JP2008290180A - Surface treatment method and apparatus for film-like object - Google Patents

Surface treatment method and apparatus for film-like object Download PDF

Info

Publication number
JP2008290180A
JP2008290180A JP2007137514A JP2007137514A JP2008290180A JP 2008290180 A JP2008290180 A JP 2008290180A JP 2007137514 A JP2007137514 A JP 2007137514A JP 2007137514 A JP2007137514 A JP 2007137514A JP 2008290180 A JP2008290180 A JP 2008290180A
Authority
JP
Japan
Prior art keywords
magnetic
surface treatment
film
polishing
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007137514A
Other languages
Japanese (ja)
Inventor
Teruhisa Nakamura
輝久 中村
Rei Hanamura
玲 花村
Keita Yamamoto
慶太 山本
Yoshio Matsuo
良夫 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007137514A priority Critical patent/JP2008290180A/en
Publication of JP2008290180A publication Critical patent/JP2008290180A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method and an apparatus for a film-like object, capable of preferably providing flatness by a fine cutting operation without unevenness for the film-like object while maintaining a state of no external force applied thereto. <P>SOLUTION: An axial cutting tool 2 is provided with a permanent magnet 20 at an end serving as a magnetic field generation source and a plurality thereof are arranged. The axial cutting tools are arranged at least in two lines and the front and rear of axial cutting tools viewed from the line direction are arranged at a predetermined overlapping amount and at deviated positions. A polishing object 1 is moved in a predetermined direction. The lines of the axial cutting tools 2 are made to make a motion such as rotation by activating drive means and also reciprocated in the intersecting direction for a feed passage of the polishing object 1. A magnetic polishing liquid 3 is set between the polishing object 1 and the axial cutting tools 2 to fluid-polish by a magnetic cluster (a magnetic brush) generated in the magnetic polishing liquid 3. All the axial cutting tools 2 arranged in the same line function as one tool. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属リボンや樹脂フィルムなどフィルム状の対象物の表面処理方法及び表面処理装置に関するもので、より具体的には、フィルム状の対象物に対して、微細な削り作用のためのバイトの改良に関する。   The present invention relates to a surface treatment method and a surface treatment apparatus for a film-like object such as a metal ribbon or a resin film. More specifically, the present invention relates to a cutting tool for finely cutting a film-like object. Regarding improvements.

金属リボンや樹脂フィルムなど、薄膜で比較的に幅が大きいフィルム状の対象物にあっては、製造の際には表面性状の改質を行う表面処理が必要であり、その表面について研磨や洗浄および清浄等の表面処理が行われている。   In the case of film-like objects such as metal ribbons and resin films that are relatively thin and have a relatively large width, surface treatment is required to modify the surface properties during production, and the surface is polished or cleaned. Surface treatment such as cleaning is performed.

表面処理の一つには鏡面仕上げがあり、上述したフィルム状の対象物でも重要な表面処理となる。つまり、部材表面の鏡面仕上げは外観の美しさを得ることはもちろん、コーティング等の仕上げ工程前の下地作りといった目的から重要となっている。   One of the surface treatments is a mirror finish, which is an important surface treatment even for the above-described film-like object. In other words, the mirror finish on the surface of the member is important for the purpose of obtaining the beauty of the appearance and of making the base before the finishing process such as coating.

しかし、フィルム状の対象物は薄膜であるため、わずかな力ですぐにシワができ、扱いが難しいという問題がある。例えばポリッシングパッドなどの工具を研磨対象面に接触させる加工方法は、抑え力を加えることから対象物に大きな応力が生じ、鏡面仕上げの加工が適正には行えない。   However, since the film-like object is a thin film, there is a problem that it can be easily wrinkled with a slight force and is difficult to handle. For example, in the processing method in which a tool such as a polishing pad is brought into contact with the surface to be polished, a large force is generated on the target because a restraining force is applied, so that the mirror finishing cannot be properly performed.

鏡面仕上げが行い得る精密研磨の技術として、いわゆる磁気研磨法と呼ばれる技術がよく知られている。これは、磁性流体(MF:Magnetic Fluid)や磁気粘性流体(MRF:Magneto Rheological Fluid)を研磨粒子と混合させ、磁界により混合液を運動させることで研磨を行っている。   A so-called magnetic polishing technique is well known as a precision polishing technique that can be mirror-finished. This is performed by mixing a magnetic fluid (MF) or a magnetorheological fluid (MRF) with abrasive particles and moving the mixed liquid by a magnetic field.

研磨バイトは、例えば図1に示すように、軸バイト2の先端に永久磁石20を設け、軸部を駆動手段へ連係して回転等の運動動作を行わせている。   For example, as shown in FIG. 1, the polishing tool is provided with a permanent magnet 20 at the tip of the shaft tool 2, and the shaft portion is linked to a driving means to perform a motion operation such as rotation.

その研磨バイト(軸バイト2)の周りに磁気研磨液(ペースト材料)を付着させると、磁気吸引力によりMFやMRF中の強磁性粒子(例えば、鉄粒子),マグネタイト粒子が、多数凝集して磁気クラスタを形成する。この磁気クラスタは、磁束に沿うので研磨対象に対立して針状に多数が立ち並ぶ態様を採る。よって、磁気研磨液が軸バイト2に付着して磁気ブラシとなる。   When a magnetic polishing liquid (paste material) is attached around the polishing tool (shaft tool 2), a large number of ferromagnetic particles (for example, iron particles) and magnetite particles in MF and MRF are aggregated by the magnetic attractive force. Form magnetic clusters. Since this magnetic cluster follows the magnetic flux, it takes a form in which a large number of needles are arranged in opposition to the object to be polished. Therefore, the magnetic polishing liquid adheres to the shaft bit 2 to form a magnetic brush.

