JP2008237089A - Method for managing artificial seed - Google Patents

Method for managing artificial seed Download PDF

Info

Publication number
JP2008237089A
JP2008237089A JP2007081432A JP2007081432A JP2008237089A JP 2008237089 A JP2008237089 A JP 2008237089A JP 2007081432 A JP2007081432 A JP 2007081432A JP 2007081432 A JP2007081432 A JP 2007081432A JP 2008237089 A JP2008237089 A JP 2008237089A
Authority
JP
Japan
Prior art keywords
larvae
water
layer
salt
breeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081432A
Other languages
Japanese (ja)
Other versions
JP4091965B1 (en
Inventor
Shigeru Yogo
滋 余語
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGATAKEN SUISAN SHINKO KYOK
YAMAGATAKEN SUISAN SHINKO KYOKAI
Original Assignee
YAMAGATAKEN SUISAN SHINKO KYOK
YAMAGATAKEN SUISAN SHINKO KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGATAKEN SUISAN SHINKO KYOK, YAMAGATAKEN SUISAN SHINKO KYOKAI filed Critical YAMAGATAKEN SUISAN SHINKO KYOK
Priority to JP2007081432A priority Critical patent/JP4091965B1/en
Application granted granted Critical
Publication of JP4091965B1 publication Critical patent/JP4091965B1/en
Publication of JP2008237089A publication Critical patent/JP2008237089A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for managing artificial seeds in the production of the artificial seeds, accelerating the growth of them and providing efficiency and stabilization of the production of the artificial seeds by managing the growing water having an appropriate salt concentration in accordance with the kinds, properties and growing stages of the seeds i.e., fertilized eggs, fries or larvae to activate their physiological functions. <P>SOLUTION: This method for managing the artificial seeds the production of the artificial seeds, when hatching the fertilized eggs, growing the seeds of marine fishes or migrating fishes or larvae of shell fishes, forming salt gradient layers in the growing water in an aquarium, hatching eggs by floating the fertilized eggs in a region having a salt concentration fitting with the specific gravity of the egg in the aquarium, and also growing the seeds or larvae; while selecting the salt concentration in accordance with the kinds, properties or growing stages of them. Especially, it is suitable for the growth management of the fries of coast-living marine fishes or downstream-migrating fishes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は人工種苗の管理方法に関する。詳しくは、水産生物の人工種苗生産において、受精卵を孵化させるか、又は海産魚もしくは回遊魚の仔稚魚や甲殻類の幼生を飼育する方法に関する。なお、増養殖事業における「種苗」とは、その出発対象とされる動物の卵、稚仔、幼生など幼若個体の総称である(新水産ハンドブック)。   The present invention relates to a method for managing artificial seedlings. More specifically, the present invention relates to a method of hatching fertilized eggs or rearing marine or migratory larvae and crustacean larvae in artificial seedling production of aquatic products. The “seed seedling” in the aquaculture business is a general term for young individuals such as eggs, larvae, and larvae of the animals to be started (New Fisheries Handbook).

一般に、海洋の塩分濃度は一定でなく、また、魚類や甲殻類にはそれぞれが孵化・生息するのに最適の塩分濃度があって、それぞれ自らに適した塩分濃度の海域で孵化し、また生息していることが知られている。また、仔稚魚や幼生は、成長にしたがって適正塩分濃度が変化する種が多い。しかし、従来から、人工種苗生産における受精卵の孵化及び仔稚魚又は幼生の飼育は、天然海域と異なって、飼育水中の塩分濃度は一定であり、扶養される受精卵や飼育される仔稚魚(飼育仔稚魚)や幼生(飼育幼生)がそれぞれに適正な塩分濃度の水域を選択できない環境下で行なわれている。しかし、受精卵を大量に孵化させ、仔稚魚や幼生を大量に飼育する人工種苗生産においては、個々の種苗の性状や成長段階に合わせた飼育水の塩分濃度管理は困難な状況にある。   In general, the salinity of the ocean is not constant, and fish and crustaceans have the optimum salinity for hatching and inhabiting, and they are hatched and inhabited in their own salinity. It is known that In addition, larvae and larvae have many species whose proper salinity changes as they grow. However, conventionally, hatching of fertilized eggs and rearing of larvae or larvae in artificial seedling production are different from natural sea areas, and the salinity in the rearing water is constant, and fertilized eggs that are reared and larvae that are reared ( It is carried out in an environment where it is not possible to select water areas with appropriate salinity for each of (bred larvae) and larvae (bred larvae). However, in artificial seedling production in which fertilized eggs are hatched in large quantities and larvae and larvae are bred in large quantities, it is difficult to manage the salinity concentration of the breeding water according to the characteristics of individual seedlings and the growth stage.

また、人工種苗生産における受精卵の管理においては、ほとんどの受精卵が水面に浮上してしまい、飼育水の表面に留まることになって、紫外線や外気に晒され、孵化率、生残率又は奇形率などの初期の生残状況の低迷に影響を及ぼしている。   In addition, in the management of fertilized eggs in artificial seedling production, most fertilized eggs float on the surface of the water and stay on the surface of the breeding water, and are exposed to ultraviolet rays and outside air, and are hatched, survival rate or This has affected the sluggishness of early survival such as malformation rate.

また、仔稚魚や幼生の初期の生残率の低下は、細菌や寄生虫など特定の病原生物に起因する以外に、飼育水環境が実際には仔稚魚や幼生に適合しておらず、浸透圧調節などのストレスから生ずる生理的障害による場合が多いので、仔稚魚や幼生の生残率を向上するためには、このストレスを緩和する必要がある。   In addition, the decline in the early survival rate of larvae and larvae is due to specific pathogenic organisms such as bacteria and parasites, and the breeding water environment is not actually suitable for larvae and larvae. Since it is often due to a physiological disorder resulting from stress such as pressure regulation, it is necessary to mitigate this stress in order to improve the survival rate of larvae and larvae.

このような事情から、本発明者は、人工種苗生産における飼育水を改善して種苗の生産性を向上させることを志向し、種々の塩分濃度の飼育水を用いて受精卵を孵化させたり、仔稚魚や幼生を飼育して研究した。そして、従来から「河口域には稚魚が集まる」と言われていること、また、塩分濃度を海水よりも薄めにした飼育水中では魚の動きが活発になることなどから、飼育水の塩分濃度を仔稚魚や幼生の成長段階に応じて変化させることを思いつき、さらに試験・研究を続けた結果、水槽内に塩分躍層(塩分勾配を有する水域)を設けると、その躍層に仔稚魚や幼生や受精卵が集まることに気がつき、本発明を完成するに至った。なお、本発明者は、特許文献を調査した結果、以下の公報を検出している。
特開2006−288234号公報 特開平7−67495号公報 平成18年度第1回・日本水産学会水産増殖懇話会講演会「養殖用の人工種苗の現状と展望」(平成18年10月7日)の報告書
From such circumstances, the present inventor aims to improve the breeding water in artificial seedling production and improve the productivity of seedlings, hatch fertilized eggs using breeding water of various salt concentrations, Raised and studied larvae and larvae. In addition, it has been said that "fry fish gather in the estuary area", and because the movement of fish is active in the breeding water where the salinity is thinner than seawater, the salinity of the breeding water is reduced. The idea of changing the larvae and larvae according to the growth stage of the larvae and larvae, and further testing and research, is that when a salt leaping layer (water area with a salinity gradient) is established in the aquarium, the larvae and larvae are found in the climax layer. I noticed that fertilized eggs gathered and completed the present invention. In addition, this inventor has detected the following gazettes as a result of investigating patent documents.
JP 2006-288234 A JP 7-67495 A Report of 2006 1st Annual Meeting of the Fisheries Science Society of Japan Fisheries Prosperity Meeting “Current Status and Prospects of Artificial Seedlings for Aquaculture” (October 7, 2006)

