JP2008270408A - Support pin, its manufacturing method, thermal treatment device, and substrate calcining furnace - Google Patents

Support pin, its manufacturing method, thermal treatment device, and substrate calcining furnace Download PDF

Info

Publication number
JP2008270408A
JP2008270408A JP2007109180A JP2007109180A JP2008270408A JP 2008270408 A JP2008270408 A JP 2008270408A JP 2007109180 A JP2007109180 A JP 2007109180A JP 2007109180 A JP2007109180 A JP 2007109180A JP 2008270408 A JP2008270408 A JP 2008270408A
Authority
JP
Japan
Prior art keywords
support pin
substrate
manufacturing
support
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007109180A
Other languages
Japanese (ja)
Other versions
JP4317883B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Yusuke Muraoka
祐介 村岡
Yasuyoshi Miyaji
恭祥 宮路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Future Vision Inc
Original Assignee
Tohoku University NUC
Future Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Future Vision Inc filed Critical Tohoku University NUC
Priority to JP2007109180A priority Critical patent/JP4317883B2/en
Priority to TW097113688A priority patent/TW200908198A/en
Priority to KR1020080034521A priority patent/KR100976659B1/en
Priority to CN2008100933516A priority patent/CN101290902B/en
Publication of JP2008270408A publication Critical patent/JP2008270408A/en
Application granted granted Critical
Publication of JP4317883B2 publication Critical patent/JP4317883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a support pin which is the one for supporting a substrate to be treated by heating, and has high durability against thermal decomposition and oxidative decomposition. <P>SOLUTION: First, a molding material (preferably, a resin) for a main body part 101 is formed in a pin shape by injection molding under an atmosphere, where the inclusion concentration of oxygen and/or moisture is ≤10 ppm, so as to form the main body part 101 of the support pin 100. Then, a fluorocarbon film 102 is formed on the surface of the obtained main body part 101 by electrostatic powder coating. Thus, the support pin 100 for supporting the substrate to be treated by heating is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、半導体基板、液晶表示装置用ガラス基板、フォトマスク用ガラス基板、プラズマ表示用ガラス基板、光ディスク用基板等(以下、単に「基板」という)に対して加熱処理が施される際に、当該加熱処理を施される基板を支持する支持ピンに関する。   In the present invention, when a semiconductor substrate, a glass substrate for a liquid crystal display device, a glass substrate for a photomask, a glass substrate for plasma display, a substrate for an optical disk, etc. (hereinafter simply referred to as “substrate”) is subjected to heat treatment. The present invention relates to a support pin that supports a substrate subjected to the heat treatment.

基板に対して一連の処理を行う基板処理装置は、基板に対する各種の処理を実行する単位処理部(例えば、焼成処理部、洗浄処理部、レジスト塗布部、現像部等)を備えている。   A substrate processing apparatus that performs a series of processing on a substrate includes a unit processing unit (for example, a baking processing unit, a cleaning processing unit, a resist coating unit, and a developing unit) that executes various types of processing on the substrate.

基板処理装置のうちでも、例えば基板焼成炉のように、基板に対して加熱処理を行う処理部においては、処理部内に設けられる部材が高温下にさらされることになる。このため、部材には熱分解・酸化分解に対する高度の耐久性が要求される。   Among the substrate processing apparatuses, in a processing unit that performs heat treatment on a substrate, such as a substrate baking furnace, members provided in the processing unit are exposed to high temperatures. For this reason, the member is required to have high durability against thermal decomposition / oxidative decomposition.

例えば、基板焼成炉の場合、図7(a)に例示するように、筐体91内に格納された支持ラック92にて複数の基板Wを多段状態で格納し、筐体91の内部空間をヒータ等(図示省略)によって所定の焼成処理温度まで昇温することによって基板Wに対する焼成処理を実行する。ここで、基板Wを片持ち状態で支持する支持部材921のそれぞれには、図7(b)の仮想線にて示すように、基板の裏面を突き上げて支持する支持ピン922が所定ピッチで配設されている。   For example, in the case of a substrate baking furnace, as illustrated in FIG. 7A, a plurality of substrates W are stored in a multistage state in a support rack 92 stored in the housing 91, and the internal space of the housing 91 is stored. The substrate W is fired by raising the temperature to a predetermined firing temperature with a heater or the like (not shown). Here, as shown by the phantom lines in FIG. 7B, support pins 922 that support the substrate W by pushing up the back surface of the substrate W are arranged at a predetermined pitch on each of the support members 921 that support the substrate W in a cantilever state. It is installed.

このような基板焼成炉内で基板を支持する支持ピンは、筐体91の内部空間において焼成処理温度のような高温下にさらされ続けるため、徐々に熱分解、酸化分解されていってしまう。これにより支持ピンは徐々に細っていき、2〜3年もすれば抜け落ちてしまう(図7(b))。   Since the support pins that support the substrate in such a substrate baking furnace are continuously exposed to a high temperature such as the baking temperature in the internal space of the housing 91, they are gradually pyrolyzed and oxidatively decomposed. As a result, the support pins are gradually thinned and fall off after a few years (FIG. 7B).

支持ピンが抜け落ちると、新しいものに交換しなければならない。すなわち、一旦基板焼成炉の運転を中止して製造ラインを停止し、支持ラックを分解して基板焼成炉から取り出して、全ての支持ピンを交換しなければならない。一般に、基板焼成炉の支持ラックには40段程度の支持棚が設けられており、各段に数十個の支持ピンが配設される。したがって、一台の基板焼成炉について数百個の支持ピンを交換しなければならず、支持ピンの交換に係るコストは計り知れない。   If the support pin falls off, it must be replaced with a new one. That is, it is necessary to stop the operation of the substrate baking furnace, stop the production line, disassemble the support rack, take it out of the substrate baking furnace, and replace all the support pins. Generally, the support rack of the substrate baking furnace is provided with about 40 stages of support shelves, and several tens of support pins are arranged in each stage. Therefore, several hundred support pins must be exchanged for one substrate baking furnace, and the cost associated with the exchange of the support pins is immeasurable.

そこで、少なくとも基板焼成炉の寿命(10〜15年程度)以上の耐久性をもつ支持ピンを得る技術が求められていた。   Therefore, there has been a demand for a technique for obtaining a support pin having durability that is at least as long as the lifetime of the substrate baking furnace (about 10 to 15 years).

支持ピンは、従来においては、射出成形により形成されていた(例えば、特許文献1には、ウェハ押さえ部材を射出成形により製造する技術が記載されている)。しかしながら、一般的な射出成形においては、成形材料を加熱して可塑化した際に成形材料が大気と触れてしまう。このため、得られた成形品は、表面の末端基が酸化分解され、また、その内部に酸素が拡散したものとなってしまう。酸化分解された末端基は熱分解に弱く、このような末端基が存在することによって、成形材料が本来有していた耐酸化性、耐熱分解性が低下してしまう。すなわち、従来の一般的な射出成形では、成形材料が本来有している耐久性を活かすことができず、高温下において十分な耐久性を有する支持ピンを得ることができなかった。   The support pins are conventionally formed by injection molding (for example, Patent Document 1 describes a technique for manufacturing a wafer pressing member by injection molding). However, in general injection molding, when the molding material is heated and plasticized, the molding material comes into contact with the atmosphere. For this reason, in the obtained molded product, the end groups on the surface are oxidatively decomposed, and oxygen is diffused inside. Oxidatively decomposed end groups are vulnerable to thermal decomposition, and the presence of such end groups lowers the oxidation resistance and heat decomposability inherent in the molding material. That is, in the conventional general injection molding, the durability inherent in the molding material cannot be utilized, and a support pin having sufficient durability at a high temperature cannot be obtained.

