JP2008304870A - 光導波路の製造方法 - Google Patents
光導波路の製造方法 Download PDFInfo
- Publication number
- JP2008304870A JP2008304870A JP2007154447A JP2007154447A JP2008304870A JP 2008304870 A JP2008304870 A JP 2008304870A JP 2007154447 A JP2007154447 A JP 2007154447A JP 2007154447 A JP2007154447 A JP 2007154447A JP 2008304870 A JP2008304870 A JP 2008304870A
- Authority
- JP
- Japan
- Prior art keywords
- dicing saw
- optical
- core
- sample stage
- cladding layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
【課題】ダイシングソーのブレード部に対する研磨処理を施すまでの時間を延長させ、量産性が向上する光導波路の製造方法を提供すること。
【解決手段】第1ダイシングソー26Aによる、第1光学面形成での第1ダイシングソー26Aのブレード部先端の試料台24からの高さと第2光学面形成での第1ダイシングソー26Aのブレード部先端の試料台24からの高さとを異ならせることで、第1光学面形成と第2光学面形成において、導波路コア18に接する第1ダイシングソーのブレード部の側面領域が異なるようになる。このため、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、ダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
【選択図】図2
【解決手段】第1ダイシングソー26Aによる、第1光学面形成での第1ダイシングソー26Aのブレード部先端の試料台24からの高さと第2光学面形成での第1ダイシングソー26Aのブレード部先端の試料台24からの高さとを異ならせることで、第1光学面形成と第2光学面形成において、導波路コア18に接する第1ダイシングソーのブレード部の側面領域が異なるようになる。このため、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、ダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
【選択図】図2
Description
本発明は、光導波路の製造方法に関するものである。
従来、高分子導波路において、物理的な切削により光学的な平面(以下、光学面と称する)の形成方法としては、例えば、ダイシングソーを用いる手法、レーザカッターを用いる手法等が挙げられる。中でも、ダイシングソーを用いる手法は、ダイシングソーのブレード種と切削スピードを最適化することにより良好な光学面の形成が可能であり、また、位置精度もミクロンレベルで調整可能なことから次ぎに示す例を代表として最も一般的手法として用いられている。
ダイシングソーによる高分子光導波路における光学面の形成の適用例としては、例えば、1)導波路コアとそれよりも屈折率が低いクラッドを形成後、その成型体の両端部を切削することにより、導波路コアの光の入射口・出射口や光を反射させる反射面となる光学面を形成する例、2)コア層とコア層よりも屈折率が低いクラッド層とを積層した積層体に対し、コア層に対して直線状の切削溝を形成して光学面を形成し、当該切削溝に挟まれた領域を導波路コアとする例が提案されている(例えば、特許文献1参照)
しかし、一方で、その光学面の形成に伴う切削において、ダイシングソーのブレード部の表面状態悪化により、光学面が荒れ、伝搬損失や反射損失が悪化し、それを防ぐため、ブレードの表面状態を良好に保つための研磨処理(ドレッシング処理)を施さなければならなく、量産性に問題があった。その根本なる原因は、切削対象が樹脂材料のため、切削距離が一定距離を経過するとブレード部の目詰まりが発生している為であると考えられる。
そこで、本発明の課題は、ダイシングソーのブレード部に対する研磨処理を施すまでの時間を延長させ、量産性が向上する光導波路の製造方法を提供することである。
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
光を伝播する導波路コアと、前記導波路コアよりも屈折率が低い第1クラッド層とが少なくとも積層された積層体を準備する積層体準備工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する試料台配置工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第1光学面形成工程と、
前記試料台に前記積層体を配置した状態で、前記第1ダイシングソーにより前記第1光学面形成工程とは異なる個所の前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第2光学面形成工程と、
を少なくとも有し、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光学面形成工程及び前記第2光学面形成工程を行うことを特徴とする光導波路の製造方法である。
請求項1に係る発明は、
光を伝播する導波路コアと、前記導波路コアよりも屈折率が低い第1クラッド層とが少なくとも積層された積層体を準備する積層体準備工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する試料台配置工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第1光学面形成工程と、
前記試料台に前記積層体を配置した状態で、前記第1ダイシングソーにより前記第1光学面形成工程とは異なる個所の前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第2光学面形成工程と、
を少なくとも有し、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光学面形成工程及び前記第2光学面形成工程を行うことを特徴とする光導波路の製造方法である。
請求項2に係る発明は、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み以上であることを特徴とする請求項1に記載の光導波路の製造方法である。
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み以上であることを特徴とする請求項1に記載の光導波路の製造方法である。
請求項3に係る発明は、
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み及び前記第2クラッド層の厚みの計以上である、
ことを特徴とする請求項2に記載の光導波路の製造方法である。
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み及び前記第2クラッド層の厚みの計以上である、
ことを特徴とする請求項2に記載の光導波路の製造方法である。
請求項4に係る発明は、
前記第1ダイシングソーのブレード部先端が、その径方向に対して傾斜する傾斜面を有するテーパ状であり、
前記ブレード部の幅をd、前記径方向と前記傾斜面との成す角度をθとしたとき、d/tanθが、前記導波路コアの厚みの2倍以上である、
ことを特徴とする請求項1に記載の光導波路の製造方法である。
前記第1ダイシングソーのブレード部先端が、その径方向に対して傾斜する傾斜面を有するテーパ状であり、
前記ブレード部の幅をd、前記径方向と前記傾斜面との成す角度をθとしたとき、d/tanθが、前記導波路コアの厚みの2倍以上である、
ことを特徴とする請求項1に記載の光導波路の製造方法である。
請求項5に係る発明は、
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記d/tanθが、前記導波路コアの厚みと前記第2クラッド層の厚みとの計bの2倍以上である、
ことを特徴とする請求項4に記載の光導波路の製造方法である。
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記d/tanθが、前記導波路コアの厚みと前記第2クラッド層の厚みとの計bの2倍以上である、
ことを特徴とする請求項4に記載の光導波路の製造方法である。
請求項6に係る発明は、
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程及び前記第2光学面形成工程において、前記第1ダイシングソーのブレード部の幅以上の幅のブレード部を有する第2ダイシングソーにより前記第2クラッド層の一部を切削した後、当該切削した個所に前記第1ダイシングソーによる切削加工を施すことを特徴とする請求項1に記載の光導波路の製造方法。
