JP2008250139A - 露光装置における露光方法及び露光装置 - Google Patents

露光装置における露光方法及び露光装置 Download PDF

Info

Publication number
JP2008250139A
JP2008250139A JP2007093365A JP2007093365A JP2008250139A JP 2008250139 A JP2008250139 A JP 2008250139A JP 2007093365 A JP2007093365 A JP 2007093365A JP 2007093365 A JP2007093365 A JP 2007093365A JP 2008250139 A JP2008250139 A JP 2008250139A
Authority
JP
Japan
Prior art keywords
exposure
line width
substrate
film thickness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007093365A
Other languages
English (en)
Inventor
Kazumasa Suzuki
一誠 鈴木
Taiji Terachi
耐志 寺地
Hirobumi Saida
博文 齊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007093365A priority Critical patent/JP2008250139A/ja
Priority to US12/068,821 priority patent/US20080239267A1/en
Priority to KR1020080020047A priority patent/KR101452243B1/ko
Publication of JP2008250139A publication Critical patent/JP2008250139A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/70Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist

Abstract

【課題】高価なマスクを使用することなく、連続的に膜厚ローカリティを原因とするエッチング後線幅ローカリティを補正する。
【解決手段】薄膜が形成された基板上に塗布したレジストを画像データによりオンオフ制御される露光機80により走査露光した後、現像、エッチングを行い薄膜による所望の線幅のパターンを形成する際、露光前に、基板上各位置のレジスト膜厚を測定し、予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係に、測定した基板上各位置のレジスト膜厚を反映させて、基板上各位置の線幅補正量を決定する。
【選択図】図9

