JP2008254080A - 加工工具寿命検出方法及び加工工具寿命検出装置 - Google Patents

加工工具寿命検出方法及び加工工具寿命検出装置 Download PDF

Info

Publication number
JP2008254080A
JP2008254080A JP2007096018A JP2007096018A JP2008254080A JP 2008254080 A JP2008254080 A JP 2008254080A JP 2007096018 A JP2007096018 A JP 2007096018A JP 2007096018 A JP2007096018 A JP 2007096018A JP 2008254080 A JP2008254080 A JP 2008254080A
Authority
JP
Japan
Prior art keywords
moving average
machining tool
value
machining
load value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007096018A
Other languages
English (en)
Other versions
JP5132970B2 (ja
Inventor
Tomoaki Nakasuji
智明 中筋
Masahiko Hasegawa
正彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007096018A priority Critical patent/JP5132970B2/ja
Publication of JP2008254080A publication Critical patent/JP2008254080A/ja
Application granted granted Critical
Publication of JP5132970B2 publication Critical patent/JP5132970B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】加工工具の摩耗や損傷などによる寿命を正確に検知することができる加工工具寿命検出方法を提供する。
【解決手段】加工工具3を駆動するための主軸モータ6の電流値をリアルタイムで測定する電流計7と、あらかじめ設定された移動平均時間分の電流計7にて測定された電流値から移動平均負荷値を算出する移動平均処理部13と、加工工具3の寿命を判定するための基準となる基準移動平均負荷値を移動平均処理部にて算出された移動平均負荷値から決定する基準値演算部18と、基準移動平均負荷値を記憶する基準値記憶部17と、移動平均負荷値と基準移動平均負荷値とを比較して加工工具3の寿命を判定する比較判定部16とを備える。
【選択図】図2