特許文献1には、人工種苗生産法により海産魚類の仔稚魚を飼育するに際し、飼育水に真水を添加することによつて希釈海水処理(低塩分処理)を行ない、一定の期間低塩分を維持した後、全海水に復帰させる抗病的飼育方法が開示されている。この文献では、真水を添加した低塩分の飼育水に塩分勾配が形成されているのか否か不明であるが、「希釈海水処理(低塩分処理)」と表現していることから、海水に真水を添加して攪拌し、塩分濃度を一定に希釈した海水を使用しているものと考えられる。また、この文献は、希釈海水による一定期間の飼育が「瀕死状態のオニオコゼ稚魚」など疾病状態にある稚魚の生残に有効であること、すなわち、罹病した魚の治癒・回復に有効であることを示しているが、健康な仔稚魚のストレスの解消や抗病性の向上に有効であることを示すものではない。   In patent document 1, when breeding marine fish larvae and juveniles by the artificial seedling production method, dilute seawater treatment (low salinity treatment) is performed by adding fresh water to the breeding water, and low salinity is maintained for a certain period of time. Then, an anti-morbid breeding method for returning to the whole seawater is disclosed. In this document, it is unclear whether or not a salinity gradient is formed in the low salinity breeding water to which fresh water is added, but it is expressed as “diluted seawater treatment (low salinity treatment)”. It is considered that seawater with a constant salt concentration was added and stirred. This document also shows that breeding in diluted seawater for a certain period of time is effective for the survival of ill-skilled fry, such as `` moribund oniokose larvae '', that is, effective for healing and recovery of diseased fish. However, it does not indicate that it is effective in relieving stress and improving anti-morbidity of healthy larvae.

また、特許文献2には、河口近辺に塩分濃度勾配を有する魚道を設置し、その流路内の汽水の塩分濃度を調節することによって、母川を遡上する回遊性の魚が塩分濃度の変化に対応しやすくして、回遊魚の遡上率を高める方法とそれに用いる魚道装置について開示している。この方法は、河口など淡水と海水が混じり合う汽水域に従来から堰などが設けられて塩分濃度の境界線が生じてしまい、回遊性成魚が体を塩分濃度の激減に合わせるのに無理があるので、その解決策として考えられたものである。そのため、特許文献2には、飼育水に塩分濃度勾配を設けて水槽内で仔稚魚や幼生を飼育したり、受精卵を孵化させる方法に関しては何らの記載もない。   Further, in Patent Document 2, a fishway having a salinity concentration gradient is installed near the mouth of a river, and migratory fish that run up the mother river has a salinity concentration by adjusting the salinity concentration of brackish water in the channel. Disclosed is a method for increasing the rate of migratory fish ascending by making it easy to cope with changes, and a fishway device used therefor. In this method, weirs are conventionally provided in brackish water areas where fresh water and seawater are mixed, such as estuaries, creating a boundary line of salinity, making it difficult for migratory adult fish to adjust the body to a drastic decrease in salinity. So it was considered as a solution. Therefore, Patent Document 2 has no description regarding a method for raising a salt concentration gradient in the breeding water to breed larvae and larvae in the aquarium or to hatch fertilized eggs.

なお、非特許文献1は、養殖用の人工種苗の現状に関する最新の技術情報を総括する報告書であるが、飼育水に塩分躍層を設けて仔稚魚や幼生を飼育したり、塩分躍層を設けて受精卵を孵化させる方法に関しては何らの言及もない。   Non-Patent Document 1 is a report summarizing the latest technical information on the current state of artificial seedlings for aquaculture. However, a salinity layer is provided in the breeding water to raise larvae and larvae, There is no mention of a method for hatching fertilized eggs by providing a fertilizer.

上記の状況に鑑み、本発明は、人工種苗生産において、種苗すなわち受精卵や仔稚魚や幼生をその種類や性状や成長段階に応じた適正な塩分濃度の飼育水で管理することによってその生理機能を活性化させ、種苗の成長を促進し、もって人工種苗生産の効率化と安定化を図ることを課題とするものである。   In view of the above situation, in the artificial seedling production, the present invention manages the seedlings, i.e., fertilized eggs, larvae and larvae, by managing them with breeding water having an appropriate salt concentration according to the type, properties and growth stage. The purpose is to promote the growth of seedlings and promote the growth of seedlings, thereby improving the efficiency and stabilization of artificial seedling production.

上記の課題を解決するための発明のうち特許請求の範囲・請求項1に記載する発明は、人工種苗生産において、海産魚もしくは回遊魚の仔稚魚又は甲殻類の幼生を飼育するに際し、水槽内の飼育水中に塩分躍層を形成し、その水槽内で自らの適正塩分濃度を選択させながら仔稚魚又は幼生を飼育することを特徴とする人工種苗の管理方法である。   Among the inventions for solving the above-mentioned problems, the invention described in claims 1 and 2 is that in the production of artificial seedlings, when raising marine fish, migratory larvae or crustacean larvae, An artificial seedling management method characterized by forming a salt-climbing layer in breeding water and breeding larvae or larvae while selecting their own appropriate salt concentration in the aquarium.

また、同請求項2に記載する発明は、人工種苗生産において、受精卵を孵化させるに際し、水槽内の飼育水中に塩分躍層を形成し、その水槽内で受精卵を自らの比重に適合する塩分濃度域に浮遊させて孵化させることを特徴とする人工種苗の管理方法である。   In addition, in the artificial seedling production, when the fertilized egg is hatched, the invention described in claim 2 forms a salt concentration layer in the breeding water in the aquarium, and the fertilized egg is adapted to its specific gravity in the aquarium. It is a management method of artificial seedlings characterized by floating in a salinity range and hatching.

また、同じく請求項3に記載する発明は、請求項1に記載の管理方法において、海水を下層とし、仔稚魚又は幼生の種類や性状や成長段階に応じた濃度の塩水か又は淡水を上層として塩分躍層を形成し、その飼育水を用いて仔稚魚又は幼生を飼育する人工種苗の管理方法である。   Similarly, the invention described in claim 3 is the management method according to claim 1, in which seawater is the lower layer, and salt water or fresh water having a concentration according to the type, character, and growth stage of the larvae or larvae is the upper layer. This is a method for managing artificial seedlings in which a salt-cracking layer is formed and larvae or larvae are bred using the breeding water.