Description

この発明は、基板に形成された薄膜上に塗布したレジストを、画像データによりオンオフ制御される露光機により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置における露光方法及び露光装置に関する。
図13に示すように、半導体又はFPD(平面パネルディスプレイ)における回路製造工程においては、フォトリソグラフィー技術を用いて回路パターンを生成する。
すなわち、まず、基板(半導体ではウェハ、FPDではガラス基板)1上にパターニングしようとする下地薄膜2を成膜した基板1上に感光性レジスト3をスピンコート、またはスリットコーターにより数ミクロン程度の均一なレジスト塗布膜を形成する(レジスト塗布工程)。
その後、プリベーク処理によりレジスト3を乾燥、固化させる(プリベーク工程)。ここで、プリベーク処理前後の薄膜2上にレジスト3が塗布された基板1を基板Fという。
次いで、基板Fに対して露光機により二次元のパターン形状を露光し(露光工程)、レジスト3に潜像を生成する。
次に現像処理により基板Fから不要なレジスト3を除去し(現像工程)、ポストベーク処理によりレジスト3と基板1との密着性を上げることにより、エッチングのマスクとなるレジストパターンを形成する。
最後に薄膜2をエッチング液で溶解(ウェットエッチング)、またはプラズマ(エッチング粒子)で削り取る(ドライエッチング)ことにより薄膜パターンを形成し(エッチング工程)、剥離液によるレジスト剥離処理を経て(剥離工程)、所望の線幅のパターン(二次元パターン)を形成する。
エッチング工程において、薄膜2上にエッチングにより形成されるパターンは、レジスト3がエッチングによる影響を受けながら、エッチング粒子が基板1上の不要部分の薄膜2を削って進む為に、薄膜の線幅2は、レジスト3の線幅の影響だけでなく、レジスト3のプロファイル(残膜量、テーパ角)の影響を受ける。
図14Aに、エッチング処理前におけるレジスト3のテーパ角θが大きい場合(右側)と小さい場合(左側)のレジストプロファイルの断面模式図を示す。
図14Bに、ドライエッチング後の断面模式図を示す。テーパ角θが大きい場合には、レジスト3の線幅L1と、エッチングによって作られる薄膜2の線幅L2は略等しい(L2≒L1)ことが分かる。その一方、テーパ角θが小さい場合には、レジスト2の線幅L1に対してエッチングによって作られる薄膜2の線幅L3が狭くなり(L3<L1)、配線パターンが細く形成されることが分かる。
レジスト3の塗布工程においては、レジスト3が塗布される基板1に存在するうねりの影響、スピンコート時の中央部と周辺部での粘度の違いの影響等により、全面に渡って均一な塗布を行うことができず、レジスト3の膜厚に制御できない場所によるローカリティー{場所(基板上の位置)による膜厚の不均一分布}が生じる。
また、基板1をピンで支持する時の基板変形の影響などによる固定的な膜厚ローカリティーも生じる。近年マザー基板の大型化に伴い、塗布の均一性を保つことの難易度が高まってきており、レジスト膜厚のローカリティが問題となっている。
図15は、この出願の発明者等により測定されたレジスト膜厚t[μm]に対するテーパ角θ[deg]とレジスト3の感度E0[mJ/cm2]との関係図である。
図15から分かるように、レジスト膜厚tが異なるとレジスト3の感度E0やレジスト3のテーパ角θが異なってくることが分かる。
レジスト3の感度E0のバラツキ、テーパ角θのバラツキ、またレジスト膜厚tのバラツキはいずれもエッチング後のパターン線幅のバラツキにつながり、最終的にはLCD等FPDの各画素の透過率が異なるディスプレーの輝度ムラにつながるために問題となる。
この問題を解決する技術が提案されている(特許文献1)。
特許文献1に係る技術では、マスクのパターンを投影光学系によりレジストが塗布された基板上に投影し、マスクと基板を順次走査することによりパターンを形成する露光装置において、露光量設定手段が基板上のレジストの膜厚分布に従い適正露光量f(x)を求め、露光量制御手段で各位置xにおいて、適正露光量f(x)を満たすようにショット毎の照度L(x)を調整し、解像不良、線幅を補正するようにしている。
しかしながら、この技術では、ショット毎の露光量調整となるため、ショットつなぎ部での線幅に変動が起きる。この場合、露光量以外での補正、又入力画像データ上での線幅補正には高価なマスク交換が必要である。
高価なマスクを使用しないで、レジスト3に配線パターンを露光する露光装置として、デジタル・マイクロミラー・デバイス(DMD)等の空間光変調素子を利用して走査露光する露光装置(デジタル露光装置)が提案されている(特許文献2参照)。DMDは、SRAMセル(メモリセル)の上に格子状に配列された多数のマイクロミラーを揺動可能な状態で配置したものであり、各マイクロミラーの表面には、アルミニウム等の反射率の高い材料が蒸着されている。SRAMセルに画像データに従ったデジタル信号が書き込まれると、その信号に応じて各マイクロミラーが所定方向に傾斜し、その傾斜状態に従って光ビームがオンオフ制御されてレジスト3に導かれ、配線パターンが露光記録される。
特開平7−29810号公報 特開2005−266779号公報
しかし、デジタル露光装置において、上述したレジストの膜厚ローカリティを原因とするエッチング後線幅ローカリティ{場所(基板上の位置)による線幅の不均一分布}を補正する技術が確立されていない。
この発明は、このような課題を考慮してなされたものであり、レジストの膜厚ローカリティを原因とするエッチング後線幅ローカリティを補正することを可能とする露光装置における露光方法及び露光装置を提供することを目的とする。
この発明に係る露光方法は、基板に形成された薄膜上に塗布したレジストを、画像データによりオンオフ制御される露光機により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置における露光方法において、以下の特徴(1)〜(8)を有する。
(1)露光前に、前記基板上のレジスト膜厚を測定するレジスト膜厚測定ステップと、予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定する線幅補正量決定ステップと、決定した線幅補正量により、前記所望の線幅とするための補正ステップと、を有することを特徴とする。
この発明によれば、予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定し、決定した線幅補正量により、所望の線幅とするように補正するので、簡易な手順で所望の線幅とする補正を行うことができる。
(2)前記の特徴(1)を有する発明において、前記補正ステップでは、前記基板上の場所に応じて前記露光機の設定露光量を補正することを特徴とする。
この発明によれば、基板上の場所に応じて露光機の設定露光量を補正するようにしているので、マスクを必要とせず、廉価な露光機を使用することができる。
(3)前記の特徴(2)を有する発明において、前記露光機は、複数の露光記録素子を有する露光ヘッドであり、前記露光ヘッド中、特定の前記露光記録素子をオフ状態とすることで前記露光量を補正することを特徴とする。
この発明によれば、露光記録素子をオフ状態とすればよいので制御が容易である。
(4)前記の特徴(3)を有する発明において、前記露光機は、複数の前記露光ヘッドを有することを特徴とする。
(5)前記の特徴(3)を有する発明において、複数の前記露光記録素子が、DMDと該DMDに光を照明する照明系とからなることを特徴とする。
(6)前記の特徴(2)を有する発明において、前記露光機は、光偏向器を備え、前記露光量補正ステップでは、前記基板上の場所に応じて前記光偏向器により偏向される光ビームの強度を補正することを特徴とする。光偏向器としては、回転多面鏡、ガルバノメータミラーを採用することができる。
(7)前記の特徴(1)を有する発明において、前記補正ステップでは、前記基板上の場所に応じて前記画像データを補正することで、前記露光機に設定される設定露光量を補正することを特徴とする。
画像データを補正するので、補正が容易である。
(8)前記の特徴(7)を有する発明において、前記画像データの補正は、前記基板上の場所に応じて線幅を拡大又は縮小させるように補正することを特徴とする。
この発明に係る露光装置は、基板に形成された薄膜上に塗布したレジストを、画像データによりオンオフ制御される露光機により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置において、露光前に、前記基板上のレジスト膜厚を測定するレジスト膜厚測定器と、予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定する線幅補正量決定手段と、決定した線幅補正量により、前記所望の線幅とするための前記露光機の設定露光量を補正する露光量補正手段と、を有することを特徴とする。
この発明によれば、予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定し、決定した線幅補正量により、所望の線幅とするための露光機の設定露光量を補正するようにしているので、簡易な手順で所望の線幅とするための露光機の設定露光量を補正することができる。
この発明によれば、レジストの膜厚ローカリティを原因とするエッチング後線幅ローカリティを、簡易な構成で補正することができる。
特許文献1のようにショット毎(ステップ毎)に補正するのではなく連続的に補正できるので、ショットのつなぎ部での段差のない線幅補正が可能である。例えば、LCDであれば輝度ムラが低減する。マスクが不要なので廉価に構成できる。また、ショット毎(ステップ毎)に補正するのではなく、1回の走査露光により補正ができるので、時間を短縮することができる。
図1は、この発明の一実施形態に係る露光方法及び露光装置が適用された露光装置10を示す。
露光装置10は、複数の脚部12によって支持された定盤14を備え、この定盤14上には、2本のガイドレール16を介して露光ステージ18が矢印方向に往復移動可能に設置される。露光ステージ18には、薄膜が形成された基板上に感光材料であるレジストが塗布された矩形状の基板(レジスト塗布薄膜形成基板)Fが吸着保持される。
定盤14の中央部には、ガイドレール16を跨ぐようにして門型のコラム20が設置される。このコラム20の一方の側部には、露光ステージ18に対する基板Fの装着位置を検出するCCDカメラ22a、22bと基板Fの表面に形成されたレジストの膜厚を測定する膜厚測定センサ23a、23b(膜厚測定器)とが固定され、コラム20の他方の側部には、基板Fに対して画像を露光記録する複数の露光ヘッド24a〜24jが位置決め保持されたスキャナ26が固定される。露光ヘッド24a〜24jは、基板Fの走査方向(露光ステージ18の移動方向)と直交する方向に2列で千鳥状に配列される。
なお、基板Fの表面に形成されたレジストの膜厚を測定する膜厚測定センサ23a、23bとしては、既知の直線偏光の光を、測定したい物体面に入射し、その反射光の偏光状態の変化(直線偏光から楕円偏光への変化)を測定し、膜厚(及び屈折率)を算出するエリプソメータを使用することができる。膜厚測定センサ23a、23bは、露光装置10と一体ではなく、別体の構成としてもよい。また、膜厚測定センサ23a、23bは、反射分光方式ではなく、光学干渉式のものを用いることもできる。
定盤14の端部には、露光ステージ18の移動方向と直交する方向に延在するガイドテーブル66が装着されており、このガイドテーブル66には、露光ヘッド24a〜24jから出力された光ビーム(レーザビーム)Lの光量を検出するフォトセンサ68が矢印x方向に移動可能に配設される。
図2は、各露光ヘッド24a〜24jの構成を示す。露光ヘッド24a〜24jには、例えば、光源ユニット28を構成する複数の半導体レーザから出力された光ビームLが合波され光ファイバ30を介して導入される。光ビームLが導入された光ファイバ30の出射端には、ロッドレンズ32、反射ミラー34及びデジタル・マイクロ・ミラーデバイス(DMD)36が順に配列される。
DMD36は、図3に示すように、SRAMセル(メモリセル)38の上に格子状に配列された多数のマイクロミラー40(露光記録素子)を揺動可能な状態で配置したものであり、各マイクロミラー40の表面には、アルミニウム等の反射率の高い材料が蒸着されている。SRAMセルにDMDコントローラ42から描画データに従ったデジタル信号が書き込まれると、その信号に応じて各マイクロミラー40が所定方向に傾斜し、その傾斜状態に従って光ビームLのオンオフ状態が実現される。
オンオフ状態が制御されたDMD36によって反射された光ビームLの射出方向には、拡大光学系である第1結像光学レンズ44、46、DMD36の各マイクロミラー40に対応して多数のレンズを配設したマイクロレンズアレー48、ズーム光学系である第2結像光学レンズ50、52が順に配列される。なお、マイクロレンズアレー48の前後には、迷光を除去するとともに、光ビームLを所定の径に調整するためのマイクロアパーチャアレー54、56が配設される。
露光ヘッド24a〜24jを構成するDMD36は、図4及び図5に示すように、高い解像度を実現すべく、露光ヘッド24a〜24jの移動方向に対して所定角度傾斜した状態に設定される。すなわち、DMD36を基板Fの走査方向(矢印y方向)に対して傾斜させることで、DMD36を構成するマイクロミラー40の配列方向に対する間隔mよりも基板Fの走査方向と直交する方向(矢印x方向)の間隔Δxを狭くし、解像度を高く設定することができる。実際上、画像データを構成する1画素を複数のマイクロミラー40により露光形成するように構成される。
なお、図5に示すように、走査方向(矢印y方向)の同一の走査線57上に複数のマイクロミラー40が配置されており、基板Fには、これらの複数のマイクロミラー40によって略同一位置に導かれた光ビームLにより画像が多重露光される。これにより、マイクロミラー40間の光量のむらが平均化される。また、各露光ヘッド24a〜24jによる露光エリア58a〜58jは、露光ヘッド24a〜24j間の継ぎ目が生じることのないよう、矢印x方向に重畳するように設定される。
ここで、DMD36を構成する各マイクロミラー40を介して基板Fに導かれる光ビームLの光量は、例えば、図6に示すように、露光ヘッド24a〜24jの配列方向である矢印x方向に各DMD36の反射率、光学系等に起因するローカリティを有している。このようなローカリティのある状態において、図7に示すように、複数のマイクロミラー40により反射された合成光量の少ない光ビームLを用いて基板Fに画像を露光記録した場合と、合成光量の多い光ビームLを用いて基板Fに画像を露光記録した場合とでは、感光材料である基板Fが所定の状態に感光する閾値をthとすると、画像の矢印x方向の幅W1、W2が異なる不具合が生じてしまう。また、図13に示すように、露光された基板Fに対して、さらに、現像処理、エッチング処理、剥離処理の各処理を行う場合、光ビームLの光量のローカリティの影響に加えて、レジスト3の膜厚むら、現像処理むら、エッチング処理むら、剥離処理むら等に起因する線幅(画像の幅)の変動が発生する。
そこで、上記の各変動要因を考慮して、基板Fに1画素を形成するために用いるマイクロミラー40の枚数をマスクデータ(DMDマスクデータという。)を用いて設定制御することにより、図8に示すように、基板Fの最終的な剥離処理まで考慮して形成されるパターンの矢印x方向の線幅W1を位置によらず一定となるように制御できる。
図9は、このような制御を行うための機能を有した露光装置10に係る制御回路110のブロック図である。
図9において、制御回路110は、基板Fに露光記録される画像データ(イメージとして画素が縦横に並んだラスタデータ)を入力する画像データ入力部70と、入力された二次元の画像データを記憶するフレームメモリ72と、フレームメモリ72に記憶された画像データを露光ヘッド24a〜24jを構成するDMD36のマイクロミラー40のサイズ及び配置に応じた高解像度に変換する解像度変換部74と、解像度の変換された画像データを各マイクロミラー40に割り当てて出力データ(ミラーデータ又はフレームデータともいう。:同一タイミングで、位置が対応する画素を露光する複数のマイクロミラー40のそれぞれのオンオフ状態を規定したデータ)とする出力データ演算部76と、出力データをマスクデータ(同一タイミングで位置が対応する画素を露光する複数のマイクロミラー40中、常時オフ状態とするマイクロミラー40を規定するデータ)に従って補正する出力データ補正部78と、補正された出力データに従ってDMD36を制御するDMDコントローラ42(露光記録素子制御手段)と、DMDコントローラ42によって制御されたDMD36を用いて、基板Fに所望の画像を露光記録する露光ヘッド24a〜24jとを備える。光源ユニット28a〜28jと露光ヘッド24a〜24jにより露光機80が構成される。
出力データ補正部78には、マスクデータを記憶するマスクデータメモリ(DMDマスクデータメモリ)82(マスクデータ記憶手段)が接続される。マスクデータは、露光走査中常時オフ状態とするマイクロミラー40を指定するデータであり、マスクデータ設定部(DMDマスクデータ設定部)86において設定される。
制御回路110は、さらに、レジスト膜厚測定センサ23a、23bによって検出した、例えばプリベーク後で露光前の基板F上の各位置のレジスト膜厚(二次元レジスト膜厚分布)t(x,y)を記憶する二次元膜厚分布データメモリ88と、予め求めておいた、露光前のレジスト膜厚t(x,y)とエッチング後の線幅(線幅分布)L(x,y)との関係式(第1式)から線幅補正量ΔL(x、y)を演算するエッチング後線幅二次元分布演算部(線幅補正量決定手段)90と、光量/線幅テーブルメモリ92に記憶されているテーブル又は関係式(第2式)と前記線幅補正量ΔL(x、y)から露光ヘッド24a〜24jに対応する光源ユニット28a〜28jの補正露光量(平均補正露光量)Eaveを含む二次元各位置の適正な露光量Eex(x,y)を算出する二次元適正露光量演算部(露光量補正手段)94と、露光ヘッド24a〜24jに対する露光量の設定を光源ユニット28a〜28jに行う光源制御部96とを備える。二次元適正露光量演算部94は、適正な露光量Eex(x、y)で露光を行うために補正露光量Eaveを光源制御部96を通じて光源ユニット28a〜28jに設定するとともに、DMDマスクデータ設定部86に露光ヘッド24a〜24jの各DMD36を構成する個々のマイクロミラー40のオフ状態を規定する設定を行う。
露光前のレジスト膜厚t(x,y)とエッチング後の線幅(線幅分布)L(x,y)との関係式は、次の第1式で表される。
L(x,y)=h(E/E0,θ) …(1)
ここで、Eは露光量(露光エネルギ)、E0はレジスト感度分布E0(x,y)、θはテーパ角である。
露光量と線幅の関係式は、次の第2式で表される。
L=x(E) …(2)
この実施形態の露光装置10は、基本的には以上のように構成されるものであり、次に、図10に示すフローチャートに基づき、レジスト膜厚ローカリティに基づくエッチング後線幅ローカリティを露光量で補正する手順を説明する。
まず、図13に示したように、薄膜2が形成された基板1にレジスト3が塗布されプリベークされた後の基板Fを露光装置10の露光ステージ18上に固定し、コラム20を矢印y方向に移動させながらレジスト膜厚測定センサ23により基板Fの二次元面方向のレジスト膜厚分布、すなわち基板F上各位置(全位置)のレジスト膜厚t(x,y)を測定し二次元膜厚分布データメモリ88に記憶する(ステップS1)。
次に、エッチング後線幅二次元分布演算部90は、予め、実験により得られた図15に示した2つの関係[感度E0=f(t)、テーパ角θ=g(t)]を参照し、測定された二次元レジスト膜厚t(x,y)から、二次元感度(二次元感度分布:基板F上各位置の感度)E0(x,y)と二次元テーパ角(二次元テーパ角分布:基板F上各位置のテーパ角)θ(x,y)を算出する(ステップS2)。
次いで、エッチング後線幅二次元分布演算部90は、二次元感度E0(x,y)と二次元テーパ角θ(x,y)と露光量Eとを上記第1式{L(x,y)=h(E/E0,θ)}に代入して、エッチング工程後の薄膜2によるパターンの線幅(線幅分布)L(x,y)を算出する(ステップS3)。
さらに、エッチング後線幅二次元分布演算部(線幅補正量決定手段)90は、基板F上各位置の適正な線幅{設計線幅であり、エッチング工程、剥離工程後に得ようとする薄膜2の所望の線幅(分布)}Ld(x,y)との差である線幅補正量(分布)ΔL(x,y)を求める(ステップS4)。
次いで、二次元適正露光量演算部(露光量補正手段)94は、線幅補正量ΔL(x、y)から露光ヘッド24a〜24jに光源ユニット28a〜28jを介して設定する補正露光量ΔEaveを第2式L=x(E)から算出し、さらに線幅補正量ΔL(x,y)を場所毎に補正する、二次元の適正な露光量Eex(x,y)を算出する(ステップS5)。
次いで、二次元の適正な露光量Eex(x,y)での露光を行うために光源制御部96で各露光ヘッド24a〜24jの露光量設定及び、DMDマスクデータ設定部86でDMD36のマイクロミラー40の点灯制御を行う(ステップS6)。この場合、DMDマスクデータは、基板Fの各位置xi(i=1、2、…)に画像の1画素を形成する複数のマイクロミラー40の中でオフ状態に制御するマイクロミラー40を決定するデータとして設定される。
以上のような設定のもとに、薄膜2上にレジスト3が塗布された基板Fに対する所望の配線パターンの以下に説明する露光記録処理を行う(ステップS6)。
そこで、画像データ入力部70から所望の配線パターンに係る画像データが入力される。入力された画像データは、フレームメモリ72に記憶された後、解像度変換部74に供給され、DMD36の解像度に応じた解像度に変換され、出力データ演算部76に供給される。出力データ演算部76は、解像度の変換された画像データからDMD36を構成するマイクロミラー40のオンオフ信号である出力データを演算し、この出力データを出力データ補正部78に供給する。
出力データ補正部78は、マスクデータメモリ82からマスクデータを読み出し、出力データとして設定されている各マイクロミラー40のオンオフ状態をマスクデータによって補正し、補正された出力データをDMDコントローラ42に供給する。
DMDコントローラ42は、補正された出力データに基づいてDMD36を駆動し、各マイクロミラー40をオンオフ制御する。光源ユニット28a〜28jから出力され、光ファイバ30を介して各露光ヘッド24a〜24jに導入された光ビームLは、ロッドレンズ32から反射ミラー34を介してDMD36に入射する。DMD36を構成する各マイクロミラー40により所望の方向に選択的に反射された光ビームLは、第1結像光学レンズ44、46によって拡大された後、マイクロアパーチャアレー54、マイクロレンズアレー48及びマイクロアパーチャアレー56を介して所定の径に調整され、次いで、第2結像光学レンズ50、52により所定の倍率に調整されて基板Fに導かれる。露光ステージ18は、定盤14に沿って移動し、基板Fには、露光ステージ18の移動方向と直交する方向に配列される複数の露光ヘッド24a〜24jにより所望の配線パターンが露光記録される。
配線パターンが露光記録された基板Fは、露光装置10から取り外された後、現像処理、エッチング処理、剥離処理が施される。この場合、基板Fに照射される光ビームLの光量は、マスクデータ及び補正後の露光量に基づき剥離処理までの最終処理工程を考慮して調整されているため、所望の均一な線幅(分布)L(x,y)を有する高精度なパターンを得ることができる(以上、ステップS6)。
なお、光ビームLを回転多面鏡、ガルバノミラーなどを光偏向器用いた光走査式デジタル露光系を想定する場合には、ステップS6において、光源の強度変調を行い、各点灯画素の露光強度を場所により変えて適正露光量Eex(x、y)の露光量分布となるようにすることで同様の効果を得ることができる。