磁気ブラシあるいは研磨対象が回転動作することにより、両者間の相対運動により磁気ブラシが研磨対象の表面を接触した状態で移動する。その結果、研磨対象の表面の凹凸は研磨粒子を伴う磁気ブラシが研磨し、より平滑な表面を得ることができ、非接触の流体研磨が行える。   When the magnetic brush or the object to be polished rotates, the magnetic brush moves in contact with the surface of the object to be polished by relative movement between the two. As a result, the unevenness of the surface to be polished is polished by the magnetic brush with the abrasive particles, a smoother surface can be obtained, and non-contact fluid polishing can be performed.

ところが、磁気研磨法による場合、回転動作する軸バイト2は外周側と内周側とで周速の違いから研磨能力に差が生じ、図1のグラフに示すように、中心部位での研磨能力が極端に低い特性を示す。このため、微細な削り作用にムラができやすく、平坦度が悪化する問題がある。   However, in the case of the magnetic polishing method, the rotating cutting tool bit 2 has a difference in polishing ability due to the difference in peripheral speed between the outer peripheral side and the inner peripheral side. As shown in the graph of FIG. Shows extremely low characteristics. For this reason, there is a problem that unevenness is easily generated in the fine shaving action and the flatness is deteriorated.

また、フィルム状の対象物は薄膜である上に比較的に幅が大きいことから、磁気研磨法を単純に適用したのでは効率が上がらない問題があり、研磨に時間がかかり改善の要求がある。   In addition, since a film-like object is a thin film and has a relatively large width, there is a problem that efficiency is not improved by simply applying the magnetic polishing method, and polishing takes time and there is a demand for improvement. .

この発明は上述した課題を解決するもので、その目的は、フィルム状の対象物に対して、外力が加わらない非接触の状態を保持し、微細な削り作用をムラなく行えて平坦度を良好に得ることができ、表面処理を効率よく行うことができるフィルム状の対象物の表面処理方法及び表面処理装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems. The object of the present invention is to maintain a non-contact state in which an external force is not applied to a film-like object, to perform a fine shaving operation without unevenness and to have good flatness. Another object of the present invention is to provide a surface treatment method and a surface treatment apparatus for a film-like object that can be obtained easily and can perform surface treatment efficiently.

上述した目的を達成するために、本発明に係るフィルム状の対象物の表面処理方法は、フィルム状の対象物に対して軸バイトを非接触に対面させ、周辺に存在させた磁気ペーストを連動することにより微細な削り作用による表面処理を行う方法であって、対象物には所定方向へ送る移動動作を行わせ、軸バイトは先端に磁界発生源を設けて複数を配列し、当該軸バイトの並び列は駆動手段の駆動により、それぞれ回転等の運動動作を行わせるとともに対象物の送り経路に対して交差方向に往復移動を行わせ、磁気ペーストは微細な削り作用を発揮する砥粒を混合しておき対象物と軸バイトとの間に存在させ、磁界発生源の磁界により磁気ペーストに時間的に定常的あるいは変動的な磁界を加えて非接触の微細な削り作用による表面処理を行う(請求項1)。   In order to achieve the above-described object, the surface treatment method for a film-like object according to the present invention is such that a shaft tool is brought into contact with the film-like object in a non-contact manner, and a magnetic paste present in the periphery is interlocked. In this method, surface treatment is performed by a fine shaving action, the object is moved in a predetermined direction, and a plurality of axial tools are arranged by providing a magnetic field generating source at the tip. Each of the rows is driven by driving means so that each of them performs a movement operation such as rotation and reciprocating in the crossing direction with respect to the feed path of the object, and the magnetic paste has abrasive grains that exhibit a fine shaving action. It is mixed and exists between the object and the shaft bite, and a surface treatment is performed by a non-contact fine shaving action by applying a stationary or fluctuating magnetic field in time to the magnetic paste by the magnetic field of the magnetic field generation source. Claim 1).

また、軸バイトの並び列には、対象物の送り経路に対して所定の斜め方向での交差となる往復移動を行わせる(請求項2)。   Further, the reciprocating movement that intersects the feeding path of the target object in a predetermined oblique direction is performed on the array of the axis tools (claim 2).

また、軸バイトの並び列は少なくとも2行を配列し、列方向から見た前後2者が所定の重なりでズレ位置となる配列にする(請求項3)。   Further, at least two rows are arranged in the array of the axis bytes, and the two before and after viewed from the column direction are arranged so as to be shifted by a predetermined overlap (Claim 3).

本発明に係るフィルム状の対象物の表面処理装置は、フィルム状の対象物に対して軸バイトを非接触に対面させ、周辺に存在させた磁気ペーストを連動することにより微細な削り作用による表面処理を行うフィルム状の対象物の表面処理装置であって、前記軸バイトは先端に磁界発生源を設けて複数を配列し、当該軸バイトの並び列は駆動手段の駆動により、それぞれ回転等の運動動作を行わせるとともに前記対象物の送り経路に対して交差方向に往復移動を行わせるように設定し、前記磁気ペーストは微細な削り作用を発揮する砥粒を混合しておき前記対象物と前記軸バイトとの間に存在させ、前記磁界発生源の磁界により前記磁気ペーストに時間的に定常的あるいは変動的な磁界を加えて非接触の微細な削り作用による表面処理を行えるようにした。   The surface treatment apparatus for a film-like object according to the present invention has a surface by a fine shaving action by causing an axial cutting tool to face the film-like object in a non-contact manner and interlocking with a magnetic paste present in the periphery. A surface treatment apparatus for a film-like object to be processed, wherein a plurality of the shaft tools are arranged by providing a magnetic field generating source at the tip, and the arrangement of the shaft tools is rotated by driving means, respectively. The magnetic paste is set so as to reciprocate in a crossing direction with respect to the feed path of the object, and the magnetic paste is mixed with abrasives that exhibit a fine shaving action and A surface treatment can be performed by a non-contact fine cutting action by applying a stationary or fluctuating magnetic field to the magnetic paste in time with the magnetic field of the magnetic field generation source. Was Unishi.

