JP2008305939A - 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法 - Google Patents

多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法 Download PDF

Info

Publication number
JP2008305939A
JP2008305939A JP2007151158A JP2007151158A JP2008305939A JP 2008305939 A JP2008305939 A JP 2008305939A JP 2007151158 A JP2007151158 A JP 2007151158A JP 2007151158 A JP2007151158 A JP 2007151158A JP 2008305939 A JP2008305939 A JP 2008305939A
Authority
JP
Japan
Prior art keywords
region
light
crystal
semiconductor film
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007151158A
Other languages
English (en)
Inventor
Daisuke Iga
大輔 伊賀
Yukio Taniguchi
幸夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2007151158A priority Critical patent/JP2008305939A/ja
Priority to US12/133,635 priority patent/US7888247B2/en
Publication of JP2008305939A publication Critical patent/JP2008305939A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる多結晶半導体膜の形成方法。
【解決手段】 絶縁基板上において第1方向に沿って結晶成長した多結晶半導体膜を形成する本発明の方法では、第1方向に沿って第1の向き(Fas,Faf)に結晶成長した結晶粒(15a)と第1の向きとは逆の第2の向き(Fbs,Fbf)に結晶成長した結晶粒(15b)とが、第1方向と直交する第2方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように、絶縁基板上における結晶成長を制御する。
【選択図】 図6