Description

この発明は、マシニングセンタなどの機械加工の砥石などの加工工具において、摩耗や損傷などによる寿命を正確に検知することができる加工工具寿命検出方法及び加工工具寿命検出装置に関するものである。
従来の機械加工における加工工具の摩耗や損傷などを直接観察することなく、加工工具の寿命を検出する加工工具寿命検出方法として、主軸モータの電力、動力、トルク、電流値などをリアルタイムで測定し、基準値と比較することで加工工具寿命を判定する方法がある。例えば特許文献1に示すように、主軸モータにおける1部品の加工すべての累計消費電力量と基準消費電力量とを比較して、加工工具の寿命を判定している。また、累積消費電力量は、加工していない空転している時に消費される電力相当分を除いて比較している。さらに、その基準消費電力量は新品加工工具で加工した1つ目の部品加工データを使用している。
また、特許文献2に示すように、ノイズを低減させるため空気静圧軸受を使用し、主軸モータのリアルタイムでの消費動力と、新品1個目の加工基準データとを比較して、加工基準データ以上のときには加工工具寿命に達したと判定する。このときの加工基準データは、新品加工工具で加工した1つ目の部品加工の同一時間での値を使用しており、加工場所(加工スタートからの時間)により基準値が異なっている。また、特許文献3に示すように、主軸モータのリアルタイムでの電力値や電力値の変動幅と基準値とを比較して加工工具寿命と判定する。このときの基準値としては事前に設定した値を使用している。
特開2005−22052号公報 特許登録第3645353号公報 特開平6−320396号公報
従来の加工工具寿命検出方法は、加工による負荷を主軸モータの累積電力量や動力または電力などの絶対値に対して、一定の閾値を設定しその閾値を超えたことにより加工工具の寿命判定を行っている為、加工機内に発生する突発的な振動、加工工具の製造バラツキによる加工工具寿命の違い、温度などの使用環境の変化・変動、被削時の前加工形状などに起因する主軸動力の変化に対しては正確に加工工具寿命を判定できないという問題点があった。特に、特許文献2および特許文献3のようにリアルタイムでの測定値を基準値と比較した場合、加工工具寿命とは関係のない突発的な外乱で加工工具寿命と判定してしまう可能性が高い。
また、特許文献1および特許文献2のように新品加工工具の初期状態を基準とすることで比較的加工工具の製造バラツキは反映できるが、初期状態のみで加工工具寿命が決定できるものではなく、寿命判定には十分ではなかった。すなわち、加工工具のバラツキや環境の違い等により基準値に対する寿命比率が加工工具によって変わるため、正確な検知ができないという問題点があった。特に、ガラスなどの硬脆材料の電着砥石を用いた加工においては、砥石の製造バラツキがエンドミルやドリルなどの切削加工工具の製造バラツキに比較して大きく、加工初期値を基準値としても正確な寿命検知ができないという問題点があった。
この発明は上記のような課題を解決するためになされたものであり、加工工具が寿命に達する前の事前予知を行い、加工工具の寿命を信頼性の高く判定できる加工工具寿命検出方法及び加工工具寿命検出装置を提供することである。
この発明は、被加工物の加工を行う加工工具の寿命を検出する加工工具寿命検出方法において、加工工具が被加工物の加工中における負荷値をリアルタイムで測定し、当該測定におけるあらかじめ設定された移動平均時間の移動平均負荷値を算出し、移動平均負荷値から基準となる基準移動平均負荷値を設定し、基準移動平均負荷値と移動平均負荷値とを比較して加工工具の寿命を判定するものである。
また、この発明は、加工工具を駆動するための駆動手段の負荷値をリアルタイムで測定する測定部と、あらかじめ設定された移動平均時間分の測定部にて測定された負荷値から移動平均負荷値を算出する移動平均処理部と、加工工具の寿命を判定するための基準となる基準移動平均負荷値を移動平均処理部にて算出された移動平均負荷値から決定する基準値演算部と、基準移動平均負荷値を記憶する基準値記憶部と、移動平均負荷値と基準移動平均負荷値とを比較して加工工具の寿命を判定する比較判定部とを備えたものである。
この発明の加工工具寿命検出方法は、被加工物の加工を行う加工工具の寿命を検出する加工工具寿命検出方法において、加工工具が被加工物の加工中における負荷値をリアルタイムで測定し、当該測定におけるあらかじめ設定された移動平均時間の移動平均負荷値を算出し、移動平均負荷値から基準となる基準移動平均負荷値を設定し、基準移動平均負荷値と移動平均負荷値とを比較して加工工具の寿命を判定するので、加工工具の摩耗や損傷などによる寿命を正確に検知することができる。
また、この発明の加工工具寿命検出装置は、加工工具を駆動するための駆動手段の負荷値をリアルタイムで測定する測定部と、あらかじめ設定された移動平均時間分の測定部にて測定された負荷値から移動平均負荷値を算出する移動平均処理部と、加工工具の寿命を判定するための基準となる基準移動平均負荷値を移動平均処理部にて算出された移動平均負荷値から決定する基準値演算部と、基準移動平均負荷値を記憶する基準値記憶部と、移動平均負荷値と基準移動平均負荷値とを比較して加工工具の寿命を判定する比較判定部とを備えたので、加工工具の摩耗や損傷などによる寿命を正確に検知することができる。
実施の形態1.
以下、本願発明の実施の形態について説明する。図1はこの発明の実施の形態1における被加工物および加工工具および加工工具寿命検出装置の構成を示す図、図2は図1に示した加工工具寿命検出装置の信号処理装置の構成を示すブロック図、図3および図4は図1に示した加工工具寿命検出装置の加工工具寿命検出方法を示したフローチャート、図5は図1に示した加工工具寿命検出装置の主軸モータの電流値の変化を示す図、図6および図7は図1に示した加工工具寿命検出装置の移動平均電流値と基準移動平均電流値との変動を示す図、図8および図9は図1に示した加工工具の詳細な写真を示した図である。
図において、加工工具3はホルダ4を介して主軸5に取り付けられ、この主軸5は駆動手段としての主軸モータ6により駆動回転される。そして、加工工具3は主軸モータ6により駆動回転することにより加工機テーブル1上に載置された被加工物2を加工するものである。そして加工工具寿命検出装置は、主軸モータ6に流れる電流値を、加工工具3の被加工物2の加工中における負荷値としてリアルタイムに測定する測定部としての電流計7と、電流計7にて測定された電流値より算出される移動平均負荷値としての移動平均電流値と基準移動平均負荷値としての基準移動平均電流値とを比較することで加工工具3の寿命の判定を行い、加工工具3の交換信号を出力する信号処理装置8とにて構成される。尚、負荷値としては、電流値、電力値、トルク値、動力値、回転数値のいずれか少なくとも1つを測定して行うことが可能であり、ここでは電流値を用いて説明するがこの負荷値は、加工方法において適宜設定することができることは言うまでもない。さらに、その交換信号を受信して加工工具3を停止するNC装置9と、その交換信号を受信して複数の作業者の携帯電話11に自動に電話を行う情報連絡装置10とを備える。