前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程及び前記第2光学面形成工程において、前記第1ダイシングソーのブレード部の幅以上の幅のブレード部を有する第2ダイシングソーにより前記第2クラッド層の一部を切削した後、当該切削した個所に前記第1ダイシングソーによる切削加工を施すことを特徴とする請求項1に記載の光導波路の製造方法。
請求項7に係る発明は、
前記第1ダイシングソーのブレード部の幅と、前記第2ダイシングソーのブレード部の幅と、の差が、5μm以上20μm以下の範囲であることを特徴とする請求項6に記載の光導波路の製造方法である。
前記第1ダイシングソーのブレード部の幅と、前記第2ダイシングソーのブレード部の幅と、の差が、5μm以上20μm以下の範囲であることを特徴とする請求項6に記載の光導波路の製造方法である。
請求項8に係る発明は、
コア層、及び前記コア層よりも屈折率が低い第1クラッド層が少なくとも積層された積層体を準備する工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記コア層に少なくとも第1切削溝及び第2切削溝を設けて光学面を形成し、導波路コアを形成する導波路コア形成工程と、
前記コア層の少なくとも前記第1切削溝及び第2切削溝に第3クラッド層を形成する第3クラッド層形成工程と、
を少なくとも有し、
前記第1切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1切削溝及び前記第2切磋溝を設けることを特徴とする光導波路の製造方法である。
コア層、及び前記コア層よりも屈折率が低い第1クラッド層が少なくとも積層された積層体を準備する工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記コア層に少なくとも第1切削溝及び第2切削溝を設けて光学面を形成し、導波路コアを形成する導波路コア形成工程と、
前記コア層の少なくとも前記第1切削溝及び第2切削溝に第3クラッド層を形成する第3クラッド層形成工程と、
を少なくとも有し、
前記第1切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1切削溝及び前記第2切磋溝を設けることを特徴とする光導波路の製造方法である。
請求項9に係る発明は、
前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法である。
前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法である。
請求項10に係る発明は、
前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面よりも1μm以上20μmの範囲で前記試料台側に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法である。
前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面よりも1μm以上20μmの範囲で前記試料台側に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法である。
請求項11に係る発明は、
試料台上で、ブレード部を有する第1ダイシングソーにより導波路コアの光学面を形成して第1光導波路を製造する第1光導波路製造工程と、
試料台上で、前記第1ダイシングソーにより導波路コアの光学面を形成して第2光導波路を製造する第2光導波路製造工程と、
を少なくとも有し、
前記第1光導波路製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光導波路コア製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光導波路製造工程及び第2光導波路製造工程を行うことを特徴とする光導波路の製造方法である。
試料台上で、ブレード部を有する第1ダイシングソーにより導波路コアの光学面を形成して第1光導波路を製造する第1光導波路製造工程と、
試料台上で、前記第1ダイシングソーにより導波路コアの光学面を形成して第2光導波路を製造する第2光導波路製造工程と、
を少なくとも有し、
前記第1光導波路製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光導波路コア製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光導波路製造工程及び第2光導波路製造工程を行うことを特徴とする光導波路の製造方法である。
本発明によれば、ダイシングソーのブレード部に対する研磨処理を施すまでの時間を延長させ、量産性が向上する光導波路の製造方法を提供することができる。
以下、本発明について図面を参照しつつ詳細に説明する。なお、実質的に同一の機能・作用を有する部材には、全図面を通して同じ符号を付与し、重複する説明は省略する場合がある。
図1は、第1実施形態に係る光導波路フィルムの製造方法で準備する高分子フィルムを示す斜視図である。図2は、第1実施形態に係る光導波路フィルムの製造方法を説明するための概念図である。図3は、第1実施形態に係る高分子フィルムの製造方法を示す工程図である。
第1実施形態に係る光導波路フィルムの製造方法では、まず、図1に示すように、第1クラッド層12及び第2クラッド層14と、第1クラッド層12及び第2クラッド層14に挟まれ、並列に配列した複数の直線状の導波路コア18と、第1クラッド層12、第2クラッド層14及び導波路コア18に囲まれた空間に配された第3クラッド層16と、を有する高分子フィルム10(積層体)を準備する。
ここで、高分子フィルム10は例えば次のようにして作製される。まず、高分子フィルム10は、図2(A)に示すように、第1クラッド層12を準備する。
ここで、第1クラッド層12は、次に挙げられる材料をフィルム状に成形したものが適用される。第1クラッド層12の材料としては、その用途に応じて、該材料の屈折率、光透過性等の光学的特性、機械的強度、耐熱性、フレキシビリティー(可撓性)等を考慮して選択される。可撓性のフィルム基材を用い、可撓性を有する高分子光導波路を作製することが望ましい。
フィルムの材料としては、アクリル系樹脂(ポリメチルメタクリレート等)、脂環式アクリル樹脂、スチレン系樹脂(ポリスチレン、アクリロニトリル・スチレン共重合体等)、オレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等)、脂環式オレフィン樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、含フッ素樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、二又は三酢酸セルロース、アミド系樹脂(脂肪族、芳香族ポリアミド等)、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ポリオキシメチレン系樹脂、又は前記樹脂のブレンド物等が挙げられる。
フィルムの材料としては、アクリル系樹脂(ポリメチルメタクリレート等)、脂環式アクリル樹脂、スチレン系樹脂(ポリスチレン、アクリロニトリル・スチレン共重合体等)、オレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等)、脂環式オレフィン樹脂、塩化ビニル系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、含フッ素樹脂、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート系樹脂、二又は三酢酸セルロース、アミド系樹脂(脂肪族、芳香族ポリアミド等)、イミド系樹脂、スルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリフェニレンスルフィド系樹脂、ポリオキシメチレン系樹脂、又は前記樹脂のブレンド物等が挙げられる。
脂環式アクリル樹脂としてはトリシクロデカン等の脂肪族環状炭化水素をエステル置換基に導入した、OZ−1000、OZ−1100(日立化成(株)製)等が用いられる。
また、脂環式オレフィン樹脂としては主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも前記のごとき主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア・クラッドの屈折率の差が確保される)及び光透過性等の優れた光学的特性を有し、鋳型との密着性に優れ、さらに耐熱性に優れているので特に本発明の高分子光導波路の作製に適している。
