JP2008235246A - 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤 - Google Patents

多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤 Download PDF

Info

Publication number
JP2008235246A
JP2008235246A JP2007291880A JP2007291880A JP2008235246A JP 2008235246 A JP2008235246 A JP 2008235246A JP 2007291880 A JP2007291880 A JP 2007291880A JP 2007291880 A JP2007291880 A JP 2007291880A JP 2008235246 A JP2008235246 A JP 2008235246A
Authority
JP
Japan
Prior art keywords
porous conductive
conductive substrate
gas diffusion
water
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291880A
Other languages
English (en)
Inventor
Sukeaki Usami
祐章 宇佐見
Naoko Tomono
直子 伴野
Mitsuru Sakai
充 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2007291880A priority Critical patent/JP2008235246A/ja
Publication of JP2008235246A publication Critical patent/JP2008235246A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】電気的接触性の高い多孔質導電性基材を提供し、さらに、該多孔質導電性基材を用いた、電気的接触性に優れたガス拡散電極、膜・電極接合体、および優れた電池性能を示す燃料電池、また、焼成工程が不要で簡便かつ低コストで製造可能な多孔質導電性基材の製造方法、および該製造方法に適した撥水撥油剤を提供すること。
【解決手段】燃料電池用ガス拡散層に用いる多孔質導電性基材であって、炭素繊維に、フッ素化アルキル基を有するエチレン性不飽和単量体と、アルキル基を有するエチレン性不飽和単量体とを含む組成物を重合せしめた共重合体が付着している多孔質導電性基材、および燃料電池に用いる多孔質導電性基材の製造方法であって、前期共重合体と、撥水撥油剤と、前記多孔質導電性基材とを接触させる工程を有する多孔質導電性基材の製造方法。
【選択図】なし

Description

本発明は、燃料電池部材、特に固体高分子型の燃料電池部材、その製造方法、および燃料電池に関する。
水素と酸素の電気化学反応により生じるエネルギーを電力として取り出す固体高分子型燃料電池は、自動車などの種々の用途に適用されつつある。
図1は、従来の固体高分子型燃料電池を示す概略断面図である。
この固体高分子型燃料電池は、高分子電解質膜11を燃料極(ガス拡散電極)12と酸化剤極(ガス拡散電極)13で挟持して構成される膜・電極接合体(membrane electrode assembly、MEA)14の両面に、さらにセパレータ15、15を接合した構造をなしている。また、膜・電極接合体14の燃料極12と酸化剤極13は、高分子電解質膜11に接合された触媒層17と、この触媒層の高分子電解質膜11と接する面とは反対の面に接合されたガス拡散層18とから構成されている。触媒層17とガス拡散層18で構成された燃料極12と酸化剤極13がガス拡散電極である。
図2に示すように、燃料極12にて水素が白金などの触媒に触れると、水素から電子(e−)が飛び出て、プロトン(H+)が残る。電子は外部回路110へと流れ、プロトンは高分子電解質膜11を通って酸化剤極13へ移動する。酸化剤極13にて、移動してきたプロトンと酸素が結合するが、このとき、外部回路110を通って酸化剤極13へ移動した電子が結合して、水が生成する。生成した水は、セパレータ15に設けられた流路16を通って、外部に排出される。また、外部回路110へ流れた電子は外部負荷111に電力として仕事をする。
固体高分子型燃料電池では、出来る限り多くの水素と酸素をそれぞれ、燃料極12と酸化剤極13極に均一になるように供給し、反応が終わって不要となった酸素が少ない空気と水とを出来る限り、酸化剤極13から取り除いてやれば水素と酸素との電気化学反応の反応速度が増大する。
