JP2008276168A - 評価パターンを配置した液晶表示装置およびその製造方法 - Google Patents

評価パターンを配置した液晶表示装置およびその製造方法 Download PDF

Info

Publication number
JP2008276168A
JP2008276168A JP2007271261A JP2007271261A JP2008276168A JP 2008276168 A JP2008276168 A JP 2008276168A JP 2007271261 A JP2007271261 A JP 2007271261A JP 2007271261 A JP2007271261 A JP 2007271261A JP 2008276168 A JP2008276168 A JP 2008276168A
Authority
JP
Japan
Prior art keywords
exposure
head
evaluation
pattern
teg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007271261A
Other languages
English (en)
Other versions
JP5260021B2 (ja
Inventor
Seiji Ishikawa
誠二 石川
Hiroyasu Matsuura
宏育 松浦
Yuichi Hamamura
有一 濱村
Tadamichi Wachi
忠道 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Displays Ltd filed Critical Hitachi Displays Ltd
Priority to JP2007271261A priority Critical patent/JP5260021B2/ja
Priority to US12/055,501 priority patent/US20080241486A1/en
Publication of JP2008276168A publication Critical patent/JP2008276168A/ja
Application granted granted Critical
Publication of JP5260021B2 publication Critical patent/JP5260021B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】マルチヘッドを有する直描露光機は、ヘッド間の描画境界において重複露光を行うことが一般的である。この際、ヘッドの位置調整にずれ等が発生すると重複して露光する領域のパターン形状に不具合が生じる。
【解決手段】マルチヘッドを有する直描露光機が基板を露光する際の露光ヘッド間の重複露光領域や折り返し露光領域に線幅や抵抗を評価するTEGを配置し、それらの測定値の変動を捕らえることで、複露光ヘッドの位置調整ずれを検出する。
【選択図】 図23

Description

本発明は、複数の露光ヘッドを有する直描露光機の安定的な描画性能を維持する技術に関する。
本発明の主な実施対象の一つである液晶ディスプレイパネルは、TFT(Thin Film Transister)基板とCF(Color Filter)基板を貼り合わせて製造する。TFT基板とCF基板は一般に別の工程を経て製造される。TFT基板はガラス基板の上にスイッチング素子となるトランジスタと電荷をため電場を発生させる容量、それらを結びつける配線などからなっている。容量部分は光を遮断したり、透過させたりする画素の役割をはたす。トランジスタや配線は光を通しにくいため、画素の周辺に配置されることが多い。CF基板では、TFT基板の画素に対応するところには、赤、青、緑の色レジスト部が対応する。また、TFTのトランジスタや配線に対応するところは、BM(Black Matrix)と呼ばれる遮光部が対応する。TFTとCFを貼り合わせる際、配線層に形成したパターンなどの光を通しにくい層のパターンとBMのパターンを合わせこんで貼り合わせる。配線層パターンもBMバターンも光を通しにくいので、それらを重ね合わせてしまうことで視認性を良くするなどの理由からである。配線層はALなどで形成される。
これらのパターン形成はいわゆるホトリソグラフィという手法を使って形成される。従来は、予め所望のパターンを形成したホトマスクを用い、レジストを塗布した基板にホトマスクを介して露光した後、現像、エッチングなどの工程を経てパターンを形成する。
一方で、液晶ディスプレイパネルは顧客仕様の細分化が進んでいる。ホトマスクは顧客の仕様ごとに作成する必要がある。従って、顧客仕様の細分化が進み生産の多品種少量化が進むと、マスクコストの負担が大きくなる。また、マスクを手配する事務作業量等も増大する。そこで、マスクを用いず設計パターンを直接露光する直描露光機が考案されている。直描露光機を実現する方法として、空間光学変調素子(以下SLMと呼ぶ。Spacial Light Modulatorの略)と付随する光学系を用いて光源から発せられたレーザ光で所望のパターンを照射する。この際、基板全体を一度の露光で覆うことができるSLMは実用化されていないので、基板を搭載するステージを移動させながら露光することになる。ステージはX、Yの2次元で移動することができる。一般に、主走査方向に移動しながら露光し、移動が終わると副走査方向にずれる。副走査方向の移動の際は露光を行わない。そして再度、主走査方向に移動して露光を行う。さらに、SLMと付随する光学系を露光ヘッドとしてモジュール化し、複数の当該露光ヘッドを副走査方向に並べ、露光を並列処理化することによって、基板の露光に要する時間を短縮する方法が考案されている(特許文献1及び特許文献2、特許文献3)。
この複数の露光ヘッドを用いた露光方法では、露光ヘッドの位置決め誤差の影響などにより、露光ヘッドの露光領域間に隙間が生じないように、各露光ヘッドの露光領域を重複させる。しかし、この部分は2回露光されることとなり、重複しない部分に比して一回当りの露光量を軽減させる必要がある。また、各露光ヘッドの位置調整の影響も受けやすい。こうした調整が好適に行われないと、当該重複部分のパターンに関し、所望の形状が得られない。したがって、前述の調整が好適に行われているか、また経時変化を伴って不具合が生じていないか、検証する必要がある。この露光ヘッドの位置調整の具合を見る考案として、第1の露光ヘッドの画素をONさせ、ビーム位置検出手段を用いて、受光面上の露光ビームの位置を検出し、続いて第2の露光ヘッドの繋ぎ目付近の画素をONさせ、当該画素による露光ビームの位置を前記ビーム位置検出手段によって検出することで、第1の露光ヘッドの画素と第2の露光ヘッドの画素の位置を特定することで、複数の露光ヘッドの位置調整を行う方法が記載されている(特許文献4)。本技術は露光機の調整時に適用される技術であって、たとえば生産を行っている途中に、基板に描画された重複露光部分のパターンの形状自体を評価するものではない。
特開2003−345030 特開2007−3934 特開2004−056080 特開2005−1153
単に描画したパターンの良否であれば、従来から製品を製造する基板にはTEG(Test Element Group)と称する多数の評価素子が埋め込まれており、それを活用すればよい。しかし、パターン形成の成否は、露光ヘッドの調整不足といった問題のみに起因するわけではなく、成膜プロセスやエッチングプロセス上の不具合などに起因することもある。従ってTEGを用いて評価するにしても、TEGで検出された不具合が、露光ヘッドの調整に起因する問題なのか、そのほかのプロセスに起因する問題なのか、容易に分かるような描画パターン評価方法が必要であった。
また、異なるヘッド間の位置関係のずれによる不具合に加えて、同一ヘッドにおいても、ステージの往復動作と描画のタイミングがずれることにより、描画結果に不具合が生じることがある。こうした描画結果の不具合を検出する手段が必要になる。
本発明は前述の課題を解決するために、複数の露光ヘッドを用いた露光方法における、露光ヘッド間の露光境界部(以下単にヘッド描画境界と呼ぶ)の検証手段を与えるものである。
まず、ヘッド描画境界上に評価用TEGを配する。ヘッド描画境界の間隔は、露光ヘッドの間隔と一致する。また、基板の端に現れるヘッド描画境界位置は、描画開始位置と基板端のオフセットとして知ることが出来る。これにより、予めヘッド描画境界に相当する基板上の領域を知ることができる。またTEGはヘッド描画境界の幅より大きくすることで、同一TEGにおいて、ヘッド描画境界部の露光結果と単独の露光ヘッドによる描画部分の差を確認することが出来る。
ヘッド描画境界は、主走査方向に一致して伸びているので、幾つかの種類のTEGを配する場合は、主走査方向にTEGを展開すればよい。
副走査方向には、ヘッド間隔と一致して、ヘッド描画境界が出現するので、各ヘッド描画境界に、同様のTEGを配置する。
