JP2008235613A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008235613A
JP2008235613A JP2007073804A JP2007073804A JP2008235613A JP 2008235613 A JP2008235613 A JP 2008235613A JP 2007073804 A JP2007073804 A JP 2007073804A JP 2007073804 A JP2007073804 A JP 2007073804A JP 2008235613 A JP2008235613 A JP 2008235613A
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
semiconductor layer
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007073804A
Other languages
Japanese (ja)
Inventor
Seiji Yaegashi
誠司 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2007073804A priority Critical patent/JP2008235613A/en
Publication of JP2008235613A publication Critical patent/JP2008235613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7789Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of reducing contact resistance between an ohmic electrode and an electron travelling layer. <P>SOLUTION: The semiconductor device comprises a nitride semiconductor layer 24 which is provided on a substrate 10 and comprises an electron travelling layer 18 and an electron supply layer 22, a p-type nitride semiconductor layer 14 provided in the nitride semiconductor layer 24, an n-doping region 26 which is provided in the nitride semiconductor layer 24 to reach the electron travelling layer 18, a gate electrode 44 provided on the electron supply layer 22, and ohmic electrodes 40 and 42 provided to contact the n-type doping region 26. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体装置に関し、特に、窒化物半導体を用いた半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device using a nitride semiconductor.

窒化ガリウム(GaN)等の窒化物半導体を用いた半導体装置は、高周波かつ高出力で動作するパワー素子として用いられている。特に、マイクロ波、準ミリ波、ミリ波等の高周波帯域において増幅を行うのに適した半導体装置として、高電子移動度トランジスタ(HEMT)等のFETの開発が進められている。また、HBT(Heterojunction Bipolar Transisitor)やIGBT(Insulated Gate Bipolar Transistor)等のトランジスタも開発されている。なお、窒化物半導体には、例えば、GaN、AlN(窒化アルミニウム)、InN(窒化インジウム)、GaNとAlNとの混晶であるAlGaN、GaNとInNとの混晶であるInGaN、GaNとAlNとInNとの混晶であるAlInGaN等がある。   A semiconductor device using a nitride semiconductor such as gallium nitride (GaN) is used as a power element that operates at high frequency and high output. In particular, FETs such as high electron mobility transistors (HEMTs) are being developed as semiconductor devices suitable for performing amplification in high frequency bands such as microwaves, quasi-millimeter waves, and millimeter waves. Further, transistors such as HBT (Heterojunction Bipolar Transistor) and IGBT (Insulated Gate Bipolar Transistor) have been developed. The nitride semiconductor includes, for example, GaN, AlN (aluminum nitride), InN (indium nitride), AlGaN that is a mixed crystal of GaN and AlN, InGaN that is a mixed crystal of GaN and InN, GaN and AlN, and the like. Examples include AlInGaN which is a mixed crystal with InN.

ゲート電圧が0V以上でピンチオフするエンハンスメント・モード(Eモード)FETは、待機電力を低減できるためスイッチング素子等に用いられている。また、EモードFETは、増幅器として使用する際、負電源が不要なため単一の電源を用い増幅器を形成できる。よって、回路の簡略化が可能となる。例えばGa面[0001]方向に結晶成長されたGaN電子走行層と電子走行層より電子親和力の小さいAlGaN電子供給層とからなる窒化物半導体FETにおいては、AlGaNとGaNとの界面の歪みに起因するピエゾ分極及び結晶の対称性に起因する自発分極によりAlGaN/GaN界面のGaN側に2DEG(2 Dimention Electron Gas:2次元電子ガス)が形成される。このようにして、電子供給層は2次元電子ガスを電子走行層に生成させ、この2DEGをゲート電極で制御することによりFETとして機能する。このようなFETをEモードとするためには2DEG濃度を小さくすることが求められるが、電子供給層を薄膜化してEモードを形成するとチャネル抵抗が高くなり電気的輸送特性の劣化を招いてしまい、EモードFETを構成すること、つまり、閾値電圧を高くすることが難しくなる。   Enhancement mode (E mode) FETs that pinch off when the gate voltage is 0 V or higher can reduce standby power, and are used for switching elements and the like. Further, since the E mode FET does not require a negative power source when used as an amplifier, the amplifier can be formed using a single power source. Therefore, the circuit can be simplified. For example, in a nitride semiconductor FET comprising a GaN electron transit layer crystal-grown in the Ga plane [0001] direction and an AlGaN electron supply layer having a lower electron affinity than the electron transit layer, this is caused by strain at the interface between AlGaN and GaN. 2DEG (2 Dimension Electron Gas) is formed on the GaN side of the AlGaN / GaN interface by spontaneous polarization resulting from piezo polarization and crystal symmetry. In this way, the electron supply layer functions as an FET by generating a two-dimensional electron gas in the electron transit layer and controlling the 2DEG with the gate electrode. In order to make such an FET in the E mode, it is required to reduce the 2DEG concentration. However, if the E mode is formed by thinning the electron supply layer, the channel resistance increases and the electrical transport characteristics deteriorate. It is difficult to configure an E-mode FET, that is, to increase the threshold voltage.

そこで、特許文献1には、窒化物半導体FETにおいて電子供給層にリセスを設けEモードを実現する技術が開示されている。また、特許文献2にはリセスを有する窒化物半導体FETにおいて、電子供給層とゲート電極との間に酸化膜を設けたMIS(Metal Insulator Semiconductor)構造の技術が開示されている。
特開2006−32650号公報 特開2005−183733号公報
Therefore, Patent Document 1 discloses a technique for realizing an E mode by providing a recess in an electron supply layer in a nitride semiconductor FET. Patent Document 2 discloses a MIS (Metal Insulator Semiconductor) structure technique in which a nitride semiconductor FET having a recess is provided with an oxide film between an electron supply layer and a gate electrode.
JP 2006-32650 A JP 2005-183733 A

リセスを設けるなどして電子供給層を薄膜化すると、トンネリング現象等により電子供給層の見かけ上のショットキバリアが低くなる。このため、リーク電流が増大する。よって、ゲート電圧を大きくした場合、ゲート電流のリーク電流が大きくなってしまう。MIS構造を採用することにより、このような課題を解決することができる。   When the electron supply layer is thinned by providing a recess or the like, the apparent Schottky barrier of the electron supply layer is lowered due to a tunneling phenomenon or the like. For this reason, the leakage current increases. Therefore, when the gate voltage is increased, the leakage current of the gate current increases. By adopting the MIS structure, such a problem can be solved.

しかし、MIS構造の電子供給層とゲート電極との間の絶縁層は薄いことが好ましい。一方、絶縁層が薄いと、リーク電流が生じる。この結果、閾値電圧を高くすることが難しくなる。   However, the insulating layer between the electron supply layer having the MIS structure and the gate electrode is preferably thin. On the other hand, when the insulating layer is thin, leakage current is generated. As a result, it is difficult to increase the threshold voltage.

そこで、窒化物半導体層の一部をp型半導体層とすることにより閾値電圧を高くしEモードFETを実現することが考えられる。また、FET、HBT及びIGBT等の窒化物半導体層を用いたトランジスタにおいては、窒化物半導体層内にp型窒化物半導体層が設けられる場合がある。   Thus, it is conceivable to realize an E-mode FET by increasing the threshold voltage by using a part of the nitride semiconductor layer as a p-type semiconductor layer. In a transistor using a nitride semiconductor layer such as FET, HBT, or IGBT, a p-type nitride semiconductor layer may be provided in the nitride semiconductor layer.

ところが、窒化物半導体層内にp型窒化物半導体層を設けると、そのp型窒化物半導体層のドーパントが電子走行層内に拡散され、窒化物半導体層上に形成したオーミック電極と電子が走行する電子走行層との接触抵抗が大きくなる。このため、トランジスタの電気的輸送特性が悪化する。   However, when the p-type nitride semiconductor layer is provided in the nitride semiconductor layer, the dopant of the p-type nitride semiconductor layer is diffused into the electron transit layer, and the ohmic electrode and electrons formed on the nitride semiconductor layer travel. The contact resistance with the traveling electron layer increases. For this reason, the electrical transport characteristics of the transistor are deteriorated.

本発明は、オーミック電極と電子走行層との接触抵抗を低減することが可能な半導体装置を提供することを目的とする。   An object of this invention is to provide the semiconductor device which can reduce the contact resistance of an ohmic electrode and an electron transit layer.

本発明は、基板上に設けられ電子走行層及び電子供給層を有する窒化物半導体層と、前記窒化物半導体層内に設けられたp型窒化物半導体層と、前記窒化物半導体層内に設けられ前記電子走行層に到達するn型ドーピング領域と、前記電子供給層上に設けられたゲート電極と、前記n型ドーピング領域に接触して設けられたオーミック電極と、を具備することを特徴とする半導体装置である。本発明によれば、n型ドーピング領域を設けることにより、p型窒化物半導体層に起因したオーミック電極と電子走行層との接触抵抗の悪化を抑制することができる。   The present invention provides a nitride semiconductor layer provided on a substrate and having an electron transit layer and an electron supply layer, a p-type nitride semiconductor layer provided in the nitride semiconductor layer, and provided in the nitride semiconductor layer. And an n-type doping region that reaches the electron transit layer, a gate electrode provided on the electron supply layer, and an ohmic electrode provided in contact with the n-type doping region. It is a semiconductor device. According to the present invention, by providing the n-type doping region, it is possible to suppress the deterioration of the contact resistance between the ohmic electrode and the electron transit layer caused by the p-type nitride semiconductor layer.