そして信号処理装置8は、図2に示すように、移動平均時間記憶部12、移動平均処理部13、データ記憶部14、判定比率記憶部15、比較判定部16、基準値記憶部17、基準値演算部18、初期非処理時間記憶部19、データ表示部20、および、データ記録部21を備え、例えば中央処理装置(CPU)、ROM、RAM、不揮発メモリ、入力装置、出力装置、ハードディスクなどとこれらを動作させるプログラムソフトにて構成され、電流計7からの電流信号をA/D変換器(図示なし)で変換されたデジタル信号で演算処理され、加工工具3の交換信号を出力する。移動平均処理部13は、データ記憶部14に蓄えられた電流計7からの電流値の内、移動平均時間記憶部12に記憶されている移動平均時間分の電流値から移動平均電流値を計算する。この移動平均時間は、予め作業者などによって入力され設定されている。基準値演算部18は、加工工具3の寿命判定を行うための基準移動平均電流値を計算する部分であり、計算した値を基準値記憶部17に記憶させる。
例えば、初期非処理時間記憶部19に設定された初期非処理時間直後の移動平均電流値を基準移動平均電流値としても良いし、また、現時点から一定時間前の移動平均電流値を基準移動平均電流値としても良いし、また、現時点までの移動平均電流値の内、最大移動平均電流値を基準移動平均電流値としても良い。そして、基準平均電流値は、加工工具3の加工の進行に応じて変更していくことが考えられる。この初期非処理時間は、予め作業者などによって入力され設定されている。比較判定部16は、現時点の移動平均電流値の基準値記憶部17に記憶されている基準移動平均電流値に対する比率と、判定比率記憶部15に記憶されている判定比率とを比較し、加工工具3の寿命の判定を行う。この判定比率は、予め作業者などにより入力され設定されている。また、比較判定部16は加工工具3の寿命と判定すると加工工具3の交換信号を出力する。そして、その加工工具3の交換信号が発生する直前の特定時間の電流計7から得られる主軸モータ6の電流値を画面に表示するデータ表示部20と、ハードディスクに記録するデータ記録部21とを有する。
次に上記のように構成された実施の形態1の加工工具寿命検出装置の加工工具寿命検出方法について図3のフローチャートに基づいて説明する。ここでは、基準移動平均電流値として最大移動平均電流値を設定する方法を説明する。まず、加工工具3の被加工物2の加工がスタート(図3のステップS1)すると、移動平均時間(個数):N、初期非処理時間(個数):M、判定比率:Rが移動平均時間記憶部12、初期非処理時間記憶部19、判定比率記憶部15にそれぞれ設定される(図3のステップS2)。尚、この設定は、加工スタートする前に行ってもよいことは言うまでもない。また、移動平均時間、初期非処理時間の個数とは、例えば、約1.8秒に1回の測定を行うような場合、測定された回数すなわち個数が時間に匹敵するために示されたものである。また、初期非処理時間とは、加工工具3の加工初期から一定時間(実験的に、または、経験的に、理論的に設定される時間である)までは、加工工具3の寿命の判定に用いることが適さない値を示すことがあり、その時間を設定し加工工具3の寿命の判定に加味しないようにするためのものである。また、判定比率は、加工工具3が加工を行う被加工物2の加工材質、加工工具3の加工条件などにより変わるため、事前に加工実験にて求めておくことが適当であると考えられる。または、経験的に、理論的に設定されることも考えられる。
次に、基準値記憶部17に格納されている寿命判定する最大移動平均電流値にて成る基準移動平均電流値:Amaxを、Amax=0と初期値に設定する(図3のステップS3)。次に、加工工具3の加工中における主軸モータ6からの電流値:I(i)を電流計7により測定する(図3のステップS4)。そして、加工工具3の加工中におけるリアルタイムで入力される電流値をデータ記録部14に保存する(図3のステップS5)。次に、測定された電流値の個数:iが移動平均時間(個数):N以上、すなわち:i≧Nになると(図3のステップS6)、移動平均時間の電流値から移動平均電流値:A(i)を移動平均処理部13にて算出する(図3のステップS7)。次に、基準値演算部18では測定された電流値の数が移動平均時間(個数)+初期非処理時間(個数)以上になると(図3のステップS8)、最新の移動平均電流値:A(i)と基準移動平均電流値:Amaxとを:A(i)>Amaxであるか否かを比較する(図3のステップS9)。
そして、最新の移動平均電流値が大きければ、基準値記憶部17にこの最新の移動平均電流値が最大移動平均電流値を基準移動平均電流値として(基準移動平均電流値:Amax=最新の移動平均電流値:A(i))、基準値記憶部17の基準移動平均電流値を更新する(図3のステップS10)。次に、比較判定部16では移動平均電流値の基準移動平均電流値(Amax)に対する比率:A(i)/Amaxと判定比率Rとの大小判定:A(i)/Amax<Rを行う(図3のステップS11)。そして、判定比率Rより小さければ加工工具3の寿命と判定し、加工工具3の交換信号を情報連絡装置10に出力し、情報連絡装置10は各携帯電話11に加工工具3が寿命であることが知らされる。これとともに、交換信号をNC装置9に出力し、NC装置9は加工工具3の加工動作を停止する。そして、データ表示部20へのデータの表示およびデータ記録部21へのデータ記録を行う(図3のステップS12)。そして、加工が終了する(図3のステップS13)。
上記実施の形態1の加工工具寿命検出方法の説明においては、基準移動平均電流値を最大移動平均電流値に設定する例を示したが、これに限られることはなく、最新の基準移動平均電流値の一定時間前の移動平均電流値を基準移動平均電流値と設定することも考えられる。ここでは、最新の移動平均電流値の1つの移動平均時間分前の移動平均電流値を基準移動平均電流値に設定する加工工具寿命検出方法について図4に基づいて説明する。まず、上記にて図3にて示した場合と同様に、加工工具3の被加工物2の加工がスタート(図4のステップS1)すると、移動平均時間(個数):N、初期非処理時間(個数):M、判定比率:Rが移動平均時間記憶部12、初期非処理時間記憶部19、判定比率記憶部15にそれぞれ設定される(図4のステップS2)。次に、基準値記憶部17に格納されている寿命判定する基準移動平均電流値:Abaseを、Abase=0と初期値に設定する(図4のステップS30)。
次に、加工工具3の加工中における主軸モータ6からの電流値:I(i)を電流計7により測定する(図4のステップS4)。そして、加工工具3の加工中におけるリアルタイムで入力される電流値をデータ記録部14に保存する(図4のステップS5)。次に、測定された電流値の数:iが移動平均時間(個数):N以上、すなわち:i≧Nになると(図4のステップS6)、移動平均時間の電流値から移動平均電流値:A(i)を移動平均処理部13にて算出する(図4のステップS7)。次に、基準値演算部18では測定された電流値の数:(i)が移動平均時間(個数)×2+初期非処理時間(個数)以上になると(図4のステップS80)、最新の移動平均電流値:A(i)より1つ移動平均時間前の移動平均電流値:A(i−N)を基準移動平均電流値:Abaseと:Abase=A(i−N)として基準値記憶部17に更新する(図4のステップS100)。
次に、比較判定部16では移動平均電流値の基準移動平均電流値(Abase)に対する比率:A(i)/Abaseと判定比率Rとの大小判定:A(i)/Abase<Rを行う(図4のステップS110)。そして、判定比率Rより小さければ加工工具3の寿命と判定し、加工工具3の交換信号を情報連絡装置10に出力し、情報連絡装置10は各携帯電話11に加工工具3が寿命であることが知らされる。これとともに、交換信号をNC装置9に出力し、NC装置9は加工工具3の加工動作を停止する。そして、データ表示部20へのデータの表示およびデータ記録部21へのデータ記録を行う(図4のステップS12)。そして、加工が終了する(図4のステップS13)。
尚、ここでは、現時点より一定時間前を、例えば移動平均時間(個数)前の移動平均電流値A(i−N)を基準移動平均電流値として設定する例を示したが、これに限られることはなく、現時点より一定時間前であればいずれの移動平均電流値を用いてもよいことは言うまでの無く、例えば一定時間:Lとして、この一定時間:Lを移動平均時間より大きい時間を設定することが妥当であると考えられる。但し、その場合、図4のステップS80の判断は:i≧N+L+Mと成ることは言うまでもない。また上記に示した判定において、判定比率:Rにて加工工具3の寿命を判定しているが、判定比率:Rでの比較でなく、移動平均電流値:A(i)と基準移動平均電流値:AmaxまたはAbaseとの差分を、予め設定された設定しきい値と比較して判定しても同様に行うことができることは言うまでもない。さらに、ここでは特に示していないが、主軸5における空転時に測定された電流値を、加工工具3の被加工物2の加工中に測定される電流値から差し引いた実質加工負荷の電流値を使用すれば、さらに信頼性が向上することは言うまでもない。
次に、実施の形態1において示した加工工具3を用いた具体的な加工例について説明する。被加工物2はガラスで、加工工具3は#80のダイヤモンドが電着された電着砥石を用いた。加工条件は、砥石回転数が1万rpm、軸切込みが0.2mm、送り速度が1000mm/minである。また、カッターパスは、1パス目の半径切込みのみ加工工具3(砥石)径の100%である13mmとし、他は50%の6.5mm×17パスを行うものである。これは半径切込みが変化する通常の加工を模擬している。1面加工が終了すれば、軸方向に0.2mm更に切り込んで同じパスを繰り返す。このときの主軸モータ6の電流値の実験データを図5に示している。この実験データは、約1.8秒に1回サンプリングしたものである。半径切込みが100%と50%とがあり、また加工工具3の移動で加工負荷の存在しない場所もあるため、実験データの振動幅は非常に大きい。従って、従来のようにあらかじめ設定されているしきい値にて加工工具3(砥石)の寿命を判定すると誤判定が大きいことがわかる。
図6および図7は図5に示す実験データを上記に示した実施の形態1の加工工具寿命検出方法に基づき演算処理したものである。図6において、下のグラフは、移動平均時間:Nとして1000ポイント(約30分=約1.8秒×1000回)の移動平均電流値を示したものである。また、図6の上のグラフは、加工初期から加工点までの最大移動平均電流値すなわち基準移動平均電流値に対するその点の移動平均電流値の比率を示している。また、図7において、下のグラフは図6と同じく、移動平均時間:Nとして1000ポイント(約30分)の移動平均電流値を示したものである。図7の上のグラフは、加工点から1000ポイント前(約30分前)の移動平均電流値すなわち基準移動平均電流値に対するその点の移動平均電流値の比率を示している。
尚ここでは、移動平均時間を1000ポイント(約30分)に設定しているが、その値は加工条件に合わせて、適宜設定することが可能であることは言うまでもなく、その条件に応じて移動平均時間を決定するのが望ましい。また、基準移動平均電流値を、加工点から1000ポイント前(約30分前)としているが、加工点より以前の移動平均電流値であればよいが、それは加工点より移動平均時間以前であることが望ましい。図8および図9は実験にて使用した電着砥石の底面を拡大した写真の砥石底面の4分の1を示した図である。図8は加工前の砥石底面写真、図9は砥石寿命と判定された後の砥石底面写真である。加工前の写真には、砥石底面24にダイヤモンド25が存在するが、寿命判定後の砥石底面24外周部にはダイヤモンド25が存在せず砥石台金母材26が現れている。このように、電着砥石でガラスを加工する場合、電着砥石(加工工具3)の底面の砥粒が磨滅し、寿命に至る。このとき、主軸モータ6の電流値が減少するという実験結果が得られ、この実験結果を基に、ある割合、例えば97%以下に基準移動平均電流値に対するその点の移動平均電流値の比率が低下したときに、砥石寿命と判定すれば確度の高い寿命判定が可能となる。
但し、この判定比率:Rは、加工条件に応じて実験的に求めておき設定する必要がある。また、この実験データによれば、加工点から1000ポイント前(約30分前)の移動平均電流値に対するその点の移動平均電流値の比率よりも、加工初期から加工点までの最大の移動平均電流値に対するその点の移動平均電流値の比率で寿命判定する方が、より明確であり確度の高い判定ができる。但し、この結果はあくまでもこの具体的な実験データにおける結果であり、いずれの寿命判定がより明確であるかは、加工工具および加工条件によりが異なるものであることは言うまでもなく、適宜明確となる寿命判定を用いることは言うまでもない。
上記のように行われた実施の形態1の加工工具寿命検出方法および加工工具寿命検出装置によれば、加工工具の加工中の基準となる基準移動平均電流値と移動平均電流値とを用いて加工工具の寿命を判定するため、外乱の影響を受けずに、加工工具の寿命を正確に判定できる。さらに、基準平均電流値は、加工工具の加工の進行に応じて変更しているため、加工工具の寿命の判定をより一層的確に行うことができる。さらに、基準移動平均電流値として、加工初期から加工点までの最大移動平均電流値や加工点から一定時間前の移動平均電流値を用いることにより、加工工具の製造のバラツキによる加工工具寿命の違いを正確に検知できる。
さらに、基準移動平均電流値からある一定割合減少した場合に加工工具の寿命と判定することにより、例えば電着砥石でガラスを加工した場合、電着砥石の底面の砥粒が磨滅し、寿命に至った場合、主軸モータの電流値が減少するという実験結果に基づくものであり加工工具の寿命検知が正確となる。以上のことより、加工工具により加工された製品不具合、例えば、被加工物の欠損、面粗さ不良、形状精度不良などの発生頻度を下げることができ、歩留りが向上する。また、加工工具の寿命の誤判定がなくなり、加工工具の稼働率が向上する。また、加工工具を限界まで使用でき、加工工具費を削減できる。また、加工工具の交換回数が減り、人件費などを削減できる。
実施の形態2.
図10および図11はこの発明の実施の形態2における加工工具寿命検出方法を示したフローチャート、図12および図13はこの発明の実施の形態2の加工工具寿命検出方法における移動平均電流値と基準移動平均電流値との変動を示す図である。この発明の実施の形態2においては加工工具寿命検出装置の構成を上記実施の形態1にて示した場合とほぼ同様であるため上記実施の形態1にて示した加工工具寿命検出装置に基づいて説明する。
次に、実施の形態2における加工工具寿命検出装置の加工工具寿命検出方法について説明する。まず、上記実施の形態1と同様に、加工工具3の被加工物2の加工がスタート(図10のステップS1)すると、移動平均時間(個数):N、初期非処理時間(個数):M、判定比率:Rが移動平均時間記憶部12、初期非処理時間記憶部19、判定比率記憶部15にそれぞれ設定される(図10のステップS2)。次に、基準値記憶部17に格納されている寿命判定する基準移動平均電流値:Abaseを、Abase=0と初期値に設定する(図10のステップS30)。次に、加工工具3の加工中における主軸モータ6からの電流値:I(i)を電流計7により測定する(図10のステップS4)。そして、加工工具3の加工中におけるリアルタイムで入力される電流値をデータ記録部14に保存する(図10のステップS5)。