上述した図9の制御回路110のブロック図は、図10のフローチャートに示したレジスト膜厚ローカリティに基づくエッチング後線幅ローカリティを露光量で補正する手順が適用された露光装置10のブロック図である。
次に、図11の制御回路110Aのブロック図は、次の図12のフローチャートに示すレジスト膜厚ローカリティに基づくエッチング後線幅ローカリティを露光機80へ入力する画像データ上で補正する手順が適用された露光装置10のブロック図である。
図11、図12において、図9、図10に示したものと同一のもの又は対応するものには同一の符号を付けその説明を省略する。
制御回路110Aでは、画像データ入力部70とフレームメモリ72との間に、画像データ補正演算部(画像データ補正手段)100が挿入される。この画像データ補正演算部100は、エッチング後線幅二次元分布演算部90の出力側に挿入された二次元線幅補正量演算部(線幅補正量決定手段)102の出力により画像データを補正する。また、出力データ補正部78(図9参照)は、省略された構成とされている。
図12のフローチャートにおいて、ステップS1〜S4までの処理並びにステップS7の処理は共通である。
そこで、二次元線幅補正量演算部102は、エッチング後線幅二次元分布演算部90から供給される、基板F上各位置の線幅補正量(分布)ΔL(x,y)に対応する画像データの補正量{線幅を拡大又は縮小するための補正量(分布)}ΔG(x、y)を演算する(ステップS15)。
画像データ補正演算部(画像データ拡大縮小演算手段)100は、画像データ入力部70から供給される画像データに対し、画像データの補正量ΔG(x、y)を入れ込んで補正後の拡大又は縮小した画像データをフレームメモリ72に記憶させる(ステップS16)。
以上のような設定のもとに、薄膜2上にレジスト3が塗布された基板Fに対する所望の配線パターンに対する上述したステップS7の露光記録を行うことで、所望の均一な線幅(分布)L(x,y)を有する高精度なパターンを得ることができる。
以上説明したように上述した実施形態によれば、基板1に形成された薄膜2上に塗布したレジスト3を、画像データによりオンオフ制御される露光機80により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置10、10Aにおいて、露光前に、膜厚測定センサ(膜厚測定器)23a、23bにより基板上のレジスト膜厚t(x、y)を測定した後、二次元線幅補正量演算部102又はエッチング後線幅二次元分布演算部(線幅補正量決定手段)により、予め求めておいた、露光前のレジスト膜厚t(x、y)とエッチング後の線幅補正量ΔL(x,y)との関係から、測定した露光前のレジスト膜厚膜厚t(x、y)に対するエッチングの線幅補正量ΔL(x、y)を決定し、決定した線幅補正量ΔL(x、y)により、画像データ補正演算部100又はDMDマスクデータ設定部86(露光量補正手段)が、所望の線幅とするための露光機80の設定露光量を補正するようにしているので、簡易な手順で所望の線幅とするための露光機80の設定露光量を補正することができる。
この結果、従来技術のように高価なマスクを使用することなく、しかも連続的に膜厚ローカリティを原因とするエッチング後線幅ローカリティを補正することができる。たとえば、FPDとしてLCD(液晶ディスプレイ)にこの発明を適用した場合に、LCDの輝度ムラを低減することができる。
この場合、線幅補正量ΔL(x,y)は、基板上各位置の露光量により補正するために、図9に示した制御回路110において、露光ヘッド24a〜24jを光源制御部96及び光源ユニット28a〜28jを通じて平均補正露光量ΔEで補正するとともに、DMDマスクデータ設定部86、DMDマスクデータメモリ82及び出力データ補正部78を通じて複数のマイクロミラー40を有する露光ヘッド24a〜24j中、特定のマイクロミラー40をオフ状態とすることで露光量を補正することができる。
また、線幅補正量ΔL(x,y)は、図11の制御回路110Aに示すように、画像データ補正演算部100により画像データ上で補正することでも行える。一般に、画像データの補正は、光源ユニット28の光源の光量強度を変調することに比較して簡単である。
この実施形態によれば、レジストの膜厚ローカリティを原因とするエッチング後線幅ローカリティを補正することができる。
この発明の一実施形態に係る露光装置の外観斜視図である。 図1例の露光装置における露光ヘッドの概略構成図である。 図2に示す露光ヘッドを構成するDMDの説明図である。 図2に示す露光ヘッドによる露光記録状態の説明図である。 図2に示す露光ヘッドを構成するDMD及びそれに設定されるマスクデータの説明図である。 記録位置と光量ローカリティとの関係説明図である。 図6に示す光量ローカリティを補正しない場合において記録された線幅の説明図である。 図6に示す光量ローカリティを補正した場合において記録された線幅の説明図である。 この実施形態に係る露光装置の制御回路ブロック図である。 図9例の動作説明に供されるフローチャートである。 他の実施形態に係る露光装置の制御回路ブロック図である。 図11例の動作説明に供されるフローチャートである。 半導体又はFPDにおける回路製造工程の説明図である。 図14Aは、レジストのテーパ角が大きい場合と小さい場合のレジストプロファイルの断面模式図である。図14Bは、ドライエッチング後の断面模式図である。 レジスト膜厚に対するテーパ角とレジスト感度の関係図である。
符号の説明
10、10A…露光装置 18…露光ステージ
23a、23b…膜厚測定センサ 24a〜24j…露光ヘッド
28…光源ユニット 36…DMD
40…マイクロミラー 78…出力データ補正部
80…露光機 88…二次元膜厚分布データメモリ
90…エッチング後線幅二次元分布演算部
92…光量/線幅テーブルメモリ 94…二次元適正露光量補正部
96…光源制御部 100…画像データ補正演算部
102…二次元線幅補正量演算部 110、110A…制御回路

Claims (9)

  1. 基板に形成された薄膜上に塗布したレジストを、画像データによりオンオフ制御される露光機により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置における露光方法において、
    露光前に、前記基板上のレジスト膜厚を測定するレジスト膜厚測定ステップと、
    予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定する線幅補正量決定ステップと、
    決定した線幅補正量により、前記所望の線幅とするための補正ステップと、
    を有することを特徴とする露光装置における露光方法。
  2. 請求項1記載の露光装置における露光方法において、
    前記補正ステップでは、前記基板上の場所に応じて前記露光機の設定露光量を補正する
    ことを特徴とする露光装置における露光方法。
  3. 請求項2記載の露光装置における露光方法において、
    前記露光機は、複数の露光記録素子を有する露光ヘッドであり、前記露光ヘッド中、特定の前記露光記録素子をオフ状態とすることで前記露光量を補正する
    ことを特徴とする露光装置における露光方法。
  4. 請求項3記載の露光装置における露光方法において、
    前記露光機は、複数の前記露光ヘッドを
    有することを特徴とする露光装置における露光方法。
  5. 請求項3記載の露光装置における露光方法において、
    複数の前記露光記録素子が、DMDと該DMDに光を照明する照明系と
    からなることを特徴とする露光装置における露光方法。
  6. 請求項2記載の露光装置における露光方法において、
    前記露光機は、光偏向器を備え、前記露光量補正ステップでは、前記基板上の場所に応じて前記光偏向器により偏向される光ビームの強度を補正する
    ことを特徴とする露光装置における露光方法。
  7. 請求項1記載の露光装置における露光方法において、
    前記補正ステップでは、前記基板上の場所に応じて前記画像データを補正することで、前記露光機に設定される設定露光量を補正する
    ことを特徴とする露光装置における露光方法。
  8. 請求項7記載の露光装置における露光方法において、
    前記画像データの補正は、前記基板上の場所に応じて線幅を拡大又は縮小させるように補正する
    ことを特徴とする露光装置における露光方法。
  9. 基板に形成された薄膜上に塗布したレジストを、画像データによりオンオフ制御される露光機により走査露光した後、現像、エッチングを行い前記薄膜による所望の線幅のパターンを形成する露光装置において、
    露光前に、前記基板上のレジスト膜厚を測定するレジスト膜厚測定器と、
    予め求めておいた、露光前のレジスト膜厚とエッチング後の線幅補正量との関係から、測定した露光前のレジスト膜厚に対するエッチングの線幅補正量を決定する線幅補正量決定手段と、
    決定した線幅補正量により、前記所望の線幅とするための前記露光機の設定露光量を補正する露光量補正手段と、
    を有することを特徴とする露光装置。
JP2007093365A 2007-03-30 2007-03-30 露光装置における露光方法及び露光装置 Pending JP2008250139A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007093365A JP2008250139A (ja) 2007-03-30 2007-03-30 露光装置における露光方法及び露光装置
US12/068,821 US20080239267A1 (en) 2007-03-30 2008-02-12 Exposure apparatus and exposure method for exposure apparatus
KR1020080020047A KR101452243B1 (ko) 2007-03-30 2008-03-04 노광장치 및 노광장치의 노광방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093365A JP2008250139A (ja) 2007-03-30 2007-03-30 露光装置における露光方法及び露光装置