当該評価用TEGは、形状自体を評価する主パターンに加え、主パターンに近接した場所にヘッド描画境界の位置を示す補助パターンを配することで、観察の容易化を図ることが出来る。
また、こうしたパターンはヘッド描画境界だけでなく、同一ヘッドのステージ往復動作に伴う描画境界部(以下単に折り返し境界と呼ぶ)にも、同様に配することによって、折り返し境界における描画不具合を評価することができる。
ヘッド描画境界上に評価TEGを置くことによって、ヘッド描画境界で発生する不具合を検知することが出来る。この不具合が、1本のヘッド描画境界全体で発生しているのならば、原因は当該ヘッド描画境界を描画した露光ヘッドの位置調整等、露光ヘッドにあると考えることが出来る。基板のある領域においてヘッド描画境界上にある同種のTEG全てで不具合が発生しているのでなければ、当該領域の成膜やエッチングなどの処理の面内不均一に起因していると判断することが出来る。また、評価TEGをヘッド描画境界の幅よりも大きくすることによって、ヘッド描画領域からはみ出した部分のパターンとヘッド描画領域内の部分のパターンを比することによって、描画境界内の不具合を容易に見つけることが出来る。
このように、本願で考案された如く、評価TEGを配することによって、ヘッド描画境界上で発生する不具合の検知を容易にするばかりではなく、それが真に露光ヘッドに起因するものなのか、成膜やエッチングなど他のプロセスに起因するものなのか判定することが出来るようになる。
また折り返し境界における描画の不具合も容易に見つけ出すことも出来る。
本願発明を図面を用いて説明する。
図1に本願発明における評価TEGの配置方法を示す。
基板100の向きはオリフラ107によって規定される。当該基板100上にパネル101を配置する。基板上に配置されるパネルの数は、任意であって、図1では考え方を示す模式的な例を示しているに過ぎず、パネルの数などを限定するものではない。このパネルは露光機の露光ヘッド102a、102b、102c、102dによって露光される。露光ヘッド数に関しても、図1では4ヘッドで露光する場合を説明するが、ヘッド数を4に限定するわけではない。これらの露光ヘッドは一定間隔111で並んでいる。各露光ヘッドは主走査方向109にステージが移動する間ヘッド幅(HW)108の幅でもって一回の露光を行う。一回の走査が終わると副走査方向にステージが移動する。結果、ヘッドの位置は、ステージに対して相対的に副走査方向110に移動することになる。この繰り返し動作によって基板100の全面が露光される。ヘッド102aとヘッド102bの境界104、ヘッド102bとヘッド102cの境界105、ヘッド102cとヘッド102dの境界106上に評価用TEGを置く。TEGは製品と製品の間(スクライブライン)に置く実施形態が考えられる。
例えばヘッド描画境界104上には、スクライブラインの位置103a、103b、103c、103dの位置に評価用TEGを置く。他のヘッド描画境界105、106も同様である。
なお、実際の装置では、ヘッドの位置は固定されており、ステージが移動するが、下記走査方法の説明では、理解容易のため、ステージ位置を基準として、ヘッドの相対的な位置の移動により説明する。
ステージ移動によるヘッドの走査方法を図2aにより説明する。各ヘッドはP1の位置から走査201によってP2まで移動距離205だけ移動する。走査201は主走査方向と一致する。走査201の間露光ヘッド102a、露光ヘッド102b、露光ヘッド102c、露光ヘッド102dは露光を行う。続いてステージはP2から走査202によってP3まで移動距離206だけ移動する。走査202は副走査方向と一致する。走査202の間、露光ヘッド102a、露光ヘッド102b、露光ヘッド102c、露光ヘッド102dは露光を行わない。引き続いて、各ヘッドはP3から走査203によってP4まで移動距離205だけ移動する。走査203は走査201と反対方向である。走査203の間、露光ヘッド102a、露光ヘッド102b、露光ヘッド102c、露光ヘッド102dは露光を行う。こうした移動を繰り返し、各ヘッドはPn−1から走査204によってPnまで移動距離205だけ移動する。このように各ヘッドは主走査方向の往復移動と、副走査方向の移動の組み合わせで移動する。
次に一つの露光ヘッドが前述のステージ移動によって描画する領域について図2bを用いて説明する。露光ヘッド102aを例にとる。露光ヘッド102aは図1で示したように露光ヘッド幅108を有している。もし、露光ヘッド幅108と移動距離206を等しくすると、機械的な位置合わせ誤差などにより、描画できない領域が発生する可能性がある。そこで図2aで示した副走査方向への移動距離206は図1で示した露光ヘッド幅108より小さくするのが一般的である。移動距離206を露光ヘッド幅108より小さくすることによって、露光ヘッドが走査201、走査203などの走査に伴い露光する領域に折り返し重複領域208が発生する。折り返し重複領域208は、露光ヘッドが折り返し移動するたびに発生し、その重複幅207は一定である。ここが、先に述べた折り返し境界である。
次に、隣接する露光ヘッドが前述のステージ移動によって描画する領域について図2cを用いて説明する。露光ヘッド102aと露光ヘッド102bを例にとる。
Pn−1から走査204によってPnに露光ヘッド102aが移動する際、露光ヘッド102aは露光ヘッド幅108の領域を露光する。ライン211は露光ヘッド102aの描画終了線である。一方でP1からP2までの走査201によって露光ヘッド102bも露光幅108の領域を露光する。ライン212は露光ヘッド102bの露光開始線である。この露光終了線211と露光開始線212に挟まれた領域(斜線部)210が、2つの露光ヘッドで重複して露光される領域であって、ヘッド描画境界となる。当該領域210は幅209を有する。
4つの露光ヘッドは、それらの相対的な位置関係を所望の精度で調整しなければならない。露光ヘッドの高さ方向へのずれの例を図3aに示す。露光ヘッド102bが他の露光ヘッドに比べて高さ方向にずれ量△h301だけずれていると露光面におけるフォーカスがずれる可能性がある。たとえば図3bに示すように、露光ヘッド102aの描画領域302と露光ヘッド102bの描画領域303にまたがるライン状パターン304を描画する際には、重複領域305部分でライン状パターンに線幅の変化や段差などが見られないことが望ましい。しかし、例えば図3aに示したごとく、露光ヘッド102dが高さ方向にずれていると、フォーカスずれなどを起こし、図3cに示すごとく、重複領域305部分で、線幅の変化306などが見られる可能性がある。このような、描画ヘッドの位置ずれを早期に、かつ程度が軽微なうちに検出することが望ましい。
4つの露光ヘッドは副走査方向に等間隔に配置されることが望ましいが、露光ヘッド間の間隔が不均一になった場合の例を図4aに示す。ここで、間隔401abと間隔401cdは正常な値で等しいが、間隔402bcが前述の間隔より大きいとする。つまり露光ヘッド102cが正常な位置より、図面下側にずれているとする。この場合、図4bに示すような、ライン状パターン406を重複露光領域404に描画する場合を例にとる。重複露光領域404に描画されるパターン406は、露光ヘッド102cと露光ヘッド102dの2回の露光で所望の形状、例えば幅407が得られるように各ヘッド露光条件などが適正化されている。ここで、露光ヘッド102cが所定の位置から露光ヘッド102d側にずれていると、露光ヘッド102cが描画する像409と露光ヘッド102dが描画する像410がずれるので、生成されるパターンの線幅408は、所望の幅407と異なる可能性がある。
図4aで示すような描画ヘッド間隔のずれがある場合に、図4cに示す重複描画領域411、露光ヘッド102cによる描画領域412、露光ヘッド102dによる描画領域413にまたがった斜め線パターン414を描画する例を説明する。この場合、描画ヘッド間隔にずれがあれば図4eで示すように、重複描画領域に相当するところで、斜め線パターン415に段差416が発生する。図4cで示すような線幅の変化や図4eで示すような段差の発生を早期にかつ程度が軽微なうちに検出することが望ましい。
4つの露光ヘッドは主走査方向に対して直角な直線上に配置されることが望ましいが、露光ヘッドの並びが主走査方向からみて前後している例を図5aに示す。図5aでは露光ヘッド102aが、そのほかのヘッドに比べて主走査方向に△x501だけずれている。例えば図5bに示すような露光ヘッド102cの露光領域501と露光ヘッド102dの露光領域502と露光ヘッド102cと露光ヘッド102dの重複描画領域503にまたがるライン状パターン504は、図5cに示すように重複露光領域付近でパターン505のように段差が発生する可能性がある。このような、描画ヘッドの位置ずれは早期に、かつ程度が軽微なうちに検出することが望ましい。