Description

本発明は、多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法に関する。特に、本発明は、薄膜トランジスタの活性層となる多結晶半導体薄膜の形成方法に関するものである。
従来、単結晶シリコン(一般には単結晶半導体)に匹敵する半導体デバイス級の多結晶シリコン薄膜(一般には多結晶半導体薄膜)を絶縁基板上に形成する技術として、非晶質シリコン薄膜(一般には非晶質半導体薄膜)に所定の光強度分布のレーザー光を照射することにより非晶質シリコン薄膜を溶融して、所定方向に沿って結晶成長させる手法が考案されている。この手法では、非晶質シリコン薄膜を一旦溶解させて再結晶化させる際に、再結晶化が発生する位置と再結晶化のタイミングとを制御することにより、所望の方向に沿って連続的に結晶成長した多結晶シリコン薄膜が得られる。
再結晶化の位置およびタイミングを制御する方法については種々提案されているが、一例としてPMELA(Phase Modulated Eximer Laser Annealing)法によるシリコン薄膜の再結晶化方法がある。PMELA法では、位相シフトマスク(一般には光変調素子)を用いて入射レーザー光を変調し、非晶質シリコン薄膜に所望の光強度分布のレーザー光を照射する。具体的には、非晶質シリコン薄膜上の所望の位置において光強度(照射エネルギー)が最小値を有し且つその最小値の位置と最大値の位置との間において光強度が単調に変化するような形態の光強度分布を、非晶質シリコン薄膜上に生成する。
こうして、非晶質シリコン薄膜内において、光強度が最小値の位置と最大値の位置との間において温度が単調に変化するような温度分布が生じる。この温度分布により、非晶質シリコンの溶融後の再結晶化が温度の変化方向に沿って連続的に発生し、単結晶シリコンに匹敵する半導体デバイス級の多結晶シリコン薄膜が形成される。従来技術の一例として、特許文献1には、位相シフトマスクを介して発生させた逆ピークパターンの光強度分布の光を半導体膜に照射して結晶化を行う技術が開示されている。
特開2000−306859号公報
例えば特許文献1に開示された従来技術では、互いに平行な2つの直線に沿って並んだ開始点から対向する向きに結晶が成長し、中央の直線上において結晶粒が衝突して結晶化が終了する。このとき、結晶粒の衝突部分ではシリコンが隆起し、他の部分に比べて膜厚が厚くなる。このような再結晶化シリコン薄膜を用いて絶縁基板上にTFT(薄膜トランジスタ:Thin-Film-Transistor)の活性層を形成すると、直線状にシリコンが隆起した部分に起因して、互いに隣り合う2つのTFTの間で短絡が発生する恐れがある。
本発明は、前述の課題に鑑みてなされたものであり、隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる多結晶半導体膜の形成方法を提供することを目的とする。
前記課題を解決するために、本発明では、絶縁基板上において第1方向に沿って結晶成長した多結晶半導体膜を形成する方法であって、
前記第1方向に沿って第1の向きに結晶成長した結晶粒と前記第1の向きとは逆の第2の向きに結晶成長した結晶粒とが、前記第1方向と直交する第2方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように、前記絶縁基板上における結晶成長を制御する多結晶半導体膜の形成方法を提供する。
本発明の第2形態では、第1形態の形成方法により形成された前記多結晶半導体膜を活性層に用いた薄膜トランジスタを提供する。
本発明の第3形態では、第1形態の形成方法により形成された前記多結晶半導体膜を活性層に用いて薄膜トランジスタを製造する薄膜トランジスタの製造方法を提供する。
本発明の第4形態では、所定の光強度分布を有する光を非単結晶半導体膜に照射して結晶化半導体膜を生成する結晶化装置であって、
前記所定の光強度分布を有する光として、所定の方向に沿って光強度がV字状に変化する分布であり且つ前記V字状に変化する光強度の勾配が前記所定の方向と直交する方向に沿って増減する分布の光を前記非単結晶半導体膜に照射する光学系を有する結晶化装置を提供する。
本発明の第5形態では、所定の光強度分布を有する光を非単結晶半導体膜に照射して結晶化半導体膜を生成する結晶化方法であって、
前記所定の光強度分布を有する光として、所定の方向に沿って光強度がV字状に変化する分布であり且つ前記V字状に変化する光強度の勾配が前記所定の方向と直交する方向に沿って増減する分布の光を前記非単結晶半導体膜に照射する結晶化方法を提供する。
本発明の第6形態では、入射光に基づいて所定の光強度分布を形成する光変調素子であって、
前記光変調素子は、第1方向に細長く延びる帯状領域が前記第1方向と直交する第2方向に沿って繰り返し並ぶ基本パターンを有し、
前記帯状領域では、前記第1方向に沿って、第1位相値を有する第1領域と第2位相値を有する第2領域との割合が単位領域毎に変化し、
各単位領域内における前記第1領域の占有面積率の変化率は、帯状領域毎に前記第2方向に沿って増減している光変調素子を提供する。
本発明の第7形態では、第4形態の結晶化装置または第5形態の結晶化方法に用いられる光変調素子であって、
前記光変調素子は、前記所定の方向に細長く延びる帯状領域が前記所定の方向と直交する方向に沿って繰り返し並ぶ基本パターンを有し、
前記帯状領域では、前記第1方向に沿って、第1位相値を有する第1領域と第2位相値を有する第2領域との割合が単位領域毎に変化し、
各単位領域内における前記第1領域の占有面積率の変化率は、帯状領域毎に前記第2方向に沿って増減している光変調素子を提供する。
本発明にかかる多結晶半導体膜の形成方法では、互いに逆向きに結晶成長した結晶粒が、結晶成長の方向と直交する方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように結晶成長を制御する。その結果、本発明では、半導体の残留部分が間隔を隔てて形成されるので、隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる。
