JP2008288018A - 蛍光管 - Google Patents

蛍光管 Download PDF

Info

Publication number
JP2008288018A
JP2008288018A JP2007131456A JP2007131456A JP2008288018A JP 2008288018 A JP2008288018 A JP 2008288018A JP 2007131456 A JP2007131456 A JP 2007131456A JP 2007131456 A JP2007131456 A JP 2007131456A JP 2008288018 A JP2008288018 A JP 2008288018A
Authority
JP
Japan
Prior art keywords
electrode
fluorescent tube
electron emission
tube
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007131456A
Other languages
English (en)
Inventor
Kazuhiro Miyamoto
和弘 宮本
Masayuki Kanechika
正之 金近
Koji Kikuchihara
功次 菊地原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2007131456A priority Critical patent/JP2008288018A/ja
Priority to US12/122,695 priority patent/US8072146B2/en
Publication of JP2008288018A publication Critical patent/JP2008288018A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 ガラス管内面の黒化を抑制でき、テレビ受像機等で要求される長寿命を有する冷陰極放電ランプおよび蛍光管を提供する。
【解決手段】 冷陰極蛍光管1の両端の電極部2をカップ形状の電子放出性電極4とし、その材料として導電性を備えた結晶性シリコン材料、を用いる。
導電性を備えた単結晶シリコン結晶を用いることが好ましい。単結晶シリコンを所定形状に加工して蛍光管の電子放出電極として使用する。蛍光管内には、例えばアルゴン、ネオンおよび水銀を所定量、所定圧力にて封入する。シリコン結晶単結晶を電子放出電極として用いた場合には、従来のニッケルやタングステンを電子放出電極材料として用いた場合に比べて、ガラス管の黒化現象が生じ難くなり、寿命を長くすることができる。
【選択図】図1