上記構成において、前記p型窒化物半導体層は、前記基板と前記電子走行層との間に設けられている構成とすることができる。この構成によれば、基板と電子走行層との間に設けられたp型窒化物半導体層により、閾値電圧を高くすることができる。また、n型ドーピング領域により、オーミック電極と電子走行層との接触抵抗を低減することができる。   The said structure WHEREIN: The said p-type nitride semiconductor layer can be set as the structure provided between the said board | substrate and the said electron transit layer. According to this configuration, the threshold voltage can be increased by the p-type nitride semiconductor layer provided between the substrate and the electron transit layer. Further, the contact resistance between the ohmic electrode and the electron transit layer can be reduced by the n-type doping region.

上記構成において、p型窒化物半導体層上にAlを含む窒化物半導体からなる拡散防止層を具備する構成とすることができる。この構成によれば、拡散防止層によりp型窒化物半導体層上からのp型ドーパントの拡散を抑制することができる。よって、オーミック電極と電子走行層との接触抵抗を低減することができる。   In the above configuration, a diffusion prevention layer made of a nitride semiconductor containing Al may be provided on the p-type nitride semiconductor layer. According to this configuration, the diffusion of the p-type dopant from the p-type nitride semiconductor layer can be suppressed by the diffusion preventing layer. Therefore, the contact resistance between the ohmic electrode and the electron transit layer can be reduced.

上記構成において、p型窒化物半導体層はゲート電極の下に選択的に設けられている構成とすることができる。この構成によれば、オーミック電極と電子走行層との接触抵抗をより低減することができる。   In the above structure, the p-type nitride semiconductor layer can be selectively provided below the gate electrode. According to this configuration, the contact resistance between the ohmic electrode and the electron transit layer can be further reduced.

上記構成において、前記電子供給層はリセスを有し、前記ゲート電極は前記リセス上に設けられている構成とすることができる。この構成によれば、より閾値電圧を高く設定することができる。   In the above structure, the electron supply layer may have a recess, and the gate electrode may be provided on the recess. According to this configuration, the threshold voltage can be set higher.

上記構成において、前記電子供給層と前記ゲート電極との間に設けられた絶縁層を具備する構成とすることができる。この構成によれば、ゲート電極のリーク電流を抑制することができる。   In the above structure, an insulating layer provided between the electron supply layer and the gate electrode can be provided. According to this configuration, the leakage current of the gate electrode can be suppressed.

上記構成において、前記電子供給層は前記p型窒化物半導体層を含む構成とすることができる。この構成によれば、電子供給層内がp型窒化物半導体層を含むため、閾値電圧を高くすることができる。また、n型ドーピング領域により、オーミック電極と電子走行層との接触抵抗を低減することができる。   The said structure WHEREIN: The said electron supply layer can be set as the structure containing the said p-type nitride semiconductor layer. According to this configuration, since the electron supply layer includes the p-type nitride semiconductor layer, the threshold voltage can be increased. Further, the contact resistance between the ohmic electrode and the electron transit layer can be reduced by the n-type doping region.

上記構成において、前記リセス上に、p型半導体層が設けられている構成とすることができる。また、上記構成において、前記半導体装置はエンハンスメント・モードである構成とすることができる。   In the above structure, a p-type semiconductor layer may be provided on the recess. In the above structure, the semiconductor device may be in an enhancement mode.

本発明は、基板上に設けられた窒化物半導体層と、前記窒化物半導体層内に設けられたp型窒化物半導体層及びp型窒化物半導体層上に設けられたn型コンタクト層と、前記n型コンタクト層に到達するn型ドーピング領域と、前記n型ドーピング領域に接触して設けられた第1電極と、前記基板に接続する第2電極と、前記第1電極と前記第2電極との間を流れる電流を制御する制御電極と、を具備することを特徴とする半導体装置である。本発明によれば、n型ドーピング領域を設けることにより、p型窒化物半導体層に起因した第1電極とコンタクト層との接触抵抗の悪化を抑制することができる。   The present invention includes a nitride semiconductor layer provided on a substrate, a p-type nitride semiconductor layer provided in the nitride semiconductor layer, and an n-type contact layer provided on the p-type nitride semiconductor layer, An n-type doping region reaching the n-type contact layer, a first electrode provided in contact with the n-type doping region, a second electrode connected to the substrate, the first electrode and the second electrode And a control electrode for controlling a current flowing between them. According to the present invention, by providing the n-type doping region, it is possible to suppress the deterioration of the contact resistance between the first electrode and the contact layer caused by the p-type nitride semiconductor layer.

本発明によれば、n型ドーピング領域を設けることにより、p型窒化物半導体層に起因したオーミック電極と電子走行層との接触抵抗の悪化を抑制することができる。 According to the present invention, by providing the n-type doping region, it is possible to suppress the deterioration of the contact resistance between the ohmic electrode and the electron transit layer caused by the p-type nitride semiconductor layer.

以下、図面を参照に本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a)から図2(b)を用い実施例1に係るHEMTの製造工程について説明する。図1(a)を参照に、c−サファイア基板10上にバッファ層12として膜厚が例えば2.0μmのi−GaNを形成する。バッファ層12上にp型半導体層14(p型窒化物半導体層)としてMg(マグネシウム)を2×1020cm−3程度ドープしたGaN層を形成する。p型半導体層14の膜厚は数nmから100nm程度が好ましい。p型半導体層14上に拡散防止層16として膜厚が10nm程度のAlN層を形成する。拡散防止層16上に電子走行層18として膜厚が10nmのi−GaN層を形成する。電子走行層18上に電子供給層22として、膜厚が例えば30nmのi−Al0.25Ga0.75Nを形成する。以上により、基板10上に窒化物半導体層24が形成される。 A manufacturing process of the HEMT according to the first embodiment will be described with reference to FIGS. Referring to FIG. 1A, i-GaN having a thickness of, for example, 2.0 μm is formed as a buffer layer 12 on a c-sapphire substrate 10. A GaN layer doped with about 2 × 10 20 cm −3 of Mg (magnesium) is formed on the buffer layer 12 as the p-type semiconductor layer 14 (p-type nitride semiconductor layer). The thickness of the p-type semiconductor layer 14 is preferably about several nm to 100 nm. An AlN layer having a thickness of about 10 nm is formed on the p-type semiconductor layer 14 as the diffusion preventing layer 16. An i-GaN layer having a thickness of 10 nm is formed on the diffusion prevention layer 16 as the electron transit layer 18. As the electron supply layer 22, for example, i-Al 0.25 Ga 0.75 N having a thickness of 30 nm is formed on the electron transit layer 18. Thus, the nitride semiconductor layer 24 is formed on the substrate 10.

窒化物半導体層24の形成は、MOVPE(Metal Organic Vapor Phase Epitaxy)法またはMOCVD(Metal Organic Chemical VaporDeposition)法を用いGa面[0001]方向に成膜する。基板10は、窒化物半導体層24が形成できる基板であればよく、例えばSiC(炭化シリコン)基板、(111)面のSi(シリコン)基板でもよい。電子走行層18と電子供給層22との分極率の差及び電子親和力の差に起因し電子走行層18の電子供給層22との界面には2DEG20が形成される。   The nitride semiconductor layer 24 is formed in the Ga plane [0001] direction using a MOVPE (Metal Organic Vapor Phase Epitaxy) method or a MOCVD (Metal Organic Chemical Vapor Deposition) method. The substrate 10 may be any substrate on which the nitride semiconductor layer 24 can be formed. For example, the substrate 10 may be a SiC (silicon carbide) substrate or a (111) plane Si (silicon) substrate. Due to the difference in polarizability between the electron transit layer 18 and the electron supply layer 22 and the difference in electron affinity, 2DEG 20 is formed at the interface between the electron transit layer 18 and the electron supply layer 22.

図1(b)を参照に、フォトレジストまたは絶縁膜をマスクにSiをイオン注入し、熱処理を行う。これにより、窒化物半導体層24に少なくとも2DEG20まで達するn型注入領域26(n型ドーピング領域)を形成する。Siの注入条件は、電子供給層22の膜厚等を考慮し適宜設定することができる。例えば、注入エネルギーが50keVから100keV、ドーズ量が1015cm−2から1016cm−2程度が好ましい。熱処理の温度はSiが活性化するように適宜設定することができる。例えば1200℃とすることができる。 Referring to FIG. 1B, Si is ion-implanted using a photoresist or an insulating film as a mask, and heat treatment is performed. As a result, an n-type implantation region 26 (n-type doping region) reaching at least 2 DEG 20 is formed in the nitride semiconductor layer 24. The Si implantation conditions can be appropriately set in consideration of the thickness of the electron supply layer 22 and the like. For example, the implantation energy is preferably about 50 keV to 100 keV and the dose amount is about 10 15 cm −2 to 10 16 cm −2 . The temperature of the heat treatment can be appropriately set so that Si is activated. For example, it can be 1200 degreeC.