また、脂環式オレフィン樹脂としては主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも前記のごとき主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア・クラッドの屈折率の差が確保される)及び光透過性等の優れた光学的特性を有し、鋳型との密着性に優れ、さらに耐熱性に優れているので特に本発明の高分子光導波路の作製に適している。
次に、図2(B)に示すように、第1クラッド層12上に、鋳型20を密着させる。鋳型20には導波路コア18に対応した凹部20Aを有している。そして、鋳型20の凹部20A(凹部20Aと第1クラッド層12とで形成される空隙)に、コア形成用硬化性樹脂18Bを充填する。
ここで、鋳型20は、例えば、導波路コア18に対応する凸部が形成された原盤を用い形成される(不図示)。例えば、この原盤の凸部形成面に鋳型形成用硬化性樹脂を塗布したり注型したりし、一定時間放置した後、10分間真空脱泡を行い鋳型形成用硬化性樹脂層を形成する。必要に応じ乾燥処理をした後、該樹脂を硬化させる。次いで、その鋳型形成用硬化性樹脂層を原盤から剥離して、凹部20Aが設けられた鋳型20を形成する。
鋳型20には、凹部20Aにコア形成用硬化性樹脂18Bを充填するための浸入口、及び凹部20Aから前記樹脂を排出させるための排出口が形成されるが(不図示)、その形成方法は特に制限はない。原盤に予め浸入口や排出口に対応する凸部を設けてもよいが、簡便な方法としては、例えば、原盤に鋳型形成用硬化性樹脂層を形成した後剥離して型をとり、その後、型の両端を凹部20Aが露出するように切断することにより浸入口及び排出口を形成する方法が挙げられる。
鋳型形成用硬化性樹脂層の厚さは、鋳型20としての取り扱い性を考慮して決められるが、一般的に0.1mm以上50mm以下程度が適切である。また、原盤にはあらかじめ離型剤塗布などの離型処理を行って鋳型との剥離を促進することが望ましい。
また、鋳型形成用硬化性樹脂としては、その硬化物が原盤から容易に剥離されること、鋳型20(繰り返し用いる)として一定以上の機械的強度・寸法安定性を有すること、凹部形状を維持する硬さ(硬度)を有すること、第1クラッド層12との密着性が良好なことが望ましい。鋳型形成用硬化性樹脂には、必要に応じて各種添加剤を加えてもよい。
鋳型形成用硬化性樹脂は、原盤の表面に塗布や注型等することが可能で、また、原盤に形成された個々の導波路コア18に対応する凸部を正確に写し取らなければならないので、ある限度以下の粘度、例えば、500mPa・s以上7000mPa・s以下程度を有することが望ましい。(なお、本発明において用いる「鋳型形成用硬化性樹脂」の中には、硬化後、弾性を有するゴム状体となるものも含まれる。)また、粘度調節のために溶剤を、溶剤の悪影響が出ない程度に加えてもよい。
鋳型形成用硬化性樹脂としては、前記のごとき剥離性、機械強度・寸法安定性、硬度、第1クラッド層12との密着性の点から、硬化後、シリコーンゴム(シリコーンエラストマー)又はシリコーン樹脂となる硬化性オルガノポリシロキサンが望ましく用いられる。前記硬化性オルガノポリシロキサンは、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが望ましい。また、前記硬化性オルガノポリシロキサンは、一液型のものでも硬化剤と組み合わせて用いる二液型のものでもよく、また、熱硬化型のものでも室温硬化型(例えば室温(例えば25℃)において空気中の水分で硬化するもの)のものでもよく、更に他の硬化(紫外線硬化等)を利用するものであってもよい。
硬化性オルガノポリシロキサンとしては、硬化後シリコーンゴムとなるものが望ましく、これには通常液状シリコーンゴム(「液状」の中にはペースト状のように粘度の高いものも含まれる)と称されているものが用いられ、硬化剤と組み合わせて用いる二液型のものが望ましく、中でも付加型の液状シリコーンゴムは、表面と内部がバラツキが抑制されかつ短時間に硬化し、またその際副生成物が無く又は少なく、かつ離型性に優れ収縮率も小さいので望ましく用いられる。
液状シリコーンゴムの中でも特に液状ジメチルシロキサンゴムが密着性、剥離性、強度及び硬度の点から望ましい。
液状シリコーンゴムの粘度は、導波路コア18に対応する原盤の凸部を正確に写し取り、かつ気泡の混入を少なくして前記真空脱泡し易くする観点と、数ミリの厚さの鋳型形成の点から、500mPa・s以上7000mPa・s以下程度のものが望ましく、さらには、2000mPa・s以上5000mPa・s以下程度のものがより望ましい。
さらに、鋳型20の表面エネルギーは、10dyn/cm以上30dyn/cm以下、望ましくは15dyn/cm以上24dyn/cm以下の範囲にあることが、基材との密着性の点からみて望ましい。
鋳型20のシェア(Share)ゴム硬度は、15以上80以下、望ましくは20以上60以下であることが、型取り性能、凹部形状の維持、剥離性の点からみて望ましい。
鋳型20の表面粗さ(二乗平均粗さ(RMS))は、0.2μm以下、望ましくは0.1μm以下にすることが、型取り性能の点からみて望ましい。
鋳型20の表面粗さ(二乗平均粗さ(RMS))は、0.2μm以下、望ましくは0.1μm以下にすることが、型取り性能の点からみて望ましい。
また、鋳型20は、紫外領域及び/又は可視領域において光透過性であることが望ましい。鋳型20が可視領域において光透過性であることが望ましいのは、以下の2)の工程において鋳型20を第1クラッド層12に密着させる際、位置決めが容易に行え、また、コア形成用硬化性樹脂18Bが鋳型20の凹部20Aに充填される様子が観察でき、充填完了等が容易に確認しうるからである。また、鋳型20が紫外領域において光透過性であることが望ましいのは、コア形成用硬化性樹脂18Bとして紫外線硬化性樹脂を用いる場合に、鋳型20を透して紫外線硬化を行うためであり、鋳型20の、紫外領域(250nm以上400nm以下)における透過率が80%以上であることが望ましい。
硬化性オルガノポリシロキサン、中でも硬化後シリコーンゴムとなる液状シリコーンゴムは、第1クラッド層12との密着性と剥離性という相反した特性に優れ、ナノ構造を写し取る能力を持ち、シリコーンゴムと第1クラッド層12とを密着させると液体の浸入さえ防がれる。このシリコーンゴムを用いた鋳型20は高精度に原盤を写し取り、第1クラッド層12に良く密着するため、導波路コア18側面(周囲クラッドとの界面)が極めて良好であり、さらに鋳型20と第1クラッド層12の間の凹部20Aのみに効率よくコア形成用樹脂を充填することが可能となり、またさらに第1クラッド層12と鋳型20の剥離も容易である。したがって、この鋳型20からは高精度に形状を維持した高分子光導波路を、極めて簡便に作製される。
また、鋳型形成用硬化性樹脂層、とりわけゴム弾性を有する場合、鋳型形成用硬化性樹脂層の一部すなわち原盤の凸部を写し取る部分以外の部分を他の剛性材料に置き換えることができ、この場合、鋳型20のハンドリング性が向上する。
そして、上記鋳型20を用いると、鋳型20の浸入口からコア形成用硬化性樹脂18Bを毛細管現象により鋳型20の凹部20Aに充填する。一方、前記排出口からは凹部20Aに充填されたコア形成用硬化性樹脂18Bが排出される。
次に、図2(C)に示すように、コア形成用硬化性樹脂18Bを硬化した後、鋳型20を剥離すると、第1クラッド層12上に、光を伝播する導波路コア18がパターニングされた形成される。本実施形態では、直線状が導波路コア18が複数並列するようにパターニングされて形成している。
ここで、コア形成用硬化性樹脂18Bとしては放射線硬化性、電子線硬化性、熱硬化性等の樹脂を用いることができ、中でも紫外線硬化性樹脂が望ましく用いられる。前記コア形成用の紫外線硬化性樹脂としては、紫外線硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が望ましく用いられる。また、紫外線硬化性樹脂としてエポキシ系、ポリイミド系、アクリル系紫外線硬化性樹脂が望ましく用いられる。
コア形成用硬化性樹脂18Bは、毛細管現象により鋳型20と第1クラッド層12との間に形成された空隙(鋳型20の凹部20A)に充填させるため、用いるコア形成用硬化性樹脂18Bはそれが可能なように十分低粘度であることが必要である。したがって、前記硬化性樹脂の粘度は、10mPa・s以上2000mPa・s以下、望ましくは20mPa・s以上1000mPa・s以下、更に望ましくは30mPa・s以上500mPa・s以下にするのが望ましい。
このほかに、原盤に形成された導波路コア18に対応する凸部が有する元の形状を高精度に再現するため、コア形成用硬化性樹脂18Bの硬化前後の体積変化が小さいことがよい。例えば、体積が減少すると導波損失の原因になることがある。したがって、コア形成用硬化性樹脂18Bは、体積変化が小さいものが望ましく、10%以下、望ましくは6%以下であるのが望ましい。溶剤を用いて低粘度化することは、硬化前後の体積変化が大きいのでできれば避ける方が望ましい。