マルチヘッド露光装置を用いて生産を開始する際に、図3a、図4a、図5aで示したような露光ヘッドの位置調整は十分に調整を行っている。しかし、露光を繰り返していくうちに、機械的な振動や部品の劣化などによって、調整がずれてしまうことがありうる。従って、マルチヘッド露光機を用いた生産では、図3c、図4c、図5cに示したようなパターンの異常を早期に見つける方法と、異常を見つけた後の対応方法を確立する必要がある。
前述のパターンの異常を見つけるには、ヘッド間重複露光領域にTEGを配する。一般のTEGではプロセスの異常を見つけるために、基板面内に数箇所配置している。マルチヘッド露光機のヘッド描画境界部は、基板上の決まった領域に現れるため、マルチヘッドの位置決めなどの調整に関する前述の不具合を検出するには、基板上のヘッド露光境界部にTEGを配置せねばならない。
基板上に現れるヘッド露光境界部の位置を特定する方法を図6を用いて説明する。図1に示した基板100における、露光ヘッド102aと露光ヘッド102bのヘッド露光境界の場所を例にとって説明する。基板100の主走査方向と平行な基板端601に対して露光ヘッド102aの露光開始端602は一定のオフセット値(OF)603を有している。露光ヘッド102aは露光開始端602から露光終了端606までの領域を露光する。露光ヘッド102aとヘッド間隔(HD)604で配置されている露光ヘッド102bは露光開始端605から露光を開始する。従って露光ヘッド102aの露光終了端606と露光ヘッド102bの露光開始端605に挟まれた領域(斜線部)が重複露光領域607であって、ヘッド描画境界になる部分である。露光ヘッド102bの露光開始端605の外側(図の上側)は露光ヘッド102aの単独露光領域619である。露光ヘッド102aの露光終了端606と露光ヘッド102cの露光開始端613までに挟まれた領域波露光ヘッド102bの単独露光領域620である。他の重複露光領域、単独露光領域も同様である。
重複露光領域の幅(OW)608は、露光ヘッド幅111に比して小さく取り、露光ヘッド102b露光ヘッド102cの重複露光領域の幅610及び露光ヘッド102c露光ヘッド102dの重複露光領域の幅612と等しく設定する。
従って基板端601から、露光ヘッド102aと露光ヘッド102bの重複露光領域の中心部分までの距離(Lab)623は
Lab=HD−OF+OW/2 式1
となる。
露光ヘッド102bと露光ヘッド102cのヘッド間隔617、露光ヘッド102cと露光ヘッド102dのヘッド間隔618は露光ヘッド102aと露光ヘッド102bのヘッド間隔604と同じHDとなるよう設定する。
従って基板端601から、露光ヘッド102bと露光ヘッド102cの重複露光領域609の中心までの距離(Lbc)624は
Lbc=2HD−OF+OW/2 式2
となる。同様に基板端601から、露光ヘッド102cと露光ヘッド102dの重複露光領域611の中心までの距離(Lcd)625は
Lcd=3HD−OF+OW/2 式3
となる。このように重複露光領域すなわちヘッド露光境界の基板上の位置を求めることが出来る。
次に重複露光領域近辺に配置するTEGを説明する。
重複露光領域としては図6で示した露光ヘッド102aと露光ヘッド102bの重複露光領域607を例にとって説明する。そのほかの重複露光領域でも同様に考えればよい。
図7aは、露光ヘッド102bの露光開始線605、露光ヘッド102aの露光終了線606を横切るライン状パターン703を示している。露光ヘッド102bの露光開始線605および露光ヘッド102aの露光終了線606の近傍には、重複露光領域607を示す補助パターン701および補助パターン702を配置すると、金属顕微鏡の観察などに際して目印にすることが出来る。これにより、図3cや図5cで示したような不具合を検出することが出来る。図7aでは、単一のライン状パターンを配置した例を示したが、図7bでは単一のライン状パターン703の代わりに、並行したライン状パターンを配置したものである。これによっても、図3cや図5cで示したような不具合を検出することが出来る。
図8aは、露光ヘッド102bの露光開始線605および露光ヘッド102aの露光終了線606に並行で重複露光領域内に存在するライン状パターン803を示している。ライン上パターン803は主走査方向109に伸びている。露光ヘッド102bの露光開始線605および露光ヘッド102aの露光終了線606の近傍には、重複露光領域607を示す補助パターン801および補助パターン802を配置すると、金属顕微鏡の観察などに際して目印にすることが出来る。これにより、図4cで示したような不具合を検出することが出来る。
図8bは、図8aで示したライン状パターン803と同様な形状をしたライン状パターン804を露光ヘッド102bの露光開始線605の外側に、ライン状パターン803と同様な形状をしたライン状パターン805を露光ヘッド102aの露光終了線606の外側に置いた例である。
これによりライン状パターン803と、ライン状パターン804およびライン状パターン805とを比較することで、ライン状パターン803に現れる不具合を検知することが容易になる。図8bで、ライン状パターン803に対して線幅が太るなどの異常が現れた場合は、図4cで説明したように、この不具合の原因はヘッドの位置調整ずれにある。しかしライン状パターン804、ライン状パターン805でも線幅が太っていた場合は、レジストの膜厚むらであったり、成膜膜厚むらであったりすることが考えられる。
図9は、露光ヘッド102bの露光開始線605および露光ヘッド102aの露光終了線606を横切る斜めライン状パターン903を示したものである。露光ヘッド102bの露光開始線605および露光ヘッド102aの露光終了線606の近傍には、重複露光領域607を示す補助パターン901および補助パターン902を配置すると、金属顕微鏡の観察などに際して目印にすることが出来る。これにより、図3c、図4e、図5cで示したような不具合を検出することが出来る。図9aでは、単一の斜めライン状パターンを配置した例を示したが、図9bでは単一の斜めライン状パターン903の代わりに、並行した斜めライン状パターンを配置したものである。これによっても、図3c、図4e、図5cで示したような不具合を検出することが出来る。
図10には、図7bに示した並行なライン状パターンの適用に際して、更なる考案を加えた例である。
図10に示した例では、平行なライン状パターン703の長さ(Ltg)1001は、露光ヘッドの幅(HW)108および重複露光領域の幅(OW)608に対して
Ltg>2HW−OW 式4
を満たしていることが特徴である。
平行なライン状パターン703の長さ(Ltg)1001を上記のように規定することによって、平行なライン状パターン703は露光ヘッド102aと露光ヘッド102bの重複露光領域607だけでなく、露光ヘッド102aが折り返し時に重複露光する領域1002および露光ヘッド102bが折り返し時に重複露光する領域1003をも横断することになり、それぞれの領域における露光状態を検査することが可能になる。露光ヘッド102aが折り返し時に重複露光する領域1002は、図2bにおける折り返し重複露光領域208に相当する。このとき露光ヘッド102aの折り返し重複露光部の場所を示す補助パターン1004および補助パターン1005を配置すると、露光ヘッド102aの折り返し重複露光部の場所を金属顕微鏡などで観察するのが容易になる。同様に、露光ヘッド102bの折り返し重複露光部の場所を示す補助パターン1006および補助パターン1007を配置すると、露光ヘッド102aの折り返し重複露光部の場所を金属顕微鏡などで観察するのが容易になる。
図11に、前述してきたTEGを用いた基板製造方法を示す。製品基板1102は製品ライン1101に投入された後、成膜1103、塗布1104、露光1105、現像1106、現像後検査1107、エッチング1108、エッチング後検査1109などの処理を繰り返され、規定の処理が終了後に払い出される。ここで、露光1105には、マルチヘッド直描機1114を用いる。このマルチヘッド直描機1114は、所定の調整作業を済ませ、製造ラインで稼動する。従って、本来は、図2a、図2b、図2cなどに示した調整ずれはない。しかし、基板の処理を繰り返すうちに機械的な振動や不注意な操作、何らかの事故等が原因となって、図2a、図2b、図2cなどに示した調整ずれが発生する可能性がある。従って、それらの調整ずれが発生していないか、定常的にチェックする必要がある。そこで、図1に示す如く、ヘッド描画境界上に評価TEGを配置し、その加工形状をチェックすればよい。評価TEGは、ヘッド描画境界104上の、位置103a、103b、103c、103dなどに配置する。ヘッド描画境界105およびヘッド描画境界106上も同様に評価TEGを配置する。図7a、図7b、図8a、図8b、図9a、図9b、図10a、図10bで示した配置評価TEGを前述の場所に配置する。これらは、例えば位置103aに全て配してもよいし、位置103a、位置103b、位置103c、位置103dなどに配しても良い。
一種の評価TEGを、各々のヘッド描画境界上において複数の点に配すると、当該TEGを基板全体に配置することになり成膜やエッチングなど、露光以外の処理プロセスの異常検知も可能になる。また評価TEGパターンに見られる不具合が露光ヘッドの調整ずれが原因なのか露光以外の処理プロセスの異常が原因なのか、といった原因の切り分けが出来る。
図7bに示した平行ライン状パターンのTEGを基板上に複数配置する場合を例にして、製造プロセスの評価とマルチヘッド露光機のヘッド位置調整ずれの評価方法を次に説明する。
図12は、ライン状パターンを例にTEGの配置方法を示したものである。
基板1200はオリフラ1205によって方向が規定され、ステージの主走査方向109、副走査方向110となる。また、基板1200内の矩形は個々の製品パネルを示している。前述したように直描露光機が4つの露光ヘッドを有する場合、基板1200上には1201、1202、1203の3本のヘッド描画境界が現れる。各々のヘッド描画境界は図6で示したように、重複して露光される領域であって、一定の幅を有している。
ヘッド描画境界1201上の製品と製品の間にそれぞれ評価TEGを配置する。配置する場所は図面左から1201a、1201b、1201c、1201d、1201eである。これらのTEGの配置する位置と配置する場所の数は、基板上の製品の数によって適宜変更する。ヘッド描画境界1202およびヘッド描画境界1203上にもヘッド描画境界1201上の評価TEGに対応する位置に評価TEGを配置する。
配置する評価TEGを図13に示すライン状パターンとして、評価TEGを用いた露光ヘッドの位置調整の異常を見つける方法の一例を説明する。
図13では、重複描画領域1306を横断して、単一描画領域1308から単一描画領域1309までライン状パターン1304が配置されている。重複描画領域の境界1305及び境界1307の近辺には、補助パターン1310および1311が配置されていると観察、計測の際の位置出しが容易になる。ライン状パターン1304は重複描画領域1306内の線幅(W1)1301、単独描画領域1308内の線幅(W2)1302及び単独描画領域1309内の線幅(W3)1303を測定する。図13に示すようにライン状パターン1304に関し、重複露光領域内の線幅の測定と単独露光領域内の線幅の測定を行う作業を図12に示した基板上の評価TEGの配置点に関して行う。基板上の評価TEGの配置点に関しては、適度に抜き取り検査を行っても良い。基板上の評価TEGの測定をした結果を例えば図14a、図14b、図14cのように纏める。図14aの横軸1401は主走査方向の評価TEGの位置であり、縦軸1402は線幅である。線幅W1の測定値に関し、図12に示したヘッド描画境界1201上の評価TEGの線幅W1を折れ線1404として、ヘッド描画境界1202上の評価TEGの線幅W1を折れ線1405として、ヘッド描画境界1203上の評価TEGの線幅W1を折れ線1406としてプロットする。管理値1403は予め定められた値であって、管理値1403を越えると露光ヘッドの位置調整に異常があると判定する。ここでは折れ線1404に対応する描画境界1201において、重複露光領域内の線幅W1が管理値を越えていることが分かる。そこで当該描画境界1201において線幅W1、線幅W2、線幅W3の値を図14bのように纏める。図14bは図14aと縦軸、横軸、管理値は同じであるが折れ線1407、1408、1409は線幅W1、線幅W2、線幅W3の値を示している。図14bのように、もし、折れ線1407、1408、1409が全て管理値より大きな値を示しているならば、これは、単一露光領域であっても、線幅が管理値を超えていることを意味しているので、直描露光機の露光ヘッドの位置調整に問題があるわけではなく、成膜膜厚の不均一やレジスト膜厚の不均一などが考えられ、成膜やレジスト塗布といったプロセスに異常があると判断できる。
折れ線1404に対応する描画境界において線幅W1、線幅W2、線幅W3の値を纏めた結果が図14cのように線幅W1の値を示す折れ線1410のみ管理値1403を上回っているならば、この不具合の原因は露光ヘッドの位置調整のずれが原因であることが推定できる。
なお、線幅(W2)1302または線幅(W3)1303の測定は省略可能である。かかる場合、折れ線1404に対応する描画境界1201において、重複露光領域内の線幅W1が管理値を越えているか否かのみを判定する。そして、管理値を越えている場合は、少なくとも、直描露光機の露光ヘッドの位置調整に問題があるか、または、成膜膜厚の均一性やレジスト膜厚の均一性に問題があると判断できる。
また、上記の線幅の測定処理や閾値との比較処理は、顕微境の撮像写真に基づいて、コンピュータにより測定され、メモリに予め記憶された管理値と比較することにより達成できる。
実施例1では、評価用TEGの線幅測定によって露光ヘッドの位置調整の不具合を検知する方法を示したが、実施例2では評価用TEGの抵抗測定によってよって露光ヘッドの位置調整の不具合を検知する方法を示す。
膜厚がほぼ一定ならば、線幅と抵抗は反比例の関係にある。従って以下に説明する抵抗測定用TEG各々に関して、線幅の変動と同様に抵抗変動の管理値を事前に設定することが可能である。
基板上の評価TEGの配置方法は同じなので、抵抗測定用のTEGの形状などを説明する。
図15に示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向109方向のヘッド位置の不揃いを検知するものである。
重複描画領域1501内につづら折状の配線1508を設け、抵抗測定用のパッド1506とパッド1507に接続する。また重複描画領域の境界線1502および1503の近辺には重複描画領域を示す補助パターン1504と1505を配置すると測定時の位置検出が容易になる。本評価TEGは、つづら折配線1508が副走査方向110に長いことを特徴としている。図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向109方向のヘッド位置の不揃いがあると、線幅1509が変動する。このため、露光ヘッド位置調整ずれをパッド1505とパッド1506間の抵抗変化として検出することが出来る。つづら折の段数は、つづら折配線1508の抵抗が検出しやすいレンジに入るよう、設計する。
図16に示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向109方向のヘッド間隔の不揃いを検知するものである。
重複描画領域1601内につづら折状の配線1608を設け、抵抗測定用のパッド1606とパッド1607に接続する。また重複描画領域の境界線1602および1603の近辺には重複描画領域を示す補助パターン1604と1605を配置すると測定時の位置検出が容易になる。本評価TEGは、つづら折配線1608が主走査方向109に長いことを特徴としている。図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向110方向のヘッド間隔の不揃いがあると、線幅1609が変動する。このため、露光ヘッド位置調整ずれをパッド1605とパッド1606間の抵抗変化として検出することが出来る。つづら折の段数は、つづら折配線1608の抵抗が検出しやすいレンジに入るよう、設計する。
図17に示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向110方向のヘッド間隔の不揃い及び図5aで説明した主走査方向109方向のヘッド位置の不揃いを検知するものである。
重複描画領域1701内に千鳥格子状パターン1708を設け、抵抗測定用のパッド1706とパッド1707に接続する。また重複描画領域の境界線1702および1703の近辺には重複描画領域を示す補助パターン1704と1705を配置すると測定時の位置検出が容易になる。本評価TEGは、千鳥格子状パターン1708が、正常な加工が行われれば格子同士は頂点のみで接していることを特徴としている。そのため正常な加工の下では、パッド1706とパッド1707間の抵抗はきわめて大きい。しかし、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向109方向のヘッド間隔の不揃い及び図5aで説明した主走査方向109方向のヘッド位置の不揃いが発生すると、千鳥格子パターンにぼけが生じ、図17bに示す如く格子同士の接触箇所が点ではなく幅を有するようになる。この場合、パッド1706とパッド1707間の抵抗は減少する。この抵抗変化により、ヘッド位置の不揃いを検知することができる。
千鳥格子の段数は千鳥格子パターン1708の抵抗が検出しやすいレンジに入るよう、設計する。
図18aに示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向109方向のヘッド位置の不揃いを検知するものである。
重複描画領域1801内に菱形状パターン1808を設け、抵抗測定用のパッド1806とパッド1807に、菱形状パターン1808の頂点で接続する。抵抗測定用のパッド1806、パッド1807及び菱形状パターン1808は主走査方向109に並ぶことを特徴とする。また重複描画領域の境界線1802および1803の近辺には重複描画領域を示す補助パターン1804と1805を配置すると測定時の位置検出が容易になる。本評価TEGは、菱形状パターン1808が、正常な加工が行われれば菱形パターン1808の頂点のみでパッド1805及びパッド1806と接しているため、正常な加工の下では、パッド1806とパッド1807間の抵抗はきわめて大きい。しかし、図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向109方向のヘッド位置の不揃いが発生すると、菱形パターンにぼけが生じ、図18bに示す如く菱形パターン1808とパッド1806、同じく菱形パターン1808とパッド1807の接触箇所が点ではなく幅を有するようになる。この場合、パッド1806とパッド1807間の抵抗は減少する。この抵抗変化により、ヘッド位置の不揃いを検知することができる。
菱形パターン1808の大きさはパッド1806とパッド1807間の抵抗変化が検出しやすいレンジに入るよう、設計する。
図19aに示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向110方向のヘッド位置の不揃いを検知するものである。
重複描画領域1901内に菱形状パターン1908を設け、抵抗測定用のパッド1906とパッド1907に、菱形状パターン1908の頂点で接続する。抵抗測定用のパッド1906、パッド1907及び菱形状パターン1808は副走査方向109に並ぶことを特徴とする。また重複描画領域の境界線1902および1903の近辺には重複描画領域を示す補助パターン1904と1905を配置すると測定時の位置検出が容易になる。本評価TEGは、菱形状パターン1908が、正常な加工が行われれば菱形パターン1908の頂点のみでパッド1906及びパッド1907と接しているため、正常な加工の下では、パッド1906とパッド1907間の抵抗はきわめて大きい。しかし、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向109方向のヘッド間隔の不揃いが発生すると、菱形パターンにぼけが生じ、図19bに示す如く菱形パターン1908とパッド1906、パッド1907の接触箇所が点ではなく幅を有するようになる。この場合、パッド1906とパッド1907間の抵抗は減少する。この抵抗変化により、ヘッド位置の不揃いを検知することができる。
菱形パターン1908の大きさはパッド1906とパッド1907間の抵抗変化が検出しやすいレンジに入るよう、設計する。
図20aに示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向110方向のヘッド位置の不揃いを検知するものである。
重複描画領域2001内に配線2008を設ける。抵抗測定用のパッド2006とパッド2007と当該配線2008を主走査方向110に並べることを特徴とする。パッド2006と配線2008の間には間隔2009を、パッド2007と配線2008の間には間隔2010を設ける。また重複描画領域の境界線2002および2003の近辺には重複描画領域を示す補助パターン2004と2005を配置すると測定時の位置検出が容易になる。本評価TEGは、配線2008が正常な加工が行われれば、間隔2009と間隔2010のためにパッド2006とパッド2007間の抵抗はきわめて大きい。しかし、図3aで説明した高さ方向のヘッド位置の不揃いや図5aで説明した主走査方向110方向のヘッド間隔の不揃いが発生すると配線2008にぼけが生じ、図20bに示す如く間隔2009と間隔2010が消失する。この場合、パッド2006とパッド2007間の抵抗は減少する。この抵抗変化により、ヘッド位置の不揃いを検知することができる。
間隔2009、間隔2010の大きさはパッド2006とパッド2007間の抵抗変化が検出しやすいレンジに入るよう、設計する。
図21aに示すTEGは、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向109方向のヘッド間隔の不揃いを検知するものである。
重複描画領域2101内に配線2108を設ける。抵抗測定用のパッド2106とパッド2107と当該配線2108を副走査方向109に並べることを特徴とする。パッド2106と配線2108の間には間隔2109を、パッド2107と配線2108の間には間隔2110を設ける。また重複描画領域の境界線2102および2103の近辺には重複描画領域を示す補助パターン2104と2105を配置すると測定時の位置検出が容易になる。本評価TEGは、配線2108が正常な加工が行われれば、間隔2109と間隔2110のためにパッド2106とパッド2107間の抵抗はきわめて大きい。しかし、図3aで説明した高さ方向のヘッド位置の不揃いや図4aで説明した副走査方向109方向のヘッド間隔の不揃いが発生すると配線2108にぼけが生じ、図20bに示す如く間隔2109と間隔2110が消失する。この場合、パッド2106とパッド2107間の抵抗は減少する。この抵抗変化により、ヘッド位置の不揃いを検知することができる。
間隔2109、間隔2110の大きさはパッド2006とパッド2007間の抵抗変化が検出しやすいレンジに入るよう、設計する。
図22は、抵抗評価TEGを用いてマルチヘッド露光機のヘッド位置調整を含んだ液晶基板製造方法を示した図である。概略は図11に示した線幅評価TEGを用いたマルチヘッド露光機のヘッド位置調整を含んだ液晶基板製造方法と同じである。相違点は抵抗評価TEGを用いるときは、現像後検査ではなくエッチ後の検査で行うことであり、当該検査で計測、収集されるデータが抵抗値であることが異なる。データの纏め方や重複露光領域と単一露光領域の間のデータの比較、解析方法は概略同じである。
実施例1では、ヘッド描画境界にTEGをおく実施例を説明したが、ここでは、同一ヘッドによる描画領域内の、折り返し境界にも、評価用パターンを配置する例に関して説明する。また、実施例1ではスクライブライン内に評価用パターンを配置したが、ここでは、評価用パターンを製品内に含めて配置する態様を説明する。評価用パターンを製品内に配置すると、製造プロセス終了後、基板から製品が切り出されたあとでも、評価用パターンの位置からヘッド描画境界や折り返し境界の場所が分かるため、事後の不良解析等が行いやすくなるというメリットがある。これらを併せて図23を用いて説明する。全体を表す矩形2300は露光対象となる基板である。オリフラ2305を図右下の位置においたとき、ヘッドの主走査方向109は図の水平方向、副走査方向110は図の垂直方向である。なお、実際には、ステージが反対方向に移動し、ヘッドの相対位置が変化する。基板に対し製品パネル2320が、基板2300上に格子状に並んでいる。図1、図12に示した場合と同じく、4ヘッドで露光した例を示すが、実施の際は4ヘッドである必要はなく、露光ヘッドのヘッド数に応じた変更を加える。同様に折り返し回数に関しても単なる例示である。
ヘッド描画境界2301、ヘッド描画境界2302、ヘッド描画境界2303は、それぞれ露光ヘッドごとの露光領域の重複部分であって、概略露光ヘッド間隔に一致した間隔で存在している。
例としてヘッド描画境界2301とヘッド描画境界2302の間の領域について詳細に述べる。ヘッド描画境界2301とヘッド描画境界2302の間の領域は露光ヘッド102bによって描画される領域であって、ステージの移動によって、折り返し描画領域2310、折り返し描画領域2311、折り返し描画領域2312、折り返し描画領域2313、折り返し描画領域2314、折り返し描画領域2315は図2aで示したステージ副走査方向の移動幅206の幅で、概略等間隔で並んでいる。評価用パターンはヘッド描画境界2301、ヘッド描画境界2302、折り返し境界2310、折り返し境界2311、折り返し境界2312、折り返し境界2313、折り返し境界2314、折り返し境界2315上に配置する。これらのヘッド描画境界、折り返し描画境界は、図2で示した概略ステージ移動幅206の幅で、並んでいるので、ステージ副走査方向には、概略等間隔で並んでいる。また、ステージ主走査方向に関しては、評価用パターンの検出のし易さなどを考慮すると、概略直線状に並べることが望ましい。従って、図示した如く、評価用パターン2301a、評価用パターン2310a、評価用パターン2311a、評価用パターン2312a、評価用パターン2313a、評価用パターン2314a、評価用パターン2315a、評価用パターン2302aは、ステージ副操作方向に関しては等間隔に、ステージ主走査方向に関しては直線状に並ぶ。
以上、基板2300における左側の製品パネルにおいて、評価用パターンの配置方法を説明した。ヘッド描画境界2301とヘッド描画境界2302の間のほかの製品パネルにおいても、ヘッド描画境界2301、ヘッド描画境界2302、折り返し境界2310、折り返し境界2311、折り返し境界2312、折り返し境界2313、折り返し境界2314、折り返し境界2315上に配置する(折り返し描画境界上の評価用パターンには番号を付与せず)。
同様にヘッド102a、ヘッド102c、ヘッド102dで露光される領域においても同様に評価用パターンを配置する(図示せず)。
上述したように評価用パターンを配置していくと、ひとつの製品パネル内に概略等間隔に複数個並ぶことになる。評価用パターンの配置幅は概略ステージ副走査方向の移動幅に等しい。
なお、評価パターンを用いて露光ヘッドの位置調整の異常を見つける方法は、実施例1で説明した通りである(図13、図14参照)。
ここまでに説明した評価用パターンの配置方法は、重複露光領域とその外側の単一露光領域に配された評価用パターンの寸法を計測することで、複数の露光ヘッドによる重複露光領域における描画品質を評価するものである。次に説明する評価用パターンの配置方法は、重複露光領域内の計測は行わずに、単一露光領域に配された評価用パターンの寸法を計測するものである。
図24に、図4で示したヘッド間の間隔がずれた際に起こる不具合を検出する評価用パターンについて説明する。この評価用パターンを以下、「対向長方形評価用パターン」と呼ぶ。単一描画領域2402と単一描画領域2403の間に重複露光領域2401がある。まず、単一描画領2402内に配置した計測用パターン2404と単一描画領2403内に配置した計測用パターン2405の距離Ly1(2つの長方形の外側境界線間の距離)、Ly2(2つの長方形の内側境界線間の距離)を計測する。計測用パターン2404および計測用パターン2405は、長方形であることが望ましい。これら2つの長方形の対向する辺は、平行であることがのぞましい。ここでLy1、Ly2は図24に示したごとく、それぞれ両パターンの外側間の距離、内側間の距離の計測結果とする。このLy1、Ly2を用いて、計測用パターン間距離Lyを
Ly=(Ly1+Ly2)/2
として定義する。このLyと計測用パターンを配置する際の設計上の設定値Lydを比較し、
Lyd=Lyならば、所望の寸法で描画されている、
Lyd<Lyならば、描画された間隔は所望の寸法より長い、
Lyd>Lyならば、描画された間隔は所望の寸法より短い、
と評価する。
図24に示した計測パターン2404と計測パターン2404を基板上に配置することで、マルチヘッド直描露光機のヘッド間隔のずれを検出することができる。また折り返し境界に配置することによって、当該部分のずれを評価することができる。
次に図25に、図5に示したヘッドの並びが基板主走査方向109にずれている場合の不具合を検出する方法について説明する。用いる評価用パターンは対向長方形評価用パターンである。
単一描画領域2502と単一描画領域2503の間に重複露光領域2501がある。単一描画領域2502内に配置した計測用パターン2504と単一描画領2503内に配置した計測用パターン2505のずれDxを計測する。このDxにより2つのヘッドに関して主走査方向のずれを検出できる。
また当該評価用パターンは、折り返し境界部分に配置することによって、当該領域のすれの検出にも適用できる。
次に、2つの露光ヘッドの、主走査方向のずれと副走査方向のずれの両方を同時に検知する方法に関して図26を用いて説明する。
単一描画領域2602と単一描画領域2603の間に重複露光領域2601がある。単一描画領域2602に斜めに配置した正方形2604、正方形2605を配置する。さらに単一描画領域2603に斜めに配置した正方形2606、正方形2607を配置する。正方形2604の重心2608と正方形2607の重心2611間の距離、および正方形2605の重心2609と正方形2606の重心2610間の距離は等しくL0となるようにパターンを描画する。また正方形2604と正方形2607の対向する辺、および正方形2605と正方形2606の対向する辺はそれぞれ平行にする。また正方形は、主走査方向に対して45度傾けると、計測後のデータ処理が容易である。正方形2604の重心2608、正方形2605の重心2609、正方形2606の重心2610、正方形2607の重心2611は、一辺の長さがL0/√2となる正方形をなすように配置する。以下この配置をした評価用パターンを斜め正方形配置評価用パターンと呼ぶ。
ここで、正方形2604と正方形2607の外側の辺同士の距離L1a、正方形2604と正方形2607間の内側の辺同士の距離L1b、正方形2605と正方形2606間の外側の辺同士の距離L2aおよび正方形2605と正方形2606間の内側の辺同士の距離L2bを計測する。
このとき、パターンの主走査方向のずれDx、副走査方向のずれLyは
L1=(L1a+L1b)/2
L2=(L2a+L2b)/2
として
(1) L1、L2が等しいとき
Ly=√2*(L1−L0)、Dx=0
(2) L1、L2が等しくないとき
Dx=Rsinθ、Ly=Rcosθ
ここで、R=SQRT(((L1+L2−2L0)+(L1−L2))/2)
θ=Arctan((L1+L2−2L0)/(L1−L2))
となる。関数SQRT()は、平方根を求めるものであり、関数Arctan()は逆正接を求めるものである。
斜め正方形配置評価用パターンにより、ステージ移動における主走査方向の移動ずれや副操作方向の移動ずれによるパターンの描画位置ずれも、同様に計測できる。これらのすれ量と、設計上の設定値を比較することにより、異常の有無を評価することができる。
また、折り返し描画領域を挟んで同様に、斜め正方形評価用パターンを配置すれば、ステージ往復動作に伴う、描画ずれを検出することができる。このように配置すると実施例3の図23に示した如くの評価用パターン配置となって、製品パネルに評価用パターンが概略等間隔で並ぶ。
実施例4では、重複露光領域の両側の単一描画領域に評価用パターンを配置したが、ここでは重複露光領域内に評価用パターンを配置し、露光ヘッドの位置調整ずれや、ステージ往復動作時の動作ばらつきによる描画位置ずれを検出する方法に関して述べる。
図27aにおいて、単一描画領域2802は露光ヘッド102aにより、単一描画領域2704は露光ヘッド102bにより描画される。重複露光領域2701は露光ヘッド102aと露光ヘッド102bの両方の露光ヘッドにおいて描画可能である。
ここで、露光ヘッド間の主走査方向、副操作方向の並びのずれを検出するには、重複露光領域2701において、露光ヘッド102aにより外側パターン2706を、露光ヘッド2705により内側パターン102bを描画する。すなわち、ボックスインボックスの形状のパターンを描画する。図27aに示すように、この2つのパターンを、その重心位置が一致するように配置する。
しかし、図27bにおいて、
Bx1(外側ボックスと内側ボックスの左側の外側境界間の距離)、
Bx2(外側ボックスと内側ボックスの左側の内側境界間の距離)、
Bx3(外側ボックスと内側ボックスの右側の内側境界間の距離)、
Bx4(外側ボックスと内側ボックスの右側の外側境界間の距離)を計測し
BL=(Bx1+Bx2)/2
BR=(Bx3+Bx4)/2
を算出する。BLとBRが等しければ、外側パターンと内側パターンの位置に関して主走査方向のずれはないと評価する。BLがBRに比して大きければ、内側パターンが外側パターンに比して右に寄っていることになり、BLがBRに比して大きければ、内側パターンが外側パターンに比して左に寄っていることになる。これにより、露光ヘッド102aと露光ヘッド102bの描画結果が主操作方向109にずれていると評価できる。
また図27cにおいて、
By1(外側ボックスと内側ボックスの上側の外側境界間の距離)、
By2(外側ボックスと内側ボックスの上側の内側境界間の距離)、
By3(外側ボックスと内側ボックスの下側の内側境界間の距離)、
By4(外側ボックスと内側ボックスの下側の外側境界間の距離)を計測し
BU=(By1+By2)/2
BD=(By3+By4)/2
を算出する。BUとBDが等しければ、外側パターンと内側パターンの位置に関して主走査方向のずれはないと評価できる。BUがBDに比して大きければ、内側パターンが外側パターンに比して下に寄っていることになり、BUがBDに比して大きければ、内側パターンが外側パターンに比して上に寄っていることになる。これにより露光ヘッド102aと露光ヘッド102bの描画結果は副操作方向110にずれていると評価できる。
また、折り返し境界領域における描画位置ずれを検出するには、重複露光領域2701を折り返し境界の重複描画領域と考え、主走査時の順方向時に外側パターン2806を、主走査時の逆方向に内側パターン2707を描画する。計測方法は、露光ヘッド間の主走査方向、副操作方向の並びのずれを検出する場合と同じである。このようにすることによって、折り返し境界部分の描画ずれを検出することが出来る。このように配置すると実施例3の図23に示した如くの評価用パターン配置となって、製品パネルに評価用パターンが概略等間隔で並ぶ。