この点に関して、例えば特許文献2には、電子部品の焼成に用いる治具を製造するにあたって、真空射出成形にて成型品を取得することが記載されている。この技術によると、真空で射出成形されるので、成型品の表面に酸化された部分が大量に発生することはない。なお、真空射出成型を実現する装置の構成については、例えば特許文献3に記載されている。   In this regard, for example, Patent Document 2 describes obtaining a molded product by vacuum injection molding when manufacturing a jig used for firing electronic components. According to this technique, since the injection molding is performed in a vacuum, a large amount of oxidized parts are not generated on the surface of the molded product. In addition, about the structure of the apparatus which implement | achieves a vacuum injection molding, it describes in the patent document 3, for example.

特開平11−163115号公報JP-A-11-163115 特開平3−122043号公報Japanese Patent Laid-Open No. 3-122043 特開平5−318528号公報JP-A-5-318528

しかしながら、真空射出成形にて成型品を取得する従来の技術によると、成型品の表面に酸化された部分が大量に発生することはないものの、成型時に生じる部分的な熱分解によって、成型品の表面に反応性に富んだ部分が露出してしまい、このような部分から酸化分解や熱分解が進んでしまう可能性があった。つまり、真空射出成形によって支持ピンを製造すれば、ある程度耐久性の高い支持ピンを得ることが可能となるものの、その耐久性はまだ十分なものとはいえなかった。   However, according to the conventional technique for obtaining a molded product by vacuum injection molding, a large amount of oxidized parts are not generated on the surface of the molded product. A highly reactive part is exposed on the surface, and there is a possibility that oxidative decomposition or thermal decomposition proceeds from such a part. That is, if a support pin is manufactured by vacuum injection molding, it becomes possible to obtain a support pin with a certain degree of durability, but the durability has not been sufficient.

この発明は、上記課題に鑑みてなされたもので、加熱処理を施される基板を支持する支持ピンであって、熱分解・酸化分解に対する高度の耐久性を有する支持ピンを製造する方法を提供することを目的としている。また、そのような支持ピンを提供することを目的としている。さらに、そのような支持ピンを備える熱処理装置および基板焼成炉を提供することを目的としている。   The present invention has been made in view of the above problems, and provides a method of manufacturing a support pin that supports a substrate to be heat-treated and has high durability against thermal decomposition and oxidative decomposition. The purpose is to do. Moreover, it aims at providing such a support pin. Furthermore, it aims at providing the heat processing apparatus and substrate baking furnace provided with such a support pin.

請求項1の発明は、加熱処理を施される基板を支持する支持ピンの製造方法であって、樹脂材料を、酸素および/または水分の含有濃度が10ppm以下の雰囲気で所定のピン形状に射出成型して成型品を取得する射出成型工程と、前記成型品の表面に保護膜を形成する保護膜形成工程と、を備える。   The invention according to claim 1 is a method of manufacturing a support pin for supporting a substrate to be heat-treated, and a resin material is injected into a predetermined pin shape in an atmosphere having an oxygen and / or moisture content of 10 ppm or less. An injection molding step of molding to obtain a molded product; and a protective film forming step of forming a protective film on the surface of the molded product.

請求項2の発明は、請求項1に記載の支持ピンの製造方法であって、前記保護膜形成工程が、静電粉体塗装によって前記成型品の表面にフッ素樹脂粉体を吹き付ける塗装工程、を備える。   Invention of Claim 2 is the manufacturing method of the support pin of Claim 1, Comprising: The said protective film formation process is a coating process which sprays fluororesin powder on the surface of the said molded article by electrostatic powder coating, Is provided.

請求項3の発明は、請求項1または2に記載の支持ピンの製造方法であって、前記保護膜形成工程が、表面が前記保護膜で覆われた前記成型品を、前記支持ピンが使用される加熱処理温度よりも高い温度で焼成する焼成工程、を備える。   Invention of Claim 3 is a manufacturing method of the support pin of Claim 1 or 2, Comprising: The said support pin uses the said molded product by which the said protective film formation process covered the surface with the said protective film. A baking step of baking at a temperature higher than the heat treatment temperature.

請求項4の発明は、請求項1から3のいずれかに記載の支持ピンの製造方法であって、前記樹脂材料が、導電性ポリエーテルエーテルケトンである。   The invention of claim 4 is the method for producing a support pin according to any one of claims 1 to 3, wherein the resin material is a conductive polyetheretherketone.

請求項5の発明は、請求項1から3のいずれかに記載の支持ピンの製造方法であって、前記樹脂材料が、全芳香族ポリイミド樹脂である。   The invention of claim 5 is the method for producing a support pin according to any one of claims 1 to 3, wherein the resin material is a wholly aromatic polyimide resin.

請求項6の発明は、請求項1から5のいずれかに記載の支持ピンの製造方法にて製造される。   The invention of claim 6 is manufactured by the method for manufacturing a support pin according to any one of claims 1 to 5.

請求項7の発明は、加熱処理を施される基板を支持する支持ピンであって、樹脂材料より形成された本体部と、前記本体部の表面を被膜する保護膜と、を備える。   The invention according to claim 7 is a support pin that supports the substrate to be heat-treated, and includes a main body portion formed of a resin material and a protective film that coats the surface of the main body portion.

請求項8の発明は、請求項7に記載の支持ピンであって、前記保護膜が、フロロカーボン膜である。   The invention according to claim 8 is the support pin according to claim 7, wherein the protective film is a fluorocarbon film.

請求項9の発明は、基板に対する加熱処理を実行する熱処理装置であって、前記加熱処理が施される前記基板を支持する部材として、請求項6から8のいずれかに記載の支持ピンを備える。   The invention according to claim 9 is a heat treatment apparatus for performing a heat treatment on the substrate, and includes the support pin according to any one of claims 6 to 8 as a member for supporting the substrate on which the heat treatment is performed. .

請求項10の発明は、基板に対する焼成処理を実行する基板焼成炉であって、前記焼成処理が施される前記基板を支持する部材として、請求項6から8のいずれかに記載の支持ピンを備える。   A tenth aspect of the present invention is a substrate baking furnace for performing a baking process on a substrate, wherein the support pin according to any one of the sixth to eighth aspects is used as a member that supports the substrate on which the baking process is performed. Prepare.

請求項1〜5に記載の発明では、酸素および/または水分の含有濃度が10ppm以下の雰囲気で射出成型して成型品を取得し、取得された成型品の表面に保護膜を形成する。これによって、基板に対する加熱処理時のような高温環境にて用いられた場合であっても熱分解や酸化分解が起こりにくい(すなわち、耐久性が高い)支持ピンを製造することができる。   In invention of Claims 1-5, it injection-molds in the atmosphere whose content concentration of oxygen and / or water is 10 ppm or less, acquires a molded article, and forms a protective film on the surface of the acquired molded article. As a result, it is possible to manufacture a support pin that hardly undergoes thermal decomposition or oxidative decomposition (that is, has high durability) even when used in a high temperature environment such as during heat treatment of the substrate.