本発明の実施形態の具体的な説明に先立って、本発明における課題の認識について説明する。例えばPMELA法では、図1に示すように、直線10に沿って並んで生成された結晶核11が結晶成長の開始点になり、矢印F1で示す方向に沿って結晶の成長が進行する。図1において、参照符号12で示す領域は結晶化が進んだ多結晶半導体薄膜の領域であり、参照符号13で示す領域は結晶化されていない非晶質半導体薄膜の領域である。また、参照符号14は結晶粒界を示し、参照符号15は結晶粒界に囲まれた結晶粒を示している。
図2には、互いに平行な2つの直線10a,10bに沿って並んで生成された結晶核11a,11bから、矢印F1a,F1bで示す向きに結晶がそれぞれ成長する様子が示されている。この場合、図3に示すように、2つの直線10aと10bとの間の中央に位置する直線10c上において、結晶核11aから矢印F1aで示す向きに成長した結晶粒15aと結晶核11bから矢印F1bで示す向きに成長した結晶粒15bとが衝突して結晶化が終了する。このとき、結晶粒15aと15bとの衝突部分では半導体が隆起し、この隆起部分16の膜厚が他の部分よりも厚くなる。
図2および図3において、参照符号12a,12bで示す領域は、結晶核11a,11bから結晶化が進んだ多結晶半導体薄膜の領域である。また、図2において、参照符号13で示す領域は、結晶化されていない非晶質半導体薄膜の領域である。また、図2および図3において、参照符号14a,14bは結晶核11a,11bからの結晶化により生成された結晶粒界を示し、参照符号17はガラス基板(不図示)上に形成された絶縁層を示している。
図1〜図3を参照して説明した方法により多結晶半導体薄膜を形成した後、たとえば、図4の18a,18bに示す位置にTFTを形成する。TFTのソースドレイン領域とチャネル領域が、上記の多結晶半導体薄膜を島状に分離することで形成される。分離にはドライエッチングを用いるのが一般的で、その条件はTFT形成領域の上記多結晶半導体薄膜の膜厚と非形成領域のエッチングのばらつきとを考慮して決定される。その際に、図3に示すように、結晶粒15aと15bとの衝突により半導体の隆起部分16が発生している場合、この隆起部分16においてドライエッチング量が不足し易い。
その結果、図5に示すように、TFT18a,18bの島分離形成後に多結晶半導体薄膜の隆起部分16aの底部が直線状に且つ連続的に残留し、TFT間の半導体の残留部分16aが互いに隣り合う2つのTFT18aと18bとの間で絶縁されずに短絡を発生させる恐れがある。半導体の残留部分16aはドライエッチングの時間を延長することにより除去することができるが、その場合、下地の絶縁層17に対して必要以上にエッチングが進行するため好ましくない。これらの課題を解決するために上記半導体の残留部分16aを回避してTFT18a,18bを設計することが考えられるが、結晶化領域を有効に利用すること、配線を短くすることなどの要求がある。
本発明の1つの手法では、図6に示すように、互いに平行な2つの直線10a,10bに沿って並んで生成された結晶核11a,11bから結晶粒15a,15bが図中水平方向に成長する際に、結晶成長の速度が結晶成長の方向と直交する方向(図6の紙面における鉛直方向)に沿って増減するように、結晶の成長速度を制御する。図6では、矢印Faf,Fbfで示す向きに結晶の成長速度が最も速く、矢印Fas,Fbsで示す向きに結晶の成長速度が最も遅い。そして、結晶の成長速度が最も速い位置と最も遅い位置との間で、成長速度が単調に変化している。
この場合、図7に示すように、成長速度の最も速い領域において、結晶粒15aと15bとの衝突が最も早く起こる。しかしながら、この衝突部分(図中破線の楕円で示す)19では、元の結晶成長の方向と直交する方向(図7の紙面における鉛直方向)に沿って矢印Fc,Fdで示す向きに結晶成長することができるため、半導体の隆起は起こらない。したがって、半導体薄膜の全面が結晶化した状態では、図8に示すように、成長速度の最も遅い領域において結晶粒15aと15bとが衝突する部分に、例えばピラミッド状の隆起部分20が間隔を隔てて島状に形成される。
なお、図6〜図8において、参照符号12a,12bで示す領域は、結晶核11a,11bから結晶化が進んだ多結晶半導体薄膜の領域である。また、図6および図7において、参照符号13で示す領域は、結晶化されていない非晶質半導体薄膜の領域である。また、図8において、参照符号17は、例えばガラス基板(不図示)上に形成された絶縁層を示している。
本発明の別の手法では、結晶核から横方向に結晶成長し、隆起部分16aに到達する時間を所定の間隔で異ならせる。隆起部分16aに到達する時間を所定の間隔で異ならせる具体的手段として、図9に示すように、結晶開始位置である結晶核の位置を上記所定の間隔で異ならせることが考えられる。この場合、図9に示すように、結晶開始位置である結晶核11a’,11b’を折れ線10a’,10b’に沿って生成し、結晶成長の方向(図9の紙面における水平方向)における結晶核11a’,11b’の位置が所定の繰り返し間隔で異なるように配置する。結晶成長の方向に沿って衝突位置13’に最も近い部分から成長した結晶が最も早く衝突する。
しかしながら、この衝突部分(図中破線の楕円で示す)19’では、元の結晶成長の方向と直交する方向(図9の紙面における鉛直方向)に沿って矢印Fc,Fdで示す向きに結晶成長することができるため、半導体の隆起は起こらない。したがって、半導体薄膜の全面が結晶化した状態では、図8に示すように、成長速度の最も遅い領域において結晶粒15aと15bとが衝突する部分に、例えばピラミッド状の隆起部分20が間隔を隔てて島状に形成される。なお、図9において、参照符号12a’,12b’で示す領域は、結晶核11a’,11b’から結晶化が進んだ多結晶半導体薄膜の領域である。また、図9において、参照符号13’で示す領域は、結晶化されていない非晶質半導体薄膜の領域である。