実施例1、実施例2、実施例3、実施例4、実施例5を通して記述した評価TEGの形状、配置方法は例示に過ぎず、本願考案の趣旨と求める効果を逸脱しない様々な実施の形態が存在する。それらを含め、本願考案の範囲と考えられる。
また、本願考案は液晶パネルの製造方法として記載したが、半導体製造やプリント板製造など広く露光プロセスを有する製品製造プロセスに応用することができる。
本発明は、液晶表示装置を対象になされているものであるが、加工途中に発生する基板の変形が、加工精度に影響を及ぼすその他の表示装置、プリント基板、半導体装置の加工にも利用可能ある。
基板上のヘッド描画境界と評価TEGの配置方法を示したものである。 ステージの移動と露光ヘッドの露光領域の関係を示した図である。 ステージの移動と露光ヘッドの露光領域の関係を示した図である。 ステージの移動と露光ヘッドの露光領域の関係を示した図である。 複数の露光ヘッドにおける高さ方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッドにおける高さ方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッドにおける高さ方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッド間における副走査方向の間隔のずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッド間における副走査方向の間隔のずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッド間における副走査方向の間隔のずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッド間における副走査方向の間隔のずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッド間における副走査方向の間隔のずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッドにおける主走査方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッドにおける主走査方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 複数の露光ヘッドにおける主走査方向の位置ずれと、当該ずれによる重複露光領域での線幅の不具合の例を示した図である。 露光ヘッドの露光端と重複描画領域の関係を示した図である。 重複露光領域を横断する線幅評価TEGの例である。 重複露光領域を横断する線幅評価TEGの例である。 重複露光領域と並行して設置する線幅評価TEGの例である。 重複露光領域と並行して設置する線幅評価TEGの例である。 重複露光領域を横断する斜めラインの線幅評価TEGの例である。 重複露光領域を横断する斜めラインの線幅評価TEGの例である。 重複露光領域を横断する線幅評価TEGであって同一露光ヘッドによる折り返し露光領域の評価も行う評価TEGの例である。 線幅評価TEGによるマルチヘッド露光機のヘッド位置調整を含んだ液晶基板製造方法を示した図である。 基板上の評価TEGの配置方法を示したものである。 線幅評価TEGの測定位置の例を示した図である。 線幅評価TEGの測定結果の纏め方を示した図である。 線幅評価TEGの測定結果の纏め方を示した図である。 線幅評価TEGの測定結果の纏め方を示した図である。 つづら折状抵抗測定TEGの例である。 つづら折状抵抗測定TEGの例である。 千鳥格子状抵抗測定TEGの例である。 千鳥格子状抵抗測定TEGの例である。 菱形状抵抗測定TEGの例である。 菱形状抵抗測定TEGの例である。 菱形状抵抗測定TEGの例である。 菱形状抵抗測定TEGの例である。 ライン状抵抗測定TEGの例である。 ライン状抵抗測定TEGの例である。 ライン状抵抗測定TEGの例である。 ライン状抵抗測定TEGの例である。 抵抗評価TEGによるマルチヘッド露光機のヘッド位置調整を含んだ液晶基板製造方法を示した図である。 折り返し境界にもTEGを配置した例を示す。 対向長方形TEGによる、副操作方法のずれの検出方法を示す。 対向長方形TEGによる、主走査方向のずれの検出方法を示す。 斜め正方形TEGの配置を示す。 ボックスインボックスTEGの配置と主走査および副操作方向のずれの検出方法を示す。 ボックスインボックスTEGの配置と主走査および副操作方向のずれの検出方法を示す。 ボックスインボックスTEGの配置と主走査および副操作方向のずれの検出方法を示す。
符号の説明
100:基板
101:製品パネル
102a〜102d:露光ヘッド
103a〜103e:評価TEGの配置位置
104〜106:ヘッド間の描画境界
107:オリフラ
108:露光ヘッド幅
109:主走査方向
110:副走査方向
111:露光ヘッド間の間隔
1101:製造ライン
1102:基板
1107:現像後検査
1109:エッチング後検査
1111:異常チェック
1112:原因推定
1113:露光ヘッドの位置等の調整
2310〜2315:折り返し描画領域
2310a〜2315a:折り返し描画領域部に配置したTEGの位置を示す。
2404〜2405:重複して露光する領域を挟んで、対向して配置した長方形状のTEG
2604〜2607:重複して露光する領域を挟んで、45度傾けて配置した正方形状のTEG
2706〜2707:重複して露光する領域内に配置した、ボックスインボックスTEG

Claims (16)

  1. 複数の露光ヘッドを有する直描露光機を用いた基板製造において、
    基板上のヘッド描画境界に評価用TEG(Test Element Group)を配置し、ヘッド描画境界内の当該評価TEGの測定値と単一露光領域内の当該評価TEGの測定値を比較することで、露光ヘッドの位置調整ずれを検知し、露光ヘッドの位置調整ずれを修正することで、当該直描露光機の安定した露光を実現する基板製造方法。
  2. 請求項1に記載した評価TEGは、線幅評価用TEGであることを特徴とする基板製造方法。
  3. 請求項2に記載した線幅評価TEGは、ヘッド描画境界の幅より長い長さを有し、ヘッド描画境界を横断するライン状の線幅評価TEGであることを特徴とする基板製造方法。
  4. 請求項2に記載した線幅評価TEGは、ヘッド描画境界に並行するライン状の線幅評価TEGであることを特徴とする基板製造方法。
  5. 請求項2に記載した線幅評価TEGは、ヘッド描画境界の幅より長い斜めライン状の線幅評価TEGであることを特徴とする基板製造方法。
  6. 請求項2に記載した評価TEGは、抵抗評価用TEGであることを特徴とする基板製造方法。
  7. 請求項6に記載した抵抗評価用TEGは、つづら折状の形状を有することを特徴とする基板製造方法。
  8. 請求項6に記載した抵抗評価用TEGは、千鳥格子状の形状を有することを特徴とする基板製造方法。
  9. 請求項6に記載した抵抗評価用TEGは、菱形状の形状を有することを特徴とする基板製造方法。
  10. 請求項6に記載した抵抗評価用TEGは、ライン状の形状を有することを特徴とする基板製造方法。
  11. 複数の露光ヘッドを有する直描露光機を用いた基板製造方法において、
    単一の露光ヘッドで描画される領域と、複数の露光ヘッドで重複描画される領域とに、それぞれ評価用パターンが配置されるように、前記基板に露光処理を行い、
    単一の露光ヘッドで描画された領域内の前記評価用パターンと、複数の露光ヘッドで重複描画された領域内の前記評価用パターンとの測定値を比較することにより、前記露光ヘッドの位置調整ずれを検知する
    ことを特徴とする基板製造方法。
  12. 複数の露光ヘッドを有する直描露光機を用いた基板製造方法において、
    複数の露光ヘッドで重複描画される領域を挟んで位置する、単一の露光ヘッドで描画される2つの領域に、それぞれ、評価用パターンが配置されるように、前記基板に露光処理を行い、
    前記2つの領域にそれぞれ形成された前記評価用パターンの位置関係を測定することにより、前記露光ヘッドの位置調整ずれを検知する
    ことを特徴とする基板製造方法。
  13. 液晶表示装置であって、
    複数の評価用パターンが、直線上に並び列を構成し、かつ、前記列が概略等間隔で並んでいる
    ことを特徴とする液晶表示装置。
  14. 上記評価用パターンは、斜め45度に傾斜した4つの矩形からなることを特徴とする請求項13に記載の液晶表示装置。
  15. 上記評価用パターンは、対向した2つの長方形からなることを特徴とする請求項13に記載の液晶表示装置。
  16. 上記評価用パターンは、ボックスインボックスの形状を取ることを特徴とする請求項13に記載の液晶表示装置。