次に、測定された電流値の数:iが移動平均時間(個数):N以上、すなわち:i≧Nになると(図10のステップS6)、移動平均時間の電流値から移動平均電流値:A(i)を移動平均処理部13にて算出する(図10のステップS7)。次に、基準値演算部18では測定された電流値の数:(i)が移動平均時間(個数)×2+初期非処理時間(個数)以上になると(図10のステップS80)、最新の移動平均電流値:A(i)より1つ移動平均時間前の移動平均電流値:A(i−N)を基準移動平均電流値:Abaseとを:Abase=A(i−N)として基準値記憶部17に更新する(図10のステップS100)。次に、比較判定部16では移動平均電流値の基準移動平均電流値(Abase)に対する比率:A(i)/Abaseと判定比率Rとの大小判定:A(i)/Abase>Rを行う(図10のステップS111)。そして、判定比率Rより大きければ加工工具3の寿命と判定し、加工工具3の交換信号を情報連絡装置10に出力し、情報連絡装置10は各携帯電話11に加工工具3が寿命であることが知らされる。これとともに、交換信号をNC装置9に出力し、NC装置9は加工工具3の加工動作を停止する。そして、データ表示部20へのデータの表示およびデータ記録部21へのデータ記録を行う(図10のステップS12)。そして、加工が終了する(図10のステップS13)。
上記実施の形態2の加工工具寿命検出方法の説明においては、基準移動平均電流値を最新の基準移動平均電流値の一定時間前の移動平均電流値を基準移動平均電流値と設定する場合について説明したが、これに限られることはなく、ここでは、基準値移動平均電流値として、現時点の移動平均電流値と直前の移動平均電流値との差分[A(i)−A(i−1)]すなわち傾きを用いている加工工具寿命検出方法について図11に基づいて説明する。まず、上記にて図10にて示した場合と同様に、加工工具3の被加工物2の加工がスタート(図11のステップS1)すると、移動平均時間(個数):N、初期非処理時間(個数):M、判定比率:Rが移動平均時間記憶部12、初期非処理時間記憶部19、判定比率記憶部15にそれぞれ設定される(図11のステップS2)。
次に、基準値記憶部17に格納されている寿命判定する基準移動平均電流値:Abaseを、Abase=0と初期値に設定する(図11のステップS30)。次に、加工工具3の加工中における主軸モータ6からの電流値:I(i)を電流計7により測定する(図11のステップS4)。そして、加工工具3の加工中におけるリアルタイムで入力される電流値をデータ記録部14に保存する(図11のステップS5)。次に、測定された電流値の数:iが移動平均時間(個数):N以上、すなわち:i≧Nになると(図11のステップS6)、移動平均時間の電流値から移動平均電流値:A(i)を移動平均処理部13にて算出する(図11のステップS7)。次に、基準値演算部18では測定された電流値の数:(i)が移動平均時間(個数)+初期非処理時間(個数)+2以上になると(図11のステップS81)、現時点の移動平均電流値と直前の移動平均電流値との差分[A(i−1)−A(i−2)]を基準移動平均電流値:Abase=A(i−1)−A(i−2)として基準値記憶部17に更新する(図11のステップS101)。次に、比較判定部16では移動平均電流値の基準移動平均電流値(Abase)に対する比率:A(i)−A(i−1)/Abaseと判定比率Rとの大小判定:A(i)/Abase>Rを行う(図11のステップS110)。
そして、判定比率Rより大きければ加工工具3の寿命と判定し、加工工具3の交換信号を情報連絡装置10に出力し、情報連絡装置10は各携帯電話11に加工工具3が寿命であることが知らされる。これとともに、交換信号をNC装置9に出力し、NC装置9は加工工具3の加工動作を停止する。そして、データ表示部20へのデータの表示およびデータ記録部21へのデータ記録を行う(図11のステップS12)。そして、加工が終了する(図11のステップS13)。尚、ここでは基準移動平均電流値として、現時点の移動平均電流値と直前の移動平均電流値との差分[A(i−1)−A(i−2)]を用いる例を示したが、これに限られることはなく、例えば、基準移動平均電流値としては加工初期から加工点までの最大の差分(傾き)を用いて同様に判定してもよいことは言うまでもない。
本実施の形態2においては判定比率:Rより大きい場合に、加工工具3の寿命と判定する例を示した。これはエンドミルなどの切削加工においては、上記実施の形態1にて示した電着砥石のように砥石寿命で加工負荷が低下せず、図12に示すように加工負荷が増大する。さらに、初期摩耗領域A、安定摩耗領域B、欠損前摩耗領域Cに分類できる。この変化率の違いに着目し、上記に示した加工工具寿命検出方法を用いることとした。このことにより、初期摩耗領域Aでの誤認を避け、加工工具寿命摩耗領域Cを正確に検知し、確度の高い寿命判定が可能となる。図12において、上のグラフは、図10の加工工具寿命検出方法にて求めた一定時間前との電流値比率を示す。初期非処理時間を設けることで加工工具寿命判定が誤判定なく検出できることがわかる。また、図13において、上のグラフは、図11の加工工具寿命検出方法にて求めた、電流値の変化量比率を示す。なだらかに傾きが変化する場合は、差分を取る間隔を広げることで、確度の高い判定ができる。尚、本実施の形態2においては判定比率:Rにて加工工具3の寿命を判定しているが、判定比率:Rでの比較でなく、移動平均電流値(傾き):[A(i)−A(i−1)]と基準移動平均電流値:Abaseとの差分を予め設定された設定しきい値と比較して判定しても同様に行うことができることは言うまでもない。
上記のように行われた実施の形態2の加工工具寿命検出方法によれば、上記実施の形態1と同様の効果を奏するのはもちろんのこと、基準移動平均電流値からある一定割合増加した場合に加工工具寿命と判定することにより、エンドミルやドリルなどの切削加工のように負荷が上昇する加工工具の寿命検知が正確に検知することができる。
尚、上記各実施の形態においては、加工工具の負荷値として主軸モータ6の電流値を測定する例を示しているが、これに限られることはなく、加工工具の負荷値として、電力値、動力値、トルク値、回転数値のいずれか少なくとも1つを用いても、上記各実施の形態と同様に行うことが可能であり同様の効果を奏すること言うまでもない。
この発明の実施の形態1の加工工具寿命検出装置の構成を示す図である。 図1に示した加工工具寿命検出装置の信号処理装置の構成を示すブロック図である。 図1に示した加工工具寿命検出装置の加工工具寿命検出方法を示すフローチャートである。 図1に示した加工工具寿命検出装置の別の加工工具寿命検出方法を示すフローチャートである。 図1に示した加工工具寿命検出装置の主軸モータの電流値の変化を示す図である。 図1に示した加工工具寿命検出装置の移動平均電流値と基準移動平均電流値との変動を示す図である。 図1に示した加工工具寿命検出装置の移動平均電流値と別の基準移動平均電流値との変動を示す図である。 図1に示した加工工具寿命検出装置の加工前の電着砥石底面写真を示した図である。 図1に示した加工工具寿命検出装置の砥石寿命後の電着砥石底面写真を示した図である。 この発明の実施の形態2の加工工具寿命検出方法を示すフローチャートである。 この発明の実施の形態2の別の加工工具寿命検出方法を示すフローチャートである。 この発明の実施の形態2の加工工具寿命検出方法における移動平均電流値と基準移動平均電流値との変動を示す図である。 この発明の実施の形態2の加工工具寿命検出方法における移動平均電流値と別の基準移動平均電流値との変動を示す図である。
符号の説明
2 被加工物、3 加工工具、6 主軸モータ、7 電流計、8 信号処理装置、
12 移動平均時間記憶部、13 移動平均処理部、14 データ記憶部、
15 判定比率記憶部、16 比較判定部、17 基準値記憶部、18 基準値演算部、19 初期非処理時間記憶部。