本発明では、図6〜図8を参照して説明したように再結晶化された多結晶半導体薄膜を用いて、たとえば図10に示す位置に、絶縁基板(例えばガラス基板+絶縁層)上に、TFT18a,18bが形成される。その結果、図11に示すように、TFT18a,18bの形成後には、例えばピラミッド状の半導体の残留部分20aが間隔を隔てて島状に形成されるだけで、隣り合う2つのTFT18aと18bとの間を短絡する半導体の残留部分20aが残留しないため、TFT18aと18bとを確実に分離することができる。
以下、半導体の残留部分20aと、TFTの短絡発生との関係についてさらに説明する。図12に示すように、残留部分20aの外形寸法(例えば残留部分20aに外接する円の直径)φが残留部分20aの間隔Sよりも大きい場合、残留部分20aの外形寸法φがTFT18aと18bとの間の間隔(すなわち最小デザインルール)Dmよりも大きいと、TFT18aと18bとは残留部分20aを直接介してショートする。また、残留部分20aとTFTのソースドレイン領域は、同じ多結晶半導体薄膜により形成されていることを考慮すると、図13に示すように、たとえ外形寸法φが間隔Dmよりも小さい場合であっても、多結晶半導体薄膜の同層間絶縁を保障できる最小の距離Sと外形寸法φの和が、間隔Dmよりも大きい場合は、TFT18aまたは18bと残留部分20aとの間隔が狭くなり過ぎて同層間でショートする可能性が高い。
一方、図14に示すように、残留部分20aの外形寸法φが残留部分20aの間隔Sよりも小さい場合、TFT18aと18bとの間の間隔Dmが残留部分20aの外形寸法φよりも小さいと、TFT18aと18bとは残留部分20aを直接介してショートする。また、残留部分20aとTFTのソースドレイン領域は、同じ多結晶半導体薄膜により形成されていることを考慮すると、図15に示すように、たとえ外形寸法φが間隔Dmよりも小さい場合であっても、多結晶半導体薄膜の同層間絶縁を保障できる最小の距離Sと外形寸法φの和が、間隔Dmよりも大きい場合は、TFT18aまたは18bと残留部分20aとの間隔が狭くなりすぎて同層間でショートする可能性が高い。
以上のようにTFTの短絡を防止するためには、外形寸法φ、同層間絶縁を保障できる最小の距離Sおよび間隔Dmを考慮せねばならない。隣り合う2つのTFT18aと18bとの間の短絡を確実に防止するには、図16に示すように、残留部分(島状隆起部)20aの間隔Sと残留部分20aの外形寸法φとの和S+φ(すなわち残留部分20aのピッチPi)が、最小デザインルール(すなわちTFT18aと18bとの間の間隔)Dmよりも小さくなるように、結晶の成長を制御するか、あるいは、最小デザインルールを設定することが好ましい。
以上のように、本発明では、半導体の結晶成長の結果として対向する向きに成長する結晶粒の間に発生する衝突部分のうち、選択された衝突部分における半導体薄膜の膜厚がその他の衝突部分よりも厚くなるように制御する。換言すれば、本発明では、例えば互いに平行な2つの直線に沿って並んで生成された結晶核から結晶粒が成長する際に、結晶成長の速度が結晶成長の方向と直交する方向に沿って増減するように、結晶の成長速度を制御する。さらに別の表現をすれば、本発明では、互いに逆向きに結晶成長した結晶粒が、結晶成長の方向と直交する方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように、結晶成長を制御する。
その結果、本発明では、TFTの活性層の形成後に直線状に且つ連続的に半導体が残留する従来技術とは異なり、半導体の残留部分が間隔を隔てて形成されるので、隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる。なお、上述の説明では、PMELA法に対して本発明を適用しているが、絶縁基板上において一方向に沿って結晶成長した多結晶半導体膜を形成する他の方法に対しても同様に本発明を適用することができる。
本発明の実施形態を、添付図面に基づいて説明する。図17は、本発明の実施形態にかかる結晶化装置の構成を概略的に示す図である。図18は、図17の照明系の内部構成を概略的に示す図である。図17および図18を参照すると、本実施形態の結晶化装置は、入射光束を位相変調して所定の光強度分布を有する光束を形成するための光変調素子1と、光変調素子1を照明するための照明系2と、結像光学系3と、被処理基板4を保持するための基板ステージ5とを備えている。
光変調素子1の構成および作用については後述する。照明系2は、たとえば308nmの波長を有するレーザ光を供給するXeClエキシマレーザ光源2aを備えている。光源2aとして、KrFエキシマレーザ光源やYAGレーザ光源のように被処理基板4を溶融するエネルギー光線を出射する性能を有する他の適当な光源を用いることもできる。光源2aから供給されたレーザ光は、ビームエキスパンダ2bを介して拡大された後、第1フライアイレンズ2cに入射する。
こうして、第1フライアイレンズ2cの後側焦点面には複数の小光源が形成され、これらの複数の小光源からの光束は第1コンデンサー光学系2dを介して、第2フライアイレンズ2eの入射面を重畳的に照明する。その結果、第2フライアイレンズ2eの後側焦点面には、第1フライアイレンズ2cの後側焦点面よりも多くの複数の小光源が形成される。第2フライアイレンズ2eの後側焦点面に形成された複数の小光源からの光束は、第2コンデンサー光学系2fを介して、光変調素子1を重畳的に照明する。
第1フライアイレンズ2cと第1コンデンサー光学系2dとにより、第1ホモジナイザが構成されている。この第1ホモジナイザにより、光源2aから射出されたレーザ光について、光変調素子1上での入射角度に関する均一化が図られる。また、第2フライアイレンズ2eと第2コンデンサー光学系2fとにより、第2ホモジナイザが構成されている。この第2ホモジナイザにより、第1ホモジナイザからの入射角度が均一化されたレーザ光について、光変調素子1上での面内各位置での光強度に関する均一化が図られる。
光変調素子1により位相変調されたレーザ光は、結像光学系3を介して、被処理基板4に入射する。ここで、結像光学系3は、光変調素子1の位相パターン面と被処理基板4とを光学的に共役に配置している。換言すれば、被処理基板4(厳密には被処理基板4の被照射面)は、光変調素子1の位相パターン面と光学的に共役な面(結像光学系3の像面)に設定されている。