特に、請求項2に記載の発明では、静電粉体塗装により成型品の表面にフッ素樹脂粉体を吹き付けるので、短時間かつ低コストで、均一な保護膜を生成することができる。   In particular, in the invention described in claim 2, since the fluororesin powder is sprayed on the surface of the molded product by electrostatic powder coating, a uniform protective film can be generated in a short time and at a low cost.

特に、請求項3に記載の発明では、表面が保護膜で覆われた成型品を、支持ピンが使用される加熱処理温度よりも高い温度で焼成するので、使用時に支持ピンから脱ガスが発生することがない。   In particular, in the invention according to claim 3, since the molded product whose surface is covered with a protective film is baked at a temperature higher than the heat treatment temperature at which the support pin is used, degassing occurs from the support pin during use. There is nothing to do.

請求項6に記載の発明に係る支持ピンは、酸素および/または水分の含有濃度が10ppm以下の雰囲気で射出成型された成型品の表面に保護膜が形成されているので、高温環境で使用しても、熱分解や酸化分解が起こりにくい。すなわち、高い耐久性を有する。   The support pin according to the invention of claim 6 is used in a high temperature environment because a protective film is formed on the surface of a molded product that is injection-molded in an atmosphere having an oxygen and / or moisture content of 10 ppm or less. However, thermal decomposition and oxidative decomposition hardly occur. That is, it has high durability.

請求項7,8に記載の発明に係る支持ピンは、樹脂材料より形成された本体部が保護膜により被膜されているので、高温環境で使用しても、熱分解や酸化分解が起こりにくい。すなわち、高い耐久性を有する。   In the support pins according to the seventh and eighth aspects of the present invention, the main body portion formed of a resin material is coated with a protective film, so that thermal decomposition and oxidative decomposition hardly occur even when used in a high temperature environment. That is, it has high durability.

請求項9に記載の発明に係る熱処理装置では、加熱処理が施される基板を支持する支持ピンが熱に対して高い耐久性を備えるので、支持ピンを交換する必要がない。   In the heat treatment apparatus according to the ninth aspect of the present invention, since the support pins that support the substrate on which the heat treatment is performed have high durability against heat, it is not necessary to replace the support pins.

請求項10に記載の発明に係る基板焼成炉では、焼成処理が施される基板を支持する支持ピンが熱に対して高い耐久性を備えるので、支持ピンを交換する必要がない。   In the substrate baking furnace according to the tenth aspect of the present invention, since the support pins that support the substrate subjected to the baking treatment have high durability against heat, there is no need to replace the support pins.

〈1.支持ピン〉
この発明の実施の形態に係る支持ピン100について説明する。支持ピン100は、基板に対する各種の処理を実行する基板処理装置を構成する部品である。特に、基板に対する加熱処理を実行する処理部(例えば、基板に対する焼成処理を実行する基板焼成炉1(図4参照))において、加熱処理を施される基板を支持する部材として適している。
<1. Support pin>
A support pin 100 according to an embodiment of the present invention will be described. The support pin 100 is a component that constitutes a substrate processing apparatus that performs various processes on the substrate. In particular, it is suitable as a member that supports a substrate to be subjected to heat treatment in a processing unit that performs heat treatment on the substrate (for example, a substrate baking furnace 1 that performs baking treatment on the substrate (see FIG. 4)).

支持ピン100は、図1に示すように、本体部101と、本体部101を被膜する保護膜であるフロロカーボン膜(CFx膜)102とを備えている。ただし、図1は、支持ピン100の断面図である。この支持ピン100の製造方法について図2を参照しながら説明する。ただし、図2は、支持ピン100の製造工程の流れを示す図である。   As shown in FIG. 1, the support pin 100 includes a main body 101 and a fluorocarbon film (CFx film) 102 that is a protective film that coats the main body 101. However, FIG. 1 is a cross-sectional view of the support pin 100. A method of manufacturing the support pin 100 will be described with reference to FIG. However, FIG. 2 is a diagram showing a flow of the manufacturing process of the support pin 100.

支持ピン100の製造にあたっては、はじめに、本体部101の成形材料を、所定の雰囲気にて、ピン形状に射出成型して支持ピン100の本体部101を形成する(ステップS1)。「所定の雰囲気」とは、酸素および/または水分の含有濃度が10ppm以下の雰囲気である。   In manufacturing the support pin 100, first, the molding material of the main body 101 is injection-molded into a pin shape in a predetermined atmosphere to form the main body 101 of the support pin 100 (step S1). The “predetermined atmosphere” is an atmosphere having an oxygen and / or moisture content concentration of 10 ppm or less.

ただし、本体部101の成形材料としては、樹脂材料を用いる。特に好ましくは、導電性PEEK(導電性ポリエーテルエーテルケトン)もしくは、全芳香族ポリイミド樹脂(例えば、導電性のベスペル(登録商標:デュポン社))を用いる。PEEKは、芳香族性のプラスチックであり、高耐熱性、耐薬品性、耐摩耗性、寸法安定性に優れている。また、加工性にも優れ、射出成形による加工が可能である。また、全芳香族ポリイミド樹脂は、超耐熱性プラスチックであり、高摩擦性、耐薬品性にも優れている。   However, a resin material is used as a molding material for the main body 101. Particularly preferably, conductive PEEK (conductive polyether ether ketone) or wholly aromatic polyimide resin (for example, conductive Vespel (registered trademark: DuPont)) is used. PEEK is an aromatic plastic and is excellent in high heat resistance, chemical resistance, wear resistance, and dimensional stability. Moreover, it is excellent in workability and can be processed by injection molding. Moreover, the wholly aromatic polyimide resin is a super heat-resistant plastic, and is excellent in high friction and chemical resistance.

ステップS1の処理は、具体的には次のように行われる。すなわち、まず、成形材料が充填される前の金型内を、所定の雰囲気とする(ステップS11)。より具体的には、金型内の雰囲気を、酸素(O2)および水分(H2O)を遮断した高純度の不活性ガス(例えば、窒素ガス)に置換することによって、金型内の雰囲気を、酸素(O2)の含有濃度が10ppm以下の雰囲気とする。もしくは、水分(H2O)の含有濃度が10ppm以下の雰囲気とする。特に好ましくは、酸素(O2)および水分(H2O)の総含有濃度が10ppm以下の雰囲気とする。 The process of step S1 is specifically performed as follows. That is, first, a predetermined atmosphere is set in the mold before the molding material is filled (step S11). More specifically, by replacing the atmosphere in the mold with a high-purity inert gas (for example, nitrogen gas) in which oxygen (O 2 ) and moisture (H 2 O) are blocked, The atmosphere is an atmosphere having an oxygen (O 2 ) concentration of 10 ppm or less. Alternatively, the atmosphere is a moisture (H 2 O) content concentration of 10 ppm or less. Particularly preferably, the atmosphere has a total concentration of oxygen (O 2 ) and moisture (H 2 O) of 10 ppm or less.