図1(c)を参照に、電子供給層22及び電子走行層18を例えばBCl/Cl等の塩素系ガスを用いドライエッチングする。これにより素子分離領域31を形成する。なお、イオン注入法を用い素子分離領域を形成してもよい。電子供給層22を例えば塩素系ガスを用いドライエッチングし、電子供給層22(膜厚が30nm)に深さ約20nmのリセス30を形成する。電子供給層22の膜厚は例えば10nmから50nm、リセス30下の電子供給層の膜厚は例えば3から10nmとすることが好ましい。 Referring to FIG. 1C, the electron supply layer 22 and the electron transit layer 18 are dry-etched using a chlorine-based gas such as BCl 3 / Cl 2 . Thereby, the element isolation region 31 is formed. Note that an element isolation region may be formed using an ion implantation method. The electron supply layer 22 is dry-etched using, for example, chlorine-based gas to form a recess 30 having a depth of about 20 nm in the electron supply layer 22 (film thickness is 30 nm). The film thickness of the electron supply layer 22 is preferably 10 nm to 50 nm, for example, and the film thickness of the electron supply layer under the recess 30 is preferably 3 nm to 10 nm, for example.

図1(d)を参照に、リセス30の底面及び側面並びに電子供給層22上に絶縁膜32として100nmの厚さの酸化シリコン膜をCVD法またはスパッタ法を用い形成する。絶縁膜32の膜厚は100nm以上であることが好ましい。また、絶縁膜32として、窒化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜等を用いることもできる。   Referring to FIG. 1D, a silicon oxide film having a thickness of 100 nm is formed as an insulating film 32 on the bottom and side surfaces of the recess 30 and the electron supply layer 22 by a CVD method or a sputtering method. The thickness of the insulating film 32 is preferably 100 nm or more. As the insulating film 32, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.

図2(a)を参照に、リセス30の絶縁膜32をエッチングし絶縁膜34を形成する。絶縁膜34の膜厚は10nmから20nmとすることが好ましい。リセス30とエッチングマスクの合わせマージンを確保するため、絶縁膜34となる領域56はリセス30より広くすることが好ましい。   Referring to FIG. 2A, the insulating film 32 of the recess 30 is etched to form an insulating film 34. The thickness of the insulating film 34 is preferably 10 nm to 20 nm. In order to secure an alignment margin between the recess 30 and the etching mask, the region 56 to be the insulating film 34 is preferably wider than the recess 30.

図2(b)を参照に、リセス30の絶縁膜34上にゲート電極44としてNi(ニッケル)/Au(金)を蒸着法及びリフトオフ法を用い形成する。ゲート電極44としてはNi/Al(アルミニウム)やTa(タンタル)/Au等を用いることもできる。ソース電極40及びドレイン電極42を形成すべき絶縁膜32及び電子供給層22の一部を除去し、電子供給層22上にソース電極40及びドレイン電極42としてTi/Auを蒸着法及びリフトオフ法を用い形成する。ソース電極40及びドレイン電流42としてはTi/Al等を用いることもできる。以上により実施例1に係るFETが完成する。   Referring to FIG. 2B, Ni (nickel) / Au (gold) is formed on the insulating film 34 of the recess 30 as a gate electrode 44 by vapor deposition and lift-off. As the gate electrode 44, Ni / Al (aluminum), Ta (tantalum) / Au, or the like can be used. A part of the insulating film 32 and the electron supply layer 22 on which the source electrode 40 and the drain electrode 42 are to be formed is removed, and Ti / Au is vapor deposited and lifted off as the source electrode 40 and the drain electrode 42 on the electron supply layer 22. Use to form. Ti / Al or the like can also be used as the source electrode 40 and the drain current 42. Thus, the FET according to Example 1 is completed.

実施例1によれば、基板10と電子走行層18との間にp型半導体層14(p型窒化物半導体層)が設けられている。これにより、電子走行層18に形成された2DEG20のエネルギーレベルがフェルミレベルに対し高く持ち上がる。よって、2DEG20の電子濃度が低下し、Eモードを簡単に実現することができる。なお、p型半導体層14のキャリア濃度及び膜厚は目標とする閾値電圧に応じ適宜選択することができる。   According to Example 1, the p-type semiconductor layer 14 (p-type nitride semiconductor layer) is provided between the substrate 10 and the electron transit layer 18. As a result, the energy level of 2DEG 20 formed in the electron transit layer 18 is raised higher than the Fermi level. Therefore, the electron density of 2DEG 20 is reduced, and the E mode can be easily realized. The carrier concentration and the film thickness of the p-type semiconductor layer 14 can be appropriately selected according to the target threshold voltage.

しかしながら、p型半導体層14のドーパントであるMgは拡散し易い。また、Mgが例えばMOCVD装置のチャンバ内に付着し、電子走行層18を形成する際に電子走行層18内にドープされてしまう。これにより、電子走行層18がp型となってしまう。このため、ソース電極40及びドレイン電極42と電子走行層18内の2DEG20との接触抵抗が高くなりトランジスタの電気的輸送特性が悪化してしまう。実施例1によれば、電子供給層22に電子走行層18に到達し、電気的に接続するn型注入領域26が設けられている。これにより、ソース電極40及びドレイン電極42(つまりオーミック電極)と電子走行層18内の2DEG20との接触抵抗を低減し、電気的輸送特性を向上させることができる。   However, Mg which is a dopant of the p-type semiconductor layer 14 is easily diffused. Further, Mg is deposited in the chamber of the MOCVD apparatus, for example, and is doped into the electron transit layer 18 when the electron transit layer 18 is formed. Thereby, the electron transit layer 18 becomes p-type. For this reason, the contact resistance between the source electrode 40 and the drain electrode 42 and the 2DEG 20 in the electron transit layer 18 is increased, and the electrical transport characteristics of the transistor are deteriorated. According to the first embodiment, the n-type injection region 26 that reaches the electron transit layer 18 and is electrically connected to the electron supply layer 22 is provided. As a result, the contact resistance between the source electrode 40 and the drain electrode 42 (that is, the ohmic electrode) and the 2DEG 20 in the electron transit layer 18 can be reduced, and the electrical transport characteristics can be improved.

また、p型半導体層14上にAlNからなる拡散防止層16を設けることが好ましい。これにより、p型半導体層14のドーパントであるMgが電子走行層18に拡散することを抑制することができる。よって、ソース電極40及びドレイン電極42と2DEG20との接触抵抗を低減し、電気的輸送特性を向上させることができる。   Further, it is preferable to provide a diffusion prevention layer 16 made of AlN on the p-type semiconductor layer 14. Thereby, Mg which is a dopant of the p-type semiconductor layer 14 can be prevented from diffusing into the electron transit layer 18. Therefore, the contact resistance between the source electrode 40 and the drain electrode 42 and the 2DEG 20 can be reduced, and the electrical transport characteristics can be improved.

実施例2は絶縁膜として第1絶縁膜36と第2絶縁膜38とを形成する例である。図3(a)を参照に、実施例1の図1(c)の後、リセス30の底面及び側面並びに電子供給層22上に第1絶縁膜36として例えば10nmの厚さの窒化アルミニウム膜をスパッタ法を用い形成する。第1絶縁膜36上に第2絶縁膜38として例えば100nmの厚さの酸化シリコン膜をCVD法またはスパッタ法を用い形成する。これにより、第1絶縁膜36と第2絶縁膜38とからなる絶縁膜が形成される。   The second embodiment is an example in which a first insulating film 36 and a second insulating film 38 are formed as insulating films. Referring to FIG. 3A, after FIG. 1C of the first embodiment, an aluminum nitride film having a thickness of, for example, 10 nm is formed as the first insulating film 36 on the bottom and side surfaces of the recess 30 and the electron supply layer 22. It is formed using a sputtering method. A silicon oxide film having a thickness of, for example, 100 nm is formed on the first insulating film 36 as the second insulating film 38 by using a CVD method or a sputtering method. Thereby, an insulating film composed of the first insulating film 36 and the second insulating film 38 is formed.

図3(b)を参照に、リセス30内の第2絶縁膜38を第1絶縁膜36に対し選択的にエッチングし第1絶縁膜36を残存させる。リセス30とエッチングマスクとの合わせマージンを確保するため、第2絶縁膜38をエッチングする領域56はリセス30より広くすることが好ましい。   Referring to FIG. 3B, the second insulating film 38 in the recess 30 is selectively etched with respect to the first insulating film 36 to leave the first insulating film 36. In order to secure an alignment margin between the recess 30 and the etching mask, the region 56 for etching the second insulating film 38 is preferably wider than the recess 30.

図3(c)を参照に、実施例1の図2(b)と同様に、ゲート電極44、ソース電極40及びドレイン電極42を形成する。以上により実施例2に係るFETが完成する。   Referring to FIG. 3C, the gate electrode 44, the source electrode 40, and the drain electrode 42 are formed as in FIG. 2B of the first embodiment. Thus, the FET according to Example 2 is completed.

