す回路図である。 図6の従来回路例の小信号解析(利得)シミュレーション結果を示すグラフである。 図7の従来回路例の小信号解析(利得)シミュレーション結果を示すグラフである。 図7の従来回路例の小信号解析(群遅延)シミュレーション結果を示すグラフである。
符号の説明
10…受光素子、100,200,300,400…トランスインピーダンスアンプ、110,210,310…トランスインピーダンスアンプコア、120,220,320…単相−差動変換回路、130,230,330…インタフェース回路、131,231,331…DCバイアス回路、132,232,332…容量、140,240…リファレンス回路、241…フィルタ回路、410…容量。

Claims (4)

  1. 入力端子に入力された電流信号をインピーダンス変換して電圧信号として出力するトランスインピーダンスアンプコアと、出力インピーダンスが前記トランスインピーダンスアンプコアの出力インピーダンスと同じ値に設定され、前記電圧信号と比較するための参照電圧を出力するリファレンス回路と、単相の前記電圧信号を入力して差動電圧信号に変換して出力する単相−差動変換回路と、前記トランスインピーダンスアンプコアおよび前記リファレンス回路と前記単相−差動変換回路とを接続する、入力が容量結合のインタフェース回路と、を少なくとも備えたトランスインピーダンスアンプであって、前記単相−差動変換回路の正相入力側が、前記トランスインピーダンスアンプコアと接続した前記インタフェース回路の接続点に接続され、前記単相−差動変換回路の逆相入力側が、前記リファレンス回路と接続した前記インタフェース回路の接続点に接続されることを特徴とするトランスインピーダンスアンプ。
  2. 請求項1に記載のトランスインピーダンスアンプにおいて、前記リファレンス回路は、前記トランスインピーダンスアンプコアと同一の回路構成であり、かつ、入力端子は開放され、かつ、当該リファレンス回路から出力される前記参照電圧の高周波数成分を減衰させるフィルタ回路を備えていることを特徴とするトランスインピーダンスアンプ。
  3. 請求項2に記載のトランスインピーダンスアンプにおいて、前記リファレンス回路に備えられた前記フィルタ回路が、当該リファレンス回路の入出力間に接続される容量で構成されることを特徴とするトランスインピーダンスアンプ。
  4. 請求項1ないし3のいずれかに記載のトランスインピーダンスアンプにおいて、前記トランスインピーダンスアンプコア、前記単相−差動変換回路、前記リファレンス回路を構成するトランジスタ素子が、バイポーラ・トランジスタまたは電界効果型トランジスタであることを特徴とするトランスインピーダンスアンプ。
JP2007153590A 2007-06-11 2007-06-11 トランスインピーダンスアンプ Pending JP2008306614A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153590A JP2008306614A (ja) 2007-06-11 2007-06-11 トランスインピーダンスアンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153590A JP2008306614A (ja) 2007-06-11 2007-06-11 トランスインピーダンスアンプ

Publications (1)

Publication Number Publication Date
JP2008306614A true JP2008306614A (ja) 2008-12-18

Family

ID=40234902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153590A Pending JP2008306614A (ja) 2007-06-11 2007-06-11 トランスインピーダンスアンプ

Country Status (1)

Country Link
JP (1) JP2008306614A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064611A1 (ja) 2008-12-01 2010-06-10 武田薬品工業株式会社 複素環化合物およびその用途
JP2015146515A (ja) * 2014-02-03 2015-08-13 日本電信電話株式会社 ディジタルコヒーレント光受信装置および周波数特性調整方法
JP2016171409A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 トランスインピーダンスアンプ回路
CN110988845A (zh) * 2019-10-25 2020-04-10 西安电子科技大学 一种激光回波信号调理电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076793A (ja) * 2000-08-28 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2003152460A (ja) * 2001-11-09 2003-05-23 Hitachi Information Technology Co Ltd 光受信器
JP2004274109A (ja) * 2003-03-05 2004-09-30 Sharp Corp 光受信機
JP2006311030A (ja) * 2005-04-27 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076793A (ja) * 2000-08-28 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2003152460A (ja) * 2001-11-09 2003-05-23 Hitachi Information Technology Co Ltd 光受信器
JP2004274109A (ja) * 2003-03-05 2004-09-30 Sharp Corp 光受信機
JP2006311030A (ja) * 2005-04-27 2006-11-09 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064611A1 (ja) 2008-12-01 2010-06-10 武田薬品工業株式会社 複素環化合物およびその用途
JP2015146515A (ja) * 2014-02-03 2015-08-13 日本電信電話株式会社 ディジタルコヒーレント光受信装置および周波数特性調整方法
JP2016171409A (ja) * 2015-03-12 2016-09-23 日本電信電話株式会社 トランスインピーダンスアンプ回路
CN110988845A (zh) * 2019-10-25 2020-04-10 西安电子科技大学 一种激光回波信号调理电路

Similar Documents

Publication Publication Date Title
CN102946233B (zh) 使用高增益放大器和均衡电路的高灵敏度光学接收器
US7683720B1 (en) Folded-cascode amplifier with adjustable continuous time equalizer
JP5087773B2 (ja) 光信号検出回路及び方法
JP3502264B2 (ja) 受信装置
US7560969B2 (en) Receiver of high speed digital interface
KR102073367B1 (ko) 버퍼 증폭기 및 버퍼 증폭기를 포함하는 트랜스 임피던스 증폭기
US6720832B2 (en) System and method for converting from single-ended to differential signals
US6566946B2 (en) Noise reduction scheme for operational amplifiers
CN109314496B (zh) 用于宽带放大器的有源线性化
JP2008510383A5 (ja)
US7477109B2 (en) Process and temperature-compensated transimpedance amplifier
US8405461B2 (en) Light receiving circuit with differential output
CN103138687A (zh) 能处理高电平的音频放大电路中的失真抑制
CN112491366B (zh) 适用于噪声抑制的放大器
JP2012257070A (ja) トランスインピーダンスアンプ
KR100955822B1 (ko) 선형성이 향상된 차동 증폭 회로
CN103516314B (zh) 低噪声放大器和不具有声表面滤波器的接收器
KR100740951B1 (ko) 하이브리드 발룬 장치 및 수신기
US7696822B2 (en) Amplifying circuit and associated linearity improving method
KR20120023579A (ko) 하이-임피던스 네트워크
JP2008306614A (ja) トランスインピーダンスアンプ
JP2004336749A (ja) 改良された電源電圧除去機能を有するフォトアンプ回路
CN102215028B (zh) 放大器
CN108011594A (zh) 差分电流至电压转换器
US20230092750A1 (en) Reception circuit for optical communication

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090521

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090521

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201