コア形成用硬化性樹脂18Bの硬化後の体積変化(収縮)を小さくするため、前記樹脂にポリマーを添加してもよい。前記ポリマーはコア形成用硬化性樹脂18Bとの相溶性を有し、かつ該樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないものが望ましい。またポリマーを添加することにより体積変化を小さくする他、粘度や硬化性樹脂のガラス転移点が高度に制御される。前記ポリマーとしては例えばアクリル系、メタクリル酸系、エポキシ系のものが用いられるが、これらに限定されるものではない。
コア形成用硬化性樹脂18Bの硬化物の屈折率は、クラッド(第1乃至第3クラッド層)より大きいことが必要で、1.50以上、望ましくは1.53以上である。クラッドクラッド(第1乃至第3クラッド層)と導波路コアの屈折率の差は、0.01以上、望ましくは0.03以上である。
また、この工程において、毛細管現象によるコア形成用硬化性樹脂18Bの鋳型20の凹部20Aへの充填を促進するために、系全体を減圧(0.1hPa以上200hPa以下程度)する、あるいは貫通穴を使って吸引することが望ましい。
また、コア形成用硬化性樹脂の充填を促進するため、前記系の減圧に加えて、鋳型20の浸入口から充填するコア形成用硬化性樹脂18Bを加熱することにより、より低粘度化することも有効な手段である。
また、コア形成用硬化性樹脂の充填を促進するため、前記系の減圧に加えて、鋳型20の浸入口から充填するコア形成用硬化性樹脂18Bを加熱することにより、より低粘度化することも有効な手段である。
なお、コア形成用硬化性樹脂18Bを硬化させる方法は、例えば、紫外線硬化性樹脂を硬化させるには、紫外線ランプ、紫外線LED、UV照射装置等が用いられる。また、熱硬化性樹脂を硬化させるには、オーブン中での加熱等が用いられる。
次に、図2(D)に示すように、導波路コア18が形成された第1クラッド層12上に、当該導波路コア18を挟むように第2クラッド層14を積層する。この第2クラッド層14は、第1クラッド層12と同様なものが適用される。
次に、図2(E)に示すように、第1クラッド層12、第2クラッド層14、及び導波路コア18に囲まれた空間に第3クラッド層用硬化性樹脂を充填する。第2クラッド用硬化性樹脂の充填は、例えば、当該空間の開口端より第2クラッド用硬化性樹脂を、毛細管現象を利用して行われる。その際、当該空間の他の開口端から減圧吸引することで、充填速度が増す。そして、当該硬化性樹脂を硬化することで、第3クラッド層16を形成する。
また、第3クラッド層16を形成する別の手段としては、第1クラッド層12上に導波路コア18を形成した後、第3クラッド層16となる高分子材料を上部より滴下し、脱法処理を施した後、第2クラッド層14を積層させ、第3クラッド層16を硬化(例えばUV照射による硬化)を行う方法が考えられ、有効である。
ここで、第3クラッド層用硬化性樹脂としては、例えば、放射線硬化性、電子線硬化性、熱硬化性等の樹脂を用いられる。中でも紫外線硬化性樹脂及び熱硬化性樹脂が望ましく用いられるが、紫外線硬化性樹脂を選択することが望ましい。紫外線硬化性樹脂及び熱硬化性樹脂としては、紫外線硬化性、熱硬化性のモノマー、オリゴマーあるいはモノマーとオリゴマーの混合物が望ましく用いられる。紫外線硬化性樹脂としては、エポキシ系、ポリイミド系、アクリル系の紫外線硬化性樹脂が望ましく用いられる。
第3クラッド層用硬化性樹脂の硬化後の体積変化(収縮)を小さくするために、該樹脂と相溶性を有し、また該樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないポリマー(例えばメタクリル酸系、エポキシ系)を該樹脂に添加してもよい。なお、第1クラッド用硬化性樹脂も同様に添加することがよい。
ここで、特に、鋳型形成用硬化性樹脂として硬化してゴム状になる液状シリコーンゴム、中でも液状ジメチルシロキサンゴムを用い、クラッド用基材(第1クラッド層12及び第2クラッド層14)として主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂を用いる組み合わせは、両者の密着性が特に高く、また、鋳型凹部構造の変形がなく、さらに凹部構造の断面積が極めて小さくても(たとえば10×10μmの矩形)毛細管現象により素早く凹部に第2クラッド用硬化性樹脂が充填される。
また、第3クラッド層用硬化性樹脂は、充填速度の点から、例えば、粘度(25℃)10mPa・s以上4000mPa・s以下、望ましくは10mPa・s以上500mPa・s以下のものが選択され得る。
以上の工程を経て、導波路コア18を有する高分子フィルム10を得る。
続いて、図3に示すように、高分子フィルム10をダイシングテープ22に貼り付けた後、高分子フィルム10を試料台24上に配置する。具体的には、例えば、高分子フィルム10は、その第1クラッド層12側がダイシングテープ22と対面するように当該ダイシングテープ22に貼り付け、ダイシングテープ22が試料台24と対面(即ち第1クラッド層12が試料台24と対向)するように当該試料台24上に配置させる。
そして、断面が矩形のブレード部を有する第1ダイシングソー26Aにより、高分子フィルム10の両端部を第2クラッド層14側から切削する。切削は、図1に示すように、高分子フィルム10の両端部におけるA−Aライン、B−Bラインに沿って、即ち、導波路コア18長手方向と交差(例えば直交)するように切削し、導波路コア18の長手方向両端部を切削し、光学面を形成する。このA−Aラインの切削よる光学面の形成を「第1光学面形成」と称し、B−Bラインの切削による光学面の形成を「第2光学面形成」と称して説明する。
ここで、図3に示すように、第1ダイシングソー26Aによる第1光学面形成では、第1ダイシングソー26Aのブレード部先端の試料台24からの高さ(以下、第1ブレードハイトと称する)を、高分子フィルム10における第1クラッド層12のダイシングテープ22と接する面(試料台24の対向面)に位置するように、切削を行う。無論、第1ブレードハイトは、高分子フィルム10における第1クラッド層12のダイシングテープ22と接する面(試料台24の対向面)よりも下方側(試料台24側)に位置するようにしてもよい。
一方、第1ダイシングソー26Aによる第2光学面形成では、第1ダイシングソーのブレード部先端の試料台24からの高さ(以下、第2ブレードハイトと称する)を、第1光学面形成とは異なる位置となるように、切削を行う。具体的には、例えば、第2ブレードハイトを高分子フィルム10における第1クラッド層12のダイシングテープ22と接する面(試料台24の対向面)よりも下方側(試料台24側)、即ち第1ブレードハイトよりも下方側(試料台24側)に位置するようにして、切削を行う。これにより、第1光学面形成と第2光学面形成において、導波路コア18に接する第1ダイシングソーのブレード部の側面領域が異なるようになる。
また、このときの第1光学面形成における第1ブレードハイトと第2光学面形成とにおける第2ブレードハイトとの差R1は、導波路コア18の厚み及びその上面を覆う第2クラッド層14の厚みとの計以上(本実施形態では当該計と等同)とすることがよい。但し、光学面形成時に第2クラッド層を有さない場合、当該差R1は導波路コア18の厚み以上とすることがよい。また、差R1は、ブレードハイトの変更数×(導波路コア18の厚みと第2クラッド層14の厚みの計)以上であることが最もよい。
これにより、第2光学面形成において導波路コア18が接する第1ダイシングソーのブレード部側面領域が、第1光学面形成において高分子フィルム10厚み方向全体に接する第1ダイシングソーのブレード部の側面領域と異なるようになる。言い換えれば、第1光学面形成において高分子フィルム10の接していない第1ダイシングソーのブレード部側面領域が、第2光学面形成において導波路コア18に接するようになる。
なお、第1ダイシングソーを研磨処理した後に行う、一番初めの光学面形成は、ブレードハイトが一番高い第1光学面形成を行われる。これにより、第1ダイシングソーのブレード部の未使用部分を最大限に使用し、ブレードハイトの変更回数を増やし、ダイシングブレードの研磨処理までの時間を延長が図れる。
また、図4に示すように、第1光学面形成及び第2光学面形成において、第1ダイシングソー26Aのブレード部以上の幅を持つブレード部を有する第2ダイシングソー26Bにより、高分子フィルム10の第2クラッド層14の一部(厚み方向の一部)を切削した後(図4(A)参照)、当該切削部に第1ダイシングソー26Aにより切削を行う(図4(B))こともよい。
これにより、第2ダイシングソーにより切削される第2クラッド層14の厚み分、切削の際に高分子フィルム10(第1クラッド層12、導波路コア18、第2クラッド層14)と接する第1ダイシングソー26Aのブレード部側面領域が低減される
この第1ダイシングソー26Aのブレード部の幅と、第2ダイシングソー26Bのブレード部の幅と、の差は、5μm以上20μm以下が望ましく、より望ましくは5μm以上15μm以下、より望ましくは5μm以上10μm以下である。一般的に、ブレード部の幅とブレード部(ダイシングソー)のコストとは比例関係にあるので、必要以上にブレード部の幅を大きくすることは望ましくなく、無用なコスト上昇を回避すると共に、コストと精度との両立の点から、当該差は上記範囲とするが望ましい。