また、同じく請求項4に記載する発明は、請求項2に記載の管理方法において、海水を下層とし、受精卵の種類や性状や成長段階に応じた濃度の塩水か又は淡水を上層として塩分躍層を形成し、その飼育水を用いて受精卵を孵化させる人工種苗の管理方法である。   Similarly, the invention described in claim 4 is the management method according to claim 2, wherein the seawater is used as a lower layer, and salt water or fresh water having a concentration according to the type, properties, and growth stage of a fertilized egg is used as a salt layer. It is a management method of artificial seedlings that form a layer and hatch fertilized eggs using the breeding water.

さらに、同じく請求項5に記載する発明は、請求項3に記載の管理方法において、海水よりも低濃度の塩水を上層とする飼育水を用いてクロダイ、ヒラメ、オコゼなどの海産魚の仔稚魚又はモクズガニ、クルマエビ、ガザミなどの甲殻類の幼生を飼育する人工種苗の管理方法である。   Further, the invention according to claim 5 is the management method according to claim 3, wherein the larvae or larvae of marine fish such as black sea bream, flounder, okoze, etc. are used in the management method according to claim 3, wherein the breeding water is a salt water having a lower concentration than seawater. It is a management method of artificial seedlings for raising crustacean larvae such as king crab, tiger prawn and crab.

さらに、同じく請求項6に記載する発明は、請求項3に記載の管理方法において、淡水を上層とする飼育水を用いてアユ、サケ、マスなどの回遊魚の仔稚魚を飼育する人工種苗の管理方法である。   Further, the invention described in claim 6 is the management method according to claim 3, wherein the management of the artificial seedling for raising migratory fish such as sweetfish, salmon, trout, etc., using fresh water as the upper layer Is the method.

本発明に係る人工種苗の管理方法によれば、仔稚魚や幼生を飼育するに際し、飼育水中に塩分躍層を形成することによって、種苗生産の現場で飼育水の塩分濃度を微妙に調節しなくても、飼育仔稚魚や飼育幼生が自ら適正な塩分濃度水域を選択して生息・成長するので、仔稚魚や幼生の浸透圧調節によるエネルギー消費やストレスなどによる生理的障害が緩和され、生理機能が活発化して抗病性が向上するので、疾病に犯され難くなり、仔稚魚や幼生の最も弱い時期である孵化直後に生じやすい初期減耗を抑制することができる。そのため、本発明に係る人工種苗の管理方法によれば、従来の管理方法に比べて、仔稚魚や幼生の生残率や成長性を大きく向上させることができる。例えば、アユの場合、0.5gの稚魚に成長するまでの生残率は、従来の全国平均では40%程度であるが、本発明の管理方法を用いると70%以上に向上させることができる。   According to the method for managing artificial seedlings according to the present invention, when breeding larvae and larvae, the salt concentration in the breeding water is not subtly adjusted at the site of seedling production by forming a salt jump layer in the breeding water. However, because reared larvae and reared larvae inhabit and grow by selecting the appropriate salt concentration water areas themselves, physiological disorders due to energy consumption and stress due to osmotic pressure adjustment of larvae and larvae are alleviated and physiological functions Since the disease is activated and the anti-disease property is improved, it is difficult to be violated by the disease, and it is possible to suppress initial depletion that is likely to occur immediately after hatching, which is the weakest period of larvae and larvae. Therefore, according to the management method of the artificial seedling according to the present invention, the survival rate and growth of larvae and larvae can be greatly improved as compared with the conventional management method. For example, in the case of sweetfish, the survival rate until it grows to 0.5 g fry is about 40% in the conventional national average, but it can be improved to 70% or more by using the management method of the present invention. .

また、本発明に係る人工種苗の管理方法によれば、受精卵を孵化させるに際し、飼育水中に塩分躍層を形成することによって、受精卵は同じ比重の塩分濃度層に浮遊し、水面に浮上することなしに孵化するので、受精卵が紫外線や外気温などの外部刺激の影響を避けることができ、従来の管理方法に比べて、孵化率や生残率を高め、また奇形率を低く抑えることができる。例えば、クロダイの場合、全国平均値で孵化率は40〜70%程度、孵化後の生残率は20〜40%程度であるが、本発明の方法のとおり、受精卵を塩分躍層を形成した水槽で管理・孵化させたところ、孵化率は80〜95%程度に、生残率は70%程度に向上させることができた(平成17年度飼育結果)。また、アユの奇形率は、全国平均値は数%〜30%であるが、本発明の方法を採ることによって、奇形の発生をほとんどゼロに抑えることができた(平成17年度飼育結果)。   Further, according to the method for managing artificial seedlings according to the present invention, when a fertilized egg is hatched, a fertilized egg floats in a salt concentration layer of the same specific gravity by forming a salt concentration layer in the breeding water, and floats on the water surface. The fertilized egg can avoid the effects of external stimuli such as ultraviolet rays and outside temperature, and the hatching rate and survival rate are increased and the malformation rate is kept low compared to conventional management methods. be able to. For example, in the case of black sea bream, the hatching rate is about 40 to 70% in the national average, and the survival rate after hatching is about 20 to 40%. As a result, the hatching rate was improved to about 80 to 95% and the survival rate was improved to about 70% (2005 breeding results). In addition, the average rate of malformation of sweetfish is several percent to 30%, but by adopting the method of the present invention, the occurrence of malformation could be suppressed to almost zero (2005 breeding results).

このように、本発明に係る人工種苗の管理方法によれば、人工種苗生産における各種種苗の生産性を安定かつ向上させることができ、その結果、生産者の利益を大きく向上させることができる。   Thus, according to the management method of the artificial seedling according to the present invention, the productivity of various seedlings in the production of the artificial seedling can be stably and improved, and as a result, the profit of the producer can be greatly improved.

さらに、本発明によれば、薬剤を用いることなく、飼育管理する受精卵や仔稚魚や幼生の抗病性を向上させ、その罹病や異常を予防できるので、従来から「養殖魚は薬漬けである」とか「生け簀には化学物質が使われている」というような風評を抑えることができ、人工種苗生産の品質に関して国民の理解を得ることができるようになる。   Furthermore, according to the present invention, the anti-disease property of fertilized eggs, larvae and larvae to be reared and managed can be improved without using chemicals, and the disease and abnormality can be prevented. It is possible to suppress reputations such as “Yes,” and “Chemicals are used in ginger,” and gain public understanding of the quality of artificial seedling production.

本発明は、人工種苗の管理において、水槽内の飼育水に塩分躍層を形成し、その塩分躍層を形成した飼育水の中で受精卵管理、仔稚魚管理又は幼生管理を行なう方法であると言うことができる。   In the management of artificial seedlings, the present invention is a method for forming a salinity layer in the breeding water in the aquarium and performing fertilized egg management, larval fish management or larvae management in the breeding water in which the salt concentration layer is formed Can be said.