特に、酸化剤極13を構成する触媒層から電気化学反応によって生成した水を除去しないと、触媒層とガス拡散層が水で覆われガス供給量の低下する、いわゆるフラッディング現象が発生する。その結果、燃料電池の出力が低下するという問題点があった。
そこで従来、ガス拡散層として撥水加工されたものを用いることで酸化剤極13での排水を促進しフラッディング現象の発生を抑制することにより燃料電池の出力低下を抑制している。
例えば、ガス拡散層として用いるカーボンペーパーを4フッ化エチレンと6フッ化プロピレンとの共重合体からなるフッ素樹脂(FEP)に含浸し撥水処理している例が知られている(特許文献1、2)。また、ポリテトラフルオロエチレン(以下PTFE)のディスパージョンにガス拡散層を形成する多孔質炭素基材(カーボンペーパーやカーボンクロス)を含浸処理し、撥水性を持たせている例が知られている(特許文献2、3)。
特許3382213号公報 特許3547013号公報 特開平06−203851号公報 特開平08−106915号公報
しかしながら、上記の方法では、ガス拡散層を形成する多孔質炭素基材に撥水性を持たせることができるものの、前記フッ素樹脂(FEPやPTEE)は、水系ディスパージョンの形態で用いられている。そこでガス拡散層を形成する炭素材料の表面樹脂を付着させるためにFEP、PTFEといった熱可塑性樹脂が軟化ないし溶融する温度、更に界面活性剤を除去するために撥水処理工程の一部に、300℃以上の焼成工程を設けて炭素繊維へ付着、また該界面活性剤を熱分解除去する必要がある。
そのため、製造工程で焼成を施すと、FEP、PTFEといった熱可塑性樹脂が軟化ないし溶融してガス拡散層を形成する炭素材料の表面を覆ってしまい触媒層とガス拡散層を構成する炭素粒子と炭素繊維間、およびガス拡散層内の炭素繊維間の電気的接触性が損なわれ、電池性能が低下していた。
更に、焼成工程により製造工程が煩雑になり設備コストが高くなるばかりかランニングコストも高くなり、低コスト化が課題の燃料電池部材開発のネックになっていた。
そこで、本発明が解決しようとする課題は、電気的接触性の高い多孔質導電性基材を提供し、さらに、該多孔質導電性基材を用いた、電気的接触性に優れたガス拡散電極、膜・電極接合体、および優れた電池性能を示す燃料電池を提供する。また、本発明が解決しようとするもう一つの課題は、焼成工程が不要で簡便かつ低コストで製造可能な多孔質導電性基材の製造方法、および該製造方法に適した撥水撥油剤を提供する。
上記課題を解決するため鋭意研究した結果、本発明者らは、フッ素化アルキル基を有するエチレン性不飽和単量体(A)とアルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有する撥水撥油剤を用いることで上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明の第一の発明は、燃料電池用ガス拡散層に用いる多孔質導電性基材であって、炭素繊維に、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体が付着している多孔質導電性基材である。
本発明の第二の発明は、触媒層とガス拡散層とからなる燃料電池用ガス拡散電極であって、前記ガス拡散層が前記多孔質導電性基材からなるガス拡散電極である。
本発明の第三の発明は、高分子電解質膜および該高分子電解質膜を挟む一対の前記ガス拡散電極からなる膜・電極接合体である。
本発明の第四の発明は、前記膜・電極接合体を有する燃料電池である。
本発明の第五の発明は、燃料電池に用いる多孔質導電性基材の製造方法であって、
フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有する撥水撥油剤と、前記多孔質導電性基材とを接触させる工程(1)、前記多孔質多孔質基材から前記溶剤を除去する工程(2)、を有する多孔質導電性基材の製造方法である。
本発明の第六の発明は、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有する燃料電池部材用撥水撥油剤である。
本発明によれば、電気的接触性の高い多孔質導電性基材を提供し、さらに、該多孔質導電性基材を用いた、優れた電気的接触性の高いガス拡散電極、膜・電極接合体、および優れた電池性能を示す燃料電池を提供することができる。また、本発明によれば、焼成工程が不要で簡便かつ低コストで製造可能な多孔質導電性基材の製造方法、および該製造方法に適した撥水撥油剤を提供することができる。
<多孔質導電性基材>