続いて、支持ピン100の成型材料を加熱して可塑化し、可塑化した成形材料を、所定の雰囲気(すなわち、酸素および/または水分の含有濃度が10ppm以下の雰囲気)とされている金型内に押し出し装置により射出充填する(ステップS12)。可塑化した材料が金型内で固化することによって、ピン形状の成型品(すなわち、本体部101)が得られる。ただし、成形材料の可塑化も酸素および/または水分の含有濃度が10ppm以下の雰囲気で行う。すなわち、射出される際だけでなく、可塑化される際にも成形材料が酸素等と接触することを防止する。   Subsequently, the molding material of the support pin 100 is heated and plasticized, and the plasticized molding material is put into a predetermined atmosphere (that is, an atmosphere having an oxygen and / or moisture content concentration of 10 ppm or less). Then, injection filling is performed by an extrusion device (step S12). When the plasticized material is solidified in the mold, a pin-shaped molded product (that is, the main body 101) is obtained. However, the molding material is also plasticized in an atmosphere having an oxygen and / or moisture content of 10 ppm or less. That is, the molding material is prevented from coming into contact with oxygen or the like not only when being injected, but also when being plasticized.

ステップS1の処理においては、材料が充填される前に予め金型内を酸素および/または水分の含有濃度が10ppm以下の雰囲気とするので、可塑化した材料が、酸素や水分と接触しにくくい。したがって、成型時に材料が酸化されにくい。このため、成型品である本体部101の表面に露出する末端基が酸化されにくく、また、本体部101の内部に酸素が拡散しにくい。したがって、焼成処理温度のような高温下にさらされた場合であっても熱分解や酸化分解が起こりにくい本体部101が得られる。ひいては、耐酸化特性、耐熱分解特性の高い支持ピン100が得られる。   In the process of step S1, since the oxygen and / or moisture content concentration in the mold is set to 10 ppm or less in advance before the material is filled, the plasticized material is unlikely to come into contact with oxygen or moisture. . Therefore, the material is not easily oxidized during molding. For this reason, the terminal group exposed on the surface of the main body 101 that is a molded product is not easily oxidized, and oxygen is not easily diffused into the main body 101. Therefore, it is possible to obtain the main body 101 that is unlikely to undergo thermal decomposition or oxidative decomposition even when exposed to a high temperature such as the firing temperature. As a result, the support pin 100 having high oxidation resistance and high thermal decomposition characteristics can be obtained.

続いて、ステップS1で得られた本体部101の表面に、静電粉体塗装によって、保護膜であるフロロカーボン膜102を形成する(ステップS2)。   Subsequently, a fluorocarbon film 102 as a protective film is formed on the surface of the main body 101 obtained in step S1 by electrostatic powder coating (step S2).

ステップS2の処理は、具体的には次のように行われる。すなわち、まず、本体部101に対して、電圧を印加して帯電させたフッ素樹脂粉体を吹き付けて本体部101の表面にフッ素樹脂を付着させる(ステップS21)。フッ素樹脂としては、例えば、FEP系(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)フッ素樹脂や、PFA系(テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル共重合体)フッ素樹脂を用いる。なお、静電量を変化させることによって、生成されるフロロカーボン膜102の膜厚を任意の厚さに制御することができる。ここでは、20μm以上の膜厚のフロロカーボン膜102を生成するように静電量を制御することが望ましい。   The process of step S2 is specifically performed as follows. That is, first, the fluororesin powder charged by applying a voltage is sprayed onto the main body 101 to attach the fluororesin to the surface of the main body 101 (step S21). As the fluororesin, for example, FEP (tetrafluoroethylene-hexafluoropropylene copolymer) fluororesin or PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer) fluororesin is used. Note that the thickness of the generated fluorocarbon film 102 can be controlled to an arbitrary thickness by changing the electrostatic amount. Here, it is desirable to control the electrostatic quantity so as to generate a fluorocarbon film 102 having a thickness of 20 μm or more.

続いて、表面にフッ素樹脂が付着した本体部101をアニールする(ステップS22)。より具体的には、所定の不活性ガス(例えば、窒素、アルゴン、ヘリウム等)中において、所定時間(好ましくは、20分間)、所定の焼成温度で、表面にフッ素樹脂が付着した本体部101を焼成する。ただし、この焼成温度は、少なくとも、製造された支持ピン100が使用される加熱処理温度よりも高い温度とする。したがって、より汎用性の高い支持ピン100を得るためには、この焼成温度は、各種の基板処理処理プロセスにおいて設定される加熱処理の温度条件のうちの最も高い温度(通常は、300℃程度)より高い温度とすることが望ましい。好ましくは、380℃で焼成することが望ましい。   Subsequently, the main body 101 with the fluororesin attached to the surface is annealed (step S22). More specifically, the main body 101 having a fluororesin attached to the surface in a predetermined inert gas (for example, nitrogen, argon, helium, etc.) for a predetermined time (preferably 20 minutes) at a predetermined baking temperature. Is fired. However, this firing temperature is at least higher than the heat treatment temperature at which the produced support pin 100 is used. Therefore, in order to obtain the support pin 100 with higher versatility, the firing temperature is the highest temperature among the temperature conditions of the heat treatment set in various substrate treatment processes (usually about 300 ° C.). A higher temperature is desirable. Preferably, firing at 380 ° C. is desirable.

ステップS2の処理によって、本体部101の表面にフロロカーボン膜102が形成される。ステップS1により得られた本体部101の表面には、部分的に、熱分解によって反応性に富む部分が露出する場合がある。このような状態の本体部101の表面にフロロカーボン膜102が形成されることによって、本体部101表面の熱分解された部分を覆う保護膜が形成される。すなわち、本体部101の表面に酸素よりも酸化力の強いフッ素の膜が形成されることによって、本体部101の表面がさらに酸化されにくい状態となる。これにより、支持ピン100の耐酸化特性、耐熱分解特性を、さらに向上させることができる。   By the process of step S2, the fluorocarbon film 102 is formed on the surface of the main body 101. On the surface of the main body 101 obtained in step S1, a highly reactive part may be partially exposed by thermal decomposition. By forming the fluorocarbon film 102 on the surface of the main body 101 in such a state, a protective film covering the thermally decomposed portion of the surface of the main body 101 is formed. That is, by forming a fluorine film having a stronger oxidizing power than oxygen on the surface of the main body 101, the surface of the main body 101 is further less oxidized. Thereby, the oxidation resistance characteristic and thermal decomposition resistance characteristic of the support pin 100 can be further improved.

また、ステップS2の処理においては、表面にフッ素樹脂を付着させた後に、本体部101をアニールするので、本体部101の表面に強固なフロロカーボン膜102を形成することができる。また、アニールすることによって、本体部101にフロロカーボン膜102を生成する際にフロロカーボン膜102中に生じた不要成分(例えば、分子量が小さくなったフロロカーボン)を昇華させることができる。これによって、支持ピン100の耐久性をさらに高めることができる。また、支持ピン100を基板焼成炉等で使用した際に、支持ピン100からこれら不要成分が脱ガスとして発生することがなく、脱ガスに起因する被処理基板の汚染も防止される。特に、支持ピン100が使用される温度よりも高い温度で焼成することによって、支持ピン100を使用する際に脱ガスが発生することを確実に防止することができる。   Further, in the process of step S2, since the main body 101 is annealed after the fluororesin is attached to the surface, a strong fluorocarbon film 102 can be formed on the surface of the main body 101. Further, by annealing, unnecessary components (for example, fluorocarbon having a reduced molecular weight) generated in the fluorocarbon film 102 when the fluorocarbon film 102 is formed on the main body 101 can be sublimated. Thereby, the durability of the support pin 100 can be further enhanced. Further, when the support pin 100 is used in a substrate baking furnace or the like, these unnecessary components are not generated from the support pin 100 as degassing, and contamination of the substrate to be processed due to degassing is prevented. In particular, by firing at a temperature higher than the temperature at which the support pin 100 is used, it is possible to reliably prevent degassing when the support pin 100 is used.