本発明の管理方法において、使用する水槽の容量は特に制限はなく、通常の種苗生産と同様、受精卵管理には容量50Lのビーカー程度のものから10tを越える大型のものまで、また、仔稚魚管理にはビーカー程度のものから60tないし80tを越える大容量のものまで、各種サイズの水槽を使用できる。   In the management method of the present invention, the capacity of the aquarium to be used is not particularly limited, and in the same manner as normal seedling production, fertilized eggs can be managed from beakers with a capacity of 50 L to large ones exceeding 10 t, and larvae and larvae. For management, water tanks of various sizes can be used, ranging from those with a beaker to those with a large capacity exceeding 60 to 80 tons.

本発明の管理方法において、受精卵の孵化方法及び仔稚魚や幼生の飼育方法は、沿岸域に生息する魚類や甲殻類をはじめ、河川から海へ降下して生育し、成魚となって母川へ戻ってくる降下性の回遊魚に適用できる。   In the management method of the present invention, fertilized egg hatching methods and larvae and larvae breeding methods include fish and crustaceans that inhabit coastal areas, grow from rivers to the sea, grow into adult fish and become mother rivers Applicable to descending migratory fish that return to

すなわち、本発明に係る人工種苗の管理方法は、沿岸生息性海産魚や甲殻類及び降下性回遊魚であれば、その種類を問わず適用できる。具体的には、沿岸生息性海産魚としてヒラメ、クロダイ、オコゼ、マハタなど、降下性回遊魚としてアユ、サケ、マス、シラウオ(サケ科)、シロウオ(ハゼ科)など、甲殻類としてモクズガニ、ガザミ、クルマエビなどを挙げることができる。なお、本発明の管理方法は、ここに挙げた魚類や甲殻類に限定するものではない。   That is, the management method of the artificial seedling according to the present invention can be applied to any kind of coastal inhabiting marine fish, crustaceans, and descending migratory fish. Specifically, flounder, black sea bream, okoze, mahata, etc. as coastal inhabiting marine fish, ayu, salmon, trout, salamander (salmonaceae), shiroo (salidae), etc. And prawns. The management method of the present invention is not limited to the fish and crustaceans listed here.

本発明に係る人工種苗の管理方法では、仔稚魚又は幼生の飼育方法において、仔稚魚又は幼生を塩分躍層を形成してある飼育水の中で、放流するまでの間そのまま飼育し続けても差し支えなく、或いは、ある程度成長した段階で塩分濃度一定の飼育水へ移し換えてもよい。また、受精卵の管理方法では、塩分躍層を形成した飼育水の中で孵化させてよく、また、海水又は淡水で孵化させた後に、その水槽に塩分躍層を形成させるか又は孵化仔魚を塩分躍層を形成してある水槽へ移し換えてやればよい。   In the method for managing artificial seedlings according to the present invention, in the method for raising larvae or larvae, the larvae or larvae may continue to be cultivated as they are until they are released in the breeding water in which the salt excitement layer is formed. There may be no problem, or it may be transferred to breeding water with a constant salinity after it has grown to some extent. In addition, in the fertilized egg management method, it may be hatched in the breeding water in which a salt excitement layer is formed, and after hatching in seawater or fresh water, a salt excitement layer is formed in the aquarium or a hatched larvae is used. What is necessary is just to transfer to the water tank in which the salt leaping layer is formed.

本発明において、水槽の水温については、種苗生産の常法のとおりで差し支えない。一般に、仔稚魚や幼生の飼育に最適な水温は、ヒラメ、クロダイ、オコゼについては10〜25℃、サケは5〜15℃、アユは10〜20℃、トラフグは21〜27℃、クルマエビは20〜20℃などであり、また、受精卵の孵化も上記と同じ水温でよいことが知られている。本発明の管理方法においても、これらを目安にして水温を調節・管理することが好ましい。   In the present invention, the water temperature in the water tank may be the same as that for the seedling production. In general, the optimal water temperature for raising larvae and larvae is 10-25 ° C for flounder, black sea bream, and okoze, 5-15 ° C for salmon, 10-20 ° C for sweetfish, 21-27 ° C for troughfish, 20 for prawns. It is known that the fertilized eggs are hatched at the same water temperature as described above. Also in the management method of the present invention, it is preferable to adjust and manage the water temperature using these as a guide.

次に、本発明に用いる「塩分躍層を形成した飼育水」の適切な製法について例示する。主な作り方は2通りあって、水槽に海水を入れておき、その上に淡水(真水)かもしくは海水よりも塩分濃度を薄くした塩水を加える方法か又は水槽に淡水(真水)かもしくは海水よりも塩分濃度を薄くした塩水を入れておき、パイプを通して水槽の底部から海水を注入する方法のどちらかを採ればよい。どちらの方法でも海水と淡水又は海水と塩水の境界域に塩分躍層が形成される。なお、海水を下層として塩分躍層を形成する場合は、海水の塩分濃度よりも数%から50%程度薄い濃度の塩水を注入することが好ましい。しかし、海水と淡水又は海水と塩水の配合量や上層と下層の塩分濃度は、受精卵や飼育仔稚魚や飼育幼生の種類や性状や成長段階に応じて決めればよく、特に限定はない。なお、当然のことであるが、水槽中の海水と淡水又は海水と塩水を攪拌してはならない。   Next, an example of an appropriate production method of “bred water having a salt content layer” used in the present invention will be described. There are two main ways to make it. Put seawater in the aquarium and add fresh water (fresh water) or salt water with a lower salt concentration than seawater, or add fresh water (fresh water) or seawater to the aquarium. Alternatively, salt water with a low salinity concentration may be added and either of the methods of injecting seawater from the bottom of the aquarium through a pipe may be employed. In both methods, a salt leaping layer is formed in the boundary area between seawater and freshwater or seawater and saltwater. In addition, when forming a salinity stratum using seawater as a lower layer, it is preferable to inject salt water having a concentration of several percent to 50% lower than the salinity concentration of seawater. However, the blending amount of seawater and fresh water or seawater and salt water, and the salinity concentration of the upper layer and lower layer may be determined according to the type, properties and growth stage of fertilized eggs, reared larvae and reared larvae, and are not particularly limited. As a matter of course, seawater and fresh water or seawater and salt water in the aquarium should not be stirred.

本発明において、沿岸生息性海産魚の仔稚魚を飼育対象とする飼育水に塩分躍層を形成する場合、下層に海水(30〜34ppt)を用いるときは、上層とする塩水の塩分濃度は、クロダイ,オコゼであれば18〜25ppt、マハタであれば20〜25pptが適当である。   In the present invention, when a salt concentration layer is formed in the breeding water for breeding larvae and fish of coastal inhabited marine fish, when seawater (30 to 34 ppt) is used for the lower layer, the salinity concentration of the upper layer is In the case of Okoze, 18-25 ppt is appropriate, and in the case of Mahata, 20-25 ppt is appropriate.

本発明において、降下性回遊魚の仔稚魚を飼育対象とする飼育水に塩分躍層を形成する場合、下層に海水(30〜34ppt)か又は海水よりも少し薄めの塩水を用い、上層は淡水を注入すればよい。   In the present invention, when forming a salt-climbing layer in breeding water intended for breeding migratory migratory larvae, seawater (30-34 ppt) or saltwater slightly thinner than seawater is used for the lower layer, and fresh water is used for the upper layer. Just inject.

