JP2008306024A - 電極接合方法及び電極接合構造体 - Google Patents

電極接合方法及び電極接合構造体 Download PDF

Info

Publication number
JP2008306024A
JP2008306024A JP2007152477A JP2007152477A JP2008306024A JP 2008306024 A JP2008306024 A JP 2008306024A JP 2007152477 A JP2007152477 A JP 2007152477A JP 2007152477 A JP2007152477 A JP 2007152477A JP 2008306024 A JP2008306024 A JP 2008306024A
Authority
JP
Japan
Prior art keywords
electrode
particles
resin composition
adhesive resin
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152477A
Other languages
English (en)
Inventor
Shozo Ochi
正三 越智
Eishin Nishikawa
英信 西川
Osamu Uchida
内田  修
Kentaro Nishiwaki
健太郎 西脇
Shigeaki Sakatani
茂昭 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007152477A priority Critical patent/JP2008306024A/ja
Publication of JP2008306024A publication Critical patent/JP2008306024A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Landscapes

  • Combinations Of Printed Boards (AREA)

Abstract

【課題】ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えた電極接合構造体及び電極接合方法を提供する。
【解決手段】複数の回路基板上に形成された複数の電極同士を導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートを介して重ね合わせて接合した構造において、前記回路基板と前記異方導電シートの少なくとも片側の界面から前記電極高さまでの領域で、前記第1の絶縁粒子の方が前記導電粒子よりも粒子密度が高いことを特徴とする電極接合構造体。
【選択図】図1A