実施例2のように絶縁膜を第1絶縁膜36及び第2絶縁膜38で形成することもできる。FETの閾値電圧を高くするため、第1絶縁膜36の誘電率は高い方が好ましい。一方、寄生容量を小さくするため、第2絶縁膜38の誘電率は小さいことが好ましい。よって、第1絶縁膜36は第2絶縁膜38より誘電率が大きいことが好ましい。窒化シリコン膜や窒化アルミニウム膜は、酸化シリコン膜や酸化アルミニウム膜より誘電率が大きい。よって、第1絶縁膜36として窒化シリコン膜や窒化アルミニウム膜、第2絶縁膜38として、酸化シリコン膜や酸化アルミニウム膜を用いることが好ましい。さらに、第1絶縁膜36としては誘電率の大きい酸化ハフニウムや酸化ジルコニウムを用いることもできる。   As in Embodiment 2, the insulating film can be formed of the first insulating film 36 and the second insulating film 38. In order to increase the threshold voltage of the FET, the first insulating film 36 preferably has a high dielectric constant. On the other hand, the dielectric constant of the second insulating film 38 is preferably small in order to reduce the parasitic capacitance. Therefore, the first insulating film 36 preferably has a dielectric constant larger than that of the second insulating film 38. A silicon nitride film or an aluminum nitride film has a higher dielectric constant than a silicon oxide film or an aluminum oxide film. Therefore, it is preferable to use a silicon nitride film or an aluminum nitride film as the first insulating film 36 and a silicon oxide film or an aluminum oxide film as the second insulating film 38. Further, hafnium oxide or zirconium oxide having a large dielectric constant can be used as the first insulating film 36.

図4を参照に、実施例3に係るFETは、実施例1の図2(b)に対し、p型半導体層14及び拡散防止層16が設けられておらず、基板10上に直接電子走行層13として約2μmの膜厚のi−GaNが設けられている。また、電子走行層13上に電子供給層23としてMgを1×1019cm−3程度ドープし膜厚が30nmのp型のAlGaN層が設けられている。電子供給層23には深さが約20nmのリセス30が設けられている。その他の構成は実施例1の図2(b)と同じであり説明を省略する。 Referring to FIG. 4, the FET according to Example 3 is not provided with the p-type semiconductor layer 14 and the diffusion prevention layer 16 as compared with FIG. As the layer 13, i-GaN having a thickness of about 2 μm is provided. On the electron transit layer 13, a p-type AlGaN layer having a film thickness of 30 nm doped with about 1 × 10 19 cm −3 of Mg is provided as the electron supply layer 23. The electron supply layer 23 is provided with a recess 30 having a depth of about 20 nm. Other configurations are the same as those of the first embodiment shown in FIG.

実施例3では、窒化物半導体層24は、基板10上に設けられた電子走行層13と、電子走行層13上に設けられたp型の電子供給層23と、を有している。p型の電子供給層23が設けられているため、2DEG20のエネルギーレベルをフェルミレベルに対し高く持ち上げることができる。よって、2DEG20の電子濃度が低下し、Eモードを簡単に実現することができる。   In Example 3, the nitride semiconductor layer 24 includes an electron transit layer 13 provided on the substrate 10 and a p-type electron supply layer 23 provided on the electron transit layer 13. Since the p-type electron supply layer 23 is provided, the energy level of 2DEG 20 can be raised higher than the Fermi level. Therefore, the electron density of 2DEG 20 is reduced, and the E mode can be easily realized.

また、n型注入領域26は、電子供給層23から電子走行層13の2DEG20に達するように設けられている。これにより、ソース電極40及びドレイン電極42と電子走行層13内の2DEG20との接触抵抗を低減し、電気的輸送特性を向上させることができる。   The n-type injection region 26 is provided so as to reach the 2DEG 20 of the electron transit layer 13 from the electron supply layer 23. Thereby, the contact resistance between the source electrode 40 and the drain electrode 42 and the 2DEG 20 in the electron transit layer 13 can be reduced, and the electrical transport characteristics can be improved.

実施例3では、電子供給層23がp型窒化物半導体層である例を示したが、電子供給層23の少なくとも一部がp型窒化物半導体層であればよい。   Although the example in which the electron supply layer 23 is a p-type nitride semiconductor layer has been described in the third embodiment, at least a part of the electron supply layer 23 may be a p-type nitride semiconductor layer.

図5を参照に、実施例4に係るFETは、実施例1の図2(b)に対し、p型半導体層15としてp型GaN層及び拡散防止層17としてi−AlN層が電子走行層13のゲート電極44下に選択的に設けられている。製造方法を以下に説明する。GaN電子走行層13のうち下部層を成長した後、酸化シリコン等をマスク層としp型半導体層15及び拡散防止層17を選択的に形成する。マスク層を除去する。その後、電子走行層13のうち上部層を成長する。または、電子走行層13のうち下部層、p型半導体層15及び拡散防止層17を積層した後、p型半導体層15及び拡散防止層17の所定領域を除去する。その後、電子走行層13のうち上部層を成長する。実施例4においても、実施例1の図2(b)と同様に、EモードFETを実現することができる。   Referring to FIG. 5, the FET according to Example 4 is different from FIG. 2B of Example 1 in that the p-type GaN layer as the p-type semiconductor layer 15 and the i-AlN layer as the diffusion prevention layer 17 are the electron transit layer. 13 gate electrodes 44 are selectively provided. The manufacturing method will be described below. After the lower layer of the GaN electron transit layer 13 is grown, the p-type semiconductor layer 15 and the diffusion prevention layer 17 are selectively formed using silicon oxide or the like as a mask layer. The mask layer is removed. Thereafter, the upper layer of the electron transit layer 13 is grown. Alternatively, after the lower layer of the electron transit layer 13, the p-type semiconductor layer 15 and the diffusion prevention layer 17 are stacked, predetermined regions of the p-type semiconductor layer 15 and the diffusion prevention layer 17 are removed. Thereafter, the upper layer of the electron transit layer 13 is grown. Also in the fourth embodiment, an E-mode FET can be realized as in FIG. 2B of the first embodiment.

図6を参照に、実施例5に係るFETは、実施例1の図2(b)に示したp型半導体層14及び拡散防止層16と実施例3の図4に示したp型の電子供給層23とを有する。実施例5によれば、p型半導体層14と電子供給層23とが2DEG20のエネルギーレベルをフェルミレベルに対し高く持ち上げるため、EモードFETをより実現することができる。   Referring to FIG. 6, the FET according to Example 5 includes the p-type semiconductor layer 14 and the diffusion prevention layer 16 shown in FIG. 2B of Example 1 and the p-type electron shown in FIG. 4 of Example 3. And a supply layer 23. According to the fifth embodiment, since the p-type semiconductor layer 14 and the electron supply layer 23 raise the energy level of 2DEG 20 higher than the Fermi level, an E-mode FET can be realized more.

図7を参照に、実施例6に係るFETは、実施例4の図5に示したゲート電極44下に選択的に設けられたp型半導体層15及び拡散防止層17と実施例3の図4に示したp型の電子供給層23とを有する構造である。実施例6においても、実施例5と同様に、EモードFETをより容易に実現することができる。   Referring to FIG. 7, the FET according to Example 6 shows the p-type semiconductor layer 15 and the diffusion prevention layer 17 selectively provided below the gate electrode 44 shown in FIG. 4 is a structure having the p-type electron supply layer 23 shown in FIG. In the sixth embodiment, as in the fifth embodiment, an E mode FET can be realized more easily.

図8を参照に、実施例7に係るFETは、実施例1の図2(b)に対し、基板10上にAlN層50が設けられ、AlN層50上にp型半導体層52としてp型のAlGaN層及び拡散防止層17としてi−AlN層が設けられている。   Referring to FIG. 8, the FET according to Example 7 is different from FIG. 2B of Example 1 in that an AlN layer 50 is provided on the substrate 10 and a p-type semiconductor layer 52 is formed on the AlN layer 50 as a p-type semiconductor layer 52. An i-AlN layer is provided as the AlGaN layer and the diffusion preventing layer 17.

実施例7によれば、2DEG20は電子供給層22とAlGaN層のp型半導体層52とで挟まれており、いわゆるダブルヘテロ接合型となっている。このように、電子走行層18をそれより電子親和力の小さいAlGaN層で挟むことにより、2DEG20のエネルギーレベルが高くなり、EモードFETを簡単に実現することができる。さらに、p型半導体層52下に電子走行層18より電子親和力の小さいAlN層50が設けられていることにより、2DEG20のエネルギーレベルはさらに高くなり、EモードFETをより簡単に実現することができる。   According to the seventh embodiment, the 2DEG 20 is sandwiched between the electron supply layer 22 and the p-type semiconductor layer 52 of the AlGaN layer, and is a so-called double heterojunction type. Thus, by sandwiching the electron transit layer 18 with an AlGaN layer having a smaller electron affinity, the energy level of 2DEG 20 is increased, and an E-mode FET can be easily realized. Furthermore, since the AlN layer 50 having a lower electron affinity than the electron transit layer 18 is provided under the p-type semiconductor layer 52, the energy level of the 2DEG 20 is further increased, and an E-mode FET can be realized more easily. .