上記工程を経て、両端部に光の入射口・出射口となる光学面を形成した光導波路フィルム10Aが得られる。
以上説明した本実施形態に係る光導波路フィルムの製造方法では、第1ダイシングソー26Aによる、第1光学面形成での第1ブレードハイトと第2ブレードハイトとを異ならせることで、第1光学面形成と第2光学面形成において、導波路コア18に接する第1ダイシングソーのブレード部の側面領域が異なるようになる。このため、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、導波路コア18の光学面形成が不可能となり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、ダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
また、第1光学面形成における第1ブレードハイトと第2光学面形成とにおける第2ブレードハイトとの差R1を、導波路コア18の厚み及びその上面を覆う第2クラッド層14の厚みとの計以上とすると、第1光学面形成において高分子フィルム10の接していない第1ダイシングソーのブレード部側面領域が、第2光学面形成において導波路コア18に接するようになる。このため、より効果的に、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、導波路コア18の光学面形成が不可能となり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、より、ダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
なお、本実施形態では、導波路コア18に形成される光学面として、当該導波路コアの光伝播方向に直交する面を形成したが、これに限られず、当該光学面として、導波路コアの光伝播方向に傾斜する傾斜面を形成する形態であってもよい。この形態の場合、図5に示すように、第1ダイシングソー26Aのブレード部先端が、その径方向に対して傾斜する傾斜面を有するテーパ状のものを用いる。なお、この傾斜面は、例えば、ブレード部の一方の主面から、その径方向に対して傾斜し、漸次ブレード部の厚みが径方向に向かって薄くなり、他方の主面と交差するように形成されている。
そして、第1ダイシングソー26Aのブレード部の幅をd、ブレード部の径方向とブレード部の傾斜面との成す角度をθ(鋭角)としたとき、d/tanθが、導波路コア18の厚みと第2クラッド層14の厚みとの計に対して2倍以上であることがよい。但し、第2クラッド層14が設けられていない場合、d/tanθは、導波路コア18の厚みに対して2倍以上であることがよい。なお、d/tanθは、ブレードハイトの変更数×(導波路コア18の厚みと第2クラッド層14の厚みの計)以上であることが最もよい。
これにより、図6に示すように、上記に従って、このテーパ状のブレード部を有する第1ダイシングソー26Aにより、第1光学面形成を行い(図6(A)参照)、第2光学面形成を行うと(図6(B)参照)、第2光学面形成において導波路コア18が接する第1ダイシングソーのブレード部先端の傾斜面領域が、第1光学面形成において高分子フィルム10厚み方向全体に接する第1ダイシングソーのブレード部の傾斜面領域と異なるようになる。言い換えれば、第1光学面形成において高分子フィルム10の接していない第1ダイシングソーのブレード部先端の傾斜面領域が、第2光学面形成において導波路コア18に接するようになる。
(第2実施形態)
図7は、第2実施形態に係る光導波路フィルムの製造方法を示す工程図である。
図7は、第2実施形態に係る光導波路フィルムの製造方法を示す工程図である。
第2実施形態に係る光導波路フィルムの製造方法では、まず、図7(A)に示すように、第1クラッド層12、コア層18A、及び第2クラッド層14がこの順で積層された高分子フィルム10(積層体)を準備する。ここで、第1グラッド層12の厚みは、後述するダイシングソーによる切削の際、そのブレード部がダイシングテープ22に切り込まれない厚みとする。
高分子フィルム10は、例えば、ラミネート法、スピンコート法などの方法により各層に相当するシートを積層することで作製される。この作製には、各シートのアライメントを行う必要が無いため、簡易且つ低コストである。
高分子フィルム10は、クラッド層とコア層とで屈折率差が設定され、通信波長に対して透明性が確保された材質であれば、特に制限されるわけではなく、例えば、脂環式オレフィンフィルム、アクリル系フィルム、エポキシ系フィルム、ポリイミド系フィルム等が用いられる。
次に、図7(B)に示すように、高分子フィルム10をダイシングテープ22に貼り付けた後、高分子フィルム10を試料台24上に配置する。具体的には、例えば、高分子フィルム10は、その第1クラッド層12側がダイシングテープ22と対面するように当該ダイシングテープ22に貼り付け、ダイシングテープ22が試料台24と対面(即ち第1クラッド層12が試料台24と対向)するように当該試料台24上に配置させる。
次に、図7(C)に示すように、断面矩形のブレード部を有する第1ダイシングソー26Aにより、高分子フィルム10を第2クラッド層14側から、コア層18Aの一部を切削し、互いに平行な直線状の3つの切削溝28A,28B,28Cを所定間隔で形成する。この切削による切削溝28A,28B,28Cの側壁に光学面を形成する。そして、この切削溝28A,28B,28C、即ち当該切削溝28A,28B,28Cの側壁を構成する光学面に挟まれたコア層18Aの領域が導波路コア18となる。
この切削溝28Aによる光学面の形成を「第1光学面形成」と称し、切削溝28Bによる光学面の形成を「第2光学面形成」と称し、切削溝28Cによる光学面の形成を「第3光学面形成」と称して説明する。
第1ダイシングソー26Aによる第1光学面形成では、第1ダイシングソー26Aのブレード部先端の試料台24からの高さ(以下、第1ブレードハイトと称する)を、高分子フィルム10におけるコア層18Aの第1クラッド層12と接する面(試料台24の対向面)に位置するように、切削を行う。
ここで、この第1ブレードハイトは、図8に示すように、コア層18Aの第1クラッド層12と接する面(試料台24の対向面)に位置することに限られず、コア層18Aの第1クラッド層12と接する面よりも1μm以上20μm(望ましくは3μm以上10μm以下)の範囲で試料台24側に位置するようにすることもよい。この第1ブレードハイトを上記範囲とすることで、第1ダイシングソーのブレード部先端が磨耗により変形している場合に当該変形部がコア層18Aの切削に寄与せず、光学面の変形、即ち導波路コア18の変形が抑制される。また、この第1ブレードハイトを上記範囲とすることで、第1ブレードハイトをコア層18Aの第1クラッド層12と接する面に位置させる場合に比べ、位置精度が要求されず、量産性が向上する。
一方、第1ダイシングソー26Aによる第2光学面形成では、第1ダイシングソーのブレード部先端の試料台24からの高さ(以下、第2ブレードハイトと称する)を、第1光学面形成とは異なる位置となるように、切削を行う。具体的には、例えば、第2ブレードハイトを高分子フィルム10におけるコア層18Aの第1クラッド層12と接する面(試料台24の対向面)よりも下方側(試料台24側)、即ち第1ブレードハイトよりも下方側(試料台24側)に位置するようにして、切削を行う。これにより、第1光学面形成と第2光学面形成において、コア層18Aに接する第1ダイシングソーのブレード部の側面領域が異なるようになる。
また、このときの第1光学面形成における第1ブレードハイトと第2光学面形成とにおける第2ブレードハイトとの差R1は、コア層18Aの厚みとその上面を覆う第2クラッド層14の厚みとの計以上(本実施形態では当該計と同等:なお、「同等」とは±3μmずれる範囲も含むものとする。以下同様である。)とすることがよい。なお、光学面形成時に第2クラッド層を有さない場合、当該差は導波路コア18の厚み以上とすることがよい。また、差R1は、ブレードハイトの変更数×(導波路コア18の厚みと第2クラッド層14の厚みの計)以上であることが最もよい。
これにより、第2光学面形成においてコア層18Aが接する第1ダイシングソーのブレード部側面領域が、第1光学面形成において高分子フィルム10厚み方向全体に接する第1ダイシングソーのブレード部の側面領域と異なるようになる。言い換えれば、第1光学面形成において高分子フィルム10の接していない第1ダイシングソーのブレード部側面領域が、第2光学面形成において導波路コア18に接するようになる。
同様に、第1ダイシングソー26Aによる第3光学面形成では、第1ダイシングソーのブレード部先端の試料台24からの高さ(以下、第3ブレードハイトと称する)を、第1光学面形成とは異なる位置となるように、切削を行う。具体的には、例えば、第3ブレードハイトを第1ブレードハイトよりも下方側(試料台24側)に位置するようにして、切削を行う。これにより、第2光学面形成と第3光学面形成において、コア層18Aに接する第1ダイシングソーのブレード部の側面領域が異なるようになる。