Description

本発明は、回路基板の電極に他の回路基板の電極を、導電粒子と絶縁粒子が分散された接着剤樹脂組成物を用いて接合する電極接合方法及び電極接合構造体に関する。
従来、ガラス基板やフレキシブル基板等の回路基板の電極に、他のガラス基板やフレキシブル基板、あるいは電子部品等の回路基板の電極を電気的に接合する技術として、導電粒子が分散された接着剤樹脂組成物、例えば異方導電シート等を用いる技術が知られている。この技術は、接合対象となる電極間に異方導電シートを配置し、回路基板を介して異方導電シートを圧着ツールで加熱加圧することで、前記接着剤樹脂組成物を溶融させて、導電粒子を介して電極間を導通させる技術である。
この異方導電シートを用いる電極接合技術は、様々な形態の電極接合に適応可能であり、例えば、ガラス基板とフレキシブル基板との電極接合(FOG)、ガラス基板とICチップ部品との電極接合(COG)、フレキシブル基板とICチップ部品との電極接合(COF)、プリント配線基板とICチップ部品との電極接合、フレキシブル基板とフレキシブル基板との電極接合、フレキシブル基板とプリント配線基板との電極接合等、幅広く適用されている。
近年、例えばガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術においては、電極間に高電圧が印加されるときの信頼性の確保とともに、電子機器の高密度化に伴って隣接配線電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、その隣接配線電極間のピッチは、従来求められていた200μm〜100μmから、100μm〜50μm以下まで狭ピッチ化することが求められている。また、例えばガラス基板とICチップ部品との電極接合やフレキシブル基板とICチップ部品との電極接合等の、ICチップ部品をフェイスダウン方式で接合する技術においても、同様に、多機能化に伴いバンプ電極間の更なる狭ピッチ化(微細化)が求められている。具体的には、それらの隣接配線電極間のピッチは、従来求められていた120μm〜80μmから、80μm〜40μm以下まで狭ピッチ化することが求められている。
前記のレベルまで隣接配線電極間の狭ピッチ化が進むと、異方導電シートを用いる電極接合技術においては、ショート不良やマイグレーション不良等の不具合を生じる可能性が高くなる。
ショート不良は、図6A〜図6Bに示すように、例えば第1の電極101を有するガラス基板102と、第1の電極101と対向するように形成された第2の電極103を有するフレキシブル基板104との対向領域に、接着剤樹脂組成物105と接着剤樹脂組成物105中において均一に分散された導電粒子106を備えており、圧着ツール107で加熱加圧されることによって、接着剤樹脂組成物105が溶融して電極101と電極103のそれぞれの電極間、さらには隣接電極間にも流動し、この流動に伴って導電粒子106が隣接電極間に流動して凝集することによって起こるものである。隣接電極間が狭ピッチ化(例えば100μm〜50μm以下)すると、電極101と電極103のそれぞれの電極間に留まることができる導電粒子106の量が少なくなり、より多くの電極接合に関与しない導電粒子106Aが隣接電極間に押し出されて凝集することになるため、ショート不良が起きやすくなる。
一方、マイグレーション不良は、圧着ツール107による加熱加圧時に、接着剤樹脂組成物105の流動速度が速過ぎたり遅過ぎたりすることなどにより、ガラス基板102及びフレキシブル基板104と接着剤樹脂組成物105とが密着不足になったり、さらには電極接合に関与しない導電粒子106A隣接電極間に押し出されて凝集することにより接着剤樹脂組成物105中にボイドが発生したりすることによって起こるものである。隣接電極間が狭ピッチになると、隣接電極間に接着剤樹脂組成物105が溜まることができる量が少なくなって密着不足によるボイドが発生しやすくなり、マイグレーション不良が起きやすくなる。
前記ショート不良やマイグレーション不良を解決する技術としては、例えば特許文献1(特開2004−047228号公報)や特許文献2(特開平05−013119号公報)に開示された技術が知られている。
特許文献1の技術は、図4A〜図4Bに示すように、第1の電極201を有する配線基板202と、第1の電極201と対向するように形成された第2の電極203を有する配線基板204との対向領域に、導電粒子205が均一に分散された接着剤樹脂組成物206と、接着剤樹脂組成物206の上に絶縁粒子207が均一に分散された絶縁層208を形成し、圧着ツール209で加熱加圧した後、接着剤樹脂組成物206に導電粒子205と更に絶縁粒子207とを分散させることで、ショート不良を防ぐものである。
また、特許文献2の技術は、図5A〜図5Bに示すように、第1の電極221を有する配線基板222と、第1の電極221と対向するように形成された第2の電極223を有する配線基板224との対向領域に、導電粒子225が均一に分散された接着剤樹脂組成物226と、接着剤樹脂組成物226の上に絶縁粒子227が均一に分散された絶縁層228を形成し、圧着ツール229で加熱加圧した後、接着剤樹脂組成物226と回路基板224との界面に絶縁粒子227を分散した絶縁層を形成することで、ショート不良を防ぐものである。
特開2004−047228号公報 特開平05−013119号公報
しかしながら、特許文献1及び特許文献2の技術では、あらかじめ異方導電シートの上に絶縁粒子を分散した絶縁層を形成する必要があり、それぞれの層を個別に形成して重ねる分の工程が余分にかかるといった問題がある。また、絶縁粒子が導電粒子と回路基板の電極との接触を阻害して、必要な導通が確保できない可能性もある。
従って、本発明の目的は、前記問題を解決することにあって、回路基板の電極に他の回路基板の電極を、導電粒子と絶縁粒子が分散された絶縁性接着剤樹脂を用いて接合する電極接合において、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えた電極接合方法及び電極接合構造体を提供することにある。
前記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、複数の回路基板上に形成された複数の電極同士を上下に対向するように配置し、
前記複数の回路基板の対向領域内に導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートを配置し、
前記回路基板間に前記異方導電シートが挟まれた状態で前記異方導電シートを加熱するとともに加圧して、前記接着剤樹脂組成物を溶融させ、前記下側の回路基板と前記異方導電シートの前記溶融した接着剤樹脂組成物との界面から前記下側の回路基板の前記電極の高さまでの領域に、前記第1の絶縁粒子が沈降するとともに前記導電粒子を介して前記電極同士を電気的に接合し、前記界面から前記電極の高さまでの前記領域に前記第1の絶縁粒子が沈降して当該領域で前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高くなった状態でかつ前記導電粒子を介して前記電極同士を電気的に接合した状態で、前記溶融した接着剤樹脂組成物を硬化させて前記複数の回路基板を接合させることを特徴とする電極接合方法を提供する。
本発明の第2様態によれば、前記溶融した接着剤樹脂組成物を硬化させて前記複数の回路基板を接合させるとき、前記界面から前記電極の高さまでの前記領域において前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高くなった状態とは、前記第1の絶縁粒子の占有率が少なくとも40%以上で74%未満占有している状態を意味することを特徴とする第1態様に記載の電極接合方法を提供する。
本発明の第3様態によれば、前記異方導電シートを加熱する温度が前記接着剤樹脂組成物の溶融温度よりも高いことを特徴とする第1又は2様態に記載の電極接合方法を提供する。
本発明の第4様態によれば、前記異方導電シートを加熱する温度が80〜200℃であることを特徴とする第3様態に記載の電極接合方法を提供する。
本発明の第5様態によれば、前記接着剤樹脂組成物の溶融温度が70〜150℃であることを特徴とする第4様態に記載の電極接合方法を提供する。
本発明の第6様態によれば、前記異方導電シートを加圧する圧力が1〜4MPaであることを特徴とする第1〜5のいずれか1つの様態に記載の電極接合方法を提供する。
本発明の第7様態によれば、前記異方導電シートを加熱加圧する時間が3〜60秒であることを特徴とする第1〜6のいずれか1つの様態に記載の電極接合方法を提供する。
本発明の第8態様によれば、電極がそれぞれ形成された複数の回路基板と、
前記複数の回路基板間に配置されて、かつ、前記複数の回路基板上に形成された前記複数の電極同士を導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートとを備えて、
前記複数の回路基板上に形成された前記複数の電極同士を前記異方導電シートの前記導電粒子で電気的に接合した状態で、前記複数の回路基板を前記異方導電シートを介して重ね合わせて接合するとともに、
前記一方の回路基板と前記異方導電シートの界面から前記一方の回路基板の前記電極の高さまでの領域で、前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高いことを特徴とする電極接合構造体を提供する。
本発明の第9態様によれば、前記第1の絶縁粒子の方が前記導電粒子よりも比重が大きいことを特徴とする第8態様に記載の電極接合構造体を提供する。
本発明の第10態様によれば、前記第1の絶縁粒子の方が前記接着剤樹脂組成物よりも比重が大きいことを特徴とする第9態様に記載の電極接合構造体を提供する。
本発明の第11態様によれば、前記導電粒子の構成が、第2の絶縁粒子の周囲を導電材料で被覆したものであることを特徴とする第10態様に記載の電極接合構造体を提供する。
本発明の第12態様によれば、前記導電粒子の平均粒径が0.1〜15μmであることを特徴とする第11態様に記載の電極接合構造体を提供する。
本発明の第13態様によれば、前記第1の絶縁粒子の平均粒径が0.1〜10μmであることを特徴とする第12態様に記載の電極接合構造体を提供する。