また、本体部101にフロロカーボン膜102を生成する方法として静電粉体塗装法を採用することによって、短時間かつ低コストで、均一なフロロカーボン膜102を生成することができる。   Further, by adopting an electrostatic powder coating method as a method for generating the fluorocarbon film 102 on the main body 101, the uniform fluorocarbon film 102 can be generated in a short time and at a low cost.

〈2.基板焼成炉〉
上述した通り、支持ピン100は、加熱処理を施される基板を支持する部材として適している。そこで次に、加熱処理を施される基板を支持する部材として支持ピン100を備える基板焼成炉1について説明する。
<2. Substrate firing furnace>
As described above, the support pin 100 is suitable as a member that supports the substrate to be heat-treated. Then, next, the board | substrate baking furnace 1 provided with the support pin 100 as a member which supports the board | substrate which heat-processes is demonstrated.

〈2−1.構成〉
基板焼成炉1の構成について図3〜図5を参照しながら説明する。図3は、基板焼成炉1の外観を示す概略斜視図である。図4は、図3に示す基板焼成炉1の横断面図(K1−K1断面図)である。また、図5は、図3に示す基板焼成炉1の縦断面図(K2−K2断面図)である。
<2-1. Constitution>
The configuration of the substrate baking furnace 1 will be described with reference to FIGS. FIG. 3 is a schematic perspective view showing the appearance of the substrate baking furnace 1. 4 is a cross-sectional view (K1-K1 cross-sectional view) of the substrate baking furnace 1 shown in FIG. FIG. 5 is a longitudinal sectional view (K2-K2 sectional view) of the substrate baking furnace 1 shown in FIG.

基板焼成炉1は、開口部を有する箱形の炉体10と、炉体10の開口部を塞ぐルーバタイプのシャッター30とを備えている。   The substrate baking furnace 1 includes a box-shaped furnace body 10 having an opening, and a louver-type shutter 30 that closes the opening of the furnace body 10.

〈i.炉体内部の構成〉
炉体10は、基板焼成炉1の本体を構成する筐体であり、断熱材を用いて成型されている。炉体10はその内部に基板格納部11、ヒータ12、ファン13、耐熱HEPAフィルタ14を収納している。
<I. Configuration inside the furnace body>
The furnace body 10 is a housing that constitutes the main body of the substrate firing furnace 1, and is molded using a heat insulating material. The furnace body 10 houses therein a substrate storage part 11, a heater 12, a fan 13, and a heat-resistant HEPA filter 14.

炉体10の内側面の一方(内側面S1)には、基板格納部11の内部空間V(以下において「焼成空間V」という)に熱を供給するヒータ12が備えられている。また、他方の内側面(内側面S2)には、ファン13が備えられている。また、ファン13と基板格納部11との間には耐熱HEPAフィルタ14が介挿されている。すなわち、ファン13が矢印AR1〜AR4のように炉体10内の気流を循環させることによって、焼成空間V内を温度ムラなく均質に所定の焼成処理温度に保つことができる。なお、ファン13とヒータ12の位置は逆でもよい。   One of the inner side surfaces (inner side surface S1) of the furnace body 10 is provided with a heater 12 that supplies heat to the internal space V (hereinafter referred to as “firing space V”) of the substrate storage unit 11. Further, a fan 13 is provided on the other inner surface (inner surface S2). Further, a heat resistant HEPA filter 14 is interposed between the fan 13 and the substrate storage unit 11. That is, the fan 13 circulates the airflow in the furnace body 10 as indicated by arrows AR1 to AR4, whereby the firing space V can be uniformly maintained at a predetermined firing temperature without temperature unevenness. The positions of the fan 13 and the heater 12 may be reversed.

〈基板格納部〉
基板格納部11は、複数の基板を多段状態に格納するための格納部であり、本体を構成する壁面110のうち、特に側壁面110a,110bはパンチングメタルによって成型されている。
<Board storage part>
The substrate storage unit 11 is a storage unit for storing a plurality of substrates in a multistage state, and among the wall surfaces 110 constituting the main body, particularly the side wall surfaces 110a and 110b are formed of punching metal.

基板格納部11を構成する筐体の内背面T1には、複数の炉内支持部材111の基端部がそれぞれ固定されている。炉内支持部材111は、基板格納部11内において、基板Wを片持ち状態で支持する基板支持部材である。炉内支持部材111の長尺方向の長さは、図4に示すように、基板格納部11に格納された基板Wの奥行き方向の長さと同程度の長さを有している。   The base end portions of the plurality of in-furnace support members 111 are respectively fixed to the inner back surface T1 of the housing constituting the substrate storage unit 11. The in-furnace support member 111 is a substrate support member that supports the substrate W in a cantilever state in the substrate storage unit 11. As shown in FIG. 4, the length of the in-furnace support member 111 in the longitudinal direction is approximately the same as the length of the substrate W stored in the substrate storage unit 11 in the depth direction.

基板格納部11を構成する筐体の内側面T2,T3はパンチングプレートで構成され、複数の補助支持部材112の基端部がそれぞれ固定されている。補助支持部材112は、基板格納部11内において、炉内支持部材111に支持された基板Wを、補助的に支持するための支持部材である。補助支持部材112の長尺方向の長さは、基板焼成炉1に対して基板を搬出入する基板搬送装置の搬送フォークと干渉しない程度の長さとする。   Inner side surfaces T2 and T3 of the housing constituting the substrate storage unit 11 are formed of punching plates, and the base end portions of the plurality of auxiliary support members 112 are fixed to each other. The auxiliary support member 112 is a support member for supporting the substrate W supported by the in-furnace support member 111 in the substrate storage unit 11. The length of the auxiliary support member 112 in the longitudinal direction is set to a length that does not interfere with the transport fork of the substrate transport apparatus that carries the substrate in and out of the substrate baking furnace 1.

基板格納部11の内背面T1の同一水平位置には、複数の炉内支持部材111(図4においては3個)の基端部が固定されている。また、基板格納部11の内側面T2,T3のそれぞれには、同一水平位置に、複数の補助支持部材112(図4においては5個)の基端部がそれぞれ固定されている。互いに同一水平位置にその基端部が固定されたこれら支持部材の集合は、同一の基板Wを支持するために供される。すなわち、基板格納部11内に格納される複数の基板Wのそれぞれは、図5に示されるように、同一水平位置に固定された支持部材の集合によって水平に支持される。   Base end portions of a plurality of in-furnace support members 111 (three in FIG. 4) are fixed at the same horizontal position on the inner back surface T1 of the substrate storage portion 11. Further, the base end portions of a plurality of auxiliary support members 112 (five in FIG. 4) are fixed to the inner side surfaces T2 and T3 of the substrate storage portion 11 at the same horizontal position. A group of these support members whose base end portions are fixed at the same horizontal position is provided to support the same substrate W. That is, each of the plurality of substrates W stored in the substrate storage unit 11 is supported horizontally by a set of support members fixed at the same horizontal position, as shown in FIG.