Claims (7)

  1. 被加工物の加工を行う加工工具の寿命を検出する加工工具寿命検出方法において、上記加工工具が上記被加工物の加工中における負荷値をリアルタイムで測定し、当該測定におけるあらかじめ設定された移動平均時間の移動平均負荷値を算出し、上記移動平均負荷値から基準となる基準移動平均負荷値を設定し、上記基準移動平均負荷値と上記移動平均負荷値とを比較して上記加工工具の寿命を判定することを特徴とする加工工具寿命検出方法。
  2. 上記負荷値は、電流値、電力値、トルク値、動力値、回転数値のいずれか少なくとも1つを測定して行うことを特徴とする請求項1に記載の加工工具寿命検出方法。
  3. 上記基準移動平均負荷値は、上記加工工具の加工の進行に応じて変更することを特徴とする請求項1または請求項2に記載の加工工具寿命検出方法。
  4. 上記基準移動平均負荷値は、上記加工工具の加工初期から加工点までの最大の移動平均負荷値、もしくは、上記加工点から一定時間前の移動平均負荷値が設定されることを特徴とする請求項1ないし請求項3のいずれかに記載の加工工具寿命検出方法。
  5. 上記判定は、上記基準移動平均負荷値から所定割合減少または所定割合増加のいずれか一方にて上記加工工具の寿命と判定することを特徴とする請求項1ないし請求項4のいずれかに記載の加工工具寿命検出方法。
  6. 加工工具を駆動するための駆動手段の負荷値をリアルタイムで測定する測定部と、あらかじめ設定された移動平均時間分の上記測定部にて測定された負荷値から移動平均負荷値を算出する移動平均処理部と、上記加工工具の寿命を判定するための基準となる基準移動平均負荷値を上記移動平均処理部にて算出された移動平均負荷値から決定する基準値演算部と、上記基準移動平均負荷値を記憶する基準値記憶部と、上記移動平均負荷値と上記基準移動平均負荷値とを比較して上記加工工具の寿命を判定する比較判定部とを備えたことを特徴とする加工工具寿命検出装置。
  7. 上記比較判定部にて上記加工工具が寿命であると判定されると上記加工工具の交換信号もしくは寿命表示信号のいずれか少なくとも一方を出力する出力部を備えたことを特徴とする請求項6に記載の加工工具寿命検出装置。
JP2007096018A 2007-04-02 2007-04-02 加工工具寿命検出方法及び加工工具寿命検出装置 Active JP5132970B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096018A JP5132970B2 (ja) 2007-04-02 2007-04-02 加工工具寿命検出方法及び加工工具寿命検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096018A JP5132970B2 (ja) 2007-04-02 2007-04-02 加工工具寿命検出方法及び加工工具寿命検出装置

Publications (2)

Publication Number Publication Date
JP2008254080A true JP2008254080A (ja) 2008-10-23
JP5132970B2 JP5132970B2 (ja) 2013-01-30

Family

ID=39978193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096018A Active JP5132970B2 (ja) 2007-04-02 2007-04-02 加工工具寿命検出方法及び加工工具寿命検出装置

Country Status (1)

Country Link
JP (1) JP5132970B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162623A (ja) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp 工具寿命検出方法及び工具寿命検出装置
WO2015056495A1 (ja) * 2013-10-17 2015-04-23 株式会社神戸製鋼所 状態計測装置及び状態計測システム
JP2018001288A (ja) * 2016-06-28 2018-01-11 ファナック株式会社 切削加工工具の寿命判定装置、寿命判定方法及びプログラム
KR101931776B1 (ko) 2017-12-18 2018-12-24 오스템임플란트 주식회사 치과용 밀링 머신의 공구 파손 감지 방법
CN111660141A (zh) * 2020-05-14 2020-09-15 北京工业大学 一种工况无关的基于主轴驱动电流的铣刀磨损状态识别方法
JP2020163493A (ja) * 2019-03-28 2020-10-08 ファナック株式会社 工具交換時期管理システム
KR102512782B1 (ko) * 2021-09-17 2023-03-21 최득식 절삭 공구의 수명 변화 예측 기반의 절삭 공구 제어 장치 및 방법
KR20230060718A (ko) * 2021-10-28 2023-05-08 한국항공대학교산학협력단 절삭공구의 수명 예측 및 절삭 조건 능동 제어 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102560A (ja) * 1982-12-03 1984-06-13 Hitachi Metals Ltd 加工異常検知装置および方法
JPS61252052A (ja) * 1985-04-30 1986-11-10 Mazda Motor Corp 穴明工具の異常検出装置
JPS62166948A (ja) * 1986-01-16 1987-07-23 Takaaki Nagao 回転工具の異常予知装置
JPH1110535A (ja) * 1997-06-26 1999-01-19 Noritake Co Ltd 砥石寿命判定装置
JP2003326438A (ja) * 2002-02-28 2003-11-18 Fanuc Ltd 工具異常検出装置
JP2004188541A (ja) * 2002-12-11 2004-07-08 Yamazaki Mazak Corp 工作機械の送り軸パラメータ調整システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102560A (ja) * 1982-12-03 1984-06-13 Hitachi Metals Ltd 加工異常検知装置および方法
JPS61252052A (ja) * 1985-04-30 1986-11-10 Mazda Motor Corp 穴明工具の異常検出装置
JPS62166948A (ja) * 1986-01-16 1987-07-23 Takaaki Nagao 回転工具の異常予知装置
JPH1110535A (ja) * 1997-06-26 1999-01-19 Noritake Co Ltd 砥石寿命判定装置
JP2003326438A (ja) * 2002-02-28 2003-11-18 Fanuc Ltd 工具異常検出装置
JP2004188541A (ja) * 2002-12-11 2004-07-08 Yamazaki Mazak Corp 工作機械の送り軸パラメータ調整システム

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162623A (ja) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp 工具寿命検出方法及び工具寿命検出装置
US10010991B2 (en) 2013-10-17 2018-07-03 Kobe Steel, Ltd. State measuring device and state measuring system
WO2015056495A1 (ja) * 2013-10-17 2015-04-23 株式会社神戸製鋼所 状態計測装置及び状態計測システム
JP2015077658A (ja) * 2013-10-17 2015-04-23 株式会社神戸製鋼所 状態計測装置及び状態計測システム
CN105612027A (zh) * 2013-10-17 2016-05-25 株式会社神户制钢所 状态测量装置以及状态测量系统
TWI554359B (zh) * 2013-10-17 2016-10-21 Kobe Steel Ltd State measuring device and state measuring system
US10535130B2 (en) 2016-06-28 2020-01-14 Fanuc Corporation Life determination device, life determination method, and recording medium for cutting tool
JP2018001288A (ja) * 2016-06-28 2018-01-11 ファナック株式会社 切削加工工具の寿命判定装置、寿命判定方法及びプログラム
KR101931776B1 (ko) 2017-12-18 2018-12-24 오스템임플란트 주식회사 치과용 밀링 머신의 공구 파손 감지 방법
JP2020163493A (ja) * 2019-03-28 2020-10-08 ファナック株式会社 工具交換時期管理システム
JP7036763B2 (ja) 2019-03-28 2022-03-15 ファナック株式会社 工具交換時期管理システム
US11376701B2 (en) 2019-03-28 2022-07-05 Fanuc Corporation Tool replacement timing management system
CN111660141A (zh) * 2020-05-14 2020-09-15 北京工业大学 一种工况无关的基于主轴驱动电流的铣刀磨损状态识别方法
CN111660141B (zh) * 2020-05-14 2022-02-15 北京工业大学 一种工况无关的基于主轴驱动电流的铣刀磨损状态识别方法
KR102512782B1 (ko) * 2021-09-17 2023-03-21 최득식 절삭 공구의 수명 변화 예측 기반의 절삭 공구 제어 장치 및 방법
KR20230060718A (ko) * 2021-10-28 2023-05-08 한국항공대학교산학협력단 절삭공구의 수명 예측 및 절삭 조건 능동 제어 장치 및 방법
KR102630086B1 (ko) 2021-10-28 2024-01-29 한국항공대학교산학협력단 절삭공구의 수명 예측 및 절삭 조건 능동 제어 장치 및 방법

Also Published As

Publication number Publication date
JP5132970B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5132970B2 (ja) 加工工具寿命検出方法及び加工工具寿命検出装置
JP5411055B2 (ja) 工具寿命検出方法、および工具寿命検出装置
JP4919999B2 (ja) 工具寿命検出方法および工具寿命検出装置
US9588512B2 (en) Setting method of revolutions per minute on real time of spinning cutting tool, and control device
JP5089618B2 (ja) 工具寿命検出方法及び工具寿命検出装置
KR102092969B1 (ko) 회전 절삭공구의 실시간 이송속도 설정방법 및 제어장치
JP2003340627A (ja) 小径エンドミルによる加工方法及び加工条件決定方法
JP2013188831A (ja) 工作機械の制御装置およびそれを備えた工作機械
WO2001041959A2 (en) Monitoring system for dicing saws
JPH09174383A (ja) 回転工具の異常検出方法および装置
JPH1177532A (ja) 圧延ロールの研削装置
JP2021064128A (ja) 検出装置及びプログラム
JP2017208432A (ja) 単結晶SiC基板の物性判別方法および単結晶SiC基板の製造方法
JP2005303057A (ja) 回転ブレード交換時期判定方法および切削装置
WO2018229870A1 (ja) 工具寿命検出装置および工具寿命検出方法
JP7462874B2 (ja) 加工システム
JP5821616B2 (ja) 研削異常監視方法および研削異常監視装置
JP2009028890A (ja) 研削装置
JP2000343425A (ja) 研削盤
JP2020114615A (ja) 工作機械のメンテナンス支援装置および工作機械システム
JP2020069639A (ja) 研削面状態評価装置および研削加工装置
JP2786842B2 (ja) 砥石補修時期判定方法及びその装置、砥石補修結果判定方法及びその装置、砥石自動補修装置
JPH06169013A (ja) ダイシング装置及びダイシング装置における切削制御方法
JP2024030045A (ja) 部品寿命検出装置及び部品寿命検出方法
JP5326608B2 (ja) 研削装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250