本発明の第14態様によれば、前記第1の絶縁粒子の粒径Aと導電粒子の粒径Bとが、A≧B/4、の関係にあることを特徴とする第13態様に記載の電極接合構造体を提供する。
本発明の第15態様によれば、前記第1の絶縁粒子が、シリカ、酸化チタン、チタン酸カリウム、チタン酸バリウム、アルミナ、酸化マグネシウム、炭化珪素、窒化珪素、窒化アルミ、炭酸カルシウム、珪酸カルシウム、酸化鉄、酸化ジルコン、酸化アンチモン、珪酸ジルコン、炭酸バリウム、硫酸バリウム、酸化亜鉛粉末から少なくとも1つ選ばれることを特徴とする第14態様に記載の電極接合構造体を提供する。
本発明の第16態様によれば、前記第2の絶縁粒子が、アクリル系樹脂、ポリスチレン、ポリエチレン、ポリプロピレン、カーボン、ベンゾグアナミン系樹脂、PMMA、シリコーン粉末から少なくとも1つ選ばれることを特徴とする第15態様に記載の電極接合構造体を提供する。
本発明の第17態様によれば、前記回路基板を形成する前記電極が、銀もしくは銀ペーストから形成されることを特徴とする第16態様に記載の電極接合構造体を提供する。
本発明の第18態様によれば、前記回路基板が、ガラス基板、ガラスエポキシ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板のいずれかであることを特徴とする第17態様に記載の電極接合構造体を提供する。
本発明の電極接合方法によれば、複数の回路基板上に形成された複数の電極同士を対向するように配置し、前記複数の回路基板の対向領域内に導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートを配置し、前記回路基板同士を介して前記異方導電シートを加熱加圧しているので、あらかじめ導電粒子を分散した異方導電シートの上に絶縁粒子を分散した絶縁層を個別に形成して重ねるといった余分な工程がかからなくなる。
また、接着剤樹脂組成物の中に導電粒子と第1の絶縁粒子が分散されているので、加熱加圧した後に絶縁粒子が過度に凝集することによって回路基板との密着不足に起因するマイグレーション不良の発生も抑えられ、さらに、導電粒子と回路基板との接触を第1の絶縁粒子が阻害することもなく、電極間の導通も確保できる。
したがって、本発明の電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。
本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
以下、本発明の最良の実施の形態について、図面を参照しながら説明する。
《第1実施形態》
図1A〜図1Bを用いて、本発明の第1実施形態にかかる電極接合構造体の構成を説明する。図1A〜図1Bは、本発明の第1実施形態にかかる電極接合構造体の構成を模式的に示す断面図であり、図1Aは加熱加圧前の電極接合構造体の構成の断面図であり、図1Bは加熱加圧後の電極接合構造体の構成の断面図である。
本発明の第1実施形態では、フラットディスプレイパネルの端子部の接合構造であるガラス基板とフレキシブル基板の接合構造を例にとって説明する。
本発明の第1実施形態にかかる電極接合構造体は、複数の第1の電極1を有する第1の回路基板の一例であるガラス基板2と、ガラス基板2の複数の第1の電極1にそれぞれ対向して配置された複数の第2の電極3を有する第2の回路基板の一例であるフレキシブル基板4と、ガラス基板2とフレキシブル基板4との対向領域に配置されて両者を接合する接着剤樹脂組成物5と、接着剤樹脂組成物5中において、それぞれ均一に分散された多数の導電粒子6と多数の絶縁粒子7とを備えており、多数の導電粒子6のうちの1つ又は複数の導電粒子6は、ガラス基板2のそれぞれの第1の電極1と、それらに対向するフレキシブル基板4のそれぞれの第2の電極3との間に挟まって両電極1,3を電気的に接続する。
ガラス基板2の複数の第1の電極1は、例えば、厚さ3〜15μm程度の銀又は銀ペーストで形成された銀電極で構成されている。一般に、銀はマイグレーション不良を起こしやすい材質として知られている。
フレキシブル基板4の複数の第2の電極3は、それぞれ、例えば、金ニッケルめっき処理を施した厚さ20μm程度の銅で形成された銅電極で構成されている。金ニッケルめっき処理の代わりに錫めっき処理を施しても良い。
接着剤樹脂組成物5は、電極接合後に電極接合部分を含めて、ガラス基板2の複数の第1の電極1とフレキシブル基板4の複数の第2の電極3とを封止するように、ガラス基板2の複数の第1の電極1が形成された電極形成面2aとフレキシブル基板4の当該面2aに対向しかつ複数の第2の電極3が形成された電極形成面4aとの間に配置されている。接着剤樹脂組成物5は、絶縁性の熱硬化性樹脂で形成され、例えば、加圧されるとともに加熱されたときに低温で且つ短時間で硬化するアクリル樹脂や、耐熱性、耐吸湿性、接着性、及び、絶縁性等の面で機能的に優れたエポキシ樹脂等で形成されている。この接着剤樹脂組成物5は、例えば、多数の導電粒子6と多数の絶縁粒子7がそれぞれ均一に分散された接着剤樹脂組成物5を成膜してなる固体のシート形状の異方導電シート5Aとして電極接合に使用することができる。
図7に各種材料の比重を示しているが、各導電粒子6は、例えば、アクリル系樹脂のように接着剤樹脂組成物5の一例のエポキシ樹脂とほぼ同等の比重の小さな粒子(比重1.2)をニッケル(比重8.9)等の導電性の金属で被覆した粒子である。一例として、導電粒子6の平均粒径を6μmとし、導電粒子6のニッケルのめっき厚を0.2μmとした場合、この導電粒子6の比重は2.5となる。
導電粒子6の平均粒径は、0.1〜15μmであり、さらに3〜15μmの範囲内で形成されることがより好ましい。その理由は、導電粒子6の平均粒径が0.1μm未満である場合には、対向する電極1、3の表面粗さの方が導電粒子6の平均粒径よりも大きくなり、対向する電極1、3間に導電粒子6が挟まれにくくなって、対向する電極1、3間の導通(電気的接続)を確保することが困難である可能性が非常に高くなり、好ましくないためである。また、導電粒子6の平均粒径が3μm未満である場合には、対向する電極1,3間に導電粒子6が挟まれにくくなって、対向する電極1,3間の導通(電気的接続)を確保することが困難である可能性があるためである。一方、導電粒子6の平均粒径が15μmを越える場合には、隣接する電極1,1又は隣接する電極3,3間のピッチが0.1mm以下では、隣接する電極1,1又は隣接する電極3,3間で導電粒子6が凝集しやすくなって、ショート不良が発生しやすくなるためである。
各絶縁粒子7は、例えば、平均粒径4μmの硫酸バリウム(比重4.6)のように接着剤樹脂組成物5や導電粒子6に比べて比重の大きな絶縁材料で構成された粒子である。
絶縁粒子7の平均粒径は、0.1〜10μmであり、さらに、1〜10μmの範囲内で形成されることがより好ましい。その理由は、導電粒子6の平均粒径が0.1μm未満である場合には、隣接する電極1,1又は隣接する電極3,3間で導電粒子6が凝集しやすくなってショート不良が発生しやすくなる可能性が非常に高くなり、好ましくないためである。また、隣接する電極1,1又は隣接する電極3,3間のピッチが0.1mm以下になると、絶縁粒子7の平均粒径が1μm未満である場合には、隣接する電極1,1又は隣接する電極3,3間で導電粒子6が凝集しやすくなってショート不良が発生しやすくなる可能性が高くなるためである。一方、絶縁粒子7の平均粒径が10μmを越える場合には、導電粒子6の平均粒径に近いために、対向する電極1,3間に導電粒子6の代わり絶縁粒子7が挟まってしまい、対向する電極1,3間の導通(電気的接続)を確保することが困難になるためである。
本発明の第1実施形態にかかる電極接合構造体は以下のように構成されている。
本発明の第1実施形態にかかる前記電極接合構造体は、以下のような、本発明の第1実施形態にかかる電極接合方法を実施することにより形成することができる。
まず、ガラス基板2を下側に配置して圧着ステージである支持台9にガラス基板2を支持する一方、フレキシブル基板4を圧着ツール8に真空吸着などにより保持させて、ガラス基板2とフレキシブル基板4とを対向させる。このとき、ガラス基板2の各銀電極1とフレキシブル基板4の各銅電極3とが対向するように位置合わせされる。このとき、少なくともガラス基板2の複数の銀電極1とフレキシブル基板4の複数の銅電極3との対向領域内に、一例として、ガラス基板2の電極形成面2aとフレキシブル基板4の電極形成面4aとの対向領域内に、多数の導電粒子6と多数の絶縁粒子7がそれぞれ均一に分散された接着剤樹脂組成物5を成膜して構成される異方導電シート5Aを配置する。なお、位置合わせと異方導電シート5Aの配置の順番は、逆にして、異方導電シート5Aの配置後に、位置合わせを行なうようにしてもよい。
次いで、圧着ツール8を支持台9に向けて下降させて、圧着ツール8と支持台9との間にフレキシブル基板4と異方導電シート5Aとガラス基板2とを挟み込み、圧着ツール8に内蔵されたヒータ8Aでフレキシブル基板4を介して異方導電シート5Aを加熱しつつ圧着ツール8でフレキシブル基板4と異方導電シート5Aとガラス基板2とを加圧して、異方導電シート5Aの接着剤樹脂組成物5を一旦溶融させて、ガラス基板2と接着剤樹脂組成物5の界面から銀電極1の電極高さまでの電極高さ領域(例えば、ガラス基板2の電極形成面2aから銀電極1の表面までの高さ寸法間の電極高さ領域)内に、絶縁粒子7を、自重により沈降させたのち、さらに圧着ツール8で加熱加圧することにより、ガラス基板2と接着剤樹脂組成物5の界面から銀電極1の電極高さまでの前記電極高さ領域に絶縁粒子7が沈降した状態で、接着剤樹脂組成物5を硬化させる。この接着剤樹脂組成物5の溶融から硬化の間に、同時的に、導電粒子6を介して各銀電極1と各銅電極3とを電気的に接続している。