本発明の多孔質導電性基材は、燃料電池用ガス拡散層に用いる多孔質導電性基材であって、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体が付着している。
・基材
本発明に用いる多孔質導電性基材は、導電性を有し、触媒層に燃料や酸化剤を安定供給し、生成した過剰な水を速やかに流路に導く性状であれば、如何なるで性状あってもよい。このような多孔質導電性基材としてはカーボン、グラファイトなどからなる炭素繊維を用いた多孔質導電性基材などが挙げられ、例えば、炭素繊維を用いた不織布又は織布、或いはカーボンペーパー、カーボンクロスを主体とする基材が挙げられる。このうち、膜・電極接合体の膨張収縮による変形の吸収、すなわち、密着性を考慮した場合は炭素繊維を用いた不織布又は織布が好ましい。
・共重合体
次に、本発明に用いる、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体について説明する。
・・フッ素化アルキル基を有するエチレン性不飽和単量体(A)
本発明に用いるフッ素化アルキル基を有するエチレン性不飽和単量体(A)は、分子中にエチレン性不飽和基と、撥水性を呈するフッ素化アルキル基を有する化合物であれば特に制限はない。原料の入手性、組成物中の配合物に対する相溶性、そのような相溶性を制御することの容易性、或いは重合反応性の観点からアクリルエステル基およびその類縁基を有するものが適している。具体的には下記式(I)にて表されるフッ素化アルキル(メタ)アクリレートが挙げられる。
Figure 2008235246
式中、Rは、水素原子またはメチル基を表す。Rfは、撥水性を呈する基であれば特に限定されるものではないが、具体的には炭素原子数1〜20のパーフルオロアルキル基、炭素原子数1〜20の部分フッ素化アルキル基、パーフルオロアルキル基が酸素原子を介して連結されている炭素原子数1〜20であるパーフルオロアルキル基、または部分フッ素化アルキル基が酸素原子を介して連結されている炭素原子数の総数が1〜20である部分フッ素化アルキル基があげられる。Xは2価以上の連結基であれば特に限定されるものではないが、具体的には-(CH)-、-CH-C(OH)H-(CH)-、-(CH)-NRSO-、-(CH)-NRCO-、-C(CH)H-、-C(CH)HCH-、-C(CHCH)H-、-C(CHCH)HCH-、-CHC(CH) CH-、-C(CH)-、-C(CF)H-、-C(CF)-、-C(CH)(CF)-で、表される基があげられる。但し、nは1〜10の整数であり、R2 は水素原子または炭素原子数1〜6のアルキル基である。また、aは0または1である。
フッ素化アルキル基を有するエチレン性不飽和単量体(A)は1種類だけを用いても構わないし、2種類以上を同時に用いても構わない。
・・アルキル基を有するエチレン性不飽和単量体(B)
本発明に用いるアルキル基を有するエチレン性不飽和単量体(B)は、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と共重合可能なエチレン性不飽和基を有し、かつ、疎水性を呈するアルキル基を有する化合物であれば特に制限はない。疎水性を呈するアルキル基としては、炭素原子数が14以上の長鎖アルキル基または分枝アルキル基が挙げられる。原料の入手性、組成物中の配合物に対する相溶性、そのような相溶性を制御することの容易性、或いは重合反応性の観点からアクリルエステル基およびその類縁基を有するものが適している。具体的には下記式(II)にて表されるアルキル(メタ)アクリレートが挙げられる。
Figure 2008235246
但し、Rは水素原子、メチル基、Rは炭素原子数14〜24の直鎖状または分岐状アルキル基である。具体例には、例えばn−セチル(メタ)アクリレート、n−ステアリル(メタ)アクリレート、n−ベヘニル(メタ)アクリレート、iso−ステアリル(メタ)アクリレート等が挙げられる。アルキル基を有するエチレン性不飽和単量体(B)は1種類だけを用いても構わないし、2種類以上を同時に用いても構わない。
本発明に係る共重合体における、単量体(A)と単量体(B)の共重合割合は、特に制限されるものではない。(イ)撥水性の点から、また、(ロ)下記に説明する非水分散液とした場合にあっては共重合体の溶媒中での分散安定性の点から、単量体(A)50〜70重量部と、単量体(B)10〜50重量部とを含む組成物を重合せしめて得られた共重合体であることが好ましい。
・・その他の単量体
本発明に係わる単量体(A)及び(B)を含む組成物を重合せしめて得られた共重合体は、前記の単量体類の他に、撥水性等目的に応じて溶剤中での安定性を損ねない範囲で他のエチレン性単量体を併用可能である。