本発明では、用いる飼育水の塩分躍層の数は2層に限るものではなく、3層以上の塩分躍層を形成した飼育水を用いてもよい。塩分躍層を3層にする場合は、水槽内にまず海水を入れ、次いで海水より塩分濃度が薄い塩水を注入し、その上に淡水か又はさらに薄めの塩水を注入すればよい。   In the present invention, the number of breeding layers of breeding water to be used is not limited to two layers, and breeding water in which three or more salt jump layers are formed may be used. In the case where the salinity layer is made up of three layers, seawater is first put in the water tank, then saltwater having a lower salinity concentration than seawater is injected, and fresh water or thinner saltwater is injected thereon.

次に、上記の飼育水を用いて受精卵を孵化させ、仔稚魚又は幼生を飼育する適切な方法について例示する。まず、海水で孵化する沿岸生息性海産魚については、塩分躍層を形成してある水槽の中に受精卵を収容し、通常のとおり孵化させることでよい。この場合、受精卵は、自分と同じ比重の塩水に浮遊するので、飼育水は、その躍層域に受精卵が集中するような塩分濃度に調製することが好ましい。すなわち、そのような塩分躍層を形成してある飼育水を充たした水槽に沿岸生息性海産魚の受精卵を収容する。そうすると、受精卵は、浮上卵であっても、ほとんどの卵は塩分躍層(の中の同比重域)に集まって浮遊するので、そのまま孵化させて差し支えない。なお、塩分濃度一定の飼育水の中で孵化させた後、塩分躍層を形成してある飼育水へ孵化仔魚や孵化幼生を移し換えても差し支えない。また、降下性回遊魚の受精卵の場合は、淡水を充たした水槽で通常のとおり孵化させ、孵化した直後にその水槽へ底の方から海水を注入してやれば容易に塩分躍層を形成した飼育水を作ることができるので、その状態の水槽で飼育を続ければよい。   Next, a suitable method for raising fertilized eggs using the breeding water and raising larvae or larvae will be exemplified. First, for coastal inhabited marine fish that hatch with seawater, fertilized eggs can be housed in an aquarium with a salinity layer and hatched as usual. In this case, since the fertilized egg floats in salt water having the same specific gravity as that of itself, the breeding water is preferably adjusted to a salt concentration such that the fertilized egg is concentrated in the stratosphere. That is, fertilized eggs of coastal inhabited marine fish are housed in a tank filled with breeding water that has formed such a salinity layer. Then, even if the fertilized egg is a floating egg, most of the eggs gather and float in the salt concentration layer (within the same specific gravity area), so they can be allowed to hatch as they are. In addition, after hatching in breeding water having a constant salinity, hatched larvae and hatched larvae may be transferred to breeding water in which a salinity layer is formed. Also, in the case of fertilized eggs of descending migratory fish, breeding water that has formed a salinity layer easily by hatching as usual in a tank filled with fresh water and injecting seawater from the bottom into the tank immediately after hatching Can be kept in the aquarium in that state.

塩分躍層を形成した飼育水の中でしばらく飼育を続けていると、当初は塩分躍層に集中していた仔稚魚や幼生は、水槽の中で個々の種類や性状や成長段階に応じて適正な塩分濃度を自分で選択して、その濃度の水域へ自然に移動する。例えば、アユの仔魚の場合、孵化直後は10ppt前後の低濃度域に集中しているが、成長するにつれて次第に初期よりも塩分濃度の濃い域へ移動する。また、ヒラメの仔魚では、初期には20ppt前後の薄い塩分濃度層に浮遊しているが、変態段階が進んで着底期に向かうにしたがい、塩分濃度の濃い層へ移動し、海水層で初めて変態に至る。このように、本発明の管理方法では、仔稚魚や幼生が水槽の中で自分に適した塩分濃度の水域へ自然に移動するので、水槽の塩分濃度を調整する必要がない。   If you keep breeding for a while in the breeding water that formed the salt breakthrough layer, the larvae and larvae that were initially concentrated in the salt breakthrough layer will vary depending on the type, nature, and growth stage in the aquarium. Choose the appropriate salinity yourself and move naturally to the water of that concentration. For example, ayu larvae are concentrated in a low concentration range of about 10 ppt immediately after hatching, but gradually move to a region with a higher salt concentration than the initial stage as they grow. In the flounder larvae, it floats in a thin salinity layer of about 20ppt at the beginning. However, as the transformation stage progresses toward the bottoming stage, it moves to a salty layer and is the first in the seawater layer. It leads to metamorphosis. Thus, in the management method of the present invention, the larvae and larvae naturally move to the water area of the salinity concentration suitable for themselves in the aquarium, so there is no need to adjust the salinity concentration of the aquarium.

また、仔稚魚や幼生は、その飼育過程で、低い塩分濃度へ移動する行動も確認されている。これは、塩分濃度の低い方へ移動して付着した寄生虫を浸透圧の差によって落としたり、罹病の治癒・回復を個体自ら行なっている可能性が高い。なお、一般的に、魚類には成長するにつれて塩分濃度の濃い水域へ移動する傾向が見られる。飼育管理している仔稚魚や幼生が水槽内の海水層へ移動したときには、淡水や希釈海水の給水を止め、海水の給水量を増やし、海水を飼育水槽に充たせばよい。   In addition, larvae and larvae have been confirmed to move to lower salinity during the breeding process. There is a high possibility that the parasite that has moved to the lower salinity concentration and dropped the adhering parasite due to the difference in osmotic pressure, or healed and recovered the disease himself. In general, as fish grows, they tend to move to water areas with a high salinity. When the larvae and larvae being reared and managed move to the seawater layer in the tank, the supply of freshwater or diluted seawater is stopped, the amount of seawater supplied is increased, and seawater is filled in the breeding tank.

本発明は、アワビ、ハマグリ、サザエ、ホタテ貝、アサリ、シジミ、カキなどの二枚貝を主とする貝類の幼生の飼育にも適用できる方法である。   The present invention is also applicable to the rearing of shellfish larvae mainly composed of bivalves such as abalone, clam, turban shell, scallop, clam, swordfish and oyster.

以下、実施例をもって、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

《クロダイ仔魚の飼育例》
容量60tの屋内水槽(容水量30t:水深80cm)を2基用意し、1基には、海水(塩分濃度32ppt)を20t入れて下層とし、その上から塩分濃度15pptの塩水を10t注入して上層とし、水槽内に塩分躍層を形成した飼育水を充たした(この水槽を「躍層区」とする)。他の1基には、海水(塩分濃度32ppt)を30t収容した(この水槽を「海水区」とする)。
<Example of rearing black larvae>
Two indoor aquariums with a capacity of 60 t (capacity 30 t: water depth 80 cm) are prepared, one with 20 t of seawater (salt concentration 32 ppt) is used as the lower layer, and 10 t of salt water with a salinity of 15 ppt is injected from above. The upper layer was filled with breeding water in which a salt leaping layer was formed in the aquarium (this aquarium is referred to as “leaping zone”). The other one accommodated 30 t of seawater (salt concentration 32 ppt) (this tank is referred to as “seawater zone”).