この結果、導電粒子6を介して各銀電極1と各銅電極3とを電気的に接続すると同時に、ガラス基板2と接着剤樹脂組成物5の界面から銀電極1の電極高さまでの電極高さ領域で、それぞれの自重により、比重の大きい絶縁粒子7の粒子密度が、比重の小さい(絶縁粒子7の比重よりも比重が小さい)導電粒子6の粒子密度よりも高くなっている。言い換えれば、前記接着剤樹脂組成物5の前記電極高さ領域内において、比重の大きい絶縁粒子7の占有率が比重の小さい(絶縁粒子7の比重よりも比重が小さい)導電粒子6の占有率よりも大きくなった電極接合構造体を形成することができる。すなわち、一般に、球形の粒子は最密充填構造で充填率が74%となるので、絶縁粒子7の占有率が導電粒子6の占有率よりも大きいということは、極端に粒径が変わらない限り、前記電極高さ領域の占有率において、絶縁粒子7が少なくとも40%以上(74%未満)占有していれば、絶縁粒子7の方が導電粒子6よりも領域の占有率が高いということを意味している。これによって、隣接する銀電極1,1間には絶縁粒子7が複数配置されることになり、隣接する銀電極1,1付近での導電粒子6の凝集が抑制され、ショート不良の発生が抑えられる。また、ガラス基板2の複数の銀電極1とフレキシブル基板4の複数の銅電極3との対向領域において、導電粒子6の粒径が絶縁粒子7の粒径よりも大きいため、導電粒子6が銀電極1と銅電極3との間に挟み込まれると、絶縁粒子7は両電極1,3間に位置したとしても両電極1,3間の導通を妨げることはなく、すなわち絶縁粒子7が導電粒子6とガラス基板2及びフレキシブル基板4との接触を阻害することはなく、対向する電極1,3間の導通が確保できるとともに、ガラス基板2及びフレキシブル基板4と接着剤樹脂組成物5との密着性は低下せず、マイグレーション不良の発生も抑えられる。万が一、銀電極1と銅電極3との間に導電粒子6と共に絶縁粒子7が挟み込まれたとしても、前記圧着ツール8による加圧により、絶縁粒子7よりも先に導電粒子6が銀電極1と銅電極3とに同時に接触することになるため、導通を確保することができて、絶縁粒子7により導通を阻害されることはない。従って、高電圧での接続信頼性を確保するとともに、電極1及び電極3の狭ピッチ化(例えば0.1mm以下)に対応することができる。
また、本発明の第1実施形態にかかる前記電極接合構造体によれば、前記のようにショート不良やマイグレーション不良の発生が抑えられるので、ガラス基板2の電極1を銀で形成することができ、フラットディスプレイパネルなどへの適用が可能となる。
次に、図1A〜図1B、図3A〜図3Bを用いて、本発明の第1実施形態にかかる前記電極接合方法について詳細に説明する。図3A〜図3Bは、導電粒子6と絶縁粒子7の平均粒径の関係を示す断面図である。
本発明の第1実施形態にかかる前記電極接合方法の手順を詳細に説明する前に、まず、当該電極接合方法に使用する部材及び装置について説明する。
本発明の第1実施形態にかかる前記電極接合方法において、ガラス基板2とフレキシブル基板4とを接合するための異方導電シート5Aは、多数の導電粒子6と多数の絶縁粒子7とが均一に分散された接着剤樹脂組成物5で構成されている。本第1実施形態では、ガラス基板2の複数の銀電極1及びフレキシブル基板4の複数の銅電極3は、それぞれ互いに平行に設けられ、接着剤樹脂組成物5は、主に隣接電極1,1又は隣接する電極3,3間に流動するものとしている。
ここで、各導電粒子6は、例えば、アクリル系樹脂の粒子をニッケル等の導電性の金属で被覆した粒子であり、各絶縁粒子7は、例えば、硫酸バリウムのように接着剤樹脂組成物5や導電粒子6に比べて比重の大きな絶縁材料で構成された粒子である。絶縁粒子7の平均粒径をA、導電粒子6の平均粒径をBとすると、
A>B/4
の関係にあることが好ましい。
前記式の関係にあることが好ましい理由は、図3Aに示すように、前記式が成り立つ場合(すなわちA>B/4の場合)でかつ、ガラス基板2と接着剤樹脂組成物5との界面10付近において、隣接する導電粒子6同士の間に絶縁粒子7が入り込んだ場合、前記した関係にある絶縁粒子7の粒径により導電粒子6同士が接触できなくなって、導電粒子6同士が接触することなく拡散することによって、ショート不良が抑制されるためである。これに対し、図3Bに示すように、前記式が成り立たない場合(すなわちA≦B/4の場合)ガラス基板2と接着剤樹脂組成物5との界面10付近において、隣接する導電粒子6同士の間に絶縁粒子7が入り込んでも隣接する導電粒子6同士が接触可能となって導電粒子6同士が接触しやすくなり、ショート不良が発生しやすくなる。
さらに望ましくは、導電粒子6の平均粒径を6μmとし、導電粒子6の平均粒径は、3〜15μmの範囲内で形成されることがより好ましい。その理由は、導電粒子6の平均粒径が3μm未満である場合には、対向する電極1,3間に導電粒子6が挟まれにくくなって、対向する電極1,3間の導通(電気的接続)を確保することが困難である一方、導電粒子6の平均粒径が15μmを越える場合には、隣接する電極1,1又は隣接する電極3,3間のピッチが0.1mm以下では、隣接する電極1,1又は隣接する電極3,3間で導電粒子6が凝集しやすくなって、ショート不良が発生しやすくなるためである。
また、絶縁粒子7の平均粒径は、1〜10μmの範囲内で形成されることが好ましい。その理由は、隣接する電極1,1又は隣接する電極3,3間のピッチが0.1mm以下になると、絶縁粒子7の平均粒径が1μm未満である場合には、隣接する電極1,1又は隣接する電極3,3間で導電粒子6が凝集しやすくなってショート不良が発生しやすくなる可能性がある一方、絶縁粒子7の平均粒径が10μmを越える場合には、導電粒子6の平均粒径に近いために、対向する電極1,3間に導電粒子6の代わり絶縁粒子7が挟まってしまい、対向する電極1,3間の導通(電気的接続)を確保することが困難になるためである。
接着剤樹脂組成物5は熱硬化性樹脂で構成されている。例えば、接着剤樹脂組成物5は加熱加圧されたときに低温で且つ短時間で硬化するアクリル樹脂やシリコーン樹脂、あるいは、耐熱性、耐吸湿性、接着性、及び絶縁性等の面で機能的に優れたエポキシ樹脂等で構成されている。一般的に、アクリル樹脂の溶融温度は70〜130℃、エポキシ樹脂の溶融温度は100〜150℃であることから、接着剤樹脂組成物5の溶融温度は70〜150℃程度に設定するのが好ましい。さらに、接着剤樹脂組成物5の形態はペースト状であってもシート(フィルム)化されたものでもよい。例えば、導電粒子6と絶縁粒子7とが分散された接着剤樹脂組成物5は、異方導電ペーストや異方導電フィルム、異方導電シートであってもよい。それらの中でも異方導電シート5Aが用いられることが、加工性や取り扱い性が優れているので好ましい。図1A〜図1Bでは、接着剤樹脂組成物5がシート化された異方導電シート5Aを使用する場合を図示している。
また、接着剤樹脂組成物5を溶融(軟化)させた後に硬化を完了させるためには、異方導電シート5Aを加熱する温度は接着剤樹脂組成物5の溶融温度よりも高い温度に設定し、異方導電シート5Aを加熱する温度は80〜200℃であることが好ましい。異方導電シート5Aを加熱する温度が80℃未満である場合には、接着剤樹脂組成物5の溶融と硬化が不十分であり、銀電極1と銅電極3の電極間接合強度、もしくは、ガラス基板2とフレキシブル基板4の基板間接合強度が不足して剥がれ易くなる一方、異方導電シート5Aを加熱する温度が200℃を越える場合には、接着剤樹脂組成物5が流動し過ぎることで前記対向する電極1,3間、もしくは、基板2,4間に気泡(ボイド)が発生してショート不良やマイグレーション不良を起こす可能性が高くなる。さらに、異方導電シート5Aを加熱する温度が200℃を越える場合には、接着剤樹脂組成物5とフレキシブル基板4との熱膨張の違いによって歪みが発生し、狭ピッチ接合においてはガラス基板2とフレキシブル基板4との間での位置ずれを起こす可能性が高くなる。
また、接合前の状態での接着剤樹脂組成物5の厚さ(例えば異方導電シート5Aの厚さ)は、15μm〜60μmの範囲内で設定されることが好ましい。その理由は、接着剤樹脂組成物5の厚さが15μm未満である場合には、銀電極1と銅電極3の電極間接合強度が不足して剥がれ易くなる一方、接着剤樹脂組成物5の厚さが60μmを越える場合には、銀電極1と銅電極3の電極間の電気的接続が取り難くなるためである。また、接合前の状態での接着剤樹脂組成物5の厚さは、銀電極1又は銅電極3の厚さと対向電極1,3間のL/Sに応じて適宜設定されることが好ましい。なお、Lは電極1,3の幅を示し、Sは隣り合う電極1又は3と電極1又は3との間の幅を示す。例えば、銀電極1の厚さが3〜10μm、銅電極3の厚さが10〜20μm、L/S=45/55であれば、接合前の接着剤樹脂組成物5の厚さは、35μm〜50μm程度の範囲内で設定されることが好ましい。
また、接着剤樹脂組成物5の幅及び長さ(例えば異方導電シート5Aの幅及び長さ)は、1mm以上であることが好ましい。接着剤樹脂組成物5の幅及び長さが1mm未満である場合には、銀電極1と銅電極3の電極間接合強度が不足して剥がれ易くなる恐れがある。
また、本発明の第1実施形態にかかる前記電極接合方法においては、接着剤樹脂組成物5を溶融(軟化)させるのに、図1Aに示す圧着ツール8を使用する。圧着ツール8は図1Aに示すように、その下端部に加熱用ヒータ8Aを内蔵するとともに、その上部にエアシリンダ8Bを備え、エアシリンダ8Bに接続されたモータ8Cが駆動することによって圧着ツール8が上下動できるように構成されている。圧着ツール8は、モータ8Cの駆動によりガラス基板2又はフレキシブル基板4(図1Aではフレキシブル基板4)に、その下端部の平面である加熱加圧面8fが接触し、その接触状態でエアシリンダ8Bにエアーがエア供給装置8Gから供給されてエアシリンダ8Bが駆動するとともに、加熱用ヒータ8Aが発熱することで、圧力及び熱のエネルギーを発生させ、接着剤樹脂組成物5を加熱加圧できるように構成された装置である。なお、圧着ツール8の加熱加圧面8fは、圧力及び熱のエネルギーをその全面にわたって一様に供給できるように構成されている。すなわち、圧着ツール8の加圧加熱面のどの部分においても、供給される圧力及び熱のエネルギーは同様である。
また、圧着ツール8の加圧加熱面には、ガラス基板2又はフレキシブル基板4(図1Aではフレキシブル基板4)を真空吸着などにより保持することができるようにして、支持台9に載置したフレキシブル基板4又はガラス基板2(図1Aではガラス基板2)に対する位置合わせを行ない易くするのが好ましい。