例えば、本発明により得られる共重合体の耐久性を向上せしめる目的で、架橋性のエチレン性不飽和単量体(C)を併用して、それらを含む組成物を重合せしめて得られた共重合体も同様に使用できる。
架橋性のエチレン性不飽和単量体は、少なくとも2つの炭素−炭素二重結合を有する化合物、あるいは少なくとも1つの炭素−炭素二重結合および少なくとも1つの反応性基を有する化合物であってよい。例えば、N−メチロール(メタ)アクリルアミド、グリシジル(メタ)アクルレート、ジアセトンアクリルアミド、あるいはアセトアセトキシエチルアクリレート、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルクロトナート、アセトアセトキシプロピルアクリレート、アセトアセトキシプロピルメタクリレート、アセトアセトキシプロピルクロトナート、2−シアノアセトアセトキシエチルメタクリレート、N−(2−アセトアセトキシエチル)アクリルアミド、N−(2−アセトアセトキシエチル)メタクリルアミド、アセト酢酸アリル、アセト酢酸ビニルなどのアセトアセチル基含有エチレン性不飽和単量体、(メタ)アクリルアミド、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、ブタジエン、クロロプレン、2−メタクリロイロキシエチルコハク酸、ブロックドポリイソシアネート基を有するエチレン性不飽和単量体(C1)や、ウレタンジ(メタ)アクリレートに代表される多官能(メタ)アクリレート(C2)、数平均分子量1500〜10000のエチレン性不飽和二重結合基を有する非官能性重合体からなるマクロモノマー(C3)等が挙げられるが、これらに限定されるものではない。
この際のブロックドポリイソシアネート基を有するエチレン性不飽和単量体(C1)やウレタンジ(メタ)アクリレート(C2)や数平均分子量1500〜10000のエチレン性不飽和二重結合基を有する非官能性重合体からなるマクロモノマー(C3)としては、例えば次の様な一般式で表わされるものが挙げられる。
一般式(III)
Figure 2008235246
(式中、Rは水素原子またはメチル基、Yは−OBO−(但し、Bはハロゲン原子またはアルキル基で置換されていてもよい炭素原子数2〜10のアルキレン基)または−NH−、Yは芳香族ジイソシアネートのイソシアネート残基、Zはケトオキシムの水素残基である。)
一般式(IV)
Figure 2008235246
(式中、Rは水素原子またはメチル基、Rは2価のアルキレン基、Rは有機ジイソシアネートの残基、Rはポリエステルジオールの残基である。)
一般式(V)
Figure 2008235246
(但し、R10は−H、−CH、Qは2価の連結基、Pはエチレン性不飽和単量体の重合体部位である。)上記一般式における(V)におけるPとしては、例えばポリスチレン(以下、PStとする)、スチレン−(メタ)アクリル酸共重合体、スチレン−アクリル酸ブチル共重合体等の芳香族ビニル系重合体や、ポリメチルメタアクリレート(以下、PMMAとする)、ポリブチルアクリレート(以下、PBAとする)、メチル(メタ)アクリレート−(メタ)アクリル酸共重合体等が挙げられる。
一般式(III)で表されるブロックドイソシアネート基を有するエチレン性不飽和単量体の具体例としては、例えば
Figure 2008235246
Figure 2008235246
Figure 2008235246
Figure 2008235246
Figure 2008235246
Figure 2008235246
Figure 2008235246
Figure 2008235246
が挙げられる。一般式(IV)で表されるウレタンジ(メタ)アクリレートは、公知慣用のものがいずれも使用できるが、例えばポリエステルジオールと有機ジイソシアネート及び活性水素を有する(メタ)アクリル酸エステルとの反応によって得られる2官能の重合性単量体が挙げられる。
ウレタンジ(メタ)アクリレートを製造する際に使用できるポリエステルジオールの具体例としては、例えばポリエチレンアジペート、ポリエチレンプロピレンアジペート、ポリエチレンブチレンアジペート、ポリジエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンセバケート、ポリブチレンセバケート、ポリヘキサメチレンアジペート等、有機ジイソシアネートの具体例としては、例えば4,4'−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等、活性水素を有する(メタ)アクリル酸エステルの具体例としては、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシ(メタ)アクリレート、3−ヒドロキシ(メタ)アクリレート、4−ヒドロキシ(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