Description

本発明は、蛍光管に関し、特に冷陰極蛍光管に関するもので、好適にはテレビ受像器やパソコン等のLCD(液晶ディスプレイ)用バックライト等に用いられるものである。
パソコンやワープロ等のOA機器に用いられている液晶表示装置(LCD)には、該LCDを照明するための冷陰極蛍光管を光源とするバックライトが組み込まれている。この光源には発熱の少ない冷陰極蛍光管が多く用いられている。一般に蛍光管は冷陰極蛍光管および熱陰極蛍光管に大別される。
これらの蛍光管は、大別すると電極部とガラス管部とで構成されている。
例えば冷陰極蛍光管においては、一般に前記電極部はカップ電極、封着棒及びリード線から構成されている。カップ電極の材質は、従来はニッケルが用いられ、近年ではニオブ、モリブデン、タングステン等が使用されるようになってきている。封着棒は、ガラスシールされるため、熱膨張係挙動がガラスと近似しているコバール、タングステン、モリブデンが使用されている。また、外部リード線は、ジメット線やニッケル線が用いられている。そして、これらの各部は、通常抵抗溶接やレーザ溶接で接合され、電極部を構成している。また、ガラス管部は、内面に蛍光塗料を塗布され、外径2mm程度で、長さは100〜1000mm程度となっている。ガラス管は、ガラスビーズ巻きされた封入棒により封止されている。
また、スパッタの影響を抑制し、長寿命で高出力化を図った陰極管用電極も提案されている(例えば、特許文献1参照。)。
また、さらにガラス管の黒化を抑制し、長寿命で高出力化を図った陰極管用電極も提案されている(例えば、特許文献2参照。)。
特許第2792543号公報 特開2005−285587号公報
ところで近年、テレビ受像機に液晶表示装置が使用されるようになってきているが、このテレビ受像機は、従来使用されてきたパソコン等のOA機器に比べ、液晶表示装置に長寿命化や高輝度化が要求される。すなわち、液晶表示装置のバックライト、その光源である冷陰極管も長寿命化及び高輝度化が要求される。また、表示画面の大型化に伴い、冷陰極管も長寸化し、作動電圧も高電圧化している。
ここで、ランプ寿命を決定するのは、電極部近傍のガラス管内面の黒化である。これは、水銀イオン等によりカップ電極表面から電極物質がたたき出され、このたたき出された電極物質が電極近傍のガラス管内面に付着し、ガラス管内面を黒化させるもので、これにより冷陰極管の寿命が短縮される。
前記の黒化対策として、電極材料に従来のニッケルに代わって、水銀イオンに対する耐スパッタ性に優れたモリブデンやタングステンが使用されるようになってきている。しかしながら、これらの材料を使用しても、黒化対策は十分でなく、所望の寿命は得られなかった、という問題がある。
一方、モリブデンやタングステンの電極に、比較的少量のランタナ等の低仕事関数物質を添加する電極、酸化ランタン、酸化イットリウム、酸化セリウム、酸化ストロンチウム、酸化ハフニウム及び酸化バリウムからなる群のうちの1種または2種以上を4〜10wt%含有し、さらに、重量比で0.05〜0.5wt%のニッケル、鉄、コバルト及びパラジウムのうちの1種または2種以上を含有する電極も提唱されている。該電極では、モリブデンやタングステン電極に比べ黒化の抑制は改良されているが、冷陰極管の寿命の更なる長寿命化が求められており、依然十分ではない、という問題がある。
本発明は、このような背景に鑑みてなされたもので、ガラス管内面の黒化を抑制でき、より一層の長寿命の要求に対応可能な蛍光管を比較的簡易な構成にて提供することを目的とする。
また、本発明の他の目的は、長寿命で信頼性の高い蛍光管を提供することである。
より具体的には、6万時間の連続点灯の場合であっても初期輝度に対する輝度の低下50%以下を満足するような従来にない長寿命の冷陰極放電ランプを提供することを目的とする。
このため、前記課題は本発明の1観点によれば、両端が気密封止された中空円筒状のガラス管と、ガラス管端部の電子放出電極とを備えた蛍光管において、により、解決される。
この構成によれば、電子放出電極からのスパッタが抑止され蛍光管の黒化が改良された蛍光管を提供でき得る。また、中空空間側に凹形状部を有する表面形状としているので電子放出面積を大きくすることができ、比較的簡易な構成で長寿命の蛍光管を得ることができ得る。
好ましくは、前記電子放出電極が、窒化ガリウム系半導体、シリコン半導体のいずれかの材料からなる、ことを特徴とする蛍光管により、解決される。
この構成によれば、例えば導電性の単結晶炭化珪素を加工する等の比較的容易な製造工程にて電子放出電極を作成することができ、比較的簡易な構成で長寿命の蛍光管を得ることができ得る。
好ましくは、前記電子放出電極が、カップ形状である、ことを特徴とする蛍光管により、解決される。
この構成によれば、導電性を備えた結晶性の炭化珪素材料を、例えばエッチングする等の比較的容易な製造工程にて凹部を形成するものであるので、電子放出電極の製造コストを低減した蛍光管とすることができる。また、スパッタされ易い電子放出電極の中央部からたたき出された材料がカップ形状の立壁によりガラス管に向かうのが妨げられる。よって、ガラス管の黒化を抑止した蛍光管を得ることができ得る。
好ましくは、前記電子放出電極の端部側には導電性を備えた結晶性シリコン材料からなる封着部を備え、前記封着部が前記ガラス管端部を貫通している、ことを特徴とする蛍光管により、解決される。