また、圧着ツール8の設定温度は、異方導電シート5Aを加熱する温度よりも高く設定することが好ましい。例えば、異方導電シート5Aを加熱する温度が180℃であれば、圧着ツール8の設定温度は280℃、加熱加圧面8fの温度は270℃であることが好ましい。ここで、圧着ツール8の設定温度を異方導電シート5Aを加熱する温度よりも高く設定する理由は、圧着ツール8とガラス基板2とフレキシブル基板4は、圧着ツール8とガラス基板2もしくはフレキシブル基板4とが接している部分以外は空気中にさらされているので、それぞれの部分で空気中に放熱することを考慮に入れて、あらかじめ圧着ツール8の温度を高めに設定する必要があるためである。
また、圧着ツール8を使用して異方導電シート5Aを加圧する圧力は、1〜4MPaであることが好ましい。その理由は、異方導電シート5Aを加圧する圧力が1MPa未満であれば、前記対向する電極1,3間から接着剤樹脂組成物5を流動させつつ導電粒子6と前記対向する電極1,3とを電気的に接触させるとき、その接触が不十分になり、前記対向する電極1,3間の導通(電気的接続)がとれなくなるためである。また、異方導電シート5Aを加圧する圧力が4MPaを越える場合には、ガラス基板2又はフレキシブル基板4、もしくは前記対向電極1,3や導電粒子6に歪みが発生してしまい、狭ピッチ接合においては、ガラス基板2とフレキシブル基板4との間での位置ずれ、もしくは接続不良を起こす可能性が高くなるためである。
また、圧着ツール8を使用して異方導電シート5Aを加熱加圧する時間は、3〜60秒であることが好ましい。その理由は、異方導電シート5Aを加熱加圧する時間が3秒未満であれば、接着剤樹脂組成物5の硬化が不十分となり、銀電極1と銅電極3の電極間接合強度、もしくは、ガラス基板2とフレキシブル基板4の基板間接合強度が不足して剥がれ易くなる一方、異方導電シート5Aを加熱加圧する時間が60秒を超える場合には、フレキシブル基板4に歪みが発生してしまい、ガラス基板2とフレキシブル基板4との間で位置ずれを起こす可能性が高くなるとともに、さらには、工程のタクトが長くなることによって生産性が低下するためでもある。
また、本発明の第1実施形態にかかる前記電極接合方法においては、図1Aに示すように、ガラス基板2を下側に配置した状態で、すなわち、圧着ステージである支持台9にガラス基板2が載置された状態で電極接合が行われるものとする。
また、本発明の第1実施形態にかかる前記電極接合方法においては、図示していないが、圧着ツール8により接着剤樹脂組成物5を加熱加圧するとき、フレキシブル基板4と圧着ツール8の間に例えば、テフロンシート(テフロンは登録商標。)のような保護シートを介して行う。その理由は、接合時にフレキシブル基板4とガラス基板2との間からはみ出る溶融樹脂(接着剤樹脂組成物5)が圧着ツール8に接着しないようにするためである。
次に、本発明の第1実施形態にかかる前記電極接合方法の手順を図1A〜図1B、図8を参照しながら詳細に説明する。図8は本発明の第1実施形態にかかる前記電極接合方法のフローチャートである。
まず、ステップS1では、複数の銀電極1を有するガラス基板2と、ガラス基板2の複数の銀電極1と該複数の銀電極1にそれぞれ対向するように形成された複数の銅電極3を有するフレキシブル基板4との対向領域に、多数の導電粒子6と多数の絶縁粒子7とが均一に分散された接着剤樹脂組成物5の異方導電シート5Aを配置する。より具体的には、ガラス基板2を支持台9に載置するとともに、フレキシブル基板4を圧着ツール8に真空吸着などにより保持させて、ガラス基板2とフレキシブル基板4とを対向させるとともに、ガラス基板2の各銀電極1とフレキシブル基板4の各銅電極3とが対向するように位置合わしたのち、ガラス基板2とフレキシブル基板4との間に異方導電シート5Aを配置する。なおこのとき、異方導電シート5Aは、ガラス基板2又はフレキシブル基板4に予め貼り付けられていてもよい。なお、位置合わせと異方導電シート5Aの配置の順番は、逆にして、異方導電シート5Aの配置後に、位置合わせを行なうようにしてもよい。
次いで、ステップS2では、圧着ツール8を駆動させて異方導電シート5Aを加熱加圧する。すなわち、モータ8Cの駆動により圧着ツール8を下降させて、圧着ツール8に真空吸着などにより保持されたフレキシブル基板4を、異方導電シート5Aを介して、支持台9に載置されたガラス基板2に押しつける。その後、モータ8Cの駆動を停止したのち、エア供給装置8Gからエアが供給されてエアシリンダ8Bが駆動されて、圧着ツール8の加熱加圧面8fにより、フレキシブル基板4を、異方導電シート5Aを介して、支持台9のガラス基板2に加圧しながら、圧着ツール8のヒータ8Aで異方導電シート5Aを加熱する。
次いで、ステップS3では、圧着ツール8の加熱加圧によって異方導電シート5Aの接着剤樹脂組成物5を溶融させる。
次いで、ステップS4では、圧着ツール8の加熱加圧の持続によって接着剤樹脂組成物5の溶融状態を維持し続けることにより、ガラス基板2と接着剤樹脂組成物5の界面から銀電極1の電極高さまでの電極高さ領域に、接着剤樹脂組成物5と導電粒子6よりも比重の大きな絶縁粒子7が自重により沈降する。ここで、導電粒子6は、例えば、アクリル系樹脂のように接着剤樹脂組成物5とほぼ同等の比重の小さな粒子(比重1.2)をニッケル(比重8.9)等の導電性の金属で被覆した粒子である。一例として、導電粒子6の平均粒径を6μmとし、ニッケルのめっき厚を0.2μmとした場合、この導電粒子6の比重は2.5となる。さらに、絶縁粒子7は、例えば、平均粒径4μmの硫酸バリウム(比重4.6)のように接着剤樹脂組成物5や導電粒子6に比べて比重の大きな絶縁材料で構成された粒子である。
次いで、ステップS5では、圧着ツール8の加熱加圧の持続によって接着剤樹脂組成物5の溶融状態を維持し続けることにより、ガラス基板2と接着剤樹脂組成物5の界面から銀電極1の電極高さまでの前記電極高さ領域で、絶縁粒子7の方が導電粒子6よりも粒子密度(占有率)が高くなる。
次いで、ステップS6では、圧着ツール8の加熱加圧の持続によって接着剤樹脂組成物5の溶融状態を維持し続けることにより、ガラス基板2の銀電極1とそれらに対向するフレキシブル基板4の銅電極3とに接触するように導電粒子6が移動した状態で、接着剤樹脂組成物5の硬化が完了する。
次いで、ステップS7では、圧着ツール8の加熱加圧の持続によって接着剤樹脂組成物5の溶融状態を維持し続けることにより、ガラス基板2の銀電極1とフレキシブル基板4の銅電極3とを導電粒子6を介して電気的に接合する。これによって、銀電極1付近での導電粒子6の凝集が抑制され、ショート不良の発生が抑えられる。
なお、例えば、ステップS4とステップS5は同時に行うことができ、ステップS6とステップS7が同時に行うことができる。
本発明の第1実施形態にかかる前記電極接合方法によれば、ガラス基板2とフレキシブル基板4との対向領域において、絶縁粒子7が、導電粒子6とガラス基板2及びフレキシブル基板4との接触を阻害することはなく、対向する電極1,3間の導通が確保できるとともに、ガラス基板2及びフレキシブル基板4と接着剤樹脂組成物5との密着性は低下せず、マイグレーション不良の発生も抑えられる。
したがって、本発明の第1実施形態にかかる前記電極接合方法によれば、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑えて、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。本発明の第1実施形態にかかる前記電極接合方法は、特に、前記効果が求められるガラス基板とフレキシブル基板との電極接合に代表されるフラットディスプレイパネルの接合技術においては、より有用である。
また、本発明の第1実施形態にかかる前記電極接合方法によれば、多数の導電粒子6と多数の絶縁粒子7とが均一に分散した接着剤樹脂組成物5を加熱加圧するという簡単な(1つの)作業で前記効果を得ることができ、あらかじめ異方導電シート5Aの上に絶縁粒子を分散した絶縁層を形成してそれぞれの層を個別に形成して重ねる分の工程が余分にかかるといった従来の問題もなく、1組の回路基板の電極接合を行うのにかかる時間が短いという特有な効果もある。
また、前記では、ガラス基板2を第1の回路基板の一例として挙げたが、第1の回路基板としては、ガラス基板の他、ガラスエポキシ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板、プリント配線基板、又は、フレキシブル基板等が用いられてもよい。
また、前記では、フレキシブル基板4を第2の回路基板の一例して挙げたが、第2の回路基板としては、フレキシブル基板の他に、ガラス基板、ガラエポ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板、プリント配線基板、又は、ICチップ等が用いられてもよい。
第1及び第2の回路基板を前記のような構成にすることにより、高い生産性を保ちつつ高品質な電極接合構造体を安価に提供することができる。
また、前記では、アクリル系樹脂の粒子をニッケルで被覆した粒子を導電粒子6の一例として挙げたが、アクリル系樹脂の他、ポリスチレン、ポリエチレン、ポリプロピレン、カーボン、ベンゾグアナミン系樹脂、PMMA、又は、シリコーン粉末が用いられてもよい。
また、前記では、硫酸バリウムの粒子を絶縁粒子7の一例として挙げたが、硫酸バリウムの他、アルミナ、シリカ、酸化チタン、チタン酸カリウム、チタン酸バリウム、酸化マグネシウム、炭化珪素、窒化珪素、窒化アルミ、炭酸カルシウム、珪酸カルシウム、酸化鉄、酸化ジルコン、酸化アンチモン、珪酸ジルコン、炭酸バリウム、硫酸バリウム、又は、酸化亜鉛粉末が用いられてもよい。
《具体例》
次に、本発明の第1実施形態の電極接合方法の具体例の1つについて、図1A〜図1Bを参照しながら説明する。まず、各構成要素の具体的構成について説明する。
本具体例において、第1の回路基板は、厚さ1.8mmのガラス上に、厚さ3μmの銀で形成した複数の第1の電極1をL/S=45μm/55μmの幅で配置したガラス基板2で構成することが好ましい。なお、Lは第1の電極の幅を示し、Sは隣り合う第1の電極1と電極1との間の幅を示す。すなわち、前記構成の隣接電極1,1又は隣接する電極3,3間のピッチは45μm+55μm=100μm=0.1mmである。
また、本具体例において、第2の回路基板は、厚さ50μmのポリイミドフィルム上に、厚さ20μmの銅で形成した複数の第2の電極3をL/S=55μm/45μmの幅で配置したフレキシブル基板4で構成することが好ましい。
また、本具体例において、接着剤樹脂組成物5は、接合前の状態で、幅3mm、厚さ30μmの熱硬化性のエポキシ樹脂を主成分とした樹脂シート(異方導電シート5A)で構成することが好ましい。
また、本具体例において、導電粒子6は、アクリル系樹脂の粒子をニッケルで被覆した平均粒径6μmの粒子で形成することが好ましい。
また、本具体例において、絶縁粒子7は、平均粒径4μmの硫酸バリウム(比重4.6)の粒子で形成することが好ましい。
以下、本具体例の電極接合方法を説明する。
まず、ガラス基板2の複数の銀電極1上で且つガラス基板2の複数の銀電極1とフレキシブル基板4の複数の銅電極3との対向領域に、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6と硫酸バリウムの絶縁粒子7が、多数個、均一に分散された熱硬化性エポキシ樹脂シートの接着剤樹脂組成物5(異方導電シート5A)を貼り付けたのち、ガラス基板2のそれぞれの銀電極1とフレキシブル基板4のぞれぞれの銅電極3とが対向するように位置合わせしてガラス基板2とフレキシブル基板4とを重ね合わせる。
次いで、圧着ツール8の加熱用ヒータ8A、エアシリンダ8B及びモータ8Cを駆動して、圧着ツール8とフレキシブル基板4の間に保護シートを介して熱硬化性エポキシ樹脂シート(異方導電シート5A)の加熱加圧を開始する。
次いで、圧着ツール8による加熱加圧により、熱硬化性エポキシ樹脂シート(異方導電シート5A)の熱硬化性エポキシ樹脂を溶融させるとともに、ガラス基板2と熱硬化性エポキシ樹脂5の界面から銀電極1の電極高さまでの電極高さ領域に、硫酸バリウムの絶縁粒子7が沈降し、ガラス基板2と熱硬化性エポキシ樹脂シート5の界面から銀電極1の電極高さまでの電極高さ領域で、硫酸バリウムの絶縁粒子7の方が、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6よりも粒子密度が高くなる。このとき、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6の平均粒径は6μm、ニッケルのめっき厚は0.2μmで、比重は2.5となり、硫酸バリウムの絶縁粒子7の平均粒径は4μmで、比重は4.6となる。
次いで、ガラス基板2の銀電極1とそれらに対向するフレキシブル基板4の銅電極3とに接触するように、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6が移動した状態で、熱硬化性エポキシ樹脂5の硬化を完了させ、ガラス基板2の銀電極1とフレキシブル基板4の銅電極3とを、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6を介して電気的に接合する。
なお、このとき、熱硬化性エポキシ樹脂5の加熱温度が180℃となるように、加熱用ヒータ8Aによる加熱温度を280℃に設定し、エアシリンダ8Bによる加圧力は3MPaに設定し、それらの加熱加圧時間は10秒に設定している。
前記電極接合方法により接合された電極接合構造体においては、銀電極1付近において、アクリル系樹脂の粒子をニッケルで被覆した導電粒子6の凝集は発生せず、ショート不良及びマイグレーション不良が発生しない可能性が高まる。
《第2実施形態》
図2A〜図2Bを用いて、本発明の第2実施形態にかかる電極接合構造体の構成を説明する。図2A〜図2Bは、本発明の第2実施形態にかかる前記電極接合構造体の構成を模式的に示す断面図であり、図2Aは加熱加圧前の前記電極接合構造体の構成の断面図であり、図2Bは加熱加圧後の前記電極接合構造体の構成の断面図である。本発明の第2実施形態にかかる電極接合方法は、ガラス基板2に代えてプリント配線基板2gを備える点と、フレキシブル配線基板4に代えて電子部品4gを備える点とで、本発明の第1実施形態にかかる電極接合方法と相違する。またここでは、導電粒子6と絶縁粒子7が均等に分散された接着剤樹脂組成物5の異方導電シート5Aについては、第1実施形態と同一の構成であるものとし、それ以外の点についても重複する説明は省略し、主に第1実施形態との相違点を説明する。なお、図2Bにおいて、図1Bとは異なり、接合後の接着剤樹脂組成物5の樹脂のはみ出し部分に傾斜面が形成されているのは、図1Bは、実際には多数ある電極の一部分を取り出したものであるのに対し、図2Bは電子部品全体が表示されており、部品端部のはみ出し部も表示しているためである。
本発明の第2実施形態にかかる前記電極接合構造体は、複数の電極1gを有するプリント配線基板2gと、プリント配線基板2gの複数の電極1gにそれぞれ対向して配置された複数の突起電極3gを有する電子部品4gと、プリント配線基板2gと電子部品4gとの対向領域に配置されて両者を接合する接着剤樹脂組成物5の異方導電シート5Aと、異方導電シート5Aの接着剤樹脂組成物5中において、均一に分散された多数の導電粒子6と多数の絶縁粒子7とを備えており、導電粒子6はプリント配線基板2gの電極1gと、それらに対向する電子部品4gのそれぞれの突起電極3gを接続する。
プリント配線基板2gの複数の電極1gは、例えば、金ニッケルめっき処理を施した厚さ20μm程度の銅で形成された銅電極で構成されている。金ニッケルめっき処理の代わりに錫めっき処理を施してもよい。
電子部品4gの複数の電極3gは、例えば、厚さ50〜100μm程度の金バンプのような突起電極で形成されている。
異方導電シート5Aは、プリント配線基板2gの複数の銅電極1gと電子部品4gの複数の金バンプ3gとを封止するように配置されている。異方導電シート5Aの接着剤樹脂組成物5は、熱硬化性樹脂で形成され、例えば、加圧されるとともに加熱されたときに低温で且つ短時間で硬化するアクリル樹脂や、耐熱性、耐吸湿性、接着性、及び、絶縁性等の面で機能的に優れたエポキシ樹脂等で形成されている。
本発明の第2実施形態にかかる前記電極接合構造体は以下のように構成されている。
本発明の第2実施形態にかかる前記電極接合構造体によれば、プリント配線基板2gの複数の銅電極1gと電子部品4gの複数の金バンプ3gとの対向領域内に、導電粒子6と絶縁粒子7が分散された接着剤樹脂組成物5を成膜してなる異方導電シート5Aを配置し、圧着ツール8で加熱加圧して、異方導電シート5Aの接着剤樹脂組成物5を溶融させて硬化させるとともに、導電粒子6を介して銅電極1gと金バンプ3gとを電気的に接合し、かつ、プリント配線基板2gと接着剤樹脂組成物5の界面から銅電極1gの電極高さまでの電極高さ領域で、比重の大きい絶縁粒子7の方が、比重の小さい導電粒子6よりも粒子密度が高くなっている。これによって、銅電極1g付近での導電粒子6の凝集が抑制され、ショート不良の発生が抑えられる。また、ガラス基板2gの複数の銀電極1gとフレキシブル基板4gの複数の銅電極3gとの対向領域において、絶縁粒子7が、導電粒子6とプリント配線基板2gの電極1g及び電子部品4gの電極3gとの接触を阻害することはなく、電極1g,3g間の導通が確保できるとともに、プリント配線基板2g及び電子部品4gと接着剤樹脂組成物5との密着性は低下せず、マイグレーション不良の発生も抑えられる。従って、高電圧での接続信頼性を確保するとともに、狭ピッチ化(例えば0.1mm以下)に対応することができる。
したがって、本発明の第2実施形態にかかる前記電極接合方法によれば、前記のようにショート不良やマイグレーション不良の発生が抑えられるので、高耐圧仕様での狭ピッチ部品実装への適用が可能となる。
なお、本発明は前記各実施形態に限定されるものではなく、その他種々の態様で実施できる。
例えば、前記実施形態の変形例として、絶縁粒子の沈降を加速させるために、振動を付与するようにしてもよい。
また、異方導電シート5A内においても、第1の絶縁粒子の方が導電粒子よりも占有率が高くすることが望ましい。
なお、前記各実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明にかかる電極接合方法及び電極接合構造体は、ショート不良の発生を抑えるとともにマイグレーション不良の発生を抑える効果を有するので、回路基板の電極に他の回路基板の電極を導電粒子と絶縁粒子が分散された接着剤樹脂組成物を用いて接合する技術、特にガラス基板とフレキシブル基板との電極接合に代表されるフラットパネルの接合技術において、隣接する電極間の狭ピッチ化が求められるときに有用である。
加熱加圧前における、本発明の第1実施形態にかかる電極接合構造体の構成を分解して模式的に示す断面図である。 加熱加圧後における、本発明の第1実施形態にかかる電極接合構造体の構成を模式的に示す断面図である。 加熱加圧前における、本発明の第2実施形態にかかる電極接合構造体の構成を分解して模式的に示す断面図である。 加熱加圧後における、本発明の第2実施形態にかかる電極接合構造体の構成を模式的に示す断面図である。 導電粒子と絶縁粒子の平均粒径の関係を示す断面図である。 導電粒子と絶縁粒子の平均粒径の関係を示す断面図である。 加熱加圧前における、第1の従来の電極接合構造体の断面図である。 加熱加圧後における、第1の従来の電極接合構造体の断面図である。 加熱加圧前における、第2の従来の電極接合構造体の断面図である。 加熱加圧後における、第2の従来の電極接合構造体の断面図である。 加熱加圧前における、電極間ショート不良を示す断面図である。 加熱加圧後における、電極間ショート不良を示す断面図である。 各種材料の比重を示す表形式の図である。 本発明の第1実施形態にかかる電極接合方法のフローチャートである。
符号の説明
1,1g 第1の電極
2 ガラス基板
2a 第1の電極が形成された電極形成面
2g プリント配線基板
3,3g 第2の電極
4 フレキシブル基板
4a 第2の電極が形成された電極形成面
4g 電子部品
5 接着剤樹脂組成物
5A 異方導電シート
6 導電粒子
7 絶縁粒子
8 圧着ツール
8f 加熱加圧面
8A 加熱用ヒータ
8B エアシリンダ
8C モータ
8G エア供給装置
9 支持台
10 ガラス基板と接着剤樹脂組成物との界面

Claims (18)

  1. 複数の回路基板上に形成された複数の電極同士を上下に対向するように配置し、
    前記複数の回路基板の対向領域内に導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートを配置し、
    前記回路基板間に前記異方導電シートが挟まれた状態で前記異方導電シートを加熱するとともに加圧して、前記接着剤樹脂組成物を溶融させ、前記下側の回路基板と前記異方導電シートの前記溶融した接着剤樹脂組成物との界面から前記下側の回路基板の前記電極の高さまでの領域に、前記第1の絶縁粒子が沈降するとともに前記導電粒子を介して前記電極同士を電気的に接合し、前記界面から前記電極の高さまでの前記領域に前記第1の絶縁粒子が沈降して当該領域で前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高くなった状態でかつ前記導電粒子を介して前記電極同士を電気的に接合した状態で、前記溶融した接着剤樹脂組成物を硬化させて前記複数の回路基板を接合させることを特徴とする電極接合方法。
  2. 前記溶融した接着剤樹脂組成物を硬化させて前記複数の回路基板を接合させるとき、前記界面から前記電極の高さまでの前記領域において前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高くなった状態とは、前記第1の絶縁粒子の占有率が少なくとも40%以上で74%未満占有している状態を意味することを特徴とする請求項1に記載の電極接合方法。
  3. 前記異方導電シートを加熱する温度が前記接着剤樹脂組成物の溶融温度よりも高いことを特徴とする請求項1又は2に記載の電極接合方法。
  4. 前記異方導電シートを加熱する温度が80〜200℃であることを特徴とする請求項3に記載の電極接合方法。
  5. 前記接着剤樹脂組成物の溶融温度が70〜150℃であることを特徴とする請求項4に記載の電極接合方法。
  6. 前記異方導電シートを加圧する圧力が1〜4MPaであることを特徴とする請求項1〜5のいずれか1つに記載の電極接合方法。
  7. 前記異方導電シートを加熱加圧する時間が3〜60秒であることを特徴とする請求項1〜6のいずれか1つに記載の電極接合方法。
  8. 電極がそれぞれ形成された複数の回路基板と、
    前記複数の回路基板間に配置されて、かつ、前記複数の回路基板上に形成された前記複数の電極同士を、導電粒子と第1の絶縁粒子が分散された接着剤樹脂組成物を成膜してなる異方導電シートとを備えて、
    前記複数の回路基板上に形成された前記複数の電極同士を前記異方導電シートの前記導電粒子で電気的に接合した状態で、前記複数の回路基板を前記異方導電シートを介して重ね合わせて接合するとともに、
    前記一方の回路基板と前記異方導電シートの界面から前記一方の回路基板の前記電極の高さまでの領域で、前記第1の絶縁粒子の粒子密度が前記導電粒子の粒子密度よりも高いことを特徴とする電極接合構造体。
  9. 前記第1の絶縁粒子の方が前記導電粒子よりも比重が大きいことを特徴とする請求項8に記載の電極接合構造体。
  10. 前記第1の絶縁粒子の方が前記接着剤樹脂組成物よりも比重が大きいことを特徴とする請求項9に記載の電極接合構造体。
  11. 前記導電粒子の構成が、第2の絶縁粒子の周囲を導電材料で被覆したものであることを特徴とする請求項10に記載の電極接合構造体。
  12. 前記導電粒子の平均粒径が0.1〜15μmであることを特徴とする請求項11に記載の電極接合構造体。
  13. 前記第1の絶縁粒子の平均粒径が0.1〜10μmであることを特徴とする請求項12に記載の電極接合構造体。
  14. 前記第1の絶縁粒子の平均粒径Aと前記導電粒子の平均粒径Bとが、A>B/4、の関係にあることを特徴とする請求項13に記載の電極接合構造体。
  15. 前記第1の絶縁粒子が、シリカ、酸化チタン、チタン酸カリウム、チタン酸バリウム、アルミナ、酸化マグネシウム、炭化珪素、窒化珪素、窒化アルミ、炭酸カルシウム、珪酸カルシウム、酸化鉄、酸化ジルコン、酸化アンチモン、珪酸ジルコン、炭酸バリウム、硫酸バリウム、酸化亜鉛粉末から少なくとも1つ選ばれることを特徴とする請求項14に記載の電極接合構造体。
  16. 前記第2の絶縁粒子が、アクリル系樹脂、ポリスチレン、ポリエチレン、ポリプロピレン、カーボン、ベンゾグアナミン系樹脂、PMMA、シリコーン粉末から少なくとも1つ選ばれることを特徴とする請求項15に記載の電極接合構造体。
  17. 前記回路基板を形成する前記電極が、銀もしくは銀ペーストから形成されることを特徴とする請求項16に記載の電極接合構造体。
  18. 前記回路基板が、ガラス基板、ガラスエポキシ配線基板、ポリエチレンテレフタレート基板、ポリカーボネート基板、ポリエチレンナフタレート基板、ポリイミド基板、セラミック基板のいずれかであることを特徴とする請求項17に記載の電極接合構造体。
JP2007152477A 2007-06-08 2007-06-08 電極接合方法及び電極接合構造体 Pending JP2008306024A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152477A JP2008306024A (ja) 2007-06-08 2007-06-08 電極接合方法及び電極接合構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152477A JP2008306024A (ja) 2007-06-08 2007-06-08 電極接合方法及び電極接合構造体