結像光学系3は、例えば、正レンズ群3aと、正レンズ群3bと、これらのレンズ群の間に配置された開口絞り3cとを備えている。開口絞り3cの開口部(光透過部)の大きさ(ひいては結像光学系3の像側開口数NA)は、被処理基板4の半導体膜上(被照射面)において所要の光強度分布を発生させるように設定されている。なお、結像光学系3は、屈折型の光学系であってもよいし、反射型の光学系であってもよいし、屈折反射型の光学系であってもよい。
被処理基板4は、基板上に、下層絶縁膜、非単結晶半導体薄膜、上層絶縁膜の順に成膜することにより構成されている。さらに詳細には、本実施形態では、被処理基板4は、たとえば液晶ディスプレイ用板ガラスの上に、化学気相成長法(CVD)により、下地絶縁膜、非単結晶半導体膜(例えば非晶質シリコン膜)、およびキャップ膜が順次形成されたものである。下地絶縁膜およびキャップ膜は、絶縁膜、例えばSiO2膜である。下地絶縁膜は、非晶質シリコン膜とガラス基板とが直接接触して、ガラス基板中のNaなどの異物が非晶質シリコン膜に混入するのを防止し、非晶質シリコン膜の熱が直接ガラス基板に伝わるのを防止する。
非晶質シリコン膜は、結晶化される半導体膜である。キャップ膜は、非晶質シリコン膜に入射する光ビームの一部により加熱され、この加熱された温度を蓄熱する。この蓄熱効果は、光ビームの入射が遮断されたとき、非晶質シリコン膜の被照射面において高温部が相対的に急速に降温するが、この降温勾配を緩和させ、大粒径の横方向の結晶成長を促進させる。被処理基板4は、真空チャックや静電チャックなどにより基板ステージ5上において予め定められた所定の位置に位置決めされて保持されている。
図19は、本実施形態における光変調素子の構成を概略的に示す図である。図19を参照すると、本実施形態の光変調素子1は、y方向(図中鉛直方向)に細長く延びる3種類の帯状領域1A,1B,1Cがx方向(図中水平方向)に沿って繰り返し並ぶ基本パターンを有する。図19において、参照符号1Dは、基本パターンの繰り返し単位領域を示している。単位構造である帯状領域1A,1B,1Cでは、図中斜線部で示す矩形状の領域1aが+90度の位相値を有し、図中空白部で示す領域1bが0度の位相値を有する。
位相値は、光が光変調素子を通過するときの位相変調量を表し、位相進みの方向を正とする。例えば、基準となる位相値0度に対して、+90度は位相進みを意味する。光変調素子1は、例えば合成石英により形成された基板(一般には光透過性基板)の表面をエッチングして凹凸状に形成することにより作製される。波長が308nmの光に対して使用される光変調素子1では、0度の位相値を有する領域1bを基準とするとき、矩形状の領域1aは深さが157nmの凹部として刻設されている。
帯状領域1A,1B,1Cのx方向のピッチは、結像光学系3の像面換算で1μmである。換言すると、帯状領域1A,1B,1Cでは、結像光学系3の像面換算で1μm×1μmのサイズを有する正方形状のセル(単位領域)1cが、y方向に沿って11個並んでいる。結像光学系3の像面換算でのセル1cのサイズ1μm×1μmは、結像光学系3の点像分布範囲の1.25μmよりも小さく設定されている。
帯状領域1A,1B,1Cでは、+90度の位相値を有する領域1aと0度の位相値を有する領域1bとの割合が、y方向に沿ってセル毎に変化している。換言すると、帯状領域1A,1B,1Cでは、各セルにおける領域1aの占有面積率がy方向に沿って所定の変化率で変化している。具体的には、各セルにおける領域1aの占有面積率は、帯状領域1A,1B,1Cの中央において最も大きく、その両端に向かって単調に減少している。
第1帯状領域1Aでは、各セルにおける領域1aの占有面積率の変化率が最も大きい。第3帯状領域1Cでは、各セルにおける領域1aの占有面積率の変化率が最も小さい。第1帯状領域1Aと第3帯状領域1Cとの間に配置された第2帯状領域1Bでは、各セルにおける領域1aの占有面積率の変化率が、第1帯状領域1Aの変化率と第3帯状領域1Cの変化率との中間的な値である。すなわち、光変調素子1では、各セルにおける領域1aの占有面積率の変化率は、帯状領域毎にx方向に沿って増減している。
本実施形態の光学系では、図19に示す光変調素子1を用いて被処理基板4上に形成される光強度分布を計算により求めた。計算条件は、以下の通りである。すなわち、光の波長は308nmであり、結像光学系3の像側開口数は0.15であり、コヒーレンスファクター(照明σ値;照明系2の射出側開口数/結像光学系3の物体側開口数)は0.5であり、結像光学系3の結像倍率は1/5である。なお、結像光学系3の点像分布範囲の半径は、0.61λ/NAで与えられ(λ:波長、NA:像側開口数)、λ=0.308μmおよびNA=0.15を代入すると、前述した1.25μmという値が得られる。
本実施形態では、計算の結果、被処理基板4上(結像光学系3の像面上)において図20に示すような光強度分布が得られた。図20では、無変調のときの光強度を1に規格化したときの光強度の等高線(すなわち等強度線)で示している。図20において、線A−Aで示す位置は光変調素子1の第1帯状領域1Aのy方向に沿った中央線に対応し、線C−Cで示す位置は光変調素子1の第3帯状領域1Cのy方向に沿った中央線に対応している。
図20の線A−Aに沿った光強度分布を図21に、図20の線C−Cに沿った光強度分布を図22に示す。図21および図22を参照すると、線A−Aに沿った光強度分布および線C−Cに沿った光強度分布はともにy方向に沿って光強度がV字状に変化する分布であるが、V字状に変化する光強度の勾配は線A−Aに沿った光強度分布よりも線C−Cに沿った光強度分布の方が緩やかである。すなわち、本実施形態では、光変調素子1および結像光学系3を介して、y方向に沿って光強度がV字状に変化する分布であり且つこのV字状に変化する光強度の勾配がx方向に沿って増減する分布の光が被処理基板4の非単結晶半導体膜に照射される。
光強度の勾配が緩やかなほど、すなわち温度の勾配が緩やかなほど、結晶成長は速く進むという性質がある。したがって、本実施形態では、線C−Cに沿った結晶成長が線A−Aに沿った結晶成長に先行することになり、図6〜図8を参照して説明したように、互いに逆向きに結晶成長した結晶粒が、x方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突する。