マクロモノマー(V)としては、具体的には、例えば次の様なものが挙げられる。
M−1:CH=C(CH)COOCHCH(OH)CHOOCCHS(PMMA)H
但し、PMMA:(CHC(CH)(COOCH))n
M−2:CH=C(CH)COOCHCH(OH)CHOOCCHS(PBA)H
但し、PBA:(CHCH(COOC))n
M−3:CH=C(CH)COOCHCH(PSt)H
但し、PSt:(CHCHC))n
等が挙げられる。
さらに、イソシアネート基と反応しうる官能基を有するエチレン性不飽和単量体(D)を用いることもできる。該単量体(D)としては、例えば、
Figure 2008235246
Figure 2008235246
CH=CHCOOH
CH=CHCOOCHCHOH
CH=C(CH)COOCHCHOH
CH=CHCONH
CH=CHCONHCHOH、
CH=C(CH)COOH、
Figure 2008235246
HOOC−CH=CH−COOH、
HOOC−CH=C(COOH)
CH=CHCONHC(CHCHCOCH
等が挙げられる。
その他、使用できる単量体としては、例えば、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、スチレン、α−メチルスチレン、酢酸ビニル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチルビニルエーテル、プロピルビニルエーテル、オクチルビニルエーテル、ブタジエン、イソプレン、クロロプレン、ポリジメチルシロキシル基を有する(メタ)アクリレートやポリジフェニルシロキシル基を有する(メタ)アクリレートの様なポリオルガノシロキシル基を有するエチレン性不飽和単量体等が挙げられる。
・・共重合体の製造法
本発明に用いる共重合体を得るための製造方法には何ら制限はなく、公知の方法、即ちラジカル重合法、カチオン重合法、アニオン重合法等の重合機構に基づき、種々の方式や条件が任意に選択でき、塊状重合、溶液重合、乳化重合、懸濁重合、放射線重合、光重合等の重合方式が選択できる。
乳化重合の場合、エマルジョン型の共重合体と水とからなる撥水撥油剤を直接製造できる。乳化重合を採用する場合、例えば共重合しようとする単量体の混合物を、界面活性剤の存在下に水に乳化させ、攪拌下に共重合すれば本発明に係わる共重合体水性分散液、すなわち撥水撥油剤を容易に製造することができる。具体的には、各単量体を、界面活性剤の存在下に水性媒体中で乳化重合させることにより製造することができる。重合開始源は、特に制限されないが、例えばアゾ化合物、有機過酸化物の如き各種重合開始剤、更には、紫外線あるいはガンマ線などの電離性放射線などが採用され得る。また界面活性剤は、特に制限されないが、例えば陰イオン性、陽イオン性あるいは非イオン性の炭化水素系、シリコーン系、フッ素系等の各種乳化剤が使用可能である。
中でも各単量体を有機溶剤に溶解せしめ、重合開始源の作用により共重合させる溶液重合が好ましい。溶液重合に好適な溶剤は、トリクロルエタン、トリクロロトリフルオロエタン、テロラクロロジフルオロエタン、テトラクロロエチレンなどがあげられる。しかしながら、得られた共重合体を直接、または反応で使用した有機溶剤を添加するのみで、本発明の多孔質導電性基材の製造に用いることができる点で、以下に説明する共重合体の製造方法がもっとも好ましい。
すなわち、有機溶剤に共重合しようとする単量体を溶解せしめ、アゾ化合物、有機過酸化物の如き各種重合開始剤、更には、紫外線あるいはガンマ線などの電離性放射線等の重合開始源の存在下、連鎖移動剤の存在下あるいは非存在下に共重合せしめることにより共重合体溶液あるいは共重合体非水分散液を製造する。さらに、高温状態の共重合体溶液あるいは共重合体非水分散液に、反応で使用した有機溶剤を添加する、あるいは未添加で、30℃〜60℃の温度範囲において冷却速度5℃/分以上の速度で冷却される過程を含む様に冷却することにより共重合体非水分散液を得る。急速冷却工程を経て得られた該共重合体は有機溶剤に対して安定的に分散することから、本発明に好適に使用できる。有機溶剤としては分散安定性とオゾン層への悪影響が極めて少ない非ハロゲン系有機溶剤が好ましい。このような非ハロゲン系有機溶剤としては、例えば、シクロヘキサン、イソプロピルベンゼン、アミルベンゼン、p−キシレン、m−キシレン、エチルベンゼン、メシチレン、トルエン、o−キシレン等が挙げられる。勿論、本発明に使用する単量体類の該有機溶剤への溶解性を向上せしめる範囲内でこれら特定の非ハロゲン系有機溶剤とともに、他の有機溶剤を併用することも可能である。
以上の方法により製造された本発明の共重合体としては、例えば、
下記一般式(1)
Figure 2008235246
で示される繰り返し単位と、
下記一般式(2)
Figure 2008235246
で示される繰り返し単位とを含む共重合体が好ましく挙げられる。また、本発明に用いる共重合体の重量平均分子量は10万〜100万のものが好ましい。
・多孔質導電性基材の製造方法
本発明の多孔質導電性基材の製造方法は、燃料電池に用いる多孔質導電性基材の製造方法であって、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有する撥水撥油剤と、前記多孔質導電性基材とを接触させる工程(1)、前記多孔質多孔質基材から前記溶剤を除去する工程(2)、を有することを特徴とする。
・・撥水撥油剤
本発明で使用する撥水撥油剤は、上述した共重合体と溶剤とを必須成分として含有する。該撥水撥油剤は、多孔質導電性基材だけでなく、セパレータ、ガス拡散層上の撥水層、触媒層といった、電気化学的反応により生成する水や、加湿に用いる水などと接触し、かつ撥水性を要求される燃料電池部材にも同様に好適に用いることができる。溶剤としては、共重合体の製造方法で説明したものと同様のものが挙げられる。撥水撥油剤の濃度や使用量は特に限定されるものではないが、予め共重合体含有濃度および接触処理回数と、基材への付着量、その際の撥水性および電気抵抗との関係を予備実験しておき、必要とされる撥水性と電気抵抗の範囲内におさまるよう適宜調整して用いればよい。
なお、本発明に用いる撥水撥油剤は、水系分散液、溶剤溶解型もしくは非水分散液のものを用いることができるが、溶剤溶解型もしくは非水分散液のものを用いることが好ましい。溶剤溶解型もしくは非水分散液のものであれば、水分散液として用いる場合に必須であった界面活性剤が不要となり、その洗浄や熱分解による除去工程も不要であるため、製造コストを大幅に抑えることができる。また、前記共重合体の非水分散液は、有機溶剤中で該共重合体が、フッ素化アルキル基を内側に、疎水性を示すアルキル基を外側に向けた粒子状の形態で安定して存在していることから、基材表面へ均一に分散、付着させることができるのでさらに好ましい。
・・工程(1)
該撥水撥油剤と多孔質導電性基材の接触方法は、被処理される部材の種類または調整形態などに応じて、任意の方法で適応され得る。例えば、必要に応じて希釈を行ない浸漬塗布あるいはスプレー等の如き被覆加工の既知の方法で被処理される部材の表面に付着すればよい。前記共重合体の基材への付着量は基材重量に対し2〜33重量%の範囲となるよう調製すればよい。または、フッ素量換算で0.6〜10.0重量%の範囲となるよう調製すればよい。
・・工程(2)
次いで前記溶剤の除去を行う。具体的には、脱溶剤と硬化のために熱処理を行う。
このとき、熱処理は、溶剤を除去できる温度であればよく、例えば、80〜180℃で加熱することが好ましく、中でも80〜120℃で30秒〜3分間予備乾燥した後、さらに130〜180℃で30〜6分間熱処理することが好ましい。
・性状/機能
このようにして得られた本発明の多孔質導電性基材は、高い撥水性を発現させつつ、低い電気抵抗を示す。例えば、FEPと樹脂分換算で同じ付着量であっても、電気抵抗はそれ未満とすることができ、好ましいものでは1/3以下の低い抵抗値を示すこともできる。本発明に用いる共重合体が、多孔質導電性基材に対して優れた撥水性を示しつつ優れた電気的接触性を与える理由は未だ確定したものではないが、以下の作用メカニズムが考えられる。
すなわち、本発明に用いる共重合体は、側鎖として撥水性を示すフッ素化アルキル基と、疎水性を示すアルキル基を有し、それらの基が主鎖に対して比較的自由に回転する。この構造的特徴により、該共重合体を基材に接触させたのち溶媒を除去すると、フッ素化アルキル基が空気界面側に、一方の疎水性を示すアルキル基が基材表面側に分子内で回転するため(図3)、該共重合体の分子同士が独立した「点」として付着している形態を維持する。さらに、本発明の共重合体は、ホットプレスや乾燥等の200℃以下の熱処理では、軟化や溶融をおこさないため、「点」として付着した形態を維持するものと考えられる。
この為、従来のFEPやPTFE等の熱可塑性樹脂を用いた多孔質導電性基材が、焼成工程を経ることにより該熱可塑性樹脂が溶融、軟化して均一に造膜し撥水性を発現していたのに比べ、本発明の共重合体を用いた多孔質導電性基材は、該共重合体が「点」として付着している状態を維持しているため、多孔質導電性基材を構成する炭素繊維同士の接触点や接触面積、また、該炭素繊維と、後述する触媒層や撥水層を構成する炭素粒子との接触点や接触面積がより多くなり、電気的接触性が向上するものと考えられる(図4)。
また、本発明の多孔質導電性基材は前記共重合体が「点」で付着するような形態をとることにより多孔質導電性基材がもともと有している特性、例えば、柔軟性を損なわせることがないので、燃料電池稼動時および/または停止時に生じる触媒層・電解質膜接合体の膨張収縮による変形を多孔質性基材が吸収することができる。従って触媒層・電解質膜接合体の膨張および収縮に追従し触媒層から「はがれ」が起こらず高い密着性、触媒層電解質膜接合体の損傷防止性を持たせることができる。
また、本発明の多孔質導電性基材は、撥水性の耐久性、耐熱水性にも優れる。特に、前記単量体(A)、(B)にさらに、前記単量体(C)、さらに前記単量体(D)を含む組成物を重合せしめた共重合体は、ホットプレスや溶媒除去工程の熱処理により架橋し、さらに優れた耐久性、耐熱水性を示す。
また、本発明の多孔質導電性基材の製造方法は、含有する溶剤を除去できる温度雰囲気下、一般的に200℃以下で熱処理すればよく、製造工程を簡便にできるので製造コストを抑えることができる。
<ガス拡散電極、膜・電極接合体、燃料電池>
本発明のガス拡散電極は、触媒層とガス拡散層とからなる燃料電池用ガス拡散電極であって、前記ガス拡散層が前記多孔質導電性基材からなる。
燃料極または酸化剤極、すなわちガス拡散電極は、該共重合体が付着した多孔質導電性基材からなるガス拡散層の片面に触媒層の一方の面に接合することにより作製することができる。
ここで、触媒層は、触媒と、触媒にプロトンを授受するための高分子電解質(以下、「触媒層内電解質」という。)とから構成されている。
触媒としては、例えば、白金黒、白金若しくは白金合金、またはこれらを担持したカーボンなどが用いられる。触媒層に含まれる触媒の量は、特に限定されるものではなく、触媒の種類、膜電極接合体の用途、要求特性、電極の種類(燃料極または酸化剤極)などに応じて適宜調整される。
また、触媒層内電解質は、高分子電解質膜と触媒との間におけるプロトンの授受を促進させる作用を有するものであり、触媒の周囲を包むように配置されている。触媒層内電解質としは、通常、上記の高分子電解質膜と同一の材質が用いられるが、異なる材質であってもよい。触媒層に含まれる触媒層内電解質の量は、特に限定されるものではなく、触媒層内電解質の種類、膜電極接合体の用途、要求特性、電極の種類(燃料極または酸化剤極)などに応じて適宜調整される。
また、ガス拡散層の一方の面上には、別途、撥水層が配されていてもよい。
撥水層の材質は、特に限定されるものではなく、例えば、カーボンブラック、またはフッ素樹脂とカーボンブラック、または上記共重合体とカーボンブラックを含む撥水層などが用いられる。また、撥水層の厚みは、特に限定されるものではなく、後述する膜・電極接合体の用途、要求特性などに応じて適宜調整される。
本発明の膜・電極接合体は、高分子電解質膜および該高分子電解質膜を挟む一対の前記ガス拡散電極からなる。該膜・電極接合体は、上記ガス拡散電極を、高分子電解質膜に接合することにより作製することができる。
高分子電解質膜の材質は、特に限定されるものではなく、種々の組成、種々の分子構造(例えば、直鎖状、分枝状等)を備えた高分子電解質から適宜選択される。このような高分子電解質としては、例えば、(1)パーフルオロカーボン含有ポリマー系電解質、(2)芳香族エーテルまたはチオエーテルポリマー系電解質、または、(3)芳香族炭化水素ポリマー系電解質などが挙げられる。
また、高分子電解質に含まれる電解質基の種類についても、特に限定されるものではなく、例えば、スルホン酸基、ホスホン酸基、ホスフィン酸基、カルボキシ基などが挙げられる。高分子電解質には、これらの電解質基のうち、いずれか1種または2種以上が含まれているが、スルホン酸基が最も好ましい。
(1)パーフルオロカーボン含有ポリマー系電解質としては、具体的には、デユポン社の「ナフィオン」に代表されるスルホン化パーフルオロビニルエーテルポリマー、スルホン化パーフルオロビニルエーテルと含フッ素または非フッ素化オレフィンとの共重合体や多元共重合体などが挙げられる。
(2)芳香族エーテルまたはチオエーテルポリマー系電解質としては、具体的には、芳香環がスルホン化されたポリアリールエーテル、ポリアリールチオエーテル(=ポリアリールサルファイド)、ポリアリールエーテルスルホン、ポリアリールスルホン、ポリアリールエーテルケトン、ポリアリールサルファイドスルホン、ポリアリールスルホンアミドなどが挙げられる。
(3)芳香族炭化水素ポリマー系電解質としては、具体的には、芳香環がスルホン化されたポリフェニレン、ポリアルキルフェニレン、ポリビフェニレン、ポリアルキルビフェニレン、ポリナフチレンなどが挙げられる。
また、上記の(1)〜(3)の高分子電解質の誘導体も好適に用いられる。
また、高分子電解質膜は、上記の高分子電解質のいずれか1種から構成されていてもよく、あるいは、2種以上から構成されていてもよい。また、高分子電解質膜は、上記の高分子電解質と他の材料との複合体であってもよい。
本発明の燃料電池は、前記膜・電極接合体を有する。
本発明の燃料電池は、前記膜・電極接合体の両面にセパレータを接合することによって単セルを作製し、この単セルを複数積層することによって作製することがでる。この際、ガス拡散層に、特に撥水性の濃淡部を設け、撥水性の高い部位をセパレータの流路が設けられていない部分に対向するように、膜電極接合体とセパレータを接合することで、生成水は流路に導くことができるので望ましい。
セパレータは、機械加工で表面に流路を形成した黒鉛板や、金属板や、導電性材料と樹脂とからなる組成物を所定の形状に成形してなるものである。
金属板としては、材質に特に限定されないが、耐食性を考慮して、ステンレスやチタン材あるいは表面に樹脂をコーティングしたり、金やチタンなどの耐食性の鍍金処理を施したステンレスなどが例示できる。導電性材料と樹脂からなる組成物を成形して製造されるセパレータは、一般にモールドセパレータと呼ばれるものであり、例えば、導電性粉粒体と熱可塑性樹脂または熱硬化性樹脂あるいはこれらの樹脂を併用した組成物を、金型を用いて成形したものが用いられる。
導電性粉粒体としては、例えば、炭素材料、金属、金属化合物などの粉粒体などが挙げられ、これらの導電性粉粒体の1種または2種以上が用いられる。
導電性粉粒体として使用可能な炭素材料としては、例えば、人造黒鉛、天然黒鉛、ガラス状カーボン、カーボンブラック、アセチレンブラック、ケッチェンブラックなどが挙げられる。これらの炭素材料を単独で、もしくは2種以上を組み合わせて用いることができる。これらの炭素材料の粉粒体の形状は、特に制限されず、板状、球状、無定形などの何れであってもよい。また、黒鉛を化学処理して得られる膨張黒鉛も用いられる。これらの中でも、導電性を考慮すれば、より少量で高度の導電性を有するセパレータが得られるという点で、人造黒鉛、天然黒鉛、膨張黒鉛などが好適である。
また、金属、金属化合物としては、例えば、アルミニウム、亜鉛、鉄、銅、金、ステンレス、パラジウム、チタンなど、さらには、チタン、ジルコニウム、ハフニウムなどのホウ化物などが挙げられる。これらの金属、金属化合物を単独で、もしくは2種以上を組み合わせて用いることができる。これらの金属、金属化合物の粉粒体の形状は、特に限定されず、板状、球状、無定形などの何れであってもよい。さらに、これらの金属、金属化合物が非導電性あるいは半導電性材料の粉粒体により表面処理されたものも用いられる。
前記熱硬化性樹脂としては、特に限定されないが、例えばポリカルボジイミド樹脂、フェノール樹脂、フルフリルアルコール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ビスマレイミドトリアジン樹脂、ポリアミノビスマレイミド樹脂、ジアリルフタレート樹脂などを挙げることができる。これらの中でもビニルエステル樹脂が好ましい。また、熱可塑性樹脂としては、ポリフェニレンスルフィド、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、ポリフェニレンオキシド、液晶ポリマー、ポリエステルなどを挙げることができる。これらのうち、耐熱性や耐酸性に優れることから特にポリフェニレンスルフィドが好ましい。これらの熱硬化性樹脂及び熱可塑性樹脂は、使用用途、要求性能に応じて適宜選択して、使用される。
本発明のガス拡散電極および膜・電極接合体は、優れた撥水性、電気的接触性、耐久性および耐熱水性を有する多孔質導電性基材を用いているため、低フラッディング性かつ低電気抵抗を呈し、さらに耐久性および耐熱水性にも優れる。さらに、本発明の膜・電極接合体は、部材の多孔質導電性基材が撥水処理剤により自身の柔軟性を損なわせることがないので、燃料電池稼動時および/または停止時に生じる触媒層・電解質膜接合体の膨張収縮による変形を多孔質性導電性基材自身が吸収することができる。従って触媒層・電解質膜接合体の膨張および収縮に追従し触媒層からはがれが起こらず高い密着性、触媒層・電解質膜接合体の損傷防止性を持たせることができる。
ゆえに本発明により発電効率、すなわち電池性能に優れる固体高分子型燃料電池を実現することができる。
以下、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれに限定されるものではない。
(比較例1) 多孔質導電性基材(0)の作製
FEP分散液(ダイキン工業製「ND−1」)を、水で希釈して、3%FEP分散希釈水溶液を調製した。多孔質基材として、炭化不