したがって本発明では、磁気研磨のための軸バイトは複数を配列し、それぞれに回転等の運動動作を行わせるとともに、並び列の全体には対象物の送り経路に対して交差方向に往復移動を行わせるので、軸バイトの並び列は全体がひとつの工具として機能する。   Therefore, in the present invention, a plurality of shaft tools for magnetic polishing are arranged, and each of them performs a movement operation such as rotation, and the entire array is reciprocated in the direction intersecting the object feed path. As a result, the entire array of axis bytes functions as a single tool.

軸バイトは複数を配列するので、その並び列では当然ながら非接触での削り作用の領域が広くなる。そして、対象物は送り移動させるので、軸バイトの並び列の往復移動と対象物の送り移動とを同期することにより、移動中の表面に対する削り作用が均一化するように制御できる。つまり、各軸バイトにおける周速の違いによるムラが生ぜず、広い領域について平坦度が高い研磨が行える。   Since a plurality of the axial tools are arranged, the area of the non-contact cutting action is naturally widened in the array. Since the object is fed and moved, it is possible to control the shaving action on the moving surface to be uniform by synchronizing the reciprocating movement of the array of axis tools and the feeding movement of the object. In other words, unevenness due to the difference in peripheral speed between the cutting tools of each axis does not occur, and polishing with high flatness can be performed over a wide region.

また、軸バイトの並び列について、往復移動の方向を対象物の送り経路に対して所定の斜め方向とすることでは、角度方向が適正であれば、移動方向から見て隣り合う軸バイトに重畳部位ができるので、各軸バイトにおける研磨能力のムラを順次に補正するような削り作用の移動が行える。このため、対象物の送り移動は、軸バイトの並び列の往復移動に対して同期の範囲が広くなり、より速い速度に設定でき、効率を上げることができる。   In addition, regarding the arrangement of the axis tools, the direction of reciprocating movement is set to a predetermined oblique direction with respect to the feed path of the object. Since the portion is formed, the shaving action can be moved so as to sequentially correct the unevenness of the polishing ability in each axis tool. For this reason, the feed movement of the object has a wider range of synchronization with respect to the reciprocating movement of the array of axis tools, can be set at a higher speed, and the efficiency can be increased.

また、軸バイトの並び列は少なくとも2行を配列し、列方向から見た前後2者が所定の重なりでズレ位置となる配列にすることでは、軸バイトの並び列は、磁気研磨(微細な削り)の際は単体特性を合成した特性を示し、列方向から見た前後2者が所定の重なりでズレ位置となる配列なので、単体特性がズレ位置で重なり、全体が発揮する特性は平坦になる。   In addition, by arranging at least two rows of the axial byte array, and arranging them so that the two before and after viewed from the column direction overlap each other with a predetermined overlap, the axial byte array can be magnetically polished (finely polished). In the case of (shaving), it shows the characteristics that combine the single characteristics, and the arrangement in which the two before and after viewed from the column direction are in a position of deviation with a predetermined overlap, so the single characteristics overlap at the deviation position, and the characteristics that the whole exhibits are flat Become.

以上のように、本発明では、磁気研磨のための軸バイトは複数を配列した並び列の全体がひとつの工具として機能し、その並び列では当然ながら非接触での削り作用の領域が広くなる。そして、対象物は送り移動させるので、軸バイトの並び列の往復移動と対象物の送り移動とを同期することにより、移動中の表面に対する削り作用が均一化するように制御できる。つまり、各軸バイトにおける周速の違いによるムラが生ぜず、広い領域について平坦度が高い研磨が行える。   As described above, in the present invention, the entire array of axial tools for magnetic polishing functions as a single tool, and the array of the non-contact cutting action is naturally widened in the array. . Since the object is fed and moved, it is possible to control the shaving action on the moving surface to be uniform by synchronizing the reciprocating movement of the array of axis tools and the feeding movement of the object. In other words, unevenness due to the difference in peripheral speed between the cutting tools of each axis does not occur, and polishing with high flatness can be performed over a wide region.

したがって、フィルム状の対象物に対して、外力が加わらない非接触の状態を保持し、微細な削り作用をムラなく行えて平坦度を良好に得ることができる。その結果、表面処理を効率よく行うことができる。   Therefore, a non-contact state where no external force is applied to the film-like object can be maintained, and a fine shaving operation can be performed without unevenness, so that flatness can be obtained satisfactorily. As a result, the surface treatment can be performed efficiently.