さらに、図5に示されるように、基板格納部11の内背面T1および内側面T2,T3には、鉛直方向について、これら同一水平位置に固定された支持部材の集合が所定の配置間隔(ラックピッチ)dをおいて所定数(図5においては簡略化して示しているが、実際は、例えば40段程度)設けられている。これによって、基板格納部11は、それぞれ水平に支持された基板Wを多段状態で複数格納することができる。   Further, as shown in FIG. 5, a set of support members fixed at the same horizontal position in the vertical direction is arranged on the inner back surface T1 and the inner side surfaces T2 and T3 of the substrate storage portion 11 with a predetermined arrangement interval (rack). A predetermined number (pitch) d is provided (in FIG. 5, it is shown in a simplified manner, but actually, for example, about 40 steps). Thereby, the substrate storage unit 11 can store a plurality of horizontally supported substrates W in a multistage state.

〈支持ピン〉
炉内支持部材111および補助支持部材112のそれぞれには、支持部材111,112上に載置された基板Wの裏面を支持する部材として、複数個の支持ピン100が配設されている。より具体的には、図6に示すように、支持部材111,112には、所定ピッチで支持ピン100を挿入するための挿入孔Kが形成されており、各挿入孔Kに支持ピン100が挿設されることによって、支持部材111,112上に複数の支持ピン100が所定ピッチで配設される。支持ピン100の具体的な構成およびその製造方法は、上述した通りである。
<Support pin>
Each of the in-furnace support member 111 and the auxiliary support member 112 is provided with a plurality of support pins 100 as members for supporting the back surface of the substrate W placed on the support members 111 and 112. More specifically, as shown in FIG. 6, the support members 111 and 112 are formed with insertion holes K for inserting the support pins 100 at a predetermined pitch, and the support pins 100 are inserted into the respective insertion holes K. By being inserted, the plurality of support pins 100 are arranged on the support members 111 and 112 at a predetermined pitch. The specific configuration of the support pin 100 and the manufacturing method thereof are as described above.

〈ii.シャッターの構成〉
再び図3を参照する。シャッター30は、全体位置規制部材31と、全体位置規制部31上に鉛直方向に積層載置された複数個のルーバ32a,32b,32cとを備える。
<Ii. Shutter Configuration>
Refer to FIG. 3 again. The shutter 30 includes an overall position restricting member 31 and a plurality of louvers 32a, 32b, and 32c stacked on the overall position restricting portion 31 in the vertical direction.

全体位置規制部材31には昇降機構(図示省略)が取り付けられており、上下方向(矢印AR5)に昇降可能である。全体位置規制部材31に取り付けられた昇降機構を制御することによって、全体位置規制部材31およびそれに積層載置された複数のルーバ32a,32b,32cを一体に昇降させることができる。   A lifting mechanism (not shown) is attached to the overall position regulating member 31 and can be moved up and down (arrow AR5). By controlling the lifting mechanism attached to the overall position restricting member 31, the overall position restricting member 31 and the plurality of louvers 32a, 32b, and 32c stacked thereon can be raised and lowered integrally.

さらに、複数のルーバ32a,32b,32cのそれぞれにも昇降機構(図示省略)が取り付けられており、各ルーバ32a,32b,32cは上下方向(矢印AR6,7,8)に昇降可能である。例えば、ルーバ32bに取り付けられた昇降機構を制御することによって、ルーバ32bおよびそれに積層載置されたルーバ32aを一体に昇降させることができる。すなわち、ルーバ32bを上方に移動させることによって、ルーバ32cとルーバ32bとの間に開口部Q(図5)を形成することができる。   Further, an elevating mechanism (not shown) is also attached to each of the plurality of louvers 32a, 32b, 32c, and each louver 32a, 32b, 32c can be raised and lowered in the vertical direction (arrows AR6, 7, 8). For example, by controlling an elevating mechanism attached to the louver 32b, the louver 32b and the louver 32a stacked thereon can be raised and lowered integrally. That is, by moving the louver 32b upward, the opening Q (FIG. 5) can be formed between the louver 32c and the louver 32b.

つまり、ルーバ32a,32b,32cおよび全体位置規制部材31のそれぞれを昇降制御することによって、基板格納部11の多段構造のうちの任意の段に対向した開口部を形成することができる。これによって、図5に示すように、基板焼成炉1に対する基板の搬出入を行う基板搬送装置(全体図は図示省略)の備える搬送フォーク24が、基板格納部11の多段構造のうちの任意の段にアクセス(より具体的には、任意の段に載置された基板Wを取り出したり、任意の段に基板Wを載置すること)が可能となる。また、ルーバ32a,32b,32cの移動距離を適切に設定することによって、形成される開口部の鉛直方向についての長さを適正値(より具体的には、搬送フォーク24が基板Wを載置した状態で挿通可能な最小の値)とすることができる。   In other words, by controlling the louvers 32 a, 32 b, 32 c and the overall position regulating member 31 to move up and down, it is possible to form an opening facing an arbitrary stage of the multistage structure of the substrate storage unit 11. As a result, as shown in FIG. 5, the transfer fork 24 provided in the substrate transfer apparatus (the whole figure is not shown) for carrying the substrate in and out of the substrate baking furnace 1 is used for any of the multistage structures of the substrate storage unit 11 It is possible to access a stage (more specifically, take out the substrate W placed on an arbitrary stage or place the substrate W on an arbitrary stage). Further, by appropriately setting the moving distance of the louvers 32a, 32b, and 32c, the length of the formed opening in the vertical direction is set to an appropriate value (more specifically, the transport fork 24 places the substrate W thereon. The minimum value that can be inserted in this state).

〈2−2.基板焼成処理〉
基板焼成炉1における基板焼成処理は、以下のように実行される。
<2-2. Substrate firing process>
The substrate baking process in the substrate baking furnace 1 is performed as follows.

まず、基板搬送装置1は、基板焼成処理を実行するに先立って、予めヒータ12によって焼成空間Vに熱の供給を開始し、焼成空間Vを焼成処理温度(例えば300℃)まで昇温する。   First, prior to executing the substrate baking process, the substrate transfer apparatus 1 starts supplying heat to the baking space V in advance by the heater 12 and raises the temperature of the baking space V to a baking temperature (for example, 300 ° C.).

焼成空間Vが焼成処理温度まで昇温されると、基板の焼成処理が開始される。すなわち、基板搬送装置(図示省略)が、基板焼成炉1に対する基板Wの搬出入を開始する。より具体的には、基板搬送装置が搬送フォーク24(図5参照)によって未処理基板を基板焼成炉1内に搬入して基板焼成炉1内の所定の炉内支持部材111上に載置するとともに、炉内支持部材111上に載置された焼成処理済みの基板(すなわち、基板焼成炉1内で所定時間焼成された基板)を支持して基板焼成炉1内より搬出する。これにより、複数の基板Wに対する焼成処理が順次実行される。   When the firing space V is heated to the firing treatment temperature, the firing treatment of the substrate is started. That is, the substrate transfer device (not shown) starts to carry in / out the substrate W with respect to the substrate baking furnace 1. More specifically, the substrate transfer device carries the unprocessed substrate into the substrate baking furnace 1 by the transfer fork 24 (see FIG. 5) and places it on a predetermined in-furnace support member 111 in the substrate baking furnace 1. At the same time, the substrate that has been baked and placed on the in-furnace support member 111 (that is, the substrate that has been baked for a predetermined time in the substrate baking furnace 1) is supported and carried out of the substrate baking furnace 1. Thereby, the baking process with respect to the some board | substrate W is performed sequentially.

〈3.効果〉
上記の実施の形態に係る支持ピン100は、酸素および/または水分の含有濃度が10ppm以下の雰囲気における射出成型により成型された本体部101をフロロカーボン膜102で被膜した構成を有している。したがって、高温環境下(例えば、基板焼成炉1の焼成空間V内)で使用された場合であっても、熱分解や酸化分解が起こりにくい。すなわち、耐久性が高い。
<3. effect>
The support pin 100 according to the above embodiment has a configuration in which the main body portion 101 molded by injection molding in an atmosphere having an oxygen and / or moisture content concentration of 10 ppm or less is coated with a fluorocarbon film 102. Therefore, even when used in a high temperature environment (for example, in the firing space V of the substrate firing furnace 1), thermal decomposition and oxidative decomposition are unlikely to occur. That is, the durability is high.

また、上記の実施の形態に係る基板焼成炉1は、焼成処理を施される基板を支持する部材として、耐久性の高い支持ピン100を備えるので、少なくとも、一般的な基板焼成炉の寿命(10〜15年程度)が尽きるまでに、支持ピン100が抜け落ちるといった事態は生じない。つまり、基板を支持する部材を交換する必要がない。したがって、部材交換に係るコスト、部材交換のためにライン停止することに起因する損害等が生じない。   In addition, since the substrate baking furnace 1 according to the above embodiment includes the highly durable support pins 100 as members that support the substrate to be subjected to the baking treatment, at least the life of a general substrate baking furnace ( The situation that the support pin 100 falls off by about 10 to 15 years) will not occur. That is, it is not necessary to replace the member that supports the substrate. Therefore, there are no costs associated with member replacement, damage caused by stopping the line for member replacement, and the like.

〈4.変形例〉
上記の実施の形態においては、静電粉体塗装により本体部101にフロロカーボン膜102を生成する構成としていたが、熱CVD(Chemical Vapor Deposition、化学的気相成長)、プラズマCVD(Plasma Enhanced CVD(PECVD)、プラズマ化学気相成長法)により本体部101にフロロカーボン膜102を生成してもよい。
<4. Modification>
In the above embodiment, the fluorocarbon film 102 is generated on the main body 101 by electrostatic powder coating. However, thermal CVD (Chemical Vapor Deposition), plasma CVD (Plasma Enhanced CVD ( The fluorocarbon film 102 may be formed on the main body 101 by PECVD) or plasma enhanced chemical vapor deposition.

また、上記の実施の形態においては、支持ピン100を備える基板焼成炉1について説明したが、支持ピン100は、基板焼成炉1以外の各種の装置においても、加熱処理を施される基板を支持する部材として用いることができる。例えば、酸化拡散処理を施される基板を支持する部材として支持ピン100を備える酸化拡散炉、CVD処理を施される基板を支持する部材として支持ピン100を備えるCVD炉、その面上に支持ピン100を備えるホットプレート(加熱プレート)、搬送フォーク上に取り付けられ、被搬送基板を支持する部材として支持ピン100を備える基板搬送装置等が実現可能である。いずれの装置に用いた場合であっても、上述した基板焼成炉1と同様、基板を支持する部材が耐久性の高い支持ピン100であるため、基板を支持する部材を交換する必要がなくなり、部材交換に係るコスト、部材交換のためにライン停止することに起因する損害の発生等の問題が生じない。   Moreover, in said embodiment, although the substrate baking furnace 1 provided with the support pin 100 was demonstrated, the support pin 100 also supports the board | substrate which is heat-processed also in various apparatuses other than the substrate baking furnace 1. FIG. It can be used as a member. For example, an oxidation diffusion furnace provided with a support pin 100 as a member for supporting a substrate subjected to oxidation diffusion treatment, a CVD furnace equipped with a support pin 100 as a member for supporting a substrate subjected to CVD treatment, and a support pin on the surface thereof It is possible to realize a hot plate (heating plate) including 100, a substrate transfer device that is mounted on a transfer fork, and includes a support pin 100 as a member that supports the transfer target substrate. Even if it is a case where it is used for any apparatus, since the member supporting the substrate is a highly durable support pin 100 as in the above-described substrate baking furnace 1, it is not necessary to replace the member supporting the substrate. There are no problems such as costs associated with member replacement, damage caused by stopping the line for member replacement, and the like.

支持ピンの断面図である。It is sectional drawing of a support pin. 支持ピンの製造工程の流れを示す図である。It is a figure which shows the flow of the manufacturing process of a support pin. 基板焼成炉の概略斜視図である。It is a schematic perspective view of a substrate baking furnace. 基板焼成炉の横断面図である。It is a cross-sectional view of a substrate baking furnace. 基板焼成炉の縦断面図である。It is a longitudinal cross-sectional view of a substrate baking furnace. 支持部材の拡大斜視図である。It is an expansion perspective view of a supporting member. 従来の支持ピンが抜け落ちる様子を模式的に示す図である。It is a figure which shows typically a mode that the conventional support pin falls out.

符号の説明Explanation of symbols

1 基板焼成炉
100 支持ピン
101 本体部
102 フロロカーボン膜
DESCRIPTION OF SYMBOLS 1 Substrate baking furnace 100 Support pin 101 Main part 102 Fluorocarbon film

Claims (10)