JP2007271261A 2007-03-30 2007-10-18 評価パターンを配置した液晶表示装置およびその製造方法 Active JP5260021B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007271261A JP5260021B2 (ja) 2007-03-30 2007-10-18 評価パターンを配置した液晶表示装置およびその製造方法
US12/055,501 US20080241486A1 (en) 2007-03-30 2008-03-26 Liquid Crystal Display Device with Evaluation Patterns Disposed Thereon, and Method for Manufacturing the Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007090190 2007-03-30
JP2007090190 2007-03-30
JP2007271261A JP5260021B2 (ja) 2007-03-30 2007-10-18 評価パターンを配置した液晶表示装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2008276168A true JP2008276168A (ja) 2008-11-13
JP5260021B2 JP5260021B2 (ja) 2013-08-14

Family

ID=40054152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271261A Active JP5260021B2 (ja) 2007-03-30 2007-10-18 評価パターンを配置した液晶表示装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP5260021B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244831A (ja) * 2008-03-10 2009-10-22 Hitachi Displays Ltd マスクレス露光方法
JP2020076899A (ja) * 2018-11-08 2020-05-21 株式会社エスケーエレクトロニクス 露光装置の検査方法及び露光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634587A (ja) * 1992-03-14 1994-02-08 Toshiba Corp 半導体製造装置の評価装置およびその評価方法
JP2002258489A (ja) * 2000-04-20 2002-09-11 Nikon Corp 露光装置および露光方法
JP2006173470A (ja) * 2004-12-17 2006-06-29 Shinko Electric Ind Co Ltd 自動補正方法および自動補正装置
JP2006276696A (ja) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd 描画ずれ測定方法、露光方法、目盛パターン、目盛パターン描画方法、および目盛パターン描画装置
JP2006301301A (ja) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd 搬送誤差計測方法、校正方法、描画方法、露光描画方法、描画装置及び露光描画装置
JP2007067018A (ja) * 2005-08-29 2007-03-15 Sharp Corp 露光装置の露光動作評価方法および半導体デバイスの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634587A (ja) * 1992-03-14 1994-02-08 Toshiba Corp 半導体製造装置の評価装置およびその評価方法
JP2002258489A (ja) * 2000-04-20 2002-09-11 Nikon Corp 露光装置および露光方法
JP2006173470A (ja) * 2004-12-17 2006-06-29 Shinko Electric Ind Co Ltd 自動補正方法および自動補正装置
JP2006276696A (ja) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd 描画ずれ測定方法、露光方法、目盛パターン、目盛パターン描画方法、および目盛パターン描画装置
JP2006301301A (ja) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd 搬送誤差計測方法、校正方法、描画方法、露光描画方法、描画装置及び露光描画装置
JP2007067018A (ja) * 2005-08-29 2007-03-15 Sharp Corp 露光装置の露光動作評価方法および半導体デバイスの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244831A (ja) * 2008-03-10 2009-10-22 Hitachi Displays Ltd マスクレス露光方法
JP2020076899A (ja) * 2018-11-08 2020-05-21 株式会社エスケーエレクトロニクス 露光装置の検査方法及び露光装置
JP7160637B2 (ja) 2018-11-08 2022-10-25 株式会社エスケーエレクトロニクス 露光装置の検査方法

Also Published As

Publication number Publication date
JP5260021B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5253916B2 (ja) マスクレス露光方法
US20210296392A1 (en) Flat Panel Array with the Alignment Marks in Active Area
US20080241486A1 (en) Liquid Crystal Display Device with Evaluation Patterns Disposed Thereon, and Method for Manufacturing the Same
KR20070099398A (ko) 기판검사장치와 이를 이용한 기판검사방법
KR100502797B1 (ko) 액정 표시 장치 및 그의 제조 방법
US20030199131A1 (en) Wafer alignment mark for image processing, image processing alignment method and method of manufacturing semiconductor device
US8778779B2 (en) Semiconductor device and a method for producing semiconductor device
JP5260021B2 (ja) 評価パターンを配置した液晶表示装置およびその製造方法
JP3265512B2 (ja) 露光方法
JP2008151954A (ja) 表示デバイスの製造方法および表示デバイス
JP2009145681A (ja) 表示装置の製造方法
JP5318046B2 (ja) 試料検査装置及び試料検査方法
JP4771871B2 (ja) パターン欠陥検査方法、パターン欠陥検査用テストパターン基板、及びパターン欠陥検査装置、並びにフォトマスクの製造方法、及び表示デバイス用基板の製造方法
KR102593308B1 (ko) 표시 장치
JP5782348B2 (ja) 位置検出装置、描画装置、および、位置検出方法
JP5934546B2 (ja) 描画装置および描画方法
JP2007333590A5 (ja)
WO2012111603A1 (ja) 線幅測定装置
JP7220610B2 (ja) 露光装置の検査方法
JP5413872B2 (ja) 表示装置およびその製造方法
JP2006202838A (ja) 半導体装置の製造方法、アクティブマトリクス基板の製造方法および表示装置の製造方法
JP4435002B2 (ja) 精度測定パターン、表示パネルの製造方法および表示装置の製造方法
JP5304133B2 (ja) カラーフィルタの検査方法
JP2011123271A (ja) 表示装置の製造方法および表示装置
JP2024070012A (ja) 半導体素子の画像検査

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20071114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250