その結果、本実施形態では、半導体の残留部分がx方向に沿って間隔を隔てて形成されるので、隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる。なお、本実施形態では、図19に示す光変調素子1を実際に作製し、作製した光変調素子1および結像光学系3を用いて被処理基板4上に形成される光強度分布を計測した。計測の結果、図20に示す光強度分布とほぼ同じ結果を得た。
図23は、本実施形態の結晶化装置を用いて結晶化された領域に電子デバイスを作製する工程を示す工程断面図である。図23(a)に示すように、透明の絶縁基板80(例えば、アルカリガラス、石英ガラス、プラスチック、ポリイミドなど)の上に、下地膜81(例えば、膜厚50nmのSiNおよび膜厚100nmのSiO2積層膜など)および非晶質半導体膜82(例えば、膜厚50nm〜200nm程度のSi,Ge,SiGeなどの半導体の膜)および不図示のキャップ膜82a(例えば、膜厚30nm〜300nmのSiO2膜など)を、化学気相成長法やスパッタ法などを用いて成膜した被処理基板5を準備する。そして、本実施形態にしたがう結晶化装置を用いて、非晶質半導体膜82の表面の予め定められた領域に、レーザ光83(例えば、KrFエキシマレーザ光やXeClエキシマレーザ光など)を照射する。
こうして、図23(b)に示すように、大粒径の結晶を有する多結晶半導体膜または単結晶化半導体膜84が生成される。次に、キャップ膜82aをエッチングにより半導体膜84から除去した後、図23(c)に示すように、フォトリソグラフィ技術を用いて多結晶半導体膜または単結晶化半導体膜84を例えば薄膜トランジスタを形成するための領域となる島状の半導体膜85に加工し、表面にゲート絶縁膜86として膜厚20nm〜100nmのSiO2膜を化学気相成長法やスパッタ法などを用いて成膜する。さらに、図23(d)に示すように、ゲート絶縁膜上にゲート電極87(例えば、シリサイドやMoWなど)を形成し、ゲート電極87をマスクにして不純物イオン88(Nチャネルトランジスタの場合にはリン、Pチャネルトランジスタの場合にはホウ素)をイオン注入する。その後、窒素雰囲気でアニール処理(例えば、450°Cで1時間)を行い、不純物を活性化して島状の半導体膜85にソース領域91、ドレイン領域92を形成する。次に、図23(e)に示すように、層間絶縁膜89を成膜してコンタクト穴をあけ、チャネル90でつながるソース91およびドレイン92に接続するソース電極93およびドレイン電極94を形成する。
以上の工程において、図23(a)および(b)に示す工程で生成された多結晶半導体膜または単結晶化半導体膜84の大粒径結晶の位置に合わせて、即ち、結晶粒内にチャネル90を形成する。以上の工程により、多結晶トランジスタまたは単結晶化半導体に薄膜トランジスタ(TFT)を形成することができる。こうして製造された多結晶トランジスタまたは単結晶化トランジスタは、液晶表示装置(ディスプレイ)やEL(エレクトロルミネッセンス)ディスプレイなどの駆動回路や、メモリ(SRAMやDRAM)やCPUなどの集積回路などに適用可能である。
直線状に沿って並んで生成された結晶核が開始点になり一方向に沿って結晶成長が進行する様子を模式的に示す図である。 互いに平行な2つの直線に沿って並んで生成された結晶核から互いに対向する向きに結晶がそれぞれ成長する様子を模式的に示す図である。 図2の状態から結晶粒の衝突により結晶化が終了し、衝突部分において半導体が隆起する様子を模式的に示す図である。 再結晶化された多結晶半導体薄膜を用いて絶縁基板上にTFTの活性層が形成されることを概略的に説明する図である。 TFTの活性層の形成後の半導体の残留部分が2つのTFTの間に短絡を発生させる様子を模式的に示す図である。 本発明において結晶成長の速度が結晶成長の方向と直交する方向に沿って増減するように結晶の成長速度を制御する様子を模式的に示す図である。 成長速度の最も速い領域において結晶粒の衝突が最も早く起こり、この衝突部分では元の結晶成長の方向と直交する方向に沿ってさらに結晶成長する様子を模式的に示す図である。 半導体薄膜の全面が結晶化した状態では成長速度の最も遅い領域において結晶粒が衝突する部分に例えばピラミッド状の隆起部分が間隔を隔てて島状に形成される様子を模式的に示す図である。 結晶開始位置である結晶核の位置を所定の間隔で異ならせる手法を説明する図である。 本発明において再結晶化された多結晶半導体薄膜を用いて絶縁基板上にTFTの活性層が形成されることを概略的に説明する図である。 本発明においてTFTの活性層の形成後の半導体の残留部分が2つのTFTの間に短絡を発生させないことを概略的に説明する図である。 2つのTFTの間に短絡が発生する第1の条件を説明する図である。 2つのTFTの間に短絡が発生する可能性の高い第1の条件を説明する図である。 2つのTFTの間に短絡が発生する第2の条件を説明する図である。 2つのTFTの間に短絡が発生する可能性の高い第2の条件を説明する図である。 2つのTFTの間の短絡を確実に防止する条件を説明する図である。 本発明の実施形態にかかる結晶化装置の構成を概略的に示す図である。 図17の照明系の内部構成を概略的に示す図である。 本実施形態における光変調素子の構成を概略的に示す図である。 図19の光変調素子を用いて被処理基板上で得られる光強度分布を示す図である。 図20の線A−Aに沿った光強度分布を示す図である。 図20の線C−Cに沿った光強度分布を示す図である。 本実施形態の結晶化装置を用いて電子デバイスを作製する工程を示す工程断面図である。
符号の説明
1 光変調素子
2 照明系
3 結像光学系
4 被処理基板
5 基板ステージ
11 結晶核
12 多結晶半導体薄膜の領域
13 非晶質半導体薄膜の領域
14 結晶粒界
15 結晶粒
16 直線状でかつ連続的な隆起部分
17 絶縁層
18 TFT
19 結晶粒の衝突が最も早く起こる部分
20 ピラミッド状の隆起部分

Claims (12)

  1. 絶縁基板上において第1方向に沿って結晶成長した多結晶半導体膜を形成する方法であって、
    前記第1方向に沿って第1の向きに結晶成長した結晶粒と前記第1の向きとは逆の第2の向きに結晶成長した結晶粒とが、前記第1方向と直交する第2方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように、前記絶縁基板上における結晶成長を制御する多結晶半導体膜の形成方法。
  2. 前記絶縁基板上の非晶質半導体膜に所定の光強度分布の光を照射し、前記非晶質半導体膜の再結晶化により前記多結晶半導体膜を形成する請求項1に記載の多結晶半導体膜の形成方法。
  3. 請求項1または2に記載の形成方法により形成された前記多結晶半導体膜を活性層に用いた薄膜トランジスタ。
  4. 請求項1または2に記載の形成方法により形成された前記多結晶半導体膜を活性層に用いて薄膜トランジスタを製造する薄膜トランジスタの製造方法。
  5. 所定の光強度分布を有する光を非単結晶半導体膜に照射して結晶化半導体膜を生成する結晶化装置であって、
    前記所定の光強度分布を有する光として、所定の方向に沿って光強度がV字状に変化する分布であり且つ前記V字状に変化する光強度の勾配が前記所定の方向と直交する方向に沿って増減する分布の光を前記非単結晶半導体膜に照射する光学系を有する結晶化装置。
  6. 前記光学系は、光変調素子を介した光に基づいて前記所定の光強度分布を前記非単結晶半導体膜上に形成する結像光学系を備えている請求項5に記載の結晶化装置。
  7. 所定の光強度分布を有する光を非単結晶半導体膜に照射して結晶化半導体膜を生成する結晶化方法であって、
    前記所定の光強度分布を有する光として、所定の方向に沿って光強度がV字状に変化する分布であり且つ前記V字状に変化する光強度の勾配が前記所定の方向と直交する方向に沿って増減する分布の光を前記非単結晶半導体膜に照射する結晶化方法。
  8. 光変調素子を介した光を結像光学系により前記非単結晶半導体膜上に結像させて前記所定の光強度分布を形成する請求項7に記載の結晶化方法。
  9. 入射光に基づいて所定の光強度分布を形成する光変調素子であって、
    前記光変調素子は、第1方向に細長く延びる帯状領域が前記第1方向と直交する第2方向に沿って繰り返し並ぶ基本パターンを有し、
    前記帯状領域では、前記第1方向に沿って、第1位相値を有する第1領域と第2位相値を有する第2領域との割合が単位領域毎に変化し、
    各単位領域内における前記第1領域の占有面積率の変化率は、帯状領域毎に前記第2方向に沿って増減している光変調素子。
  10. 請求項6に記載の結晶化装置または請求項8に記載の結晶化方法に用いられる光変調素子であって、
    前記光変調素子は、前記所定の方向に細長く延びる帯状領域が前記所定の方向と直交する方向に沿って繰り返し並ぶ基本パターンを有し、
    前記帯状領域では、前記第1方向に沿って、第1位相値を有する第1領域と第2位相値を有する第2領域との割合が単位領域毎に変化し、
    各単位領域内における前記第1領域の占有面積率の変化率は、帯状領域毎に前記第2方向に沿って増減している光変調素子。
  11. 絶縁基板と、
    この絶縁基板上に設けられた複数の島状多結晶半導体膜と、
    これら複数の多結晶半導体膜の少なくとも2つの島状多結晶半導体膜に亘って設けられた薄膜トランジスタと、
    前記絶縁基板上の前記薄膜トランジスタ間に設けられ、第1の向きに沿って結晶成長した多結晶半導体膜と前記第1の向きとは逆の第2の向きに結晶成長した多結晶半導体膜とが衝突して形成された島状隆起部とを具備してなることを特徴とする薄膜トランジスタ装置。
  12. 前記島状隆起部の外形寸法φと、半導体層を確実に絶縁可能な前記島状隆起部の間隔Sとの和が、前記複数の島状多結晶半導体膜の最小デザインルールDmよりも小さいことを特徴とする請求項11に記載の薄膜トランジスタ装置。
JP2007151158A 2007-06-07 2007-06-07 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法 Ceased JP2008305939A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007151158A JP2008305939A (ja) 2007-06-07 2007-06-07 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法
US12/133,635 US7888247B2 (en) 2007-06-07 2008-06-05 Method of forming polycrystalline semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151158A JP2008305939A (ja) 2007-06-07 2007-06-07 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法

Publications (1)

Publication Number Publication Date
JP2008305939A true JP2008305939A (ja) 2008-12-18

Family

ID=40096266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151158A Ceased JP2008305939A (ja) 2007-06-07 2007-06-07 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法

Country Status (2)

Country Link
US (1) US7888247B2 (ja)
JP (1) JP2008305939A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9773889B2 (en) * 2014-07-18 2017-09-26 Taiwan Semiconductor Manufacturing Company Limited Method of semiconductor arrangement formation
JP7190875B2 (ja) * 2018-11-16 2022-12-16 東京エレクトロン株式会社 ポリシリコン膜の形成方法及び成膜装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001921A1 (ja) * 2003-06-27 2005-01-06 Nec Corporation 薄膜トランジスタ、薄膜トランジスタ基板、電子機器及び多結晶半導体薄膜の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403599B2 (ja) 1999-04-19 2010-01-27 ソニー株式会社 半導体薄膜の結晶化方法、レーザ照射装置、薄膜トランジスタの製造方法及び表示装置の製造方法
US6984573B2 (en) * 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001921A1 (ja) * 2003-06-27 2005-01-06 Nec Corporation 薄膜トランジスタ、薄膜トランジスタ基板、電子機器及び多結晶半導体薄膜の製造方法

Also Published As

Publication number Publication date
US20080305618A1 (en) 2008-12-11
US7888247B2 (en) 2011-02-15

Similar Documents

Publication Publication Date Title
KR101193585B1 (ko) 열처리에 의해 얼라인먼트 마크를 형성한 반도체박막을가지는 반도체장치, 반도체박막의 결정화방법, 및반도체박막의 결정화장치
JP4278940B2 (ja) 結晶化装置および結晶化方法
KR20060045044A (ko) 결정화장치, 결정화방법, 디바이스, 광변조소자, 및표시장치
US8009345B2 (en) Crystallization apparatus, crystallization method, device, and light modulation element
JP2009130231A (ja) 結晶シリコンアレイ、および薄膜トランジスタの製造方法
JP2008305939A (ja) 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法
JP2008227445A (ja) 薄膜トランジスタ及び表示装置
JP2009147045A (ja) 多結晶半導体膜の形成方法、薄膜トランジスタ、および薄膜トランジスタの製造方法
JP4763983B2 (ja) 光変調素子、結晶化装置、結晶化方法、薄膜半導体基板の製造装置、薄膜半導体基板の製造方法、薄膜半導体装置、薄膜半導体装置の製造方法、表示装置及び位相シフタ
JP2009272509A (ja) 光照射装置、結晶化装置、結晶化方法、およびデバイス
US20110175099A1 (en) Lithographic method of making uniform crystalline si films
US7485505B2 (en) Thin-film transistor, method for manufacturing thin-film transistor, and display using thin-film transistors
KR100646962B1 (ko) 결정화 방법 및 그 결정화 방법을 이용한 박막트랜지스터및 그의 제조방법
JP2007043141A (ja) nチャネル型薄膜トランジスタ、nチャネル型薄膜トランジスタの製造方法および表示装置
JP2009094329A (ja) 結晶化装置、結晶化方法、およびデバイス
JP2006049444A (ja) レーザ加工装置およびレーザ結晶化装置
JP2006165510A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法および表示装置
JP4524413B2 (ja) 結晶化方法
JP2011139082A (ja) 光変調素子、結晶化装置、結晶化方法、薄膜半導体基板の製造装置、薄膜半導体基板の製造方法、薄膜半導体装置、薄膜半導体装置の製造方法および表示装置
JP2004186449A (ja) 結晶化装置および結晶化方法
JP2006024723A (ja) 結晶化装置、結晶化方法、回折格子型の位相シフタおよび反射回折格子型の位相シフタ
JP2005032847A (ja) 結晶化装置、結晶化方法およびデバイス
JP2007043140A (ja) pチャネル型薄膜トランジスタ、pチャネル型薄膜トランジスタの製造方法および表示装置
JP2007043137A (ja) nチャネル型薄膜トランジスタ、nチャネル型薄膜トランジスタの製造方法および表示装置
JP2008205046A (ja) 薄膜トランジスタ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130125

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130604