図9を参照に、実施例8に係るFETは,実施例4の図5に対し、リセス30内に選択的にp型半導体層54としてp型GaN層が形成されている。製造方法は以下である。実施例1の図1(b)の後に、リセス30を形成するためのマスク層39として酸化シリコン膜を形成する。リセス30内にキャリア濃度が例えば3×1018cm−3のp型GaN層からなるp型半導体層54を選択成長する。その後、実施例1の図1(d)以降を行う。以上により実施例8に係るFETが完成する。 Referring to FIG. 9, in the FET according to the eighth embodiment, a p-type GaN layer is selectively formed as a p-type semiconductor layer 54 in the recess 30 with respect to FIG. 5 of the fourth embodiment. The manufacturing method is as follows. After FIG. 1B of the first embodiment, a silicon oxide film is formed as a mask layer 39 for forming the recess 30. A p-type semiconductor layer 54 made of a p-type GaN layer having a carrier concentration of, for example, 3 × 10 18 cm −3 is selectively grown in the recess 30. After that, FIG. Thus, the FET according to Example 8 is completed.

実施例8に係るFETは、p型半導体層15及び54により、ゲート電極44の直下の2DEG20の濃度が低下し、Eモードを簡単に実現することができる。また、ゲート電極44直下以外の電子供給層22や電子走行層13にはp型領域が形成されていないため、ゲート電極44直下以外の2DEG20の濃度は低下することがない。よって、相互コンダクタンス(gm)等の電気的輸送特性を劣化させることなくEモードを実現することができる。   In the FET according to the eighth embodiment, the p-type semiconductor layers 15 and 54 reduce the concentration of 2DEG 20 immediately below the gate electrode 44, and can easily realize the E mode. In addition, since the p-type region is not formed in the electron supply layer 22 and the electron transit layer 13 other than directly below the gate electrode 44, the concentration of 2DEG 20 other than directly below the gate electrode 44 does not decrease. Therefore, the E mode can be realized without deteriorating electrical transport characteristics such as mutual conductance (gm).

図10を参照に、実施例9に係るFETは、実施例8の図9に対し、基板10上にAlN層50が設けられ、AlN層50上のゲート電極44下に選択的にp型半導体層58としてp型のAlGaN層及び拡散防止層17としてi−AlN層が設けられている。   Referring to FIG. 10, in the FET according to the ninth embodiment, an AlN layer 50 is provided on the substrate 10 with respect to FIG. 9 of the eighth embodiment, and a p-type semiconductor is selectively formed below the gate electrode 44 on the AlN layer 50. A p-type AlGaN layer is provided as the layer 58 and an i-AlN layer is provided as the diffusion preventing layer 17.

実施例9によれば、p型半導体層58がバンドギャップの大きいAlGaN層であり、p型半導体層58下にバンドギャップの大きいAlN層50が設けられている。これにより、実施例8よりさらに2DEG20のエネルギーレベルをフェルミレベルに対し高く持ち上げることができ、EモードFETをより実現することができる。   According to the ninth embodiment, the p-type semiconductor layer 58 is an AlGaN layer having a large band gap, and the AlN layer 50 having a large band gap is provided below the p-type semiconductor layer 58. As a result, the energy level of 2DEG 20 can be raised higher than the Fermi level as compared with the eighth embodiment, and an E-mode FET can be realized more.

EモードFETを実現するためには、2DEG13のエネルギーレベルをフェルミレベルに対し高く持ち上げることが求められる。そこで、実施例1から実施例9のように、窒化膜半導体層24の一部をp型窒化物半導体層とすることにより、2DEG20のエネルギーレベルをフェルミレベルに対し高く持ち上げることができ、EモードFETを実現することができる。   In order to realize an E-mode FET, it is required to raise the energy level of 2DEG 13 higher than the Fermi level. Therefore, as in the first to ninth embodiments, by making a part of the nitride semiconductor layer 24 a p-type nitride semiconductor layer, the energy level of the 2DEG 20 can be raised higher than the Fermi level, and the E mode An FET can be realized.

また、実施例4、実施例6、実施例8及び実施例9のように、窒化物半導体層24内のp型半導体層15、54または58をゲート電極44下に局所的選択的に配置することが好ましい。これにより、p型層半導体層がソース電極40及びドレイン電極42下まで延在する場合に比べソース電極40及びドレイン電極42と2DEG20との接触抵抗を低減することができる。実施例8及び実施例9のように、リセス30上にp型半導体層54が設けられていることが好ましい。これにより、p型半導体層54をゲート電極44下に局所的選択的に配置することができる。   Further, the p-type semiconductor layer 15, 54, or 58 in the nitride semiconductor layer 24 is locally and selectively disposed under the gate electrode 44 as in the fourth, sixth, eighth, and ninth embodiments. It is preferable. Thereby, the contact resistance between the source electrode 40 and the drain electrode 42 and the 2DEG 20 can be reduced as compared with the case where the p-type layer semiconductor layer extends below the source electrode 40 and the drain electrode 42. As in the eighth and ninth embodiments, the p-type semiconductor layer 54 is preferably provided on the recess 30. Thereby, the p-type semiconductor layer 54 can be locally and selectively disposed under the gate electrode 44.

実施例1から実施例9に係るFETは、電子供給層22または23のゲート電極44が形成されるべき領域にリセス30が設けられ、リセス30上に絶縁膜34、絶縁膜34上にゲート電極44が順に設けられている。このようにリセス構造を有することにより、電子供給層22を薄く形成した場合もチャネル抵抗や電気的輸送特性の劣化を抑制することができる。よって、EモードFETを形成した場合、特に有利である。   In the FETs according to the first to ninth embodiments, the recess 30 is provided in the region where the gate electrode 44 of the electron supply layer 22 or 23 is to be formed, the insulating film 34 on the recess 30, and the gate electrode on the insulating film 34. 44 are provided in order. By having the recess structure in this manner, it is possible to suppress deterioration of channel resistance and electrical transport characteristics even when the electron supply layer 22 is formed thin. Therefore, it is particularly advantageous when an E mode FET is formed.

図11を参照に、実施例10は、電子供給層22にリセス30が設けられていない。その他の構成は実施例1と同じであり説明を省略する。実施例10のように、リセス構造を有さない平面構造であってもよい。しかしながら、より閾値電圧を高く設定するためには、電子供給層22または23はリセス30を有し、ゲート電極44はリセス30上に設けられていることが好ましい。   Referring to FIG. 11, in Example 10, the electron supply layer 22 is not provided with the recess 30. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. As in Example 10, a planar structure without a recess structure may be used. However, in order to set the threshold voltage higher, it is preferable that the electron supply layer 22 or 23 has the recess 30 and the gate electrode 44 is provided on the recess 30.

また、実施例1から実施例10において、ゲート電極44は絶縁膜34または36を介さず、電子供給層22若しくは23またはp型半導体層54上に直接設けられていてもよい。しかしながら、ゲート電極44のリーク電流を抑制するためには、電子供給層22または23とゲート電極44との間に絶縁膜34または36が設けられていることが好ましい。   In the first to tenth embodiments, the gate electrode 44 may be provided directly on the electron supply layer 22 or 23 or the p-type semiconductor layer 54 without the insulating film 34 or 36 interposed therebetween. However, in order to suppress the leakage current of the gate electrode 44, it is preferable that the insulating film 34 or 36 is provided between the electron supply layer 22 or 23 and the gate electrode 44.

実施例3から実施例10は、実施例2のように、絶縁膜が第1絶縁膜36と第2絶縁膜38とから構成される場合であってもよい。   In the third to tenth embodiments, as in the second embodiment, the insulating film may be composed of the first insulating film 36 and the second insulating film 38.

実施例1から実施例10において、拡散防止層16または17がAlN層からなる例を説明したが、拡散防止層16または17はAlを含む窒化物半導体層であればよい。例えばAlGaNのようにAlを含むことによりp型半導体層のドーパントの拡散を抑制することができる。p型ドーパントの拡散を抑制するためには、拡散防止層16または17のAlの組成比は大きい方が好ましい。また、拡散防止層16はAlN層であることがより好ましい。   In Examples 1 to 10, the example in which the diffusion prevention layer 16 or 17 is made of an AlN layer has been described. However, the diffusion prevention layer 16 or 17 may be a nitride semiconductor layer containing Al. For example, the diffusion of the dopant in the p-type semiconductor layer can be suppressed by including Al, such as AlGaN. In order to suppress the diffusion of the p-type dopant, it is preferable that the Al composition ratio of the diffusion preventing layer 16 or 17 is large. The diffusion preventing layer 16 is more preferably an AlN layer.

実施例1から実施例10において、電子走行層18または13はGaN層、電子供給層22または23はAlGaN層を例に説明した。電子走行層18または13は窒化物半導体、電子供給層22または23は電子走行層18または13より電子親和力が小さい窒化物半導体であればよい。電子供給層22または23が電子走行層18または13より電子親和力が小さいことにより電子走行層18または13内にDEG20を形成することができる。   In Examples 1 to 10, the electron transit layer 18 or 13 is described as an example of a GaN layer, and the electron supply layer 22 or 23 is described as an AlGaN layer. The electron transit layer 18 or 13 may be a nitride semiconductor, and the electron supply layer 22 or 23 may be a nitride semiconductor having an electron affinity smaller than that of the electron transit layer 18 or 13. Since the electron supply layer 22 or 23 has a lower electron affinity than the electron transit layer 18 or 13, the DEG 20 can be formed in the electron transit layer 18 or 13.