Publications (1)

Publication Number Publication Date
JP2008250139A true JP2008250139A (ja) 2008-10-16

Family

ID=39793701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093365A Pending JP2008250139A (ja) 2007-03-30 2007-03-30 露光装置における露光方法及び露光装置

Country Status (3)

Country Link
US (1) US20080239267A1 (ja)
JP (1) JP2008250139A (ja)
KR (1) KR101452243B1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306186A (ja) * 2007-06-07 2008-12-18 Asml Netherlands Bv 光学的マスクレスリソグラフィにおけるドーズ量制御
JP2012173563A (ja) * 2011-02-22 2012-09-10 Tokyo Electron Ltd 局所露光装置
KR20120105374A (ko) * 2011-03-15 2012-09-25 도쿄엘렉트론가부시키가이샤 국소 노광 방법 및 국소 노광 장치
JP2013186191A (ja) * 2012-03-06 2013-09-19 Tokyo Electron Ltd 補助露光装置
JP2014525596A (ja) * 2011-08-18 2014-09-29 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
JP2016540246A (ja) * 2013-11-27 2016-12-22 東京エレクトロン株式会社 光学投影を使用する基板チューニングシステム及び方法
JP2018509651A (ja) * 2015-03-16 2018-04-05 エーエスエムエル ネザーランズ ビー.ブイ. レジスト変形を決定するための方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104171A1 (ja) * 2005-03-28 2006-10-05 Fujifilm Corporation 画像記録方法及び装置
SG164298A1 (en) * 2009-02-24 2010-09-29 Visionxtreme Pte Ltd Object inspection system
CN103946750B (zh) 2011-11-29 2019-03-29 Asml荷兰有限公司 光刻设备、器件制造方法和计算机程序
JP6035279B2 (ja) * 2014-05-08 2016-11-30 東京エレクトロン株式会社 膜厚測定装置、膜厚測定方法、プログラム及びコンピュータ記憶媒体
US10928736B2 (en) * 2015-12-30 2021-02-23 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
WO2017114659A1 (en) 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
KR102235642B1 (ko) 2019-05-17 2021-04-02 서울대학교산학협력단 공간 광 변조기를 이용한 광학계 및 이를 이용한 물성 측정 방법
CN114488721B (zh) * 2022-03-15 2023-08-11 福建省晋华集成电路有限公司 光学邻近修正方法、装置、电子设备和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093528B2 (ja) * 1993-07-15 2000-10-03 キヤノン株式会社 走査型露光装置
SG71082A1 (en) * 1997-01-30 2000-03-21 Tokyo Electron Ltd Method and apparatus for coating resist and developing the coated resist
US6576385B2 (en) * 2001-02-02 2003-06-10 Advanced Micro Devices, Inc. Method of varying stepper exposure dose to compensate for across-wafer variations in photoresist thickness
US20040248043A1 (en) * 2003-06-03 2004-12-09 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
KR100796582B1 (ko) * 2003-12-26 2008-01-21 후지필름 가부시키가이샤 노광방법 및 장치

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306186A (ja) * 2007-06-07 2008-12-18 Asml Netherlands Bv 光学的マスクレスリソグラフィにおけるドーズ量制御
JP2012173563A (ja) * 2011-02-22 2012-09-10 Tokyo Electron Ltd 局所露光装置
KR20120105374A (ko) * 2011-03-15 2012-09-25 도쿄엘렉트론가부시키가이샤 국소 노광 방법 및 국소 노광 장치
TWI506380B (zh) * 2011-03-15 2015-11-01 Tokyo Electron Ltd 局部曝光方法及局部曝光裝置
KR101711231B1 (ko) 2011-03-15 2017-02-28 도쿄엘렉트론가부시키가이샤 국소 노광 방법 및 국소 노광 장치
JP2014525596A (ja) * 2011-08-18 2014-09-29 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
JP2016033678A (ja) * 2011-08-18 2016-03-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
US9690210B2 (en) 2011-08-18 2017-06-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2013186191A (ja) * 2012-03-06 2013-09-19 Tokyo Electron Ltd 補助露光装置
JP2016540246A (ja) * 2013-11-27 2016-12-22 東京エレクトロン株式会社 光学投影を使用する基板チューニングシステム及び方法
JP2018509651A (ja) * 2015-03-16 2018-04-05 エーエスエムエル ネザーランズ ビー.ブイ. レジスト変形を決定するための方法
US10423076B2 (en) 2015-03-16 2019-09-24 Asml Netherlands B.V. Methods for determining resist deformation

Also Published As

Publication number Publication date
KR20080089173A (ko) 2008-10-06
US20080239267A1 (en) 2008-10-02
KR101452243B1 (ko) 2014-10-21

Similar Documents

Publication Publication Date Title
JP2008250139A (ja) 露光装置における露光方法及び露光装置
JP4778834B2 (ja) 画像記録方法及び装置
KR20100030999A (ko) 마스크리스 노광 장치 및 이를 이용한 정렬 오차의 보상 방법
US20100208222A1 (en) Exposure apparatus and method to measure beam position and assign address using the same
TW201335722A (zh) 曝光裝置、曝光方法及顯示用面板基板的製造方法
KR20120100208A (ko) 마스크리스 노광 장치와 이를 이용한 누적 조도 보정 방법
JP2008250140A (ja) 露光装置における露光方法及び露光装置
JP4738227B2 (ja) 記録素子設定方法、画像記録方法及び装置
JP2012242630A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法、並びに露光装置の検査方法
JP2008250141A (ja) 露光装置における露光方法及び露光装置
US20090015809A1 (en) Image Recording Method and Device
KR20100042864A (ko) 노광장치 및 그 진직도 측정방법
JP4806581B2 (ja) 光量調整方法、画像記録方法及び装置
KR20160046016A (ko) 마스크리스 노광 장치 및 이를 이용한 누적 조도 보정 방법
JP2007310263A (ja) 画像記録方法及び装置並びにその調整方法
KR20120100209A (ko) 마스크리스 노광 장치와 이를 이용한 스티칭 노광 방법
JP4987330B2 (ja) 画像記録方法及び装置
JP2011007974A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
US20080123072A1 (en) Projection Head Focus Position Measurement Method And Exposure Method
JP5473880B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2011002512A (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP5305967B2 (ja) 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2008065000A (ja) 露光方法および露光装置
US20090132063A1 (en) Recording element setting method, image recording method, and device
JP2006309194A (ja) 画像記録方法及び装置