(第1の実施の形態)
図2(a),(b)は、本発明の第1の実施の形態を示している。本形態において、微細な削り作用による表面処理を行う構成には磁界発生源(永久磁石20)を有する軸バイト2を複数配列させて備え、研磨対象1に対して軸バイト2の並び列を非接触に対面させ、周辺に存在させた磁気ペースト(磁気研磨液3)を連動することにより微細な削り作用による表面処理を行うようになっている。
(First embodiment)
FIGS. 2A and 2B show a first embodiment of the present invention. In this embodiment, the configuration for performing the surface treatment by the fine shaving action is provided with a plurality of the axial cutting tools 2 having the magnetic field generating source (permanent magnet 20) arranged, and the arrangement of the axial cutting tools 2 with respect to the polishing object 1 is not arranged. By facing the contact and interlocking with the magnetic paste (magnetic polishing liquid 3) present in the periphery, the surface treatment is performed by a fine shaving action.

研磨対象1としては、金属リボンや樹脂フィルムなど、厚さ数十μmから数百μm程度の薄膜で比較的に幅が大きいフィルム状の対象物を想定している。この研磨対象1には所定方向へ送る移動動作を行わせる。   As the object 1 to be polished, a film-like object having a relatively large width and a thin film having a thickness of several tens to several hundreds of μm, such as a metal ribbon or a resin film, is assumed. This polishing object 1 is moved in a predetermined direction.

軸バイト2は、先端に永久磁石20を設けて磁界の発生源としている。ここでは複数の軸バイト2を、研磨対象1の送り移動の経路に沿って配列する。軸バイト2の並び列は、図示しない駆動手段の駆動により、それぞれ回転動作させるようになっている。そして回転動作に伴って、研磨対象1の送り経路に対して交差方向に往復移動を行わせる構成になっている。   The axial cutting tool 2 is provided with a permanent magnet 20 at its tip to serve as a magnetic field generation source. Here, a plurality of shaft tools 2 are arranged along the feed movement path of the polishing object 1. The rows of the axis tools 2 are rotated by driving of a driving means (not shown). And it is the structure which reciprocates to a crossing direction with respect to the feed path | route of the grinding | polishing target 1 with rotation operation | movement.

それぞれの軸バイト2は、単純に同一方向の回転動作を行わせるのではなく、例えば正転,逆転の動作を繰り返す反転動作を行わせるなど、適宜な運動動作を行うようにしてもよい。駆動手段としては例えばNC工作機を用いればよく、ボール盤,旋盤,NC旋盤,フライス盤などの回転軸(チャック部)に軸バイト2の軸部を取り付けし、着脱を行うようにする。   Each axis tool 2 may perform an appropriate motion operation, for example, a reversal operation that repeats a forward rotation and a reverse rotation, for example, instead of simply rotating in the same direction. As the driving means, for example, an NC machine tool may be used, and the shaft portion of the shaft tool 2 is attached to a rotating shaft (chuck portion) such as a drilling machine, a lathe, an NC lathe, a milling machine, and the like.

磁界発生源としては永久磁石20に限らず、例えば電磁石などでも好ましく適用でき、磁気研磨液3に対して磁界を作用し得るものであればよい。磁界の発生は、時間的に定常的である必要はなく、時間的に変動的な磁界を発生させることでもよい。   The magnetic field generation source is not limited to the permanent magnet 20, and for example, an electromagnet or the like can be preferably applied as long as it can act on the magnetic polishing liquid 3. The generation of the magnetic field does not need to be stationary in time, and may generate a magnetic field that varies in time.

また、軸バイト2の並び列には、研磨対象1の送り経路に対して所定の斜め方向での交差となる往復移動を行わせることもよい。例えば、図2(b)に示す角度θの斜め方向での交差となる往復移動を行わせることができる。   Moreover, it is also possible to perform reciprocating movement that intersects in a predetermined oblique direction with respect to the feed path of the polishing object 1 in the row of the axial cutting tools 2. For example, it is possible to perform reciprocal movement that is an intersection of the angle θ shown in FIG. 2B in an oblique direction.

磁気研磨液3は、磁性粒子および溶媒との2成分を含む。溶媒には植物油脂などを用いている。この磁気研磨液3は研磨対象1と軸バイト2との狭間へ供給手段により供給するようになっている。   The magnetic polishing liquid 3 contains two components of magnetic particles and a solvent. Vegetable oil or the like is used as the solvent. The magnetic polishing liquid 3 is supplied by a supply means between the polishing object 1 and the shaft tool 2.

磁性粒子としては、フェライト粒子や鉄粉等の金属粒子などを用いることができる。フェライト粒子は、酸化鉄を主成分とするセラミックスであり大半が強磁性を示し、磁化を持つため磁界をかけることで当該粒子は磁気クラスタを形成する。鉄粉等の磁化し得る金属粒子でも同様であり、磁界をかけることで当該粒子は磁気クラスタを形成する。そして、セラミックスであるフェライト粒子や鉄粉等の金属粒子は、研磨対象1のフィルム状の対象物に対しては十分に硬く、よって研磨のための砥粒として機能させることができ、磁気クラスタそのものが、微細な削り作用による表面処理を行うための磁気ブラシとなる。   As magnetic particles, metal particles such as ferrite particles and iron powder can be used. Ferrite particles are ceramics mainly composed of iron oxide, and most of them exhibit ferromagnetism. Since they have magnetization, the particles form a magnetic cluster by applying a magnetic field. The same applies to magnetizable metal particles such as iron powder. When a magnetic field is applied, the particles form magnetic clusters. Further, the metal particles such as ferrite particles and iron powder which are ceramics are sufficiently hard for the film-like object of the object 1 to be polished, and thus can function as abrasive grains for polishing, and the magnetic cluster itself. However, it becomes a magnetic brush for performing surface treatment by a fine shaving action.

軸バイト2の運動動作は上述したように、それぞれは単なる回転動作や正転,逆転を繰り返す反転動作など、所定の運動動作を行わせ、そして並び列には研磨対象1の送り経路に対して交差方向に往復移動を行わせる。このとき、軸バイト2の周辺には磁気研磨液3を供給しておき、研磨対象1は長手方向へ送り移動させる。   As described above, each of the movements of the shaft tool 2 performs a predetermined movement operation such as a simple rotation operation, a reversal operation that repeats normal rotation, and reverse rotation, and the line is arranged with respect to the feed path of the polishing object 1. Make a reciprocating movement in the crossing direction. At this time, the magnetic polishing liquid 3 is supplied to the periphery of the shaft tool 2, and the polishing object 1 is fed and moved in the longitudinal direction.

軸バイト2と研磨対象1との間には磁気研磨液3が存在し、当該磁気研磨液3はフェライト粒子や鉄粉など磁性粒子を含み、永久磁石20により磁気研磨液3に時間的に定常的あるいは変動的な磁界が加わると磁気クラスタが生成する。つまり、磁気研磨液中のフェライト粒子や鉄粉など磁性粒子が、磁気吸引力により多数凝集して磁気クラスタとなる。そして前述したように、フェライト粒子や鉄粉など磁性粒子は研磨のための砥粒として機能し、磁気クラスタそのものが、微細な削りを行う磁気ブラシとなる。磁気ブラシは、磁束に沿って研磨対象1に対立して針状に多数が立ち並び、砥粒作用を行うフェライト粒子が研磨対象1の表面に抑えつけられる。このとき、軸バイト2と研磨対象1とは相対運動することから、フェライト粒子は研磨対象1の表面上を接触しつつ運動して微細な削りを行う。よって、非接触の微細な削り作用による表面処理を行うことができる。   There is a magnetic polishing liquid 3 between the shaft tool 2 and the object 1 to be polished. The magnetic polishing liquid 3 contains magnetic particles such as ferrite particles and iron powder, and the permanent magnet 20 keeps the magnetic polishing liquid 3 in time. When a magnetic field or a variable magnetic field is applied, a magnetic cluster is generated. That is, a large number of magnetic particles such as ferrite particles and iron powder in the magnetic polishing liquid are aggregated into a magnetic cluster by the magnetic attractive force. As described above, magnetic particles such as ferrite particles and iron powder function as abrasive grains for polishing, and the magnetic cluster itself becomes a magnetic brush that performs fine cutting. A large number of magnetic brushes are arranged in a needle shape in opposition to the polishing object 1 along the magnetic flux, and ferrite particles that perform an abrasive action are held down on the surface of the polishing object 1. At this time, since the axial cutting tool 2 and the object 1 to be polished move relative to each other, the ferrite particles move while making contact with the surface of the object 1 to be finely cut. Therefore, surface treatment by a non-contact fine cutting action can be performed.

このように、磁気研磨のための軸バイト2は複数を配列し、それぞれに回転等の運動動作を行わせるとともに、並び列の全体には研磨対象1の送り経路に対して交差方向に往復移動を行わせるので、軸バイト2の並び列は全体がひとつの工具として機能する。   In this way, a plurality of the axial cutting tools 2 for magnetic polishing are arranged, and each of them performs a movement operation such as rotation, and the entire array is reciprocated in the crossing direction with respect to the feed path of the polishing object 1. As a result, the entire array of axis tools 2 functions as one tool.

軸バイト2は複数を配列するので、その並び列では当然ながら非接触での削り作用の領域が広くなる。そして、研磨対象1は送り移動させるので、軸バイト2の並び列の往復移動と研磨対象1の送り移動とを同期することにより、移動中の表面に対する削り作用が均一化するように制御できる。つまり、各軸バイト2における周速の違いによるムラが生ぜず、広い領域について平坦度が高い研磨が行える。   Since a plurality of the axial tools 2 are arranged, the region of the non-contact cutting action is naturally widened in the array. Since the polishing object 1 is fed and moved, the reciprocating movement of the row of the shaft tools 2 and the feeding movement of the polishing object 1 can be synchronized so that the shaving action on the moving surface can be made uniform. That is, the unevenness due to the difference in peripheral speed in each axis cutting tool 2 does not occur, and polishing with high flatness can be performed over a wide region.

したがって、薄膜で比較的幅が大きいフィルム状の対象物に対して、外力が加わらない非接触の状態を保持し、微細な削り作用をムラなく行えて平坦度を良好に得ることができる。その結果、表面処理を効率よく行うことができる。   Therefore, it is possible to maintain a non-contact state in which an external force is not applied to a film-like object that is a thin film and has a relatively large width, perform a fine shaving operation without unevenness, and obtain good flatness. As a result, the surface treatment can be performed efficiently.

また、軸バイト2の並び列について、往復移動の方向を研磨対象1の送り経路に対して所定の斜め方向とすることでは、角度方向が適正であれば、移動方向から見て隣り合う軸バイト2に重畳部位ができるので、各軸バイト2における研磨能力のムラを順次に補正するような削り作用の移動が行える。このため、研磨対象1の送り移動は、軸バイト2の並び列の往復移動に対して同期の範囲が広くなり、より速い速度に設定でき、効率を上げることができる。   Further, with respect to the arrangement of the axis tools 2, the reciprocating direction is set to a predetermined oblique direction with respect to the feed path of the polishing object 1. Since a superposed portion is formed on 2, the shaving action can be moved so as to sequentially correct the unevenness of the polishing ability in each axis tool 2. For this reason, the feed movement of the polishing object 1 has a wider synchronization range with respect to the reciprocating movement of the row of the axis tools 2 and can be set at a higher speed, thereby increasing the efficiency.

上述したように、磁気研磨液3は組成をフェライト粒子や鉄粉など磁性粒子および溶媒を含むものとするので、フェライト粒子や鉄粉など磁性粒子は、いわゆる磁気研磨において磁気クラスタを形成する機能と、研磨のための研磨材(砥粒)の機能を発揮することになる。すなわち、磁気クラスタそのものが、微細な削りを行う磁気ブラシとなり、砥粒であるフェライト粒子や鉄粉など磁性粒子は永久磁石20の磁界により磁気ブラシ内に留まり染み出すことがない。したがって、加工面の汚染がなく、砥粒の減少がないため、微細な削り作用による表面処理を高効率に行うことができる。   As described above, since the magnetic polishing liquid 3 contains magnetic particles such as ferrite particles and iron powder and a solvent, the magnetic particles such as ferrite particles and iron powder have a function of forming a magnetic cluster in so-called magnetic polishing, and polishing. The function of the abrasive material (abrasive grain) will be exhibited. That is, the magnetic cluster itself becomes a magnetic brush that performs fine cutting, and magnetic particles such as ferrite particles and iron powder that are abrasive grains do not stay in the magnetic brush due to the magnetic field of the permanent magnet 20 and do not ooze out. Therefore, there is no contamination of the processed surface and there is no decrease in abrasive grains, so that surface treatment with a fine cutting action can be performed with high efficiency.

そして、フェライト粒子や鉄粉など磁性粒子が磁化を持ち、これによる磁気クラスタそのものが研磨のための磁気ブラシとなるので、磁気バイトにつく磁気ブラシの付着度が高くなり、軸バイト2に連動する磁気ブラシのレスポンスが向上し、これによっても研磨効率が高くなる。   Since magnetic particles such as ferrite particles and iron powder are magnetized, and the magnetic clusters themselves become magnetic brushes for polishing, the degree of adhesion of the magnetic brush attached to the magnetic bite is increased and linked to the axial bite 2. The response of the magnetic brush is improved, and this also increases the polishing efficiency.

また、研磨対象1の表面に有機物などの汚れが付着している場合、有機物は当該研磨対象1と硬度が同程度であるため削り取ることが容易であり、フェライト粒子や鉄粉など磁性粒子による磁気ブラシの微細な削り作用によって簡単に除去することができ、研磨対象1の表面を傷つけることなく表面処理としていわゆる洗浄が行える。   Further, when dirt such as organic matter adheres to the surface of the object 1 to be polished, the organic substance has the same hardness as that of the object 1 to be polished, so that it can be easily scraped off and magnetic by magnetic particles such as ferrite particles and iron powder. It can be easily removed by the fine shaving action of the brush, and so-called cleaning can be performed as a surface treatment without damaging the surface of the polishing object 1.

(第2の実施の形態)
図3,図4は本発明の第2の実施の形態を示している。本形態において、微細な削り作用による表面処理を行う構成には磁界発生源(永久磁石20)を有する軸バイト2を複数配列させて備えるが、軸バイト2の並び列は少なくとも2行を配列し、列方向から見た前後2者が、所定の重なりでズレ位置となる配列にする。第1実施形態と同様な構成には同一符号を付してあり、その説明を省略する。
(Second Embodiment)
3 and 4 show a second embodiment of the present invention. In the present embodiment, the configuration for performing the surface treatment by the fine shaving action is provided with a plurality of the axial cutting tools 2 having the magnetic field generating source (permanent magnet 20) arranged, but the array of the axial cutting tools 2 is arranged with at least two rows. The arrangement is such that the two before and after viewed from the row direction are displaced by a predetermined overlap. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

この場合、軸バイト2の並び列は、磁気研磨(微細な削り)の際は図1の単体特性を合成した特性を示し、列方向から見た前後2者が所定の重なりでズレ位置となる配列なので、図4(b)に拡大して示すように単体特性がズレ位置で重なり、全体が発揮する特性は図4(c)に示すように平坦になる。すなわち、列方向である往復移動の方向から見て、隣り合う軸バイト2に重畳部位があることから、単に列方向への移動が各軸バイト2における研磨能力のムラを順次に補正するような削り作用の移動となる。このため、研磨対象1の送り移動は、軸バイト2の並び列の往復移動に対して同期の範囲が広くなり、より速い速度に設定でき、効率を上げることができる。   In this case, the alignment row of the axial tools 2 shows the characteristics obtained by combining the single characteristics shown in FIG. 1 in the case of magnetic polishing (fine cutting), and the two before and after viewed from the row direction are displaced by a predetermined overlap. Because of the arrangement, the single characteristics overlap at the misalignment position as shown in an enlarged view in FIG. 4B, and the characteristics exhibited as a whole become flat as shown in FIG. That is, as seen from the direction of the reciprocating movement that is the row direction, there are overlapping portions on the adjacent shaft tools 2, so that the movement in the row direction simply corrects uneven polishing ability in each shaft tool 2 sequentially. It is the movement of the cutting action. For this reason, the feed movement of the polishing object 1 has a wider synchronization range with respect to the reciprocating movement of the row of the axis tools 2 and can be set at a higher speed, thereby increasing the efficiency.

(実験による検証)
図3,図4に示す軸バイトの並び列により試料の研磨を行った。つまり、表面処理に関する本発明の効果を実証するため、所定の研磨条件において研磨対象の研磨を行い、研磨後の表面粗さRa(算術平均粗さ),Ry(最大粗さ)を評価した。
(Verification by experiment)
The sample was polished by the arrangement of the axial tools shown in FIGS. That is, in order to demonstrate the effect of the present invention regarding the surface treatment, the polishing target was polished under predetermined polishing conditions, and the surface roughness Ra (arithmetic average roughness) and Ry (maximum roughness) after polishing were evaluated.

磁気研磨液3は組成として、鉄粉,植物油脂,樹脂剤とを用い、これらを均一に混合することにより調製した。   The magnetic polishing liquid 3 was prepared by using iron powder, vegetable oil and fat, and a resin agent as a composition and mixing them uniformly.

研磨対象1は、銅を圧延して形成した厚さ50μm,幅25mmのフィルム状の対象物とし、その表面の研磨を行った。   The polishing object 1 was a film-like object having a thickness of 50 μm and a width of 25 mm formed by rolling copper, and the surface thereof was polished.

軸バイト2は外径を8mmとし、先端の永久磁石20も同一外径8mmとした。軸バイト2の並び列は先端(永久磁石20)が研磨対象1に対して間隔1.0mmで対面する高さ位置に調整し、各軸バイト2には回転数500rpmの回転動作を行わせた。そして、軸バイト2の並び列には、研磨対象1の送り経路に対して交差方向に往復移動を行わせており、往復移動は研磨対象1の幅25mmに対して速度5mm/secで行わせた。このとき、研磨対象1には速度0.1mm/secの送り移動を行わせて長さ120mmについて表面研磨を行うことにした。   The shaft tool 2 had an outer diameter of 8 mm, and the permanent magnet 20 at the tip also had the same outer diameter of 8 mm. The row of the axis tools 2 was adjusted to a height position where the tips (permanent magnets 20) faced the polishing object 1 with an interval of 1.0 mm, and each axis tool 2 was rotated at a rotational speed of 500 rpm. . The row of the axis tools 2 is reciprocated in the crossing direction with respect to the feed path of the polishing object 1, and the reciprocating movement is performed at a speed of 5 mm / sec with respect to the width of 25 mm of the polishing object 1. It was. At this time, the polishing object 1 was moved at a speed of 0.1 mm / sec to perform surface polishing for a length of 120 mm.

つまり、研磨時間を20分として測定を行ったところ、表面粗さについて図5に示す結果を得た。ここに、研磨前はRa=0.159μm,Ry=1.330μmであったものが、研磨後はRa=0.026μm,Ry=0.155μmとなったことを確認した。   That is, when the measurement was carried out with a polishing time of 20 minutes, the results shown in FIG. 5 for the surface roughness were obtained. Here, it was confirmed that Ra = 0.159 μm and Ry = 1.330 μm before polishing, but Ra = 0.026 μm and Ry = 0.155 μm after polishing.

図5から明らかなように、表面粗さは1/10程度のレベルに得ており、表面の研磨を良好に行うことができる。その結果、鏡面仕上げ等の表面処理を効率よく良好に行えることを確認した。   As is apparent from FIG. 5, the surface roughness is obtained at a level of about 1/10, and the surface can be polished well. As a result, it was confirmed that surface treatment such as mirror finishing can be performed efficiently and satisfactorily.

磁気研磨のための軸バイトおよびその特性を示すグラフである。It is a graph which shows the axial bite for magnetic polishing, and its characteristic. 本発明の第1の実施の形態を示す斜視図(a)およびその平面図(b)である。It is the perspective view (a) which shows the 1st Embodiment of this invention, and its top view (b). 本発明の第2の実施の形態を示す平面図である。It is a top view which shows the 2nd Embodiment of this invention. 図3に示す軸バイトの並び列における特性(a)、および特性(a)の一部を拡大した特性(b),(c)である。These are the characteristics (a) and the characteristics (b) and (c) obtained by enlarging a part of the characteristics (a) in the array of axis bytes shown in FIG. 図3に示す軸バイトの並び列による研磨結果のグラフである。It is a graph of the grinding | polishing result by the row | line | column of the axis | shaft byte shown in FIG.

符号の説明Explanation of symbols

1 研磨対象(対象物)
2 軸バイト
20 永久磁石(磁界発生源)
3 磁気研磨液(磁気ペースト)
1 Polishing object (object)
2-axis tool 20 Permanent magnet (magnetic field source)
3 Magnetic polishing liquid (magnetic paste)

Claims (4)

フィルム状の対象物に対して軸バイトを非接触に対面させ、周辺に存在させた磁気ペーストを連動することにより微細な削り作用による表面処理を行うフィルム状の対象物の表面処理方法であって、
前記対象物には所定方向へ送る移動動作を行わせ、前記軸バイトは先端に磁界発生源を設けて複数を配列し、当該軸バイトの並び列は駆動手段の駆動により、それぞれ回転等の運動動作を行わせるとともに前記対象物の送り経路に対して交差方向に往復移動を行わせ、前記磁気ペーストは微細な削り作用を発揮する砥粒を混合しておき前記対象物と前記軸バイトとの間に存在させ、前記磁界発生源の磁界により前記磁気ペーストに時間的に定常的あるいは変動的な磁界を加えて非接触の微細な削り作用による表面処理を行うことを特徴とするフィルム状の対象物の表面処理方法。
A surface treatment method for a film-like object in which a surface treatment is performed by a fine shaving action by interlocking a magnetic paste that is present in the periphery with a shaft bite facing a film-like object in a non-contact manner. ,
The object is moved in a predetermined direction, and a plurality of the shaft tools are arranged by providing a magnetic field generating source at the tip. The magnetic paste is mixed with abrasive grains that exhibit a fine shaving action, and the object and the shaft bite are mixed. A film-like object characterized by being subjected to surface treatment by a non-contact fine shaving action by applying a temporally steady or fluctuating magnetic field to the magnetic paste by a magnetic field of the magnetic field generation source. Surface treatment method for objects.
前記軸バイトの並び列に、前記対象物の送り経路に対して斜め方向での交差となる往復移動を行わせることを特徴とする請求項1に記載のフィルム状の対象物の表面処理方法。   The surface treatment method for a film-like object according to claim 1, wherein a reciprocating movement is performed on the array of the axis cutting tools so as to intersect the feeding path of the object in an oblique direction. 前記軸バイトの並び列は少なくとも2行を配列し、列方向から見た前後2者が所定の重なりでズレ位置となる配列であることを特徴とする請求項1あるいは2の何れか1項に記載のフィルム状の対象物の表面処理方法。   The array of the axis bytes is an array in which at least two rows are arranged, and the two before and after viewed from the column direction are arranged to be shifted by a predetermined overlap. A method for surface treatment of the film-like object described. フィルム状の対象物に対して軸バイトを非接触に対面させ、周辺に存在させた磁気ペーストを連動することにより微細な削り作用による表面処理を行うフィルム状の対象物の表面処理装置であって、
前記軸バイトは先端に磁界発生源を設けて複数を配列し、
当該軸バイトの並び列は駆動手段の駆動により、それぞれ回転等の運動動作を行わせるとともに前記対象物の送り経路に対して交差方向に往復移動を行わせるように設定し、
前記磁気ペーストは微細な削り作用を発揮する砥粒を混合しておき前記対象物と前記軸バイトとの間に存在させ、前記磁界発生源の磁界により前記磁気ペーストに時間的に定常的あるいは変動的な磁界を加えて非接触の微細な削り作用による表面処理を行えるようにした
ことを特徴とするフィルム状の対象物の表面処理装置。
A surface treatment apparatus for a film-like object that performs a surface treatment by a fine shaving action by causing an axial tool tool to face a non-contact surface of a film-like object and interlocking with a magnetic paste present in the periphery. ,
A plurality of the axial tools are arranged by providing a magnetic field generating source at the tip,
The arrangement of the axis tools is set so that each of the movements such as rotation is performed by driving of the driving means and the reciprocating movement is performed in the crossing direction with respect to the feeding path of the object,
The magnetic paste is mixed with abrasive grains exhibiting a fine shaving action and is present between the object and the shaft bite, and the magnetic paste is constantly or fluctuating in time due to the magnetic field of the magnetic field generation source. A surface treatment apparatus for a film-like object characterized in that a surface treatment by a non-contact fine cutting action can be performed by applying a magnetic field.
JP2007137514A 2007-05-24 2007-05-24 Surface treatment method and apparatus for film-like object Withdrawn JP2008290180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137514A JP2008290180A (en) 2007-05-24 2007-05-24 Surface treatment method and apparatus for film-like object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137514A JP2008290180A (en) 2007-05-24 2007-05-24 Surface treatment method and apparatus for film-like object

Publications (1)

Publication Number Publication Date
JP2008290180A true JP2008290180A (en) 2008-12-04

Family

ID=40165440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137514A Withdrawn JP2008290180A (en) 2007-05-24 2007-05-24 Surface treatment method and apparatus for film-like object

Country Status (1)

Country Link
JP (1) JP2008290180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240657A (en) * 2010-05-20 2011-12-01 Sekisui Chem Co Ltd Surface treatment method of resin sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011240657A (en) * 2010-05-20 2011-12-01 Sekisui Chem Co Ltd Surface treatment method of resin sheet

Similar Documents

Publication Publication Date Title
JP6601909B2 (en) Magnetic polishing apparatus and magnetic polishing method
JP2009119537A (en) Substrate processing method and substrate processing device
JP4185987B2 (en) Magnetic-assisted fine polishing apparatus and magnetic-assisted fine polishing method
JP2009045679A (en) Polishing device
JP4252077B2 (en) Method for polishing inner circumference of disk-shaped substrate
JP2007167968A (en) Mirror finished surface polishing method and mirror finished surface polishing device
JP2008290180A (en) Surface treatment method and apparatus for film-like object
JP2007296598A (en) Magnetic polishing method and wafer polishing device
JP2007045878A (en) Magnetic abrasive grain
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP2008254106A (en) Paste material
JP5376647B2 (en) Concave spherical grinding apparatus and method
Patil et al. Magnetic abrasive finishing–A Review
JP7113456B2 (en) Grinding device and grinding method
JP2007313634A (en) Polishing tool and mirror surface polishing method using it
JP2008290179A (en) Columnar cutting tool for surface treatment of film-like object and surface treatment apparatus therewith
JPH07136925A (en) Grinding method and grinding device
JPS63221965A (en) Method and device for polishing pipe material
JP2008254140A (en) Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP2009166199A (en) Surface processing method using fine cutting action
JP4843780B2 (en) Electrical and magnetic combined machining method
JP2010131695A (en) Disk material polishing method, disk material polishing device, disk material, substrate for magnetic disk, and magnetic disk
KR101781348B1 (en) Apparatus and method for surface texturing of object, and grinding member used therefor
JP5411526B2 (en) Axle tool for surface treatment
KR20110136439A (en) A magnetic abrasive polishing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803