Publications (1)

Publication Number Publication Date
JP2008306024A true JP2008306024A (ja) 2008-12-18

Family

ID=40234457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152477A Pending JP2008306024A (ja) 2007-06-08 2007-06-08 電極接合方法及び電極接合構造体

Country Status (1)

Country Link
JP (1) JP2008306024A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178441A (ja) * 2011-02-25 2012-09-13 Sekisui Chem Co Ltd 接続構造体の製造方法及び接続構造体

Similar Documents

Publication Publication Date Title
JP4117851B2 (ja) プリント配線板の接続方法および接続装置
JP4345598B2 (ja) 回路基板の接続構造体とその製造方法
TWI713423B (zh) 連接結構體之製造方法及異向性導電接著劑
JPWO2008047918A1 (ja) 電子機器のパッケージ構造及びパッケージ製造方法
JP2009283606A (ja) 配線部材の接続構造体及び配線部材の接続方法
CN103004294B (zh) 电子部件的表面安装方法以及安装有电子部件的基板
JP2003007768A (ja) 層間接続材、その製造方法及び使用方法
JP4967467B2 (ja) フレキシブル配線基板接着方法および配線基板
KR20070103185A (ko) 이방성 도전 필름 및 이를 이용한 전자부품의 실장방법
JP4762873B2 (ja) 電極接合方法
JP5008476B2 (ja) 電極接合ユニット及び電極接合方法
JP2008306024A (ja) 電極接合方法及び電極接合構造体
JP4648294B2 (ja) 電極接合方法及び電極接合構造体
JP5281762B2 (ja) 電極接合構造体
JP2004006417A (ja) 接続部材及びこれを用いた電極の接続構造
JP5608504B2 (ja) 接続方法及び接続構造体
JPH11111755A (ja) 半導体装置の製造方法
KR101008824B1 (ko) 고분자 입자가 부착된 전극을 구비한 반도체 디바이스 및이를 이용한 반도체 패키지
KR102520768B1 (ko) 이방성 도전 필름을 이용한 회로장치의 초음파 접합방법
JP2002353601A (ja) 電子部品実装体および電子部品実装方法
JP2009010061A (ja) 電極接合構造体
JP2008112732A (ja) 電極の接続方法
JP2986466B2 (ja) 回路基板平坦化方法及び半導体装置の製造方法
JP2008091650A (ja) フリップチップ実装方法、および半導体パッケージ
JP2003197806A (ja) 配線基板の製造方法および配線基板