この構成によれば、ガラス管の外部まで導電性を備えた結晶性シリコン材料にて導出しているので、例えばガラス管内にて金属材料から封着棒との異種材料接続を図る必要がなくなり、異種接続のための銀ろう等の接続物質がガラス管内等に混入する等の問題の発生を防ぐことができ、長寿命で信頼性の高い蛍光管を得ることができ得る。また、シリコン単結晶製の電子放出電極と一体とした場合には、異種材料である封着棒との接続といった慎重な作業が求められる煩雑な作業が不要となるため、安定した品質の製品を歩留まりよく製造でき得る。
好ましくは、両端が気密封止された中空円筒状のガラス管と、ガラス管端部の電子放出電極とを備えた冷陰極放電ランプにおいて、前記ガラス管内には、少なくともネオン(Ne),アルゴン(Ar)および水銀(Hg)が封入され、前記電子放出電極が導電性を備えた結晶性の炭化珪素材料である、ことを特徴とする冷陰極放電ランプにより、解決される。
この構成によれば、電子放出電極からのスパッタが抑止されガラス管の黒化が改良される。
本発明によれば、導電性を備えた結晶性の半導体材料を電子放出電極とすることにより、長寿命で黒化が抑止された、蛍光管が得られることが見出された。
以下、本発明の実施形態例を冷陰極蛍光管の例にて具体的に説明する。図1は本発明に係る蛍光管の構造を示す(一部)断面図である。図2は本発明に係る蛍光管に給電するためのソケットとの接続構造を拡大して示す側面図である。図3は本発明に係る蛍光管に用いる電子放出性電極の一例を説明する拡大斜視図である。図4および図5は異なる電極形状とした実施形態例を説明する一部断面図である。
この冷陰極蛍光管1は、管形のガラスバルブ2の両端には電極部3が設けられ、この電極部3は、中空空間部7側の表面形状を凹形状部4aとして設けたカップ形状の電子放出電極部4と、ガラスバルブ2の端部を貫通する封入棒部5を備える。ガラスバルブ2の端部の貫通孔は、電極封止部6を介してガラスバルブ2に封入棒部5が封止されている。また、ガラスバルブ2の内面には、蛍光体膜8が設けられ、気密封止されたガラスバルブ2の内部には封入ガス9が充填されている。
蛍光管1は、大別すると電極部とガラス管部とで構成されている点は従来の蛍光管と変わりはないが、本願発明においては、電子放出電極に導電性を備えた結晶性の半導体材料を用いている点で相違する。
前記ガラスバルブ2は、例えば外径が約3.4mm、内径が2.4mm、長さが約300mmの直管形となっている。線膨張係数が5.1ppmのコバールガラス(日本電気硝子株式会社製:コード番号BFK)や線膨張係数が3.8ppmのタングステンガラス(日本電気硝子株式会社製:コード番号BFW)からなり、中空の円筒状に形成される。
中空としたガラスバルブ内部に充填される封入ガス9としては、例えば、Ar(アルゴン)とネオン(Neとを)5:95の比とした混合ガスと十分なHg(水銀)蒸気用い、全圧を常温において60Torrとした。ガラスバルブ内面の蛍光体膜8は、ガラスバルブ2の両端に設けた電極部3間で生じる放電により励起され、可視光等を放射する蛍光体、例えば、Y:Eu、BAM等からなる蛍光体粒子とバインダーを混合したスラリーを塗布乾燥した蛍光体塗膜とする。
電極部3の電子放出性電極部4は、導電性を備えた結晶性の半導体材料からなる。また、蛍光管1の中空空間部7側となる電極表面形状を凹形状部4aとしている。凹形状としては図1に示した断面略U字状のカップ形状に限らず、図3に示したストライプ状の凹溝41aを備えた電子放出性電極部41や、図示しない格子状の凹溝を形成した形状および中央部が凹んだ凹曲面等の形状が含まれる。特に好ましくは、円筒状の立壁を備えた電子放出性電極部の周縁に備えたもの、例えばカップ形状であろう。この場合には、電子放出電極のガラス管近傍の周縁部に比べてスパッタされ易い電子放出電極の中央部からたたき出された材料が、ガラス管壁側の立壁によりガラス管に向かうのが妨げられることになり、ガラス管の黒化を抑止した蛍光管を得ることができ得る。
逆に円錐形状などとして中空空間部側の中央部を凸形状として表面積を増加した場合には、他形状に比べて早い段階から黒化する。これは、電界の集中によりスパッタされたものと思われる。よって中央部形状は凹形状が好適と考えられる。
導電性を備えた結晶性の半導体材料としては、GaN(窒化ガリウム)、GaInN(窒化ガリウムインジウム)などの窒化ガリウム系半導体およびSi(シリコン)いずれかの半導体材料を用いる。より好適には(シリコン)半導体単結晶を用いる。シリコン結晶は大型の単結晶を得易く、安定した品質の電極を他の半導体材料に比較して安価に提供できるからである。
ガラスバルブの両端部においては、前記電極部3がガラスバルブ2の端部を貫通している。ガラスバルブ端部の貫通孔には、電極封止部6を介してガラスバルブ2に封入棒部5が封止されており、電極封止部6は、ガラスバルブ2と前記封入棒部5とを気密に封止する。電極封止部6は接着剤を用いて前記両者を接合する。接着剤の材料としては、ガラスとセラミックスの接合用接着剤が好適である。最も好適にはフリットガラスを用いる。ガラスバルブ2と封入棒部5とでは熱膨張係数が異なるが、電極封止部6にてひずみを抑止する。また、活性金属銀ろうを用いることもできる。