両水槽とも、微通気を行ない、それぞれに孵化後10日目のクロダイの仔魚30万尾を収容し、飼育を開始した。このときのクロダイ仔魚の全長は、躍層区に収容したものの平均値が4.53mm、海水区に収容したものの平均値は4.45mmであった。両水槽とも水温は15〜20℃に維持し、餌料は、ワムシ、アルテミアを給与した。   Both tanks were finely ventilated, and 300,000 black-tailed larvae on the 10th day after hatching were accommodated in each tank, and the breeding was started. As for the total length of black larvae at this time, the average value of those accommodated in the climax zone was 4.53 mm, and the average value of those contained in the seawater zone was 4.45 mm. In both tanks, the water temperature was maintained at 15 to 20 ° C., and rotifer and artemia were fed.

躍層区に収容したクロダイ仔魚は、そのほとんどが水槽内に形成された塩分躍層域にほぼ1列に集まって遊泳を続けた。一方、海水区に収容したクロダイ仔魚は、水槽全体に拡散した状態になった。   Most of the croaker larvae housed in the leaping zone gathered in a row in the salt leaping zone formed in the aquarium and continued swimming. On the other hand, the black larva larvae housed in the seawater were diffused throughout the aquarium.

孵化後15日目に両水槽からそれぞれ60尾を無差別に採取し、全長を測定した。躍層区に収容した仔魚の平均値が6.89mm、海水区に収容した仔魚の平均値は5.64mmであった。また、孵化後20日目に、両水槽からそれぞれ60尾を無差別に採取し、全長を測定した。躍層区に収容したクロダイ仔魚の平均値は8.50mmで生残率は87.7%(孵化直後対比)、海水区に収容したクロダイ仔魚の全長平均値は7.94mmで生残率は67.3%(同)であった。両水槽におけるクロダイ仔魚の全長を比較したグラフを図1に示す。   On the 15th day after hatching, 60 fish were collected indiscriminately from both tanks, and the total length was measured. The average value of the larvae housed in the climbing zone was 6.89 mm, and the average value of the larvae housed in the seawater zone was 5.64 mm. In addition, on the 20th day after hatching, 60 fish were collected indiscriminately from both tanks, and the total length was measured. The average value of black larvae larvae housed in the leaping zone is 8.50 mm and the survival rate is 87.7% (compared to immediately after hatching), and the overall average length of black larvae larvae contained in the seawater zone is 7.94 mm and the survival rate is It was 67.3% (same as above). A graph comparing the full length of black larvae in both tanks is shown in FIG.

孵化後25日目までの間に、躍層区の仔魚は、躍層区上部の低塩分域から次第に塩分濃度の濃い下方へ移動し、この時期までに、仔魚のほとんどが水槽の下層(海水層)へ移動したので、孵化後30日目に海水の給水を増やし、飼育水を海水へ移行し、海水飼育に切り換えた。   By the 25th day after hatching, the larval larvae gradually moved from the low salinity area at the top of the stratified area to the lower salinity, and by this time most of the larvae were under the aquarium (water Therefore, on the 30th day after hatching, the water supply for seawater was increased, the breeding water was transferred to seawater and switched to seawater breeding.

《アユ仔魚の飼育例》
容量60tの屋内水槽(水深160cm)2基に、それぞれ淡水60tを充たして、孵化直前まで卵管理したアユの受精卵を1基当たり20万尾を目安にして収容し、孵化させた。孵化後、1基には、底面から海水(塩分濃度32ppt)を給水し、上面から淡水を給水して塩分躍層を形成した(この水槽を「躍層区」とする)。他の1基には、海水を直ちに給水して海水だけの水槽にした(この水槽を「海水区」とする)。
<Examples of rearing Ayu larvae>
Two indoor water tanks with a capacity of 60 t (water depth: 160 cm) were each filled with 60 t of fresh water, and fertilized eggs of Ayu, which had been egg-managed until just before hatching, were accommodated with a standard of 200,000 eggs per unit and hatched. After hatching, seawater (salinity concentration 32ppt) was supplied from one bottom surface to one, and fresh water was supplied from the top surface to form a salt leaping layer (this water tank is referred to as a “cracking zone”). In the other one, seawater was immediately supplied into a tank containing only seawater (this tank is referred to as “seawater zone”).

両水槽とも、微通気を行ない、それぞれに孵化後10日目のアユの仔魚20万尾を収容した状態で飼育を開始した。両水槽とも水温は16〜20℃に維持し、餌料は、ワムシを給与した。孵化後10日目のアユ仔魚の全長は、躍層区に収容したものの平均値が11.6mm、海水区に収容したものの平均値は11.4mmであった。   Breeding was started in both water tanks, with 200,000 Ayu larvae on the 10th day after hatching. In both tanks, the water temperature was maintained at 16 to 20 ° C., and rotifer was fed as the feed. The total length of the larvae larvae on the 10th day after hatching was 11.6 mm for those stored in the climax area, and 11.4 mm for those stored in the sea area.

躍層区で飼育したアユ仔魚は、初期にはほとんどが躍層域上層の10〜20ppt域にほぼ1列に集まって遊泳を続けた。一方、海水区に収容したアユ仔魚は、水表面近くで遊泳する状態であった。   Most of the Ayu larvae bred in the leaping zone gathered in almost one row in the upper 10 to 20 ppt region of the leaping region and continued swimming. On the other hand, ayu larvae housed in the seawater area were in a state of swimming near the water surface.

孵化後30日目に両水槽からそれぞれ60尾を無差別に採取し、全長を測定した。躍層区に収容したアユ仔魚の平均値が21.5mm、海水区に収容したアユ仔魚の平均値は21.0mmであった。また、孵化後50日目に、両水槽からそれぞれ60尾を無差別に採取し、全長を測定した。躍層区に収容したアユ仔魚の平均値が31.7mmで生残率は84.3%(孵化直後対比)、海水区に収容したアユ仔魚の平均値は29.7mmで生残率は66.8%(同)であった。両水槽におけるアユ仔魚の全長を比較したグラフを図2に示す。   On the 30th day after hatching, 60 fish were collected indiscriminately from both tanks, and the total length was measured. The average value of the ayu larvae housed in the climax was 21.5 mm, and the average value of the ayu larvae housed in the seawater area was 21.0 mm. In addition, on the 50th day after hatching, 60 fish were collected indiscriminately from both tanks, and the total length was measured. The average value of the Ayu larvae housed in the climatic zone is 31.7 mm and the survival rate is 84.3% (compared to that immediately after hatching). The average value of the Ayu larvae contained in the seawater zone is 29.7 mm and the survival rate is 66. 8% (same as above). A graph comparing the total length of sweetfish larvae in both tanks is shown in FIG.