また、このときの第2光学面形成における第2ブレードハイトと第3光学面形成とにおける第3ブレードハイトとの差R2は、コア層18Aの厚みとその上面を覆う第2クラッド層14の厚みとの計以上(本実施形態では当該厚みと同等)とすることがよい。なお、光学面形成時に第2クラッド層を有さない場合、当該差は導波路コア18の厚み以上とすることがよい。また、差R2は、ブレードハイトの変更数×(導波路コア18の厚みと第2クラッド層14の厚みの計)以上であることが最もよい。
これにより、第3光学面形成においてコア層18Aが接する第1ダイシングソーのブレード部側面領域が、第2光学面形成において高分子フィルム10厚み方向全体に接する第1ダイシングソーのブレード部の側面領域と異なるようになる。言い換えれば、第2光学面形成において高分子フィルム10の接していない第1ダイシングソーのブレード部側面領域が、第3光学面形成において導波路コア18に接するようになる。無論、第1光学形成において高分子フィルム10の接していない第1ダイシングソーのブレード部側面領域が、第3光学面形成において導波路コア18に接するようになる。
なお、第1ダイシングソーを研磨処理した後に行う、一番初めの光学面形成は、ブレードハイトが一番高い第1光学面形成を行われる。これにより、第1ダイシングソーのブレード部の未使用部分を最大限に使用し、ブレードハイトの変更回数を増やし、ダイシングブレードの研磨処理までの時間を延長が図れる。また、高分子フィルム10には、第2クラッド層を設けない形態でもよく、この形態の場合、上記各ブレードハイトの差は、コア層の厚み以上であることがよい。
次に、図7(D)に示すように、形成された切削溝28A,28B,28Cに、クラッド用硬化性樹脂を充填し、これを硬化して、第3クラッド層16を形成する。クラッド用硬化性樹脂は、導波路コア18の上面(第1クラッド層12との接触面とは厚み方向の反対側の面)と共に、複数の導波路コア18間の間隙に埋め込まれるように形成する。これにより、導波路コア18の周囲を覆うように、第3クラッド層16が形成される。
次に、図7(E)に示すように、ダイシングテープ22より剥離する。
上記工程を経て、コア層18Aに光学面を形成し、これに挟まれて構成される導波路コア18を有する光導波路フィルム10Aを得る。なお、得られた光導波路フィルムに対し、第1ダイシングソー26Aにより上記第1実施形態と同様にして、両端部に光の入射口・出射口や光を反射させる反射面となる光学面を形成する。
上記工程を経て、コア層18Aに光学面を形成し、これに挟まれて構成される導波路コア18を有する光導波路フィルム10Aを得る。なお、得られた光導波路フィルムに対し、第1ダイシングソー26Aにより上記第1実施形態と同様にして、両端部に光の入射口・出射口や光を反射させる反射面となる光学面を形成する。
以上説明した本実施形態に係る光導波路フィルムの製造方法では、第1ダイシングソー26Aによる、第1光学面形成での第1ブレードハイトと第2光学形成での第2ブレードハイトと第3光学形成での第3ブレードハイトとを異ならせることで、第1光学面形成と第2光学面形成と第3光学面形成において、コア層18Aに接する第1ダイシングソーのブレード部の側面領域が異なるようになる。このため、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、ダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
また、第1光学面形成における第1ブレードハイトと第2光学面形成とにおける第2ブレードハイトとの差R1、及び第2光学面形成における第2ブレードハイトと第3光学面形成とにおける第3ブレードハイトとの差R2を、コア層18Aの厚みとコア層18A上部の第2クラッド層14の厚みの計以上とすると、第1光学面形成において各層と接していない第1ダイシングソーのブレード部側面領域が、第2光学面形成においてコア層18Aに接するようになる。加えて、第2光学面形成においてコア層18Aの接していない第1ダイシングソーのブレード部側面領域が、第3光学面形成においてコア層18Aに接するようになる。このため、より効果的に、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、よりダイシングソーに対する目詰まりを解消するための研磨処理(ドレッシング処理)の回数が低減され、量産性が向上する。
なお、上記いずれの実施形態では、一つの光導波路フィルムの製造工程内(一つ高分子フィルム10を用いた製造工程内)で、2回、乃至3回の切削を行い、それぞれの第1ダイシングソー26Aのブレード部先端の試料台24からの高さを異ならせる形態を説明したが、これに限られず、複数回の切削を行う際、所定回数の切削毎に第1ダイシングソー26Aのブレード部先端の試料台24からの高さを異ならせる形態であってもよい。
また、上記いずれの実施形態でも、一つの光導波路フィルムの製造工程内(一つ高分子フィルム10を用いた製造工程内)で、第1ダイシングソー26Aのブレード部先端の試料台24からの高さを異ならせる形態を説明したが、これに限られず、複数の光導波路フィルムの製造工程間(複数の高分子フィルム10を用いて、複数の光導波路フィルムを製造する製造工程間)で、互いの光学形成における第1ダイシングソー26Aのブレード部先端の試料台24からの高さを異ならせる形態でもよい。この形態でも、上記実施形態と同様に、第1ダイシングソーのブレード部の目詰まりが生じ難くなり、目詰まり解消のためのブレード部の研磨処理(ドレッシング処理)を施すまでの時間が延長される。結果、量産性が向上する。
また、上記いずれの実施形態では、高分子フィルム10(積層体)として、第1クラッド層12、導波路コア18(又はコア層18A)と、第2クラッド層とを積層したものに対し、光学面形成を行った形態を説明したが、これに限られず、第2クラッド層を設けず、直接、導波路コア18(又はコア層18A)に対して直接光学面形成を行い、その後、第2クラッド層を設ける形態であってもよい。
以下、本発明を、実施例を挙げてさらに具体的に説明する。ただし、これら各実施例は、本発明を制限するものではない。
(実施例1)
Si基板上に厚膜レジストをスピンコート法で塗布した後、80度でプリベークし、フォトマスクを通して露光・現像して、直線状の導波路コアの形態に対応するコア形成用凸部(コア幅50μm、コア高さ50μm)を作製した。作製した原盤を120度でポストベークし、原盤を完成させた。なお、このコア形成用凸部は、120本、250μm間隔で並列して配設させた。
Si基板上に厚膜レジストをスピンコート法で塗布した後、80度でプリベークし、フォトマスクを通して露光・現像して、直線状の導波路コアの形態に対応するコア形成用凸部(コア幅50μm、コア高さ50μm)を作製した。作製した原盤を120度でポストベークし、原盤を完成させた。なお、このコア形成用凸部は、120本、250μm間隔で並列して配設させた。
次に、原盤に剥離剤を塗布した後、熱硬化性ジメチルシロキサン樹脂(ダウコウニングアジア社製:SYLGARD184)を流し込み、一定時間放置した後、10分間真空脱泡を行い、120度で30分間加熱して固化させた。その後、原盤を剥離して、コア形成用凹部を有する鋳型を作製した。コア形成用凹部を結ぶライン上の2箇所に直径3mmの穴をそれぞれ明けて、充填口及び吸引口を作製した。
次に、第1クラッド層として膜厚100μmのアートンフィルム(JSR(株)製のアートンフィルム、屈折率1.51)を用意し、これと鋳型を密着させた。次に、鋳型に形成されている充填口内に、粘度が800mPa・sの紫外線硬化性樹脂(硬化後の屈折率1.54)を満たし、吸引ポンプにより吸引口を介して吸引したところ、コア形成用凹部内に紫外線硬化性樹脂が充填された。次いで、50mW/cm2の紫外光を、鋳型(ジメチルシロキサン樹脂製)を通して10分間照射して硬化させた。その後、鋳型を剥離し、アートンフィルム(第1クラッド層)上に、120本の直線状の導波路コアを作製した。
次に、第1クラッド層上に形成された導波路コアの上面より紫外線硬化性樹脂(硬化後の屈折率1.51、粘度(25℃)360mPa・s)を滴下し、脱泡処理を施した後、第2クラッド層として膜厚100μmのアートンフィルム(JSR(株)製のアートンフィルム、屈折率1.51)を、導波路コアが形成されたアートンフィルム(第1クラッド層)に対向させて一定圧力のもと張り合わせた。その後、50mW/cm2の紫外光を10分間照射して、硬化性樹脂を硬化させ、第3クラッド層を形成した。
以上の工程を経て、長さ100mm、幅40mm、層厚み270μmの、導波路コアを有する高分子フィルムを複数得た。
次に、得られた高分子フィルムを第1クラッド層(アートンフィルム)側に、厚み200μmのダイシングテープに貼り付け、これをダイシングテープ22が対面するように試料台に載せた。そして、高分子フィルムに対し、厚さ100μmのブレードを取り付けたダイシングソーを用いて導波路コアの長方向と直交する切削を50回行い、導波路コアの両端面に光の入射口・出射口となる光学面が形成された25mm×7mmの短冊状の光導波路フィルムを複数得た。
ここで、50回の切削のうち、半分における切削(光学面形成)でのダイシングソーのブレード部先端の試料台からの高さ(以下、ブレードハイトと称する)を高分子フィルムの第1クラッド層面(ダイシングテープと接する面)よりも10μm試料台側に位置するように行い、残りの半分における切削(光学面形成)でのブレードハイトを高分子フィルムの第1クラッド層面(ダイシングテープと接する面)よりも185μm試料台側試料台側に位置するように行った。
得られた短冊状の光導波路フィルムの導波路コアの切削面(光学面)の表面粗さRaを調べたところ、全ての光導波路フィルムにおいてRa:0.04μm以下となり良好であった。
なお、表面粗さRaは、キーエンス社製粗さ測定器VK8510を使用した。
(比較例1)
実施例1において、得られた、導波路コアを有する高分子フィルムに対する50回の切削全てを、ブレードハイトが高分子フィルムの第1クラッド層面(ダイシングテープと接する面)よりも10μm試料台側に位置するように行った以外は、実施例1と同様にして短冊状の光導波路フィルムを得た。得られた短冊状の光導波路フィルムの切削面(光学面)の表面粗さRaを調べたところ、切削後半に得られた光導波路フィルムではRa:0.15μmを上回るものが発生していた。
実施例1において、得られた、導波路コアを有する高分子フィルムに対する50回の切削全てを、ブレードハイトが高分子フィルムの第1クラッド層面(ダイシングテープと接する面)よりも10μm試料台側に位置するように行った以外は、実施例1と同様にして短冊状の光導波路フィルムを得た。得られた短冊状の光導波路フィルムの切削面(光学面)の表面粗さRaを調べたところ、切削後半に得られた光導波路フィルムではRa:0.15μmを上回るものが発生していた。
(実施例2)
第1クラッド層、導波路コア径、第2クラッド層、導波路総厚がそれぞれ20μm、45μm、20μm、85μm、大きさ100mm×100mmの積層導波路フィルムを用意した。次に、幅100μmのブレード部を有するダイシングソーによる切削により、幅5mm、長さ50mmの短冊状の導波路を得た。
さらに、該短冊状導波路に対し、径方向に対して傾斜する傾斜面を有するテーパ状のブレード部(図5参照:幅150μm、傾斜面との成す角度をθ(鋭角)45°:d/tanθ=150μm)を有するダイシングソーを用い、一方の端部のみを切削した(2本)。得られた短冊状の光導波路フィルムの導波路コアの長手方向一端面には、ブレード部の傾斜面に沿った光学面が反射面として形成されていた。ここで傾斜面を有するテーパ状のブレード部を有するダイシングソーの切削のうち、1本目における切削でのブレード先端の試料台からの高さを、導波路コア面(第1クラッド層と接する面)よりも5μm試料台側に位置するように行い、残る2本目の切削でのブレードハイトを導波路コア面(第1クラッド面と接する面)よりも下方70μm試料台側(5μm+(導波路コアの厚み+第2クラッド層の厚み)試料台側に位置するように行った。
その反射面の表面粗さRaを調べたところ、全ての光導波路フィルムにおいてRa:0.06μm以下となり良好であった。また、当該反射面での反射損失は全て0.5dBであった。
第1クラッド層、導波路コア径、第2クラッド層、導波路総厚がそれぞれ20μm、45μm、20μm、85μm、大きさ100mm×100mmの積層導波路フィルムを用意した。次に、幅100μmのブレード部を有するダイシングソーによる切削により、幅5mm、長さ50mmの短冊状の導波路を得た。
さらに、該短冊状導波路に対し、径方向に対して傾斜する傾斜面を有するテーパ状のブレード部(図5参照:幅150μm、傾斜面との成す角度をθ(鋭角)45°:d/tanθ=150μm)を有するダイシングソーを用い、一方の端部のみを切削した(2本)。得られた短冊状の光導波路フィルムの導波路コアの長手方向一端面には、ブレード部の傾斜面に沿った光学面が反射面として形成されていた。ここで傾斜面を有するテーパ状のブレード部を有するダイシングソーの切削のうち、1本目における切削でのブレード先端の試料台からの高さを、導波路コア面(第1クラッド層と接する面)よりも5μm試料台側に位置するように行い、残る2本目の切削でのブレードハイトを導波路コア面(第1クラッド面と接する面)よりも下方70μm試料台側(5μm+(導波路コアの厚み+第2クラッド層の厚み)試料台側に位置するように行った。
その反射面の表面粗さRaを調べたところ、全ての光導波路フィルムにおいてRa:0.06μm以下となり良好であった。また、当該反射面での反射損失は全て0.5dBであった。
なお、反射損失は、次のように決定した。同導波路フィルムに対して同じ導波路長の両端が垂直端面であるものと、45度端面である導波路の挿入損失を計測し、その差を反射損失とした。
(比較例2)
実施例2において、傾斜面を有するテーパ状のブレードを有するダイシングソーの切削において、2本のブレードハイトともコア層面(第1クラッド面と接する面)よりも5μm試料台側に位置するように行い、反射面の表面粗さRaを調べたところ、Ra:0.17μmを上回るものが発生した。
実施例2において、傾斜面を有するテーパ状のブレードを有するダイシングソーの切削において、2本のブレードハイトともコア層面(第1クラッド面と接する面)よりも5μm試料台側に位置するように行い、反射面の表面粗さRaを調べたところ、Ra:0.17μmを上回るものが発生した。
(実施例3)
第1クラッド層、コア層、第2クラッド層、総厚がそれぞれ200μm、50μm、25μm、275μmである積層高分子フィルムを用意した。
第1クラッド層、コア層、第2クラッド層、総厚がそれぞれ200μm、50μm、25μm、275μmである積層高分子フィルムを用意した。
次に、準備した高分子フィルムの第1クラッド層(厚み100μm)側を、厚み170μmのダイシングテープに貼り付け、これをダイシングテープが対面するように試料台に載せた。そして、高分子フィルムに対し、厚さ100μmのブレードを取り付けたダイシングソーを用いて、高分子フィルムの第2クラッド層側から、第2クラッド層及びコア層を切削して直線状の切削溝を形成することで、光学面を形成し、これに挟まれる構成される幅50μmの導波路コアを120本形成した。
ここで、開始後40本の切削溝の切削(光学面形成)でのブレードハイトを高分子フィルムのコア層面(第1クラッド層と接する面)よりも10μm試料台側に位置するように行った。続く40本の切削溝の切削(光学面形成)でのブレードハイトを高分子フィルムのコア層面(第1クラッド層と接する面)よりも85μm試料台側(10μm+コア層の厚み+第2クラッド層の厚み分試料台側)に位置するように行った。残り40本の切削溝の切削(光学面形成)でのブレードハイトを高分子フィルムのコア層面(第1クラッド層と接する面)よりも160μm試料台側(10μm+[2×(コア層の厚み+第2クラッド層の厚み)]分試料台側)に位置するように行った。
次に、ダイシングソーによる3つの切削溝に、アクリル系紫外線硬化樹脂(硬化後屈折率1.51)を埋め込み、紫外線露光により硬化させて、第3クラッド層を形成した。
上記工程を経て、光導波路フィルムを得た。得られた光導波路フィルムの導波路コアの伝播損失がいずれも0.2dB/cmを下回り、良好な結果を得た。
(比較例3)
実施例3での切削溝を形成するための切削でのブレードハイトを全て、高分子フィルムのコア層面(第1クラッド層と接する面)よりも5μm試料台側に位置するように一定で行った以外は、実施例3と同様にして光導波路フィルムを得た。結果、導波路コアの伝播損失が0.4dB/cmを上回ったものが作製された。
実施例3での切削溝を形成するための切削でのブレードハイトを全て、高分子フィルムのコア層面(第1クラッド層と接する面)よりも5μm試料台側に位置するように一定で行った以外は、実施例3と同様にして光導波路フィルムを得た。結果、導波路コアの伝播損失が0.4dB/cmを上回ったものが作製された。
10 高分子フィルム
10A 光導波路フィルム
12 第1クラッド層
14 第2クラッド層
16 第3クラッド層
18 導波路コア
18A コア層
18B コア形成用硬化性樹脂
20 鋳型
20A 凹部
22 ダイシングテープ
24 試料台
26A 第1ダイシングソー
26B 第2ダイシングソー
28A,28B,28C 切削溝
10A 光導波路フィルム
12 第1クラッド層
14 第2クラッド層
16 第3クラッド層
18 導波路コア
18A コア層
18B コア形成用硬化性樹脂
20 鋳型
20A 凹部
22 ダイシングテープ
24 試料台
26A 第1ダイシングソー
26B 第2ダイシングソー
28A,28B,28C 切削溝
Claims (11)
- 光を伝播する導波路コアと、前記導波路コアよりも屈折率が低い第1クラッド層とが少なくとも積層された積層体を準備する積層体準備工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する試料台配置工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第1光学面形成工程と、
前記試料台に前記積層体を配置した状態で、前記第1ダイシングソーにより前記第1光学面形成工程とは異なる個所の前記光導波路コアに切削加工を施し、前記導波路コアに光学面を形成する第2光学面形成工程と、
を少なくとも有し、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光学面形成工程及び前記第2光学面形成工程を行うことを特徴とする光導波路の製造方法。 - 前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み以上であることを特徴とする請求項1に記載の光導波路の製造方法。
- 前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光学面形成工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、の差が、前記導波路コアの厚み及び前記第2クラッド層の厚みの計以上である、
ことを特徴とする請求項2に記載の光導波路の製造方法。 - 前記第1ダイシングソーのブレード部先端が、その径方向に対して傾斜する傾斜面を有するテーパ状であり、
前記ブレード部の幅をd、前記径方向と前記傾斜面との成す角度をθとしたとき、d/tanθが、前記導波路コアの厚みの2倍以上である、
ことを特徴とする請求項1に記載の光導波路の製造方法。 - 前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記d/tanθが、前記導波路コアの厚みと前記第2クラッド層の厚みとの計bの2倍以上である、
ことを特徴とする請求項4に記載の光導波路の製造方法。 - 前記積層体が、前記光導波路コアにおける前記第1クラッド層と接する面とは厚み方向で反対側の面上に、前記導波路コアよりも屈折率が低い第2グラッド層を積層した積層体であるとき、
前記第1光学面形成工程及び前記第2光学面形成工程において、前記第1ダイシングソーのブレード部の幅以上の幅のブレード部を有する第2ダイシングソーにより前記第2クラッド層の一部を切削した後、当該切削した個所に前記第1ダイシングソーによる切削加工を施すことを特徴とする請求項1に記載の光導波路の製造方法。 - 前記第1ダイシングソーのブレード部の幅と、前記第2ダイシングソーのブレード部の幅と、の差が、5μm以上20μm以下の範囲であることを特徴とする請求項6に記載の光導波路の製造方法。
- コア層、及び前記コア層よりも屈折率が低い第1クラッド層が少なくとも積層された積層体を準備する工程と、
前記積層体を前記第1クラッド層が対向するように試料台に配置する工程と、
前記試料台に前記積層体を配置した状態で、ブレード部を有する第1ダイシングソーにより前記コア層に少なくとも第1切削溝及び第2切削溝を設けて光学面を形成し、導波路コアを形成する導波路コア形成工程と、
前記コア層の少なくとも前記第1切削溝及び第2切削溝に第3クラッド層を形成する第3クラッド層形成工程と、
を少なくとも有し、
前記第1切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2切削溝の形成における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1切削溝及び前記第2切磋溝を設けることを特徴とする光導波路の製造方法。 - 前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法。
- 前記第1ダイシングソーのブレード部先端の試料台からの高さが前記コア層の前記第1クラッド層と接する面よりも1μm以上20μmの範囲で前記試料台側に位置するように、前記第1切削溝を設けることを特徴とする請求項8に記載の光導波路の製造方法。
- 試料台上で、ブレード部を有する第1ダイシングソーにより導波路コアの光学面を形成して第1光導波路を製造する第1光導波路製造工程と、
試料台上で、前記第1ダイシングソーにより導波路コアの光学面を形成して第2光導波路を製造する第2光導波路製造工程と、
を少なくとも有し、
前記第1光導波路製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、前記第2光導波路コア製造工程における前記第1ダイシングソーのブレード部先端の試料台からの高さと、が異なるように、前記第1光導波路製造工程及び第2光導波路製造工程を行うことを特徴とする光導波路の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007154447A JP2008304870A (ja) | 2007-06-11 | 2007-06-11 | 光導波路の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007154447A JP2008304870A (ja) | 2007-06-11 | 2007-06-11 | 光導波路の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008304870A true JP2008304870A (ja) | 2008-12-18 |
Family
ID=40233627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007154447A Pending JP2008304870A (ja) | 2007-06-11 | 2007-06-11 | 光導波路の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008304870A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010151992A (ja) * | 2008-12-24 | 2010-07-08 | Fuji Xerox Co Ltd | 光導波路、光導波路型タッチパネル、及び光導波路の製造方法 |
-
2007
- 2007-06-11 JP JP2007154447A patent/JP2008304870A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010151992A (ja) * | 2008-12-24 | 2010-07-08 | Fuji Xerox Co Ltd | 光導波路、光導波路型タッチパネル、及び光導波路の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008020722A (ja) | 光導波路及びその製造方法 | |
JP2006337748A (ja) | 光導波路及びその製造方法 | |
JP4144468B2 (ja) | 積層型高分子光導波路およびその製造方法 | |
JP4196839B2 (ja) | 高分子光導波路の製造方法 | |
JP2006126568A (ja) | 高分子光導波路デバイスの製造方法 | |
JP2006039282A (ja) | 光導波路、光導波路用フェルール、及び光コネクタ | |
JP2005181662A (ja) | 高分子光導波路の製造方法 | |
JP2004109926A (ja) | 高分子光導波路の製造方法 | |
JP2007279515A (ja) | レンズ内蔵光導波路及びその製造方法 | |
US7749410B2 (en) | Method of fabricating polymer optical circuit | |
JP4581328B2 (ja) | 高分子光導波路及び光学素子の製造方法 | |
JP4175183B2 (ja) | 高分子光導波路の製造方法 | |
JP4848986B2 (ja) | 光導波路及びその製造方法 | |
JP4292892B2 (ja) | 積層型高分子光導波路の製造方法及びこの方法により作製される積層型高分子光導波路 | |
JP2007086330A (ja) | 高分子光導波路デバイスの製造方法 | |
JP2008304870A (ja) | 光導波路の製造方法 | |
JP2005043652A (ja) | 高分子光導波路の製造方法及びその製造装置 | |
JP2005070193A (ja) | ピッチ変換導波路アレイ | |
JP2005043784A (ja) | 高分子光導波路作製用原盤及び高分子光導波路の製造方法、並びに口径変換型高分子光導波路 | |
JP4337559B2 (ja) | 高分子光導波路製造用鋳型及び高分子光導波路の製造方法 | |
JP4273975B2 (ja) | フレキシブル高分子光導波路の製造方法 | |
JP4517704B2 (ja) | 高分子光導波路の製造方法 | |
JP4193616B2 (ja) | 積層型高分子導波路及びその製造方法 | |
JP4259222B2 (ja) | クロスコネクト光配線シート及びその製造方法 | |
JP2009075287A (ja) | 高分子光回路の製造方法 |