実施例11は縦型のFETの例である。図12(a)から図13(c)は実施例11に係るFETの製造工程を示す断面図である。図12(a)を参照に、立方晶(111)面を主面とするn型の3C−SiC基板60上に、窒化物半導体層72aとして、n型のGaNドリフト層62、p型AlGaN電子制御層64及びn型GaNキャップ層66をMOCVD法を用い六方晶(0001)面を主面に形成する。基板60は、Siをドーパントとし1018cm−3以上のキャリア濃度を有している。ドリフト層62は、膜厚が例えば3μm以上でありSiを用い1015cm−3から1016cm−3のキャリア濃度を有している。電子制御層64(p型窒化物半導体層)は、膜厚が例えば200nmでありMgを用い1018cm−3程度のキャリア濃度を有し、組成比は例えばAl0.25Ga0.75Nである。キャップ層66(コンタクト層)は、膜厚が例えば500nmでありSiを用い1018cm−3から1019cm−3のキャリア濃度を有している。 Example 11 is an example of a vertical FET. FIG. 12A to FIG. 13C are cross-sectional views illustrating the manufacturing steps of the FET according to the eleventh embodiment. Referring to FIG. 12A, an n-type GaN drift layer 62, p-type AlGaN electrons are formed as a nitride semiconductor layer 72a on an n-type 3C-SiC substrate 60 having a cubic (111) plane as a main surface. The control layer 64 and the n-type GaN cap layer 66 are formed by using the MOCVD method with the hexagonal (0001) plane as the main surface. The substrate 60 uses Si as a dopant and has a carrier concentration of 10 18 cm −3 or more. The drift layer 62 has a thickness of, for example, 3 μm or more, and has a carrier concentration of 10 15 cm −3 to 10 16 cm −3 using Si. The electron control layer 64 (p-type nitride semiconductor layer) has a thickness of, for example, 200 nm, has a carrier concentration of about 10 18 cm −3 using Mg, and has a composition ratio of, for example, Al 0.25 Ga 0.75 N. It is. The cap layer 66 (contact layer) has a film thickness of 500 nm, for example, and has a carrier concentration of 10 18 cm −3 to 10 19 cm −3 using Si.

図12(b)を参照に、キャップ層66にSiをイオン注入しn型注入領域74(n型ドーパント領域)を形成する。図12(c)を参照に、例えば塩素系のドライエッチングを行うことにより窒化物半導体層72aにドリフト層62に達する溝部76を形成する。図12(d)を参照に、溝部76内の側面、底面及びキャップ層66上にi−GaN電子走行層68及びi−AlNバリア層70を形成する。これにより、電子制御層64の側面に電子走行層68及びバリア層70が形成される。電子走行層68及びバリア層70の膜厚は例えば10nmから100nmとすることができる。これにより窒化物半導体層72が形成される。   Referring to FIG. 12B, Si is ion-implanted into the cap layer 66 to form an n-type implantation region 74 (n-type dopant region). Referring to FIG. 12C, a groove 76 reaching the drift layer 62 is formed in the nitride semiconductor layer 72a by performing, for example, chlorine-based dry etching. Referring to FIG. 12D, the i-GaN electron transit layer 68 and the i-AlN barrier layer 70 are formed on the side surface, the bottom surface, and the cap layer 66 in the groove 76. Thereby, the electron transit layer 68 and the barrier layer 70 are formed on the side surface of the electron control layer 64. The film thickness of the electron transit layer 68 and the barrier layer 70 can be set to, for example, 10 nm to 100 nm. Thereby, the nitride semiconductor layer 72 is formed.

図13(a)を参照に、ソース電極80を形成すべき領域の電子走行層68及びバリア層70を除去する。キャップ層66上にTi/AlまたはTi/Auからなるソース電極80(第1電極)を蒸着法及びリフトオフ法を用い形成する。これにより、ソース電極80はn型注入領域74に接触して設けられる。図13(b)を参照に、溝部76内にNi/AlまたはNi/Auからなるゲート電極82(制御電極)を例えば蒸着法及びリフトオフ法を用い形成する。これにより、バリア層70の電子走行層68に対向する側面にゲート電極82が形成される。図13(c)を参照に、基板60を例えば200μm以下の厚さとなるように研磨する。基板60の下に基板60に接続するようにTi/AlまたはTi/Auからなるドレイン電極84(第2電極)を蒸着法及びリフトオフ法を用い形成する。   Referring to FIG. 13A, the electron transit layer 68 and the barrier layer 70 in the region where the source electrode 80 is to be formed are removed. A source electrode 80 (first electrode) made of Ti / Al or Ti / Au is formed on the cap layer 66 by vapor deposition and lift-off. Thereby, the source electrode 80 is provided in contact with the n-type implantation region 74. Referring to FIG. 13B, a gate electrode 82 (control electrode) made of Ni / Al or Ni / Au is formed in the groove 76 using, for example, a vapor deposition method and a lift-off method. Thereby, the gate electrode 82 is formed on the side surface of the barrier layer 70 facing the electron transit layer 68. Referring to FIG. 13C, the substrate 60 is polished so as to have a thickness of 200 μm or less, for example. A drain electrode 84 (second electrode) made of Ti / Al or Ti / Au is formed below the substrate 60 so as to be connected to the substrate 60 by using a vapor deposition method and a lift-off method.

図13(c)の矢印のように、実施例11に係るFETにおいて、ソース電極80からキャップ層66に注入された電子は、電子制御層64がP型でバリアとなるため電子走行層68を通り、ドリフト層62、基板60を通りドレイン電極84に至る。ゲート電極82はソース電極80とドレイン電極84との間を流れる電流を制御する。言い換えれば、ゲート電極82は窒化物半導体層72上に設けられ、窒化物半導体層72に流れる電流を制御する。このようにして、FETとして動作する。ドリフト層62及び基板60によりドレイン耐圧を向上させることができる。   As indicated by the arrow in FIG. 13C, in the FET according to the example 11, the electrons injected from the source electrode 80 into the cap layer 66 are formed in the electron traveling layer 68 because the electron control layer 64 serves as a P-type barrier. To the drain electrode 84 through the drift layer 62 and the substrate 60. The gate electrode 82 controls the current flowing between the source electrode 80 and the drain electrode 84. In other words, the gate electrode 82 is provided on the nitride semiconductor layer 72 and controls the current flowing through the nitride semiconductor layer 72. In this way, it operates as an FET. The drain breakdown voltage can be improved by the drift layer 62 and the substrate 60.

実施例11によれば、電子制御層64中のMgがキャップ層66を成長する際にキャップ層66内に拡散する。また、MOCVDのチャンバ内に残留したMgがキャップ層66に混入する。このため、キャップ層66の電子が補償されキャップ層66が高抵抗となってしまう。そこで、n型注入領域74を設けることにより、キャップ層66の電子濃度を向上させることができる。よって、ソース電極80と電子走行層68との接触抵抗を低減することができる。   According to the eleventh embodiment, Mg in the electronic control layer 64 diffuses into the cap layer 66 when the cap layer 66 is grown. Further, Mg remaining in the MOCVD chamber is mixed into the cap layer 66. For this reason, electrons in the cap layer 66 are compensated, and the cap layer 66 becomes high resistance. Therefore, by providing the n-type injection region 74, the electron concentration of the cap layer 66 can be improved. Therefore, the contact resistance between the source electrode 80 and the electron transit layer 68 can be reduced.

実施例12はSiCドリフト層63を有する例である。図14を参照に、実施例11のGaNドリフト層62の代わりにSiCドリフト層63設けられている。SiCドリフト層63上に窒化物半導体層72bとしてAlGaN電子制御層64及びキャップ層66をMOCVD法を用いに形成する。その他の構成は実施例11と同じであり説明を省略する。このように、基板60と窒化物半導体層72bとの間にSiCドリフト層63を設けることができる。   Example 12 is an example having a SiC drift layer 63. Referring to FIG. 14, an SiC drift layer 63 is provided instead of the GaN drift layer 62 of the eleventh embodiment. On the SiC drift layer 63, an AlGaN electron control layer 64 and a cap layer 66 are formed as a nitride semiconductor layer 72b using the MOCVD method. Other configurations are the same as those of the eleventh embodiment, and a description thereof will be omitted. Thus, the SiC drift layer 63 can be provided between the substrate 60 and the nitride semiconductor layer 72b.

実施例11及び実施例12は縦型のFETの例であったが、窒化物半導体層72内にp型窒化物半導体層が設けられていれば、同様の効果を奏することができる。縦型のトランジスタとして、窒化物半導体層72上に設けられた第1電極と基板60に設けられた第2電極との間を電流が流れるトランジスタでもよい。例えば、第1電極がエミッタ電極、第2電極がコレクタ電極、制御電極がベース電極であるバイポーラトランジスタ、第1電極がエミッタ電極、第2電極がコレクタ電極、制御電極がゲート電極であるIGBT(絶縁ゲート型バイポーラトランジスタ)とすることもできる。なお、HBT及びIGBTにおいては、オーミック電極はエミッタ電極またはコレクタ電極であり、電子走行層はベース電極またはコレクタ電極が電気的に接触するn型のベース層またはコレクタ層である。   Although Example 11 and Example 12 are examples of vertical FETs, the same effect can be obtained if a p-type nitride semiconductor layer is provided in the nitride semiconductor layer 72. The vertical transistor may be a transistor in which current flows between a first electrode provided on the nitride semiconductor layer 72 and a second electrode provided on the substrate 60. For example, a bipolar transistor in which the first electrode is an emitter electrode, the second electrode is a collector electrode, and the control electrode is a base electrode, the first electrode is an emitter electrode, the second electrode is a collector electrode, and the control electrode is an IGBT (insulation) Gate type bipolar transistor). In the HBT and IGBT, the ohmic electrode is an emitter electrode or a collector electrode, and the electron transit layer is an n-type base layer or collector layer with which the base electrode or collector electrode is in electrical contact.

実施例1から実施例12においては、電子走行層18、13または68と電気的に接続するn型注入領域26または74が設けられ、n型注入領域26または74に接触して設けられたオーミック電極(ソース電極40若しくは80またはドレイン電極42)が設けられている。これにより、窒化物半導体層24または72内に設けられたp型半導体層14、15、52、54、58、p型電子供給層23または電子制御層64に起因したオーミック電極と電子走行層13、18または68との接触抵抗の悪化を抑制することができる。   In Example 1 to Example 12, an n-type injection region 26 or 74 that is electrically connected to the electron transit layer 18, 13, or 68 is provided, and an ohmic provided in contact with the n-type injection region 26 or 74 is provided. An electrode (source electrode 40 or 80 or drain electrode 42) is provided. Thereby, the ohmic electrode and the electron transit layer 13 caused by the p-type semiconductor layers 14, 15, 52, 54, 58, the p-type electron supply layer 23 or the electron control layer 64 provided in the nitride semiconductor layer 24 or 72. , 18 or 68 can be prevented from deteriorating contact resistance.

p型半導体層14、15、52、54、58、p型電子供給層23及び電子制御層64のドーパントとしてMgを例に説明したが、p型のドーパントは、Be(ベリリウム)、Zn(亜鉛)またはC(炭素)等でもよい。しかしながら、Mgは窒化物半導体層に拡散し易く、MOCVD装置のチャンバ内に付着しやすいため、Mgをドーパントとした半導体装置に本発明の構成を適用することが特に有効である。   As the dopant of the p-type semiconductor layers 14, 15, 52, 54, 58, the p-type electron supply layer 23 and the electron control layer 64, Mg has been described as an example, but the p-type dopant is Be (beryllium), Zn (zinc) ) Or C (carbon). However, since Mg easily diffuses into the nitride semiconductor layer and easily adheres to the chamber of the MOCVD apparatus, it is particularly effective to apply the configuration of the present invention to a semiconductor device using Mg as a dopant.

以上、発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

図1(a)から図1(d)は実施例1に係るFETの製造工程を示し断面図(その1)である。FIG. 1A to FIG. 1D are cross-sectional views (part 1) showing the manufacturing process of the FET according to the first embodiment. 図2(a)及び図2(b)は実施例1に係るFETの製造工程を示す断面図(その2)である。2A and 2B are cross-sectional views (part 2) illustrating the manufacturing process of the FET according to the first embodiment. 図3(a)から図3(c)は実施例2に係るFETの製造工程を示す断面図である。FIG. 3A to FIG. 3C are cross-sectional views illustrating the manufacturing process of the FET according to the second embodiment. 図4は実施例3に係るFETの断面図である。FIG. 4 is a cross-sectional view of the FET according to the third embodiment. 図5は実施例4に係るFETの断面図である。FIG. 5 is a cross-sectional view of the FET according to the fourth embodiment. 図6は実施例5に係るFETの断面図である。FIG. 6 is a cross-sectional view of the FET according to the fifth embodiment. 図7は実施例6に係るFETの断面図である。FIG. 7 is a cross-sectional view of the FET according to the sixth embodiment. 図8は実施例7に係るFETの断面図である。FIG. 8 is a cross-sectional view of the FET according to the seventh embodiment. 図9は実施例8に係るFETの断面図である。FIG. 9 is a cross-sectional view of the FET according to the eighth embodiment. 図10は実施例9に係るFETの断面図である。FIG. 10 is a cross-sectional view of the FET according to the ninth embodiment. 図11は実施例10に係るFETの断面図である。FIG. 11 is a cross-sectional view of the FET according to the tenth embodiment. 図12(a)から図12(d)は実施例11に係るFETの製造方法を示す断面図(その1)である。12A to 12D are cross-sectional views (part 1) illustrating the method for manufacturing the FET according to the eleventh embodiment. 図13(a)から図13(c)は実施例11に係るFETの製造方法を示す断面図(その2)である。FIG. 13A to FIG. 13C are sectional views (No. 2) showing the method for manufacturing the FET according to the eleventh embodiment. 図14は実施例12に係るFETの断面図である。14 is a cross-sectional view of an FET according to Example 12. FIG.

符号の説明Explanation of symbols

10 基板
12 バッファ層
13 電子走行層
14、15 p型半導体層
16、17 拡散防止層
18 電子走行層
20 2DEG
22 電子供給層
23 p型電子供給層
24 窒化物半導体層
26 n型注入領域
30 リセス
32、34 絶縁膜
36 第1絶縁膜
38 第2絶縁膜
39 マスク層
40 ソース電極
42 ドレイン電極
44 ゲート電極
50 AlN層
52、54、58 p型半導体層
60 基板
62、63 ドリフト層
64 電子制御層
66 キャップ層
68 電子走行層
70 バリア層
72 窒化物半導体層
76 溝部
78 n型注入領域
80 ソース電極
82 ゲート電極
84 ドレイン電極
DESCRIPTION OF SYMBOLS 10 Substrate 12 Buffer layer 13 Electron travel layer 14, 15 p-type semiconductor layer 16, 17 Diffusion prevention layer 18 Electron travel layer 20 2DEG
22 Electron supply layer 23 P-type electron supply layer 24 Nitride semiconductor layer 26 N-type injection region 30 Recess 32, 34 Insulating film 36 First insulating film 38 Second insulating film 39 Mask layer 40 Source electrode 42 Drain electrode 44 Gate electrode 50 AlN layer 52, 54, 58 p-type semiconductor layer 60 substrate 62, 63 drift layer 64 electron control layer 66 cap layer 68 electron transit layer 70 barrier layer 72 nitride semiconductor layer 76 groove 78 n-type injection region 80 source electrode 82 gate electrode 84 Drain electrode

Claims (10)

基板上に設けられ電子走行層及び電子供給層を有する窒化物半導体層と、
前記窒化物半導体層内に設けられたp型窒化物半導体層と、
前記窒化物半導体層内に設けられ前記電子走行層に到達するn型ドーピング領域と、
前記電子供給層上に設けられたゲート電極と、
前記n型ドーピング領域に接触して設けられたオーミック電極と、
を具備することを特徴とする半導体装置。
A nitride semiconductor layer provided on a substrate and having an electron transit layer and an electron supply layer;
A p-type nitride semiconductor layer provided in the nitride semiconductor layer;
An n-type doping region provided in the nitride semiconductor layer and reaching the electron transit layer;
A gate electrode provided on the electron supply layer;
An ohmic electrode provided in contact with the n-type doping region;
A semiconductor device comprising:
前記p型窒化物半導体層は、前記基板と前記電子走行層との間に設けられていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the p-type nitride semiconductor layer is provided between the substrate and the electron transit layer. 前記p型窒化物半導体層上にAlを含む窒化物半導体からなる拡散防止層を具備することを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, further comprising a diffusion prevention layer made of a nitride semiconductor containing Al on the p-type nitride semiconductor layer. 前記p型窒化物半導体層は前記ゲート電極の下に選択的に設けられていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the p-type nitride semiconductor layer is selectively provided under the gate electrode. 前記電子供給層はリセスを有し、前記ゲート電極は前記リセス上に設けられていることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the electron supply layer has a recess, and the gate electrode is provided on the recess. 前記電子供給層と前記ゲート電極との間に設けられた絶縁層を具備することを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, further comprising an insulating layer provided between the electron supply layer and the gate electrode. 前記電子供給層は前記p型窒化物半導体層を含むことを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the electron supply layer includes the p-type nitride semiconductor layer. 前記リセス上に、p型半導体層が設けられていることを特徴とする請求項5記載の半導体装置。   6. The semiconductor device according to claim 5, wherein a p-type semiconductor layer is provided on the recess. 前記半導体装置はエンハンスメント・モードであることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the semiconductor device is in an enhancement mode. 基板上に設けられた窒化物半導体層と、
前記窒化物半導体層内に設けられたp型窒化物半導体層及びp型窒化物半導体層上に設けられたn型コンタクト層と、
前記n型コンタクト層に到達するn型ドーピング領域と、
前記n型ドーピング領域に接触して設けられた第1電極と、
前記基板に接続された第2電極と、
前記第1電極と前記第2電極との間を流れる電流を制御する制御電極と、
を具備することを特徴とする半導体装置。
A nitride semiconductor layer provided on the substrate;
A p-type nitride semiconductor layer provided in the nitride semiconductor layer and an n-type contact layer provided on the p-type nitride semiconductor layer;
An n-type doping region reaching the n-type contact layer;
A first electrode provided in contact with the n-type doping region;
A second electrode connected to the substrate;
A control electrode for controlling a current flowing between the first electrode and the second electrode;
A semiconductor device comprising:
JP2007073804A 2007-03-22 2007-03-22 Semiconductor device Pending JP2008235613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073804A JP2008235613A (en) 2007-03-22 2007-03-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073804A JP2008235613A (en) 2007-03-22 2007-03-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008235613A true JP2008235613A (en) 2008-10-02

Family

ID=39908052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073804A Pending JP2008235613A (en) 2007-03-22 2007-03-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008235613A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059946A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same
JP2010141205A (en) * 2008-12-12 2010-06-24 Furukawa Electric Co Ltd:The Field effect transistor
JP2010153837A (en) * 2008-11-26 2010-07-08 Furukawa Electric Co Ltd:The GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME
JP2010182993A (en) * 2009-02-09 2010-08-19 Toyota Central R&D Labs Inc Semiconductor device, and method of manufacturing the same
JP2010238838A (en) * 2009-03-31 2010-10-21 Sanken Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2010251414A (en) * 2009-04-13 2010-11-04 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2011040676A (en) * 2009-08-18 2011-02-24 Sanken Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2011222768A (en) * 2010-04-09 2011-11-04 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
WO2012008027A1 (en) * 2010-07-14 2012-01-19 富士通株式会社 Compound semiconductor device and process for production thereof
WO2012014883A1 (en) * 2010-07-29 2012-02-02 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, pn junction diode, and production method for epitaxial substrate for semiconductor element
WO2013018301A1 (en) * 2011-07-29 2013-02-07 パナソニック株式会社 Semiconductor device
JP2013074210A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Semiconductor device and manufacturing method of semiconductor device
JP2013207103A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2014029935A (en) * 2012-07-31 2014-02-13 Toyota Central R&D Labs Inc Semiconductor device
JP2014123665A (en) * 2012-12-21 2014-07-03 Fujitsu Ltd Semiconductor device, method of manufacturing the same, power-supply device, and high-frequency amplifier
KR20150030283A (en) * 2013-09-06 2015-03-20 엘지이노텍 주식회사 Power semiconductor device
KR20160113344A (en) * 2015-03-18 2016-09-29 한국전자통신연구원 Field effect power electronic device and method for fabricating the same
JP2018503252A (en) * 2014-12-15 2018-02-01 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティフィック − セーエヌエールエスCentre National De La Recherche Scientifique − Cnrs HEMT transistor
CN110277446A (en) * 2013-01-21 2019-09-24 台湾积体电路制造股份有限公司 High electron mobility transistor
WO2019208034A1 (en) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 Switching transistor and semiconductor module
KR20200041082A (en) * 2018-10-11 2020-04-21 국방과학연구소 High Electron Mobility Transistor Element and Method for manufacturing the same
JP2021166232A (en) * 2020-04-06 2021-10-14 株式会社東芝 Semiconductor device
US11444189B2 (en) 2019-12-13 2022-09-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059946A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Compound semiconductor device and method of manufacturing the same
JP2010153837A (en) * 2008-11-26 2010-07-08 Furukawa Electric Co Ltd:The GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME
JP2010141205A (en) * 2008-12-12 2010-06-24 Furukawa Electric Co Ltd:The Field effect transistor
JP2010182993A (en) * 2009-02-09 2010-08-19 Toyota Central R&D Labs Inc Semiconductor device, and method of manufacturing the same
JP2010238838A (en) * 2009-03-31 2010-10-21 Sanken Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2010251414A (en) * 2009-04-13 2010-11-04 Oki Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2011040676A (en) * 2009-08-18 2011-02-24 Sanken Electric Co Ltd Semiconductor device, and method of manufacturing the same
JP2011222768A (en) * 2010-04-09 2011-11-04 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
WO2012008027A1 (en) * 2010-07-14 2012-01-19 富士通株式会社 Compound semiconductor device and process for production thereof
US9515063B2 (en) 2010-07-14 2016-12-06 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
CN103003929A (en) * 2010-07-14 2013-03-27 富士通株式会社 Compound semiconductor device and process for production thereof
US9312373B2 (en) 2010-07-14 2016-04-12 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
WO2012014883A1 (en) * 2010-07-29 2012-02-02 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, pn junction diode, and production method for epitaxial substrate for semiconductor element
JP5782033B2 (en) * 2010-07-29 2015-09-24 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, PN junction diode element, and method for manufacturing epitaxial substrate for semiconductor element
US9024325B2 (en) 2010-07-29 2015-05-05 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor element, semiconductor element, PN junction diode, and method for manufacturing an epitaxial substrate for semiconductor element
WO2013018301A1 (en) * 2011-07-29 2013-02-07 パナソニック株式会社 Semiconductor device
US9761670B2 (en) 2011-07-29 2017-09-12 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device composed of AlGaInN layers with inactive regions
JP2013074210A (en) * 2011-09-28 2013-04-22 Fujitsu Ltd Semiconductor device and manufacturing method of semiconductor device
JP2013207103A (en) * 2012-03-28 2013-10-07 Fujitsu Ltd Compound semiconductor device and method for manufacturing the same
JP2014029935A (en) * 2012-07-31 2014-02-13 Toyota Central R&D Labs Inc Semiconductor device
JP2014123665A (en) * 2012-12-21 2014-07-03 Fujitsu Ltd Semiconductor device, method of manufacturing the same, power-supply device, and high-frequency amplifier
CN110277446A (en) * 2013-01-21 2019-09-24 台湾积体电路制造股份有限公司 High electron mobility transistor
KR20150030283A (en) * 2013-09-06 2015-03-20 엘지이노텍 주식회사 Power semiconductor device
KR102087943B1 (en) * 2013-09-06 2020-03-12 엘지이노텍 주식회사 Method for manufacturing power semiconductor device
JP2018503252A (en) * 2014-12-15 2018-02-01 サントゥル ナシオナル ドゥ ラ ルシェルシュ シアンティフィック − セーエヌエールエスCentre National De La Recherche Scientifique − Cnrs HEMT transistor
KR20160113344A (en) * 2015-03-18 2016-09-29 한국전자통신연구원 Field effect power electronic device and method for fabricating the same
KR102219504B1 (en) 2015-03-18 2021-02-25 한국전자통신연구원 Field effect power electronic device and method for fabricating the same
WO2019208034A1 (en) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 Switching transistor and semiconductor module
US11682720B2 (en) 2018-04-27 2023-06-20 Sony Semiconductor Solutions Corporation Switching transistor and semiconductor module to suppress signal distortion
KR20200041082A (en) * 2018-10-11 2020-04-21 국방과학연구소 High Electron Mobility Transistor Element and Method for manufacturing the same
KR102123592B1 (en) * 2018-10-11 2020-06-16 국방과학연구소 High Electron Mobility Transistor Element and Method for manufacturing the same
US11444189B2 (en) 2019-12-13 2022-09-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2021166232A (en) * 2020-04-06 2021-10-14 株式会社東芝 Semiconductor device
JP7261196B2 (en) 2020-04-06 2023-04-19 株式会社東芝 semiconductor equipment

Similar Documents

Publication Publication Date Title
JP2008235613A (en) Semiconductor device
US7816707B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
US8129748B2 (en) Nitride semiconductor device and method for fabricating the same
US8809987B2 (en) Normally-off III-nitride metal-2DEG tunnel junction field-effect transistors
JP4755961B2 (en) Nitride semiconductor device and manufacturing method thereof
JP5469098B2 (en) Field effect transistor and manufacturing method thereof
JP4940557B2 (en) Field effect transistor and manufacturing method thereof
US8716756B2 (en) Semiconductor device
JP2008112868A (en) Semiconductor device, and its manufacturing method
US20140264441A1 (en) Semiconductor device
JP2007019309A (en) Transistor and its operating method
JP2010153493A (en) Field-effect semiconductor device and method of fabrication
US20110233538A1 (en) Compound semiconductor device
US20150060861A1 (en) GaN Misfets with Hybrid AI203 As Gate Dielectric
US20050263788A1 (en) Heterojunction field effect semiconductor device
JP2008098455A (en) Semiconductor device
CN112018107A (en) Nitride semiconductor device
JP2017157589A (en) Semiconductor device and semiconductor device manufacturing method
TWI807272B (en) Depletion mode high electron mobility field effect transistor (hemt) semiconductor device having beryllium doped schottky contact layers
JP2011142358A (en) Nitride semiconductor device
KR101172857B1 (en) Enhancement normally off nitride smiconductor device and manufacturing method thereof
US9117755B2 (en) Method for fabricating semiconductor device
JP2010153748A (en) Method of manufacturing field effect semiconductor device
JP3690594B2 (en) Nitride compound semiconductor field effect transistor
JP2011108712A (en) Nitride semiconductor device