封入棒部5として電子放出性電極部4と同一材料からなるシリコン結晶を一体にして形成する場合には、図1に示すように、貫通孔内側にのみ電極封止部6を設けて封止する。封入棒部5としてコバールもしくはモリブテン(Mo)等の既知の金属を用いる場合には、図4に示すように予めガラス被覆層からなる溶着部を備えたコバールガラスを用いて封着する。なお、符号42は平板状の電子放出性電極部42で、その中空空間部側表面には凹部が形成されている。また、封入棒部5は図示しない外部接続するリード電極線としてジメット線と蛍光管外部で接続され給電する。
また、封入棒部5として電子放出性電極部4と同一材料からなるシリコン結晶を一体にして形成することが好ましい。一体化するには、単結晶シリコンの結晶ロッドから所定形状に削りだす等の既知の方法で実現できる。一体とすることで、シリコン結晶と封入棒部との接続が不要となる。これにより冷陰極蛍光管1内にて電子放出性電極部4と封入棒部5との接続部を設ける必要がなくなる。
すなわち、一体化せずに封入棒部5をシリコン結晶と異なる材料にて形成した場合には、異種材料の接合のためにフリットガラス、活性銀ろう等の接着材料を使用する。
例えば、シリコン結晶とコバールを接続する際に、活性銀ろうを使用して図4に示す形状にて電気的および機械的に接続した。活性銀ろうにて接続する場合には、シリコン結晶の所定箇所に活性銀ろうを付着させ、その箇所にコバールを接続した状態で700℃の高温(不活性ガス雰囲気下)にて、熱処理を施して活性銀ろうを溶かして接続する。そのため、接続のための作業工程が必要で、また、処理に時間を要することになり加工コストが上昇する問題がある。また、接続作業中に活性銀ろうの残渣が蛍光管内に残り、残渣からガスが発生して蛍光管内に不要なガスを発生させて不点灯となることもあった。更に小さなシリコン結晶に対して一定の角度、位置で接続する作業には熟練を必要とし、安定して同じ接続結果を得るのは難しかった。
しかしながら、一体化した場合には、かかる問題が生じ得ないので、製造工程の簡素化とかかる不具合の発生をなくした信頼性の向上を図ることができ得るからである。
また、封入棒部5として電子放出性電極部4と同一材料からなるシリコン結晶を一体にして形成した場合には、図2に示すように、内部にバネ性を有する金属片55aを備えたソケット55を冷陰極蛍光管1の外部に突出している封入棒部5に勘合することで外部電源からの給電を行うことができ、接続の簡素化も可能となり得る。
ここで、半導体材料を電子放出性電極部に用いた場合の優位性確認結果を説明する。
<実施例1>
冷陰極蛍光管は、ガラスバルブ2として外径が約3.4mm、内径が2.4mm、長さが約300mmの直管形のものを使用し、封入ガス9として、希ガスと十分なHg(水銀)蒸気を用い、全圧を常温において60Torrとした。またガラスバルブ内面には蛍光塗料を塗布形成した。
電極部3は、図4に示した構造とした。すなわち、電子放出性電極部としてn型単結晶シリコンウエハーから2mm角の大きさに切断した平板状電極42を用いた。電子放出性電極部42には封入棒部5が接続され、封入棒部5はガラスバルブ2を貫通し封止されている。封入棒部5としては円柱状のコバールを用いた。平板状電極42の中央部には、封入棒部5を固定するための開口を設けた。封入棒部5はガラスバルブ2を貫通し封止されている。封入棒部5と電子放出性電極部42は前記開口部にディスペンサにて活性銀ろうからなる接着材を滴下し、その後封入棒部を前記開口部に挿入し、その状態のまま窒素ガスの不活性環境下で約700度の高温で加熱して接続している。
なお、平板状の電子放出性電極部42の中空空間側表面には凹部42aとして凹溝を形成したものを用いた。
<実施例2>
冷陰極蛍光管は、前記実施例1と同一の大きさ、同一の材料を用いて同一構成とした。
電極部3は、実施例1のn型単結晶シリコンウエハーの代わりに、n型GaN(窒化ガリウム)単結晶ウエハーを用いて平板状電極とした点以外は、全て実施例1と同一条件とした。
<比較例1>
冷陰極蛍光管は、前記実施例1と同一の大きさ、同一の材料を用いて同一構成とした。
電極部3は、実施例1に比較して平板状電極42の変わりに図5に示すようなカップ形状の電極を用いた。カップ形状電極43は肉厚0.2mmのニッケル(Ni)金属を加工して外径2.1mm、長さ5mmの凹部を備えたカップ形状としたものを用いた。カップ形状電極43と封入棒部5との接続は銀ろうを用いて溶着した。
<比較例2>
冷陰極蛍光管は、前記比較例1に比べてと同一の大きさ、同一の材料を用いて同一構成とした。
電極部3は、実施例1に比較して平板状電極42の変わりに図5に示すようなカップ形状の電極43を用いた。カップ形状電極43は肉厚0.2mmのニッケル(Ni)金属を加工して外径2.1mm、長さ5mmの凹部を備えたカップ形状としたものを用いた。カップ形状電極43と封入棒部5との接続は実施例1と同様に銀ろうを用いて溶着した。
また、前記実施例1〜実施例3、比較例1および比較例2で用いた半導体結晶,NiおよびMoについて耐スパッタ性の評価をする。図6はArイオンに対するスパッタ率を示し、図7はNeイオンに対するスパッタ率を、図8はHeイオンに対するスパッタ率を示す。
スパッタ率は図6〜図8の各々の図面において、上からNi,Mo,GaN(窒化ガリウム)、シリコン結晶の順である。すなわち、半導体結晶、特にシリコン結晶は、スパッタ率がいずれのイオンに対するスパッタ率も低く、スパッタされ難い。特に冷陰極蛍光管の主要な封入ガス成分であるNeイオンにおいても、一般的に使用されているNiのおおよそ2分の1、Moのおおよそ3分の2のスパッタ率であり、冷陰極蛍光管の黒化の一因である電子放出性電極のスパッタを大幅に低減できている。
図9は、前記した実施例1、実施例2、比較例1および比較例2の冷陰極蛍光管の加速寿命試験の結果を示す。”×”は加速試験において電子放出性電極に穴が発生したもの。”○”は同試験において電子放出性電極に穴が発生していないものを示し、”−”は不点灯のものを示す。なお、各ランプは同一の所定の定電流駆動にて評価を行った。
比較例1(Ni電極)の場合には500時間で穴があき、1000時間以上では不点灯となった。比較例2(Mo電極)の場合には2000時間で穴があき、目視による点灯状態評価において黒化現象が顕著に観察された。実施例1(シリコン結晶電極)の場合には2000〜5000時間の時点でも良好な点灯状態を保っており、電子放出性電極に穴はまったく観察されなかった。また、目視による点灯状態評価においても目立った黒化現象が観察されず、寿命試験初期の点灯状態と変わりなく点灯していた。実施例2(窒化ガリウム電極)の場合には2000時間の時点でも良好な点灯状態を保っており、5000時間以上では不点灯となった。
なお、加速寿命試験は、封入ガス9として、Ar(アルゴン)とネオン(Neとを)5:95の比とした混合ガスと十分なHg(水銀)蒸気を用い、全圧を常温において60Torrとした通常の蛍光ランプに対して少なくとも20倍以上で、凡そ30倍程度の加速係数となる条件に相当する。よって、本加速寿命試験において2000時間以上の寿命を示せば、通常ランプの6万時間の寿命に相当する。
以上の実験結果より、導電性を備えた結晶性のシリコンを用いた場合には、ガラス管内面の黒化を抑制できることがわかった。また、加速寿命試験と通常の寿命との対応関係から、実施例1の冷陰極蛍光管では、6万時間の連続点灯の場合であっても初期輝度に対する輝度の低下50%以下を満足するような従来にない長寿命の冷陰極放電ランプが得られた。
また、電極部3として、同じn型単結晶シリコン結晶ウエハーを用いて、その形状の異なる電極とした場合についても検討を行った。
<実施例3>
実施例1の電子放出性電極部として、凹溝を形成しない平板のウエハーのシリコン結晶とした以外は全て実施例1と同一の条件にて冷陰極蛍光管を作成した。
<実施例4>
実施例1の電子放出性電極部として、ドライエッチングにて中央部に凹部43aを形成し、周縁部に立壁を設けた断面U字状の電子放出性電極部43とした以外は全て実施例1と同一の条件にて図5に示す冷陰極蛍光管を作成した。
<実施例5>
実施例1の電子放出性電極部として直線状の棒状に切り出して、電子放出性電極部4および封入棒部5を同一のシリコン結晶とした以外は全て実施例1と同一の条件にて冷陰極蛍光管を作成した。
実施例3および実施例4のいずれの冷陰極蛍光管も、実施例1の冷陰極蛍光管と同様に2000時間までの加速寿命試験結果では、寿命上の優位差が見受けられなかった。また、黒化現象については、目視観察において、比較例に比べて優れていたが、2000時間において、実施例3のものは実施例1および実施例4に比べてガラス管が黒化していた。実施例5の場合は、電子放出性電極部の封止作業性は他の実施例および比較例に比べて優れていた。しかし、実施例1、実施例3に比べてガラス管が黒化していた。これは、実施例5の場合には形状が殆ど針状とみなされる程度のものであったため、電界が集中してスパッタされたものと考えられる。また、外部電源との接続に注意をしないと電極が折れ易く、取り扱いのしにくいものであった。
以上、シリコン結晶および窒化ガリウム結晶を用いた冷陰極蛍光管の実施例に沿って説明したが、蛍光管は冷陰極蛍光管に限らず、熱陰極蛍光管においても同様の効果が期待でき、適用可能であろう。また、窒化ガリウム(GaN)結晶のみならず窒化ガリウムインジウム(GaInN)等の公知の混晶化合物半導体も同様の効果が期待できる。本発明はこれらに限定されるものではなく、種々の変更、置換、組み合わせなどが可能なことは当業者に自明であろう。
導電性を備えた結晶性の炭化珪素材料を電子放出性電極に用いて長寿命の蛍光管とすることによって、冷陰極蛍光管を用いたバックライト等の蛍光管の交換作業が煩雑な照明装置などのにも適用できる。
本発明に係る冷陰極蛍光管の構造を示す断面図 本発明に係る冷陰極蛍光管の構造のソケットとの取り付け構造を示す側面説明図 本発明に係る冷陰極蛍光管の電子放出性電極の他の実施形態を示す拡大斜視図 本発明に係る冷陰極蛍光管の電極構造の他の実施形態を示す断面図 本発明に係る冷陰極蛍光管の電極構造のさらに他の実施形態を示す断面図 各電極材料のArイオンエネルギーを用いた場合のスパッタ率を示す説明図 各電極材料のNeイオンエネルギーを用いた場合のスパッタ率を示す説明図 各電極材料のHgイオンエネルギーを用いた場合のスパッタ率を示す説明図 実施例および比較例の検討結果を示す一覧表
符号の説明
1 冷陰極蛍光管
2 ガラスバルブ
3 電極部
4 電子放出性電極
5 封入棒部
6 電極封止部
7 中空空間部
8 蛍光体膜
9 封入ガス
4a 凹部
41、 42 電子放出性電極
41a 凹溝
55 ソケット

Claims (5)

  1. 両端が気密封止された中空円筒状のガラス管と、ガラス管端部の電子放出電極とを備えた蛍光管において、
    前記電子放出電極が、導電性を備えた結晶性の半導体材料であり、かつ、前記ガラス管の中空空間側に凹形状部を有する表面形状とされている、ことを特徴とする蛍光管。
  2. 前記電子放出電極が、窒化ガリウム系半導体、シリコン半導体のいずれかの材料からなる、ことを特徴とする請求項1に記載の蛍光管。
  3. 前記電子放出電極が、カップ形状である、ことを特徴とする請求項1または請求項2に記載の蛍光管。
  4. 前記電子放出電極の端部側には導電性を備えた結晶性シリコン材料からなる封着部を備え、前記封着部が前記ガラス管端部を貫通している、ことを特徴とする請求項1から請求項3の何れかに記載の蛍光管。
  5. 両端が気密封止された中空円筒状のガラス管と、ガラス管端部の電子放出電極とを備えた冷陰極放電ランプにおいて、
    前記ガラス管内には、少なくともネオン(Ne),アルゴン(Ar)および水銀(Hg)が封入され、
    前記電子放出電極が導電性を備えた結晶性の半導体材料である、ことを特徴とする冷陰極放電ランプ。
JP2007131456A 2007-03-01 2007-05-17 蛍光管 Pending JP2008288018A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007131456A JP2008288018A (ja) 2007-05-17 2007-05-17 蛍光管
US12/122,695 US8072146B2 (en) 2007-03-01 2008-05-17 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131456A JP2008288018A (ja) 2007-05-17 2007-05-17 蛍光管

Publications (1)

Publication Number Publication Date
JP2008288018A true JP2008288018A (ja) 2008-11-27

Family

ID=40147549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131456A Pending JP2008288018A (ja) 2007-03-01 2007-05-17 蛍光管

Country Status (1)

Country Link
JP (1) JP2008288018A (ja)

Similar Documents

Publication Publication Date Title
JP3833489B2 (ja) 冷陰極放電装置
JP2003086135A (ja) 放電ランプ
US7919914B2 (en) Discharge lamp and electrode for use in the same
JP2005183172A (ja) 放電ランプ
JP2006269301A (ja) 放電灯及び照明装置
JP2008218071A (ja) 蛍光管
JP4546524B2 (ja) 電極、電極の製造方法及び冷陰極蛍光ランプ
JP2008288018A (ja) 蛍光管
KR100787626B1 (ko) 냉음극 형광 램프용 전극 및 이를 포함하는 냉음극 형광램프
US8072146B2 (en) Fluorescent lamp
JP4199022B2 (ja) 冷陰極蛍光ランプ
JP2000133201A (ja) 冷陰極蛍光ランプの電極
KR100582236B1 (ko) 냉음극 형광 램프
JPH1021873A (ja) 放電ランプ用電極、放電ランプ用電極の製造方法、放電ランプおよびバックライト装置ならびに照明装置
JP2002313277A (ja) 冷陰極蛍光ランプ
JPH07240173A (ja) 放電ランプおよびランプ装置
JP2939421B2 (ja) 冷陰極型小型蛍光管
JP2005251585A (ja) 冷陰極蛍光ランプ
JPH08264159A (ja) セラミック放電灯およびこの点灯装置ならびにこれを用いた照明装置
JP2004253141A (ja) 冷陰極蛍光ランプ、及びその製造方法
JP2011138639A (ja) 冷陰極放電ランプおよびバックライト装置
JP2010123267A (ja) 冷陰極放電ランプ及び発光装置
JP2010080336A (ja) 蛍光ランプ
JP2002093362A (ja) 小形熱陰極蛍光ランプ
JP2011100700A (ja) 冷陰極放電ランプ装置及び発光装置