この時期には、躍層区の仔魚のほとんどが水槽の下層(海水層)に移動したので、給水を海水に切り替え、全ての仔魚を海水飼育へ移行した。   During this period, most of the larvae in the leaping zone moved to the lower layer (seawater layer) of the aquarium, so the water supply was switched to seawater and all larvae were moved to seawater breeding.

《オニオコゼとマハタの飼育例》
容積1kLの円形黒色水槽(水深70cm)を4基用意し、水面から汽水(塩分22ppt)、底面から海水(塩分34ppt)を注入し、飼育水中に塩分躍層を形成した試験水槽2基と、水面から海水を注入して対照水槽2基を作った。対照水槽にはマハタ(1万粒)、オニオコゼ(1.2万粒)の受精卵をそれぞれ収容し、試験水槽には、それぞれ対照水槽の半数の受精卵を収容した。マハタは孵化後21日令までの飼育を、オニオコゼは稚魚(23日令)までの飼育を実施し、それぞれ仔稚魚の飼育水槽内の分布状況、摂餌状況、成長・生残状況を調べた。
<Examples of breeding Oniokose and Mahata>
Four test black tanks with a volume of 1 kL (70 cm in depth), 2 brackish waters (salt content of 22 ppt), seawater (salt content of 34 ppt) injected from the water surface, and a salt concentration layer formed in the breeding water, Seawater was injected from the surface of the water to create two control tanks. Fertilized eggs of Mahata (10,000 grains) and Oniochoze (12,000 grains) were accommodated in the control water tank, respectively, and half of the fertilized eggs of the control water tank were accommodated in the test water tank. Mahata was raised until the 21st day after hatching, Oniokose was raised until the fry (23rd day), and the distribution status, feeding status, growth / survival status of the larvae were examined. .

対照水槽内の仔魚は、2種ともに水柱全体に分散した。試験水槽内のマハタ仔魚は、試験期間を通じて水深0〜20cmの上層(塩分22.0〜24.8ppt)に分布が集中し、初期摂餌も活発で、開口時の生残率は96%であった。これは、対照水槽内のマハタ仔魚の1.4倍である。また、試験水槽内のオニオコゼ仔魚は、1日令には上層(塩分22.0〜23.5ppt)に分布し、2日令以降は中層(24.1〜33.4ppt)に分布域が拡大した。飼育最終日のオニオコゼの生残率は82%であった。これは、対照水槽内のオニオコゼ仔魚の生残率(68.2±6.0%)よりも10%以上も高い。   Two species of larvae in the control tank were dispersed throughout the water column. Mahata larvae in the test tank are concentrated in the upper layer (salt content 22.0 to 24.8ppt) of water depth 0-20cm throughout the test period, the initial feeding is also active, and the survival rate at opening is 96% there were. This is 1.4 times the mahata larvae in the control aquarium. Oniokoze larvae in the test tank are distributed in the upper layer (22.0-23.5ppt of salinity) in the first day, and the distribution range is expanded in the middle layer (24.1-33.4ppt) after the second day. did. The survival rate of Oniokose on the last day of breeding was 82%. This is more than 10% higher than the survival rate (68.2 ± 6.0%) of the Oniokose larvae in the control aquarium.

《モクズガニの飼育例》
容量2kLの円形ポリカーボネイト水槽(水深100cm)を4基用意し、水面から汽水(塩分濃度20ppt)を、底面から海水(同32ppt)を注水して塩分躍層を形成した水槽(この水槽を「躍層形成槽」という。)2基と、海水を注水した水槽(この水槽を「海水槽」という。)2基に、それぞれモクズガニのゾエア幼生2万尾を収容し、幼生の分布状況、生残状況などを観察した。
《Examples of rearing of crabs》
Four circular polycarbonate tanks with a capacity of 2kL (water depth of 100cm) were prepared, and a water tank (in this tank, which was formed with a salt-climbing layer by pouring brackish water (salt concentration 20ppt) from the water surface and seawater (32ppt) from the bottom surface. 2) and 2 tanks infused with seawater (this tank is called "seawater tank"), each of which accommodates 20,000 larvae of squirrel crabs and distributes the larvae. The situation was observed.

ゾエア幼生は、躍層形成槽では塩分躍層の塩分25〜30ppt域に集まったが、海水槽では全体に拡散した。躍層形成槽では、遊泳も活発で、ゾエア期に発生する水生菌(真菌)の被害がなく、生残率は17.1%であった。これに対し、海水槽では、水生菌の被害による減耗で、生残率は0%となった。   The zoea larvae gathered in the salinity layer in the salinity layer, where the salinity layer was 25-30 ppt, but diffused throughout the seawater tank. In the climax formation tank, swimming was also active, and there was no damage of aquatic bacteria (fungi) occurring in the zoea period, and the survival rate was 17.1%. On the other hand, in the seawater tank, the survival rate became 0% due to depletion due to damage by aquatic bacteria.

躍層形成槽内でゾエア幼生を成長させ、メガロパ期に入る時期に、この水槽に水面から淡水を給水して淡水を上層とする塩分躍層を形成し、飼育を続けたところ、メガロパ後期になった個体から水槽内の淡水域への移動が観察された。この時点での生残率は38.1%であった。なお、淡水を給水しなかったときの生残率は8.3%であった。   When the zoea larvae grew in the climax formation tank and the megalopa period began, fresh water was fed from the surface of the water to form a salt cradle layer with fresh water as the upper layer, and the breeding was continued. Movement from the individual to the freshwater area in the aquarium was observed. The survival rate at this time was 38.1%. The survival rate when fresh water was not supplied was 8.3%.

以上、詳しく説明したとおり、本発明に係る人工種苗の管理方法では、仔稚魚や幼生を飼育するに際し、塩分躍層を形成した飼育水を用いるという簡単な方法によって、仔稚魚や幼生の孵化率や生残率や成長性を向上させ、人工種苗生産における種苗の生産性を向上かつ安定させることができ、その結果、生産者の利益を大きく向上・安定させることができる。   As described above in detail, in the method for managing artificial seedlings according to the present invention, when raising larvae and larvae, the hatching rate of larvae and larvae is obtained by a simple method of using breeding water in which a salt excitement layer is formed. It is possible to improve the survival rate and growth rate, improve and stabilize the productivity of seedlings in artificial seedling production, and as a result, greatly improve and stabilize the profits of producers.

また、本発明に係る人工種苗の管理方法では、受精卵を孵化させるに際し、塩分躍層を形成した飼育水を用いるという簡単な方法によって、受精卵の孵化率や生残率を高め、また奇形率を抑えることが可能となり、人工種苗生産における種苗の生産性を向上かつ安定させることができ、その結果、生産者の利益を大きく向上・安定させることができる。   In the artificial seedling management method according to the present invention, when a fertilized egg is hatched, the hatching rate or survival rate of the fertilized egg is increased by a simple method of using breeding water in which a salt concentration layer is formed. The rate can be reduced, and the productivity of seedlings in artificial seedling production can be improved and stabilized. As a result, the profits of producers can be greatly improved and stabilized.

クロダイの成長性(全長サイズ)を本発明方法と従来方法とを対比して示したグラフである。It is the graph which showed the growth property (full length size) of the black sea in contrast with the method of this invention, and the conventional method. アユの成長性(全長サイズ)を本発明方法と従来方法とを対比して示したグラフである。It is the graph which showed the growth property (full length size) of sweetfish in contrast with the method of this invention and the conventional method.

Claims (6)

人工種苗生産において、海産魚もしくは回遊魚の仔稚魚又は甲殻類の幼生を飼育するに際し、水槽内の飼育水中に塩分躍層を形成し、その水槽内で自らの適正塩分濃度を選択させながら仔稚魚又は幼生を飼育することを特徴とする人工種苗の管理方法。   In artificial seedling production, when breeding marine fish, migratory fish larvae or crustacean larvae, larvae and larvae are formed while forming a salt excitement layer in the aquarium water and selecting their own appropriate salt concentration in the aquarium Or the management method of artificial seedlings characterized by raising larvae. 人工種苗生産において、受精卵を孵化させるに際し、水槽内の飼育水中に塩分躍層を形成し、その水槽内で受精卵を自らの比重に適合する塩分濃度域に浮遊させて孵化させることを特徴とする人工種苗の管理方法。   In artificial seedling production, when fertilized eggs are hatched, a salinity layer is formed in the breeding water in the aquarium, and the fertilized eggs are floated and hatched in the aquarium in a salt concentration range that matches their specific gravity. Management method for artificial seedlings. 請求項1に記載の管理方法において、海水を下層とし、仔稚魚又は幼生の種類や性状や成長段階に応じた濃度の塩水か又は淡水を上層として塩分躍層を形成し、その飼育水を用いて仔稚魚又は幼生を飼育する人工種苗の管理方法。   The management method according to claim 1, wherein seawater is used as a lower layer, and a salt concentration layer is formed with salt water or fresh water having a concentration according to the type, characteristics and growth stage of larvae or larvae as an upper layer, and the breeding water is used. A method for managing artificial seedlings for raising larvae and larvae. 請求項2に記載の管理方法において、海水を下層とし、受精卵の種類や性状や成長段階に応じた濃度の塩水か又は淡水を上層として塩分躍層を形成し、その飼育水を用いて受精卵を孵化させる人工種苗の管理方法。   3. The management method according to claim 2, wherein sea salt is used as a lower layer, a salt concentration layer is formed with salt water or fresh water as a top layer according to the type, properties and growth stage of a fertilized egg, and fertilized using the breeding water. An artificial seedling management method that hatches eggs. 請求項3に記載の管理方法において、海水よりも低濃度の塩水を上層とする飼育水を用いてクロダイ、ヒラメ、オコゼなどの海産魚の仔稚魚又はモクズガニ、クルマエビ、ガザミなどの甲殻類の幼生を飼育する人工種苗の管理方法。   4. The management method according to claim 3, wherein larvae of marine fish such as black sea bream, flounder and okoze or crustacean larvae such as black crab, tiger prawn and crab are raised using breeding water having a lower concentration of salt water than seawater. Management method of artificial seedlings to be bred. 請求項3に記載の管理方法において、淡水を上層とする飼育水を用いてアユ、サケ、マスなどの回遊魚の仔稚魚を飼育する人工種苗の管理方法。   The management method according to claim 3, wherein breeding juvenile fish such as sweetfish, salmon, trout, etc. are bred using breeding water with fresh water as an upper layer.
JP2007081432A 2007-03-27 2007-03-27 Management method of artificial seedlings Expired - Fee Related JP4091965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081432A JP4091965B1 (en) 2007-03-27 2007-03-27 Management method of artificial seedlings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081432A JP4091965B1 (en) 2007-03-27 2007-03-27 Management method of artificial seedlings

Publications (2)

Publication Number Publication Date
JP4091965B1 JP4091965B1 (en) 2008-05-28
JP2008237089A true JP2008237089A (en) 2008-10-09

Family

ID=39509566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081432A Expired - Fee Related JP4091965B1 (en) 2007-03-27 2007-03-27 Management method of artificial seedlings

Country Status (1)

Country Link
JP (1) JP4091965B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136708A (en) * 2008-12-15 2010-06-24 Kinki Univ Method for raising fry of takifugu rubripes
JP2012200167A (en) * 2011-03-24 2012-10-22 Hiroshima Prefecture Method for life prolongation and/or trauma recovery of seawater fish, and seawater fish treated by the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104542362A (en) * 2013-10-12 2015-04-29 敖志辉 Method for spatial coculture of shellfish and sea cucumber seedlings by utilizing same buoyant raft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136708A (en) * 2008-12-15 2010-06-24 Kinki Univ Method for raising fry of takifugu rubripes
JP2012200167A (en) * 2011-03-24 2012-10-22 Hiroshima Prefecture Method for life prolongation and/or trauma recovery of seawater fish, and seawater fish treated by the method

Also Published As

Publication number Publication date
JP4091965B1 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
CN103392675B (en) Stereoscopic comprehensive ecological culture method of multiple species in stichopus japonicus pond
CN102318576B (en) Whole-process seawater breeding method for Trachidermus fasciatus
Fielder et al. Hatchery manual for the production of Australian bass, mulloway and yellowtail kingfish
CN104604759A (en) Grass carp culturing method
CN104542407B (en) Two-stage cultivation method for loach offspring seeds
CN105494193A (en) Seedling culture method of Sanguinolaria diphos
CN104396809A (en) Grass carp culturing method
CN102273416B (en) Method for promoting synchronous development of sexual glands of takifugu obscurus male and female parent fishes
Hitzfelder et al. The effect of rearing density on growth and survival of cobia, Rachycentron canadum, larvae in a closed recirculating aquaculture system
CN107114283A (en) A kind of artificial breeding method of Collichthys lucidus
CN100370896C (en) Artificial breeding method for semi-smooth tongue sole
CN105254015B (en) The food chain method for reconstructing of Lake Water ecological management
CN102919186B (en) Artificial breeding method for sillago sihama
JP4091965B1 (en) Management method of artificial seedlings
JP4734509B2 (en) How to cultivate scanpi
CN110432190A (en) A kind of Low-salinity sea area little yellow croaker seed high-survival rate propagation method
Dhaneesh et al. Embryonic development of percula clownfish, Amphiprion percula (Lacepede, 1802)
CN101743915B (en) Cultivation method for enhancing physique of weak young Chinese sturgeon
JP6267867B2 (en) Fish culture method and pH adjusting material used therefor
Starushenko et al. Introduction of mullet haarder (Mugil so-iuy Basilewsky) into the Black Sea and the Sea of Azov
KR101184458B1 (en) A raising system for raise lugworm seed
Ohs et al. Species profile: pigfish, Orthopristis chrysoptera.
CN103766249B (en) A kind of mixed feed feeding method of Parapenaeopsis hardwickii seed rearing
Perry et al. Expansion of the Soft Crab Fishery in Mississippi Using Cultured Blue Crabs.
Aride et al. Tambaqui growth and survival when exposed to different photoperiods

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees