JP2008238173A - 板圧延のパススケジュールの設定方法 - Google Patents

板圧延のパススケジュールの設定方法 Download PDF

Info

Publication number
JP2008238173A
JP2008238173A JP2007077877A JP2007077877A JP2008238173A JP 2008238173 A JP2008238173 A JP 2008238173A JP 2007077877 A JP2007077877 A JP 2007077877A JP 2007077877 A JP2007077877 A JP 2007077877A JP 2008238173 A JP2008238173 A JP 2008238173A
Authority
JP
Japan
Prior art keywords
pass
rolling
schedule
pass schedule
crown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007077877A
Other languages
English (en)
Inventor
Tsuyoshi Higo
剛志 比護
Yasuyuki Takamachi
恭行 高町
Yasuhiro Higashida
康宏 東田
Kenji Yamada
健二 山田
Shigeru Ogawa
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007077877A priority Critical patent/JP2008238173A/ja
Publication of JP2008238173A publication Critical patent/JP2008238173A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

【課題】板圧延において、可能な限り少ない総圧延パス数で、所望の平坦度及び/又は板クラウンを安定的に得ることのできるパススケジュールを設定する方法を提供する。
【解決手段】各パス出側線長差率、及び/又は、各パス出側板クラウンの理想値からのずれを指標とする評価関数を用い、該評価関数値を最小とするパススケジュールを探索し、該パススケジュールを実現するようにパススケジュールを設定する。このとき、各パス出側線長差率を各パス出側板厚のm乗で除したもの、及び/又は、各パス出側板クラウンの理想値からのずれを各パス出側板厚のn乗で除したものを指標とする評価関数を用いることが好ましい。また、各パス出側クラウンの理想値は、各パス出側板厚hが所定値h以下の領域で各パス出側クラウン比率Chi/hが一定となるように設定されることが好ましい。
【選択図】図2

Description

本発明は、板圧延のパススケジュールの設定方法に関するものである。
板材を複数の圧延パスにより所定の板厚まで圧延する場合、各パスで板厚をどのように減じていくか、いわゆるパススケジュールを設定する必要がある。
各パスでの最大圧下量は、圧延機ハウジングの許容荷重、圧延機モータおよびスピンドルの許容トルク、圧延ロールの許容接触荷重、被圧延材の圧延機への噛込限界などで決定される。特許文献1で開示された技術では、初期板厚を基準に、各パスでの圧下量を最大として、出側板厚が所望の板厚をはじめて下回る総圧延パス数を求め、このときの最終パスでの出側板厚と所望の板厚との差に応じて各パス出側板厚を修正することにより、少ない総圧延パス数で所望の板厚を得ることができるパススケジュールの設定方法が示されている。特許文献1では、所望の板厚を得ることができる最少の総圧延パス数により圧延作業を行うので、総圧延パス数の削減、ひいては、生産性の向上に寄与できる。ところが、特許文献1では、圧延板の重要な品質管理項目の一つである板クラウンや平坦度には特段の注意を払っていないため、必ずしも所望の板クラウン、平坦度を得ることができるとは限らない。ここで、板クラウンとは、被圧延材の板幅中央における板厚と、板幅端部から所定の距離に定義されるクラウン定義点における板厚との差を意味する。所望の板クラウン、平坦度を達成しない被圧延材は、歩留ロスや平坦度矯正のような他工程の負荷の増加を招くので、本方法は、実用的な板圧延のパススケジュール設定方法とはなり得ない。
被圧延材の平坦度を確保するためには、クラウン比率一定圧延が望ましいことが知られている。ここで、クラウン比率とは、板クラウンを板幅中央における板厚で除した値である。例えば、非特許文献1に開示された技術では、所望の出側板厚を最終パス出側板厚とし、クラウン比率一定圧延を実現する最終パス入側板厚を計算し、これを該圧延パス入側板厚が初期板厚となるまで上流パスにさかのぼって繰り返す。このとき、該圧延パス荷重もしくは該圧延パストルクがそれぞれの許容値を超えると、該圧延パスを含む上流側の各パス入側板厚を許容荷重、許容トルクの範囲内となるように設定する。このようにして、初期板厚から所望の板厚を実現するパススケジュールを設定する方法が示されている。
ところが、クラウン比率一定圧延を行う圧延パス数をやみくもに増加させることは総圧延パス数の増加による生産性の悪化を招いてしまう。そこで、例えば、非特許文献2には、クラウン比率の変化に許容範囲を持たせたパススケジュールの設定方法が示されている。ところが、クラウン比率変化を抑制した圧延パスと最大負荷能力で決められる圧延パスとの繋ぎ圧延パスでの圧延条件が悪いと、平坦度が悪化するという問題もある。例えば、特許文献2には、繋ぎ圧延パスでのクラウン比率変化がある程度以上に大きい場合に、クラウン比率一定圧延の第1パスの圧延荷重を引き下げることにより平坦度悪化を抑制する方法が提案されているが、クラウン比率を一定とする圧延パス、もしくは、クラウン比率変化を抑制する圧延パスと、最大負荷圧延パスとの間の繋ぎ圧延パスでの大きなクラウン比率変化を特定の圧延パスにおいて集中的に補償しようとしていることに起因して、平坦度悪化を安定的に抑制することは困難である。
数値解析モデルに基づくパススケジュールの設定方法として、非特許文献3には、入側板厚から所望の出側板厚を実現できる任意のパススケジュールに対して、最終パス出側での平坦度を評価し、これを平坦とするパススケジュールを収束計算して求める方法が示されている。ところが、非特許文献3では、板クラウンに関する制約がないだけでなく、このような収束計算において、その収束アルゴリズムを合理的なものとしない限り、所望の平坦度を安定的に達成できるパススケジュールを短時間で得ることは難しい。
一方、例えば、非特許文献4に、関数評価に基づくパススケジュールの設定方法が示されている。この方法では、ある評価指標の理想値との差異を評価関数に用いることで、評価指標の理想値からのずれを許容しつつ、これを最小とするためには、どの圧延パスでどれだけそのずれを許容するのが最善かを、評価関数値として定量化することができる。このとき、用いる評価関数の良否が得られるパススケジュールの良否を左右してしまう。本例では、各パスでのクラウン比率変化の累積値を平坦度の評価関数に用いている。特定の圧延パスでのクラウン比率変化に乗じる重み係数を大きくすることで、該圧延パス出側での平坦度を重視することが可能であることも示されているが、重み係数をどのように与えるべきか、具体的な開示はない。
その他、例えば、特許文献3には、過去の操業実績を記憶、参照し、パススケジュールを設定する方法が示されている。また、例えば、特許文献4には、過去の操業実績から、ニューラルネットワークモデルを介してパススケジュールを設定する方法が示されている。ところが、このような経験に基づく手法では、製品品質の厳格化、圧延品種構成や圧延ライン構成の変化に瞬時に対応することは容易ではない。
つまり、従来、可能な限り少ない総圧延パス数で、しかも、所望の板クラウン、平坦度を安定的に得る板圧延のパススケジュールの設定方法は見当たらない。
なお、本発明に関する、任意の圧延条件に対する該圧延パス出側板クラウンおよび該圧延パス出側線長差率の計算方法は、例えば非特許文献5に示されている。また、本発明に関する、形状変化係数ξiは、例えば非特許文献6に示されている。
特開昭62−259605号公報 特開平09−57316号公報 特開平07−60320号公報 特開平05−38511号公報 「塑性と加工」第16巻第168号(1975年)の第10頁〜第17頁 「川崎製鉄技報」第8巻第3号の第374頁〜第387頁 Iron and Steel Engineer(1977年9月)の第70頁〜第76頁 「塑性と加工」第10巻第106号の第808頁〜第816頁 日本鉄鋼協会編「板圧延の理論と実際」第4章(第89頁~第110頁) 「塑性と加工」第23巻第263号(1982年)の第1172頁〜第1180頁
上記したように、従来、可能な限り少ない総圧延パス数で、しかも、所望の板クラウン、平坦度を安定的に得る板圧延のパススケジュールの設定方法は見当たらず、当該設定方法が希求されていた。
本発明は、上記課題に鑑み、可能な限り少ない総圧延パス数で、しかも、所望の板クラウン及び/又は平坦度を安定的に得る板圧延のパススケジュールを設定する方法を提供することを目的としている。
上記目的を達成するために、本発明者らは、板圧延のパススケジュールと、板クラウンや平坦度との関係について、数多くの理論検討および実験検討を行った。これにより、以下の知見を得た。
所望の板クラウン、平坦度を得るためには、最終パスの圧延条件だけでなく、最終パスをも含む各パスの圧延条件が少なからず影響を及ぼすことが知られている。それゆえ、所望の板クラウン、平坦度を得るためには、最終パスだけでなく、全圧延パスについて、適切なパススケジュールを設定することが必要となる。
そこで、各パス出側の平坦度を定量化するための各パス出側線長差率、又は、各パス出側板クラウンを定量化するための各パス出側板クラウンの理想値からのずれ、の少なくともいずれか一方を指標とする評価関数を用い、この評価関数の値を最小化するパススケジュールを求めることで、所望の板クラウン、平坦度を安定的に得ることが可能となることが判明した。
加えて、出側板厚が薄くなるほど、各パスでの圧延条件が最終パス出側での板クラウンや平坦度に及ぼす影響が大きくなる傾向があることが判明した。それゆえ、各パス出側線長差率を各パス出側板厚のべき乗で除したもの、又は、各パス出側板クラウンの理想値からのずれを各パス出側板厚のべき乗で除したものの少なくともいずれか一方を指標とする評価関数を用いることが好ましいことが判明した。
さらに、各パス出側線長差率を各パス出側板厚のm乗で除したものを指標とする評価関数を用いるにあたり、板厚の影響がほとんど無いものも存在する一方、影響の程度が板厚の5乗を越えるほど顕著なものは現状で見当たらなかった。したがって、べき乗の指数mは0を含むものとし、指数mは0以上5以下とすることが好ましいことが判明した。
同様に、各パス出側板クラウンの理想値からのずれを各パス出側板厚のn乗で除したものを指標とする評価関数を用いるにあたり、板厚の影響がほとんど無いものも存在する一方、影響の程度が板厚の5乗を越えるほど顕著なものは現状で見当たらなかった。したがって、べき乗の指数nは0を含むものとし、指数nは0以上5以下とすることが好ましいことが判明した。
また、クラウン比率一定圧延を行うと平坦度不良が発生しない一方、出側板厚が薄くなるとわずかな出側線長差率により平坦度不良が発生しやすくなることから、各パス出側板クラウンの理想値を、各パス出側板厚がある値以下の領域では各パス出側板厚に関わらず各パス出側クラウン比率が一定となるように与えることが好ましいことが判明した。このとき、少なくとも各パス出側板厚が20mm以下の領域では、クラウン比率一定圧延を指向することがより好適であることが判明した。加えて、板幅が広いほどわずかな出側線長差率により平坦度不良が発生しやすくなることから、クラウン比率一定圧延を指向する板厚領域を板幅に応じて変化させることがより好適であることも判明した。
本発明は上記の知見を基になされたものであって、その要旨は以下のとおりである。
(1)板圧延のパススケジュールを設定する方法において、
設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側線長差率を求め、当該出側線長差率を前記各パスの出側板厚のm乗(m:0≦m≦5の実数)で除したものを指標とする評価関数を用い、
当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジュールの設定方法が提供される。
ここで、例えば、圧延板に耳波が存在する場合、板の長さ方向に板に沿って測定される線長は、板幅端部における値のほうが板幅中央部における値よりも大きくなっている。これら両者の差を線長差と呼び、この線長差を板長さで除したものを線長差率と呼ぶ。換言すると、線長差率とは、板を仮想的に板幅方向にスリット分割した場合の板幅中央部のスリットの自由長とクラウン定義点に位置するスリットの自由長との差を、スリットする前の板長さで除したものであり、圧延板の平坦度と相関のある指標として、しばしば用いられている。この線長差率は、各パスの出側クラウン比率と入側クラウン比率との差に強い相関を持っていることが知られている。
(2)板圧延のパススケジュールを設定する方法において、
設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側板クラウンの理想値からのずれを求め、当該理想値からのずれを前記各パスの出側板厚のn乗(n:0≦n≦5の実数)で除したものを指標とする評価関数を用い、
当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジュールの設定方法が提供される。
板圧延のパススケジュールを設定する方法において、
設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側線長差率を求め、当該出側線長差率を前記各パスの出側板厚のm乗(m:0≦n≦5の実数)で除したもの、並びに、前記各パスの出側板クラウンの理想値からのずれを求め、当該理想値からのずれを前記各パスの出側板厚のn乗(n:0≦n≦5の実数)で除したもの、を指標とする評価関数を用い、
当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジ
ュールの設定方法が提供される。
(4)前記(2)または(3)に記載の板圧延のパススケジュールの設定方法において、前記各パスの出側板厚が所定値以下の領域で、当該各パスの出側クラウン比率が一定となるように、当該各パスの出側板クラウンの理想値を設定してもよい。
(5)前記(4)に記載の板圧延のパススケジュールの設定方法において、前記所定値が20mm以上であるようにしてもよい。
(6)前記(4)または(5)に記載の板圧延のパススケジュールの設定方法において、前記所定値は、被圧延材の板幅を変数とする関数で決定されてもよい。これにより、クラウン比率一定圧延を指向する板厚領域を定めるため前記所定値は、被圧延材の板幅に応じて増減して設定される。
(7)また、前記(1)〜(6)のいずれかに記載の板圧延のパススケジュールの設定方法において、圧延機の設備能力に基づく最少総圧延パス数を前記総圧延パス数の初期値に設定し、当該総圧延パス数に対して前記複数のパススケジュールを仮定し、当該総圧延パス数での前記評価関数の値を最小とするパススケジュールが所望の条件を満たさない場合、前記総圧延パス数を1ずつ順次増加させて当該増加させた総圧延パス数での前記評価関数の値を最小とするパススケジュールの決定を再試行するようにしてもよい。
前記(1)の発明によれば、従来に比して、少ない総圧延パス数で、より安定的に所望の平坦度を得ることのできる板圧延のパススケジュールを設定することができる。前記(2)の発明によれば、従来に比して、少ない総圧延パス数で、より安定的に所望のクラウンを得ることのできる板圧延のパススケジュールを設定することができる。また、前記(3)の発明によれば、従来に比して、少ない総圧延パス数で、より安定的に、所望の板クラウンや平坦度を得ることのできる板圧延のパススケジュールを設定することができる。さらに、前記(4)乃至(5)の発明によれば、最終パス出側板厚が薄い場合に、安定的に平坦度悪化を抑制することのできる板圧延のパススケジュールを設定することができる。加えて、前記(6)の発明によれば、圧延板の板幅範囲が大きい場合にも、安定的に平坦度悪化を抑制することのできる板圧延のパススケジュールを設定することができる。前記(7)の発明によれば、最少の総圧延パス数での最適パススケジュールを設定することができる。
以上のように、本発明によれば、従来に比して、可能な限り少ない総圧延パス数で、所望の板クラウン及び/又は平坦度を安定的に得ることのできるパススケジュールの設定が実現できる。また、これにより、圧延の歩留まりロスが抑制され、かつ、生産性が向上するという効果も得られる。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
以下、本発明の一実施形態にかかる板圧延のパススケジュールの設定方法について説明する。本実施形態では、以下の手順でパススケジュールを設定する。ここで、被圧延材の初期板厚をhin、製品板厚などから求まる所望の最終パス出側板厚をhoutと定義する。
(1)被圧延材の初期板厚hinを第1パスの入側板厚とし、最大圧下量で圧延を繰り返し、該圧延パス出側板厚が所望の最終パス出側板厚houtを下回る総圧延パス数Nを求める。この総圧延パス数Nは、圧延機の設備能力に基づく最少総圧延パス数に相当し、総圧延パス数の初期値として設定される。
(2)第1パス入側板厚hinを起点に、第1パス〜第(N−1)パスを最大圧下量で圧延した場合の第iパス下限出側板厚h を求める。このとき、第Nパス出側板厚は最終パス出側板厚houtに等しくなるように与える。
(3)第Nパス出側板厚houtを起点に、第2パス〜第Nパスを最大圧下量で圧延した場合の第(i+1)パス上限入側板厚(=第iパス上限出側板厚)h を求める。このとき、第1パス入側板厚は初期板厚hinに等しくなるように与える。
(4)総圧延パス数がNであり、かつ、第iパス出側板厚hが第iパス上限出側板厚h と第iパス下限出側板厚h との間に存在する、任意の複数のパススケジュールを仮定し、この複数のパススケジュールのうちから選択された1つのパススケジュールに関し、各パス出側板クラウン、各パス出側線長差率を評価する。このとき、例えば、第iパス上限出側板厚h と第iパス下限出側板厚h とを均等分割して与えられた任意の分割点を通るようなパススケジュールを選択すればよい。
なお、任意の圧延条件に対する該圧延パス出側板クラウンおよび該圧延パス出側線長差率の計算方法は、例えば、非特許文献6に示されている。この非特許文献6によれば、圧延パス出側板クラウンは(1)式、圧延パス出側線長差率は(2)式でそれぞれ求めることができる。ここで、Cは出側板クラウン量、α、α、αは、それぞれ圧延荷重P、ロールクラウンRCWおよびRCB、ロールベンドJによるワークロール軸心たわみ係数である。また、Bは板幅、Lはロールバレル長である。さらに、Δεは線長差率、CR0は入側板クラウン量、hは入側板厚、hは出側板厚である。
Figure 2008238173
Figure 2008238173
(5)上記(4)で求めた各パス出側板クラウン、各パス出側線長差率を用いて、該パススケジュールに対する評価関数値を求める。ここで、各パス出側線長差率、各パス出側板クラウンの理想値からのずれの少なくともいずれか一方を指標とする評価関数を用いる。このとき、評価関数の指標として、各パス出側線長差率を各パス出側板厚のm乗で除したもの、又は、各パス出側板クラウンの理想値からのずれを各パス出側板厚のn乗で除したものの少なくともいずれか一方を用いることが好ましく、ここで、指数m及び指数nを0以上5以下とすることがさらに好ましい。また、各パス出側板クラウンの理想値を、各パス出側板厚が所定値以下の領域では各パス出側板厚に関わらず各パス出側クラウン比率が一定となるように与えることが好ましい。このとき、少なくとも各パス出側板厚が20mm以上の領域から下流側の各パス出側板クラウンの理想値を、各パス出側クラウン比率が一定となるように与えることが好ましい。さらに、このとき、各パス出側クラウンの理想値を各パス出側クラウン比率が一定となるように与える各パス出側板厚の範囲を板幅に応じて変化させることが好ましい。
(6)上記の(4)〜(5)の評価を、上記仮定された複数のパススケジュールについてそれぞれ繰り返して、各パススケジュールの評価関数値を求める。この結果、上記複数のパススケジュールの中で、評価関数値が最小となるパススケジュールが、所望の条件を満たす場合、例えば、最終パス出側での板クラウン、平坦度が所望の値である、あるいは、所望の範囲内にある場合には、当該パススケジュールが最適と評価して、当該最適なパススケジュールを実現するようにパススケジュールを設定する。一方、上記所望の条件を満たさない場合、例えば、最終パス出側での板クラウン、平坦度が所望の値でない、あるいは、所望の範囲内にない場合には、初期値として設定された総圧延パス数Nを例えば1つずつ増加させて上記(2)〜(6)を繰り返す。このようにして、当該順次増加された総圧延パス数N+iで仮定された複数のパススケジュールのうち、上記評価関数値が最小となるパススケジュールの決定を再試行し、当該評価関数値が最小となるパススケジュールであって、かつ、上記所望の条件を満たす最適なパススケジュールを得た後に、当該最適なパススケジュールを実現するようにパススケジュールを設定する。
以上、本発明の一実施形態における板圧延のパススケジュール設定の過程を示したが、本実施形態では、各パス出側線長差率、各パス出側板クラウンの理想値からのずれの少なくともいずれか一方を指標とする評価関数を用い、該評価関数値を最小とするパススケジュールを求めて設定するので、従来に比して、可能な限り少ない総圧延パス数で、所望の板クラウン、平坦度を安定的に得ることのできるパススケジュールの設定が実現できる。これにより、圧延の歩留まりロスが抑制され、かつ、生産性が向上するという効果も得られる。
以下、本発明の一実施例について図面に基づいて説明する。なお、以下の実施例で用いられる数値、関数等は、本発明を説明するための一例にすぎず、本発明は以下の実施例に限定されるものではない。
図1に示す、圧延機1による圧延のパススケジュールの設定に本発明を適用する実施例を考える。圧延機1では、その上流から被圧延材2が送られてくる。このとき、該圧延機1の上流側に設けられた板厚計3で該被圧延材2の板厚hinが測定される。該板厚計3で測定された該被圧延材2の板厚hinは、演算装置4に送られる。なお、該演算装置4には、該被圧延材2の鋼種、サイズ、温度などの情報も送られている。また、制御装置5は、演算装置4の演算結果に基づいて設定された最適なパススケジュールに従って、圧延機1を制御する。
ここで、該被圧延材2の初期板厚hinは87.3mmであり、これを圧延機1において、最終パス出側板厚houtが10.9mmとなるまで圧延することが求められている。このとき、最終パス出側での平坦度を抑制することが望まれている。よって、式(3)で表される評価関数φを用いて、本発明に基づく演算を演算装置4において実施することにより、最終パス出側での平坦度を抑制することが可能なパススケジュールを探索した。ここで、ωは第iパス出側での評価関数値に対する重みである。本実施例では、第iパス出側での評価関数値に対する重みωを全て1とし、べき乗の指数m=0とした。したがって、実施例1の評価関数φは、指標である各パス出側線長差率Δεに対して、これを二乗し、重み係数ωを乗じ、各パスについて総和を取ったものである。ただし、指標に基づく評価関数の形はこのような形に全くこだわるものではない。
Figure 2008238173
本実施例では、最終パス出側急峻度λを0.5%以下とすることを目標とした。ここで、線長差率Δεと急峻度λとは式(4)で関係付けられる。
Figure 2008238173
探索演算の結果、表1に示すようなパススケジュールを適用することにより、8パスで最終パス出側急峻度λを約0.3%に抑制できることが判明した。ちなみに、7パス以下の各総圧延パス数に対して求められた最適パススケジュールでは、最終パス出側急峻度λを0.5%以下とすることは不可能であった。また、表1には、比較例として、従来、同仕様の被圧延材を8パスで製造する場合のパススケジュール設定と、本パススケジュール設定に対する評価関数値φ、最終パス出側急峻度λの予測値を示す。ここで、比較例では、非特許文献1に基づく方法を用いて、パススケジュールを設定している。比較例によるパススケジュール設定に対する評価関数値φは本実施例による評価関数値φを上回り、最終パス出側急峻度λの予測値も大きくなっていることがわかる。なお、評価関数値φの相対比較(大小)は、同一圧延板仕様に対する同一総圧延パス数下でのパススケジュールの優劣を判定する上で意味を持つが、評価関数値φの絶対値自体は意味を持たない(異なる総圧延パス数、圧延板仕様に対するパススケジュールの相対比較には適用できない)ことに注意されたい。
Figure 2008238173
本実施例で得られたパススケジュールを実現するように制御装置5を用いて各パスの圧下を設定し、圧延を実施した結果、最終パス出側急峻度は0.3%となった。これは、本方法により、良好な平坦度を得るパススケジュールを合理的に探索し、設定することができるようになったためである。なお、従来、本条件と同様の被圧延材に対しては10パスの圧延を実施しており、平坦度も必ずしも良好なものではなかった。つまり、本実施例は、総圧延パス数を2パス減らし、かつ、平坦度の良好な圧延板を得ることを可能としたといえる。
以上、本発明をその一実施例を元に説明したが、本発明は、その要旨を逸脱しない範囲で種々変更することもできる。例えば、ここでは、式(3)で表される評価関数φを用いた場合を例として説明したが、本発明は、評価関数φを式(3)に限定するものではなく、例えば、係数を乗じたものや、付加項を加えたものなど、各パス出側線長差率、又は、各パス出側板クラウンの理想値からのずれ、の少なくともいずれか一方を指標に含む種々の評価関数φを用いてもよい。
また、本実施例は、総圧延パス数を未知数とする場合を例として説明したが、例えば、仕上熱延工程のような連続タンデム圧延機に適用する場合のように、総圧延パス数を既知数とする場合に本発明を適用することも可能である。
さらに、本実施例は、圧延機1で被圧延材2の圧延を開始する前の段階で、該被圧延材2の全圧延パスに対するパススケジュールを設定する場合を例として説明したが、例えば、圧延機1で被圧延材2の圧延を開始した後で本発明を適用してもよい。つまり、例えば、被圧延材2に対し、数パスの圧延を実施した結果、外乱等に起因して、想定した圧延結果が得られていない場合に、該被圧延材2の該圧延パスよりも下流側でのパススケジュールを修正する場合に本発明を適用してもよい。
この実施例2では、実施例1と同じ被圧延材条件であるが、最終パス出側板クラウンを100μm以下に抑制することが望まれているとする。そこで、式(5)で表される評価関数φを用いて、最終パス出側板クラウンを100μm以下とすることが可能なパススケジュールを本発明に基づいて探索した。本実施例においても、第iパス出側での評価関数値に対する重みωiを全て1とし、べき乗の指数n=1としている。
Figure 2008238173
本実施例では、出側板厚hが所定値h以下の領域で各パス出側クラウン比率を一定とする、図2のようなクラウン比率スケジュールを実現するクラウンスケジュールを理想値とした。また、本実施例では、hを20mmとした。
その結果、表2に示すようなパススケジュールを適用することにより、9パスで最終パス出側板クラウンCを91μmに抑制できることが判明した。ちなみに、8パス以下の各総圧延パス数に対して求められた最適パススケジュールでは、最終パス出側板クラウンCを100μm以下とすることは不可能であった。また、表2には、比較例として、従来、同一仕様の圧延板を9パスで圧延する場合のパススケジュール設定と、このときの最終パス出側板クラウンCの予想値を示す。比較例によるパススケジュール設定では、最終パス出側クラウンCは118μmとなり、所望値(100μm以下)を達成できないと予想される。
Figure 2008238173
本実施例で得られたパススケジュールを実現するように各パスの圧下を設定して圧延を実施した結果、実際に得られた板クラウンは88μmであり、100μmを下回っていた。なお、従来、本条件と同様の被圧延材に対しては10パスの圧延を実施しており、それでも100μmを上回る板クラウンが生じることが頻発していた。つまり、本実施例では、従来よりも総圧延パス数を低減し、かつ、最終パス出側板クラウンも低減できるといえる。
この実施例3では、実施例1と同じ被圧延材条件であるが、最終パス出側板クラウンを120μm以下に抑制し、かつ、良好な平坦度を得ることが望まれているとする。そこで、式(6)で表される評価関数φを用いて、最終パス出側板クラウンを120μm以下に抑制し、かつ、最終パス出側急峻度を0.5%以下とすることが可能なパススケジュールを本発明に基づいて探索した。ここで、ξは形状変化係数と呼ばれる指標であり、例えば非特許文献6に示されているものを用いることができる。しかし、形状変化係数ξは圧延機、被圧延材質、圧延条件ごとに異なるため、実験的に別途確認しておくことが望ましい。
また、本実施例では、図2に示すクラウン比率スケジュールを実現するクラウンスケジュールを理想値とした。なお、本実施例では、上記出側板厚の所定値hを30mmとし、べき乗の指数m=2、n=3とした。
Figure 2008238173
その結果、表3に示すようなパススケジュールを適用することにより、9パスで最終パス出側クラウンCを105μmに抑制し、かつ、最終パス出側急峻度λを0.4%に抑制できることが判明した。ちなみに、8パス以下の各総圧延パス数に対して求められた最適パススケジュールでは、最終パス出側板クラウンCを120μmに抑制し、かつ、最終パス出側急峻度λを0.5%以下とすることは不可能であった。また、表3には、比較例として、従来、同一仕様の圧延板を9パスで圧延する場合のパススケジュール設定と、このときの最終パス出側急峻度、最終パス出側板クラウンCの予想値を示す。比較例によるパススケジュール設定では、最終パス出側急峻度λは0.6%、最終パス出側板クラウンCは137μmと予測され、所望値(最終パス出側板クラウン120μm以下かつ最終パス出側急峻度0.5%以下)を達成できないと予想される。
Figure 2008238173
本実施例で得られたパススケジュールを実現するように各パスの圧下を設定して圧延を実施した結果、実際に得られた板クラウンは112μmであり、最終パス出側急峻度は0.4%であった。なお、従来、本条件と同様の被圧延材に対しては10パスの圧延を実施しても、安定的に板クラウンを120μm以下に抑制し、しかも、良好な平坦度を得ることは困難であった。つまり、本実施例では、従来よりも総圧延パス数を低減するとともに、最終パス出側板クラウンを低減し、かつ、最終パス出側平坦度も向上できるといえる。
この実施例4では、板幅w=2000〜5000(mm)の種々の被圧延材に対し、最終パス出側板クラウンを80μm以下に抑制し、かつ、良好な平坦度を得ることを可能とするパススケジュールを設定することが望まれている。そこで、式(6)で表される評価関数φを用いて、最終パス出側板クラウンを80μm以下に抑制し、かつ、良好な平坦度を得ることが可能なパススケジュールを本発明に基づいて探索した。すなわち、m=2、n=3である。本実施例では、クラウンの理想スケジュールとして、クラウン比率一定圧延を指向する領域を決定する板厚の所定値h(mm)を式(7)で表すように、板幅w(mm)に応じて変化させた。この式(7)は、上記板厚の所定値hを板幅wに応じて決定する関数であり、この関数は、板幅wが大きいほど所定値hが大きくなるように決定される線形関数となっている。これは、板幅wが大きいほど、わずかな出側線長差率により平坦度不良が発生しやすくなるので、上記板厚の所定値hを大きい値に設定して、クラウン比率一定圧延を指向する板厚領域を広げることで、平坦度不良の発生を抑制するためである。
Figure 2008238173
種々の被圧延材(合計300本)に対し、本実施例による方法の平均総圧延パス数は8.2であった。一方、従来法では、平均総圧延パス数は9.5であり、本実施例では総圧延パス数を削減できていることがわかる。しかも、本実施例によるパススケジュール設定方法を適用した場合の合格率(総圧延本数に対する最終パス出側クラウンが80μm以下かつ最終パス出側急峻度が1.0%以下を達成した割合)は92%であったのに対し、従来法では63%であった。つまり、本実施例により、所望の板クラウン、平坦度を実現するパススケジュールを安定的に設定することを可能としたことがわかる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明の板圧延のパススケジュールの設定方法は、熱間の厚鋼板の製造に用いることを想定できるが、それ以外にも、例えば、薄鋼板の熱間圧延、冷間圧延、または、アルミニウムや銅などの非鉄金属だけでなく非金属の板圧延などにも応用が可能である。
本発明の実施例に用いた圧延ラインを表す図。 本発明の実施例に用いた理想クラウンスケジュールを表す図。
符号の説明
1 圧延機
2 被圧延材
3 板厚計
4 演算装置
5 制御装置

Claims (7)

  1. 板圧延のパススケジュールを設定する方法において、
    設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側線長差率を求め、当該出側線長差率を前記各パスの出側板厚のm乗(m:0≦m≦5の実数)で除したものを指標とする評価関数を用い、
    当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジュールの設定方法。
  2. 板圧延のパススケジュールを設定する方法において、
    設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側板クラウンの理想値からのずれを求め、当該理想値からのずれを前記各パスの出側板厚のn乗(n:0≦n≦5の実数)で除したものを指標とする評価関数を用い、
    当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジュールの設定方法。
  3. 板圧延のパススケジュールを設定する方法において、
    設定された同一の総圧延パス数に対する複数のパススケジュールを仮定し、当該仮定された各パススケジュールにおける各パスの出側線長差率を求め、当該出側線長差率を前記各パスの出側板厚のm乗(m:0≦n≦5の実数)で除したもの、並びに、前記各パスの出側板クラウンの理想値からのずれを求め、当該理想値からのずれを前記各パスの出側板厚のn乗(n:0≦n≦5の実数)で除したもの、を指標とする評価関数を用い、
    当該評価関数の値を最小とするパススケジュールを最適と評価し、当該パススケジュールを実現するようにパススケジュールを設定することを特徴とする、板圧延のパススケジュールの設定方法。
  4. 前記各パスの出側板厚が所定値以下の領域で、当該各パスの出側クラウン比率が一定となるように、当該各パスの出側板クラウンの理想値を設定することを特徴とする、請求項2または3に記載の板圧延のパススケジュールの設定方法。
  5. 前記所定値が20mm以上であることを特徴とする、請求項4に記載の板圧延のパススケジュールの設定方法。
  6. 前記所定値は、前記被圧延材の板幅を変数とする関数で決定されることを特徴とする、請求項4または5に記載の板圧延のパススケジュールの設定方法。
  7. 圧延機の設備能力に基づく最少総圧延パス数を前記総圧延パス数の初期値に設定し、当該総圧延パス数に対して前記複数のパススケジュールを仮定し、当該総圧延パス数での前記評価関数の値を最小とするパススケジュールが所望の条件を満たさない場合、前記総圧延パス数を1ずつ順次増加させて、当該増加させた総圧延パス数での前記評価関数の値を最小とするパススケジュールの決定を再試行することを特徴とする、請求項1〜6のいずれかに記載の板圧延のパススケジュールの設定方法。
JP2007077877A 2007-03-23 2007-03-23 板圧延のパススケジュールの設定方法 Withdrawn JP2008238173A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077877A JP2008238173A (ja) 2007-03-23 2007-03-23 板圧延のパススケジュールの設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077877A JP2008238173A (ja) 2007-03-23 2007-03-23 板圧延のパススケジュールの設定方法

Publications (1)

Publication Number Publication Date
JP2008238173A true JP2008238173A (ja) 2008-10-09

Family

ID=39910136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077877A Withdrawn JP2008238173A (ja) 2007-03-23 2007-03-23 板圧延のパススケジュールの設定方法

Country Status (1)

Country Link
JP (1) JP2008238173A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022132093A (ja) * 2021-02-26 2022-09-07 Jfeスチール株式会社 鋼板の圧延工程のパススケジュール計算方法、鋼板の圧延工程のパススケジュール計算装置、及び鋼板の圧延方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022132093A (ja) * 2021-02-26 2022-09-07 Jfeスチール株式会社 鋼板の圧延工程のパススケジュール計算方法、鋼板の圧延工程のパススケジュール計算装置、及び鋼板の圧延方法
JP7388459B2 (ja) 2021-02-26 2023-11-29 Jfeスチール株式会社 鋼板の圧延工程のパススケジュール計算方法、鋼板の圧延工程のパススケジュール計算装置、及び鋼板の圧延方法

Similar Documents

Publication Publication Date Title
Heidari et al. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations
JP5765456B1 (ja) 圧延機の制御装置及び制御方法
EP3251763B2 (en) Hot finishing tandem rolling mill
CN109078989B (zh) 一种六辊冷轧机的极限轧制速度预测方法
JP5005716B2 (ja) 板圧延のパススケジュールの設定方法
CN109562421B (zh) 钢板的冷轧方法以及钢板的制造方法
JP6056718B2 (ja) 金属帯の圧延方法
JP2008238173A (ja) 板圧延のパススケジュールの設定方法
Mazur et al. Efficient cold rolling and coiling modes
JP4986463B2 (ja) 冷間圧延における形状制御方法
Parody et al. Application of a Central Design Composed of Surface of Response for the Determination of the Flatness in the Steel Sheets of a Colombian Steel
EP3444043A1 (en) Rolling roll and rolling system comprising same
JP2968332B2 (ja) 連続圧延機におけるクラウンの制御方法
JP4617929B2 (ja) 熱延鋼板の圧延方法
JP4623738B2 (ja) 冷間圧延における形状制御方法
JP5929328B2 (ja) 金属帯の圧延方法
JP2013180323A (ja) 薄鋼板の製造方法
JPH062288B2 (ja) 圧延機の設定方法
JP6992783B2 (ja) タンデム圧延設備におけるロールオフセット量の上限値の設定方法及び設定装置
JP2005177818A (ja) 冷間圧延における形状制御方法
JP2018075616A (ja) スラブの分塊圧延方法
JP5761071B2 (ja) 高張力鋼板の調質圧延方法、調質圧延設備及び圧延ライン
JP2005319492A (ja) 冷間圧延における形状制御方法
JP2001179320A (ja) 熱延鋼板仕上圧延の形状制御方法
JP5293403B2 (ja) ダルワークロールを用いた冷間圧延方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601