加熱処理を施される基板を支持する支持ピンの製造方法であって、
樹脂材料を、酸素および/または水分の含有濃度が10ppm以下の雰囲気で所定のピン形状に射出成型して成型品を取得する射出成型工程と、
前記成型品の表面に保護膜を形成する保護膜形成工程と、
を備えることを特徴とする支持ピンの製造方法。
A method of manufacturing a support pin for supporting a substrate to be heat-treated,
An injection molding step of obtaining a molded product by injection molding a resin material into a predetermined pin shape in an atmosphere having a concentration of oxygen and / or moisture of 10 ppm or less;
A protective film forming step of forming a protective film on the surface of the molded article;
A method of manufacturing a support pin, comprising:
請求項1に記載の支持ピンの製造方法であって、
前記保護膜形成工程が、
静電粉体塗装によって前記成型品の表面にフッ素樹脂粉体を吹き付ける塗装工程、
を備えることを特徴とする支持ピンの製造方法。
It is a manufacturing method of the support pin according to claim 1,
The protective film forming step includes
Painting process of spraying fluororesin powder on the surface of the molded product by electrostatic powder coating,
A method of manufacturing a support pin, comprising:
請求項1または2に記載の支持ピンの製造方法であって、
前記保護膜形成工程が、
表面が前記保護膜で覆われた前記成型品を、前記支持ピンが使用される加熱処理温度よりも高い温度で焼成する焼成工程、
を備えることを特徴とする支持ピンの製造方法。
It is a manufacturing method of the support pin according to claim 1 or 2,
The protective film forming step includes
A firing step of firing the molded article whose surface is covered with the protective film at a temperature higher than a heat treatment temperature at which the support pins are used;
A method of manufacturing a support pin, comprising:
請求項1から3のいずれかに記載の支持ピンの製造方法であって、
前記樹脂材料が、導電性ポリエーテルエーテルケトンであることを特徴とする支持ピンの製造方法。
A method for manufacturing the support pin according to any one of claims 1 to 3,
The method for producing a support pin, wherein the resin material is conductive polyetheretherketone.
請求項1から3のいずれかに記載の支持ピンの製造方法であって、
前記樹脂材料が、全芳香族ポリイミド樹脂であることを特徴とする支持ピンの製造方法。
A method for manufacturing the support pin according to any one of claims 1 to 3,
The method for producing a support pin, wherein the resin material is a wholly aromatic polyimide resin.
請求項1から5のいずれかに記載の支持ピンの製造方法にて製造されたことを特徴とする支持ピン。   A support pin manufactured by the method for manufacturing a support pin according to claim 1. 加熱処理を施される基板を支持する支持ピンであって、
樹脂材料より形成された本体部と、
前記本体部の表面を被膜する保護膜と、
を備えることを特徴とする支持ピン。
A support pin for supporting a substrate to be heat-treated,
A main body formed of a resin material;
A protective film for coating the surface of the main body,
A support pin comprising:
請求項7に記載の支持ピンであって、
前記保護膜が、フロロカーボン膜であることを特徴とする支持ピン。
The support pin according to claim 7,
A support pin, wherein the protective film is a fluorocarbon film.
基板に対する加熱処理を実行する熱処理装置であって、
前記加熱処理が施される前記基板を支持する部材として、請求項6から8のいずれかに記載の支持ピンを備えることを特徴とする熱処理装置。
A heat treatment apparatus for performing a heat treatment on a substrate,
A heat treatment apparatus comprising the support pin according to any one of claims 6 to 8 as a member that supports the substrate on which the heat treatment is performed.
基板に対する焼成処理を実行する基板焼成炉であって、
前記焼成処理が施される前記基板を支持する部材として、請求項6から8のいずれかに記載の支持ピンを備えることを特徴とする基板焼成炉。
A substrate firing furnace for performing a firing process on a substrate,
A substrate baking furnace comprising the support pin according to claim 6 as a member for supporting the substrate subjected to the baking treatment.
JP2007109180A 2007-04-18 2007-04-18 Support pin manufacturing method, support pin, heat treatment apparatus, and substrate firing furnace Expired - Fee Related JP4317883B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007109180A JP4317883B2 (en) 2007-04-18 2007-04-18 Support pin manufacturing method, support pin, heat treatment apparatus, and substrate firing furnace
TW097113688A TW200908198A (en) 2007-04-18 2008-04-15 Manufacturing method of support pin, support pin, heat treatment device and base board sintering furnace
KR1020080034521A KR100976659B1 (en) 2007-04-18 2008-04-15 Supporting pin producing method, supporting pin, heat processing apparatus and substrate incinerator
CN2008100933516A CN101290902B (en) 2007-04-18 2008-04-18 Manufacturing method of support pin, support pin, heat treatment device and base board sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109180A JP4317883B2 (en) 2007-04-18 2007-04-18 Support pin manufacturing method, support pin, heat treatment apparatus, and substrate firing furnace

Publications (2)

Publication Number Publication Date
JP2008270408A true JP2008270408A (en) 2008-11-06
JP4317883B2 JP4317883B2 (en) 2009-08-19

Family

ID=40035083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109180A Expired - Fee Related JP4317883B2 (en) 2007-04-18 2007-04-18 Support pin manufacturing method, support pin, heat treatment apparatus, and substrate firing furnace

Country Status (4)

Country Link
JP (1) JP4317883B2 (en)
KR (1) KR100976659B1 (en)
CN (1) CN101290902B (en)
TW (1) TW200908198A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504039A (en) * 2011-02-01 2014-02-13 株式会社テラセミコン Substrate support boat and support unit using the same
JP2014511558A (en) * 2011-02-01 2014-05-15 株式会社テラセミコン Substrate support boat and support unit using the same
JP2014512106A (en) * 2011-04-13 2014-05-19 株式会社テラセミコン Support unit for substrate support

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104201B1 (en) * 2010-07-13 2012-01-10 (주)에스엠텍 Heat treatment apparatus for substrate
KR101310096B1 (en) * 2011-04-29 2013-09-23 참엔지니어링(주) Unit for supporting substrate and apparatus for treating substrate using the same
KR102446726B1 (en) 2015-09-11 2022-09-26 삼성전자주식회사 transparent plate and substrate processing apparatus
CN106894002A (en) * 2017-03-31 2017-06-27 昆山国显光电有限公司 A kind of PECVD film formation devices and its film build method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354618A (en) * 1998-06-05 1999-12-24 Tokyo Electron Ltd Processor
JP2002130959A (en) * 2000-10-24 2002-05-09 Tabai Espec Corp Work support for loading device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279548A (en) * 1993-12-28 1996-10-22 Sharp Corp Pin used for hot plate type proximity bake furnace and furnace using it
KR20060063386A (en) * 2004-12-07 2006-06-12 삼성전자주식회사 Thin film manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354618A (en) * 1998-06-05 1999-12-24 Tokyo Electron Ltd Processor
JP2002130959A (en) * 2000-10-24 2002-05-09 Tabai Espec Corp Work support for loading device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504039A (en) * 2011-02-01 2014-02-13 株式会社テラセミコン Substrate support boat and support unit using the same
JP2014511558A (en) * 2011-02-01 2014-05-15 株式会社テラセミコン Substrate support boat and support unit using the same
JP2014512106A (en) * 2011-04-13 2014-05-19 株式会社テラセミコン Support unit for substrate support

Also Published As

Publication number Publication date
KR100976659B1 (en) 2010-08-18
TW200908198A (en) 2009-02-16
CN101290902B (en) 2011-01-12
CN101290902A (en) 2008-10-22
JP4317883B2 (en) 2009-08-19
KR20080093889A (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4317883B2 (en) Support pin manufacturing method, support pin, heat treatment apparatus, and substrate firing furnace
KR101891292B1 (en) Loadlock batch ozone cure
US8237092B2 (en) Apparatus and method for heating substrate and coating and developing system
JP4438008B2 (en) Substrate processing equipment
US20070167029A1 (en) Thermal processing system, components, and methods
US6879778B2 (en) Batch furnace
TW200411960A (en) Variable heater element for low to high temperature ranges
JP2005538566A (en) Substrate heating method in temperature variable process using chuck with fixed temperature
US11420228B2 (en) Apparatus and method for removing bubbles in flexible substrate
KR100831906B1 (en) Temperature control room and vacuum processing apparatus using the same
US20060083495A1 (en) Variable heater element for low to high temperature ranges
KR101247160B1 (en) Thin film deposition apparatus
JP5706737B2 (en) Substrate cooling device, substrate curing device, and substrate manufacturing method
JP4035141B2 (en) Annealing method
KR102577000B1 (en) Apparatus for manufacturing Organic Light Emitting Diodos
TWI802205B (en) Heat treatment device
WO2004013901A2 (en) Batch furnace
JP2000100807A (en) Substrate thermal treatment equipment
KR101612503B1 (en) Thin film deposition apparatus
KR20190048380A (en) Chamber for Processing a Semi-conductor Substrate
WO2020241489A1 (en) Heating device and heating method
JP2005150699A (en) Heat treatment apparatus and heat treatment method
JP2004014753A (en) Process of heat treatment
KR20080062304A (en) Control method of manufacturing flat panel display
JPH11283727A (en) Resistor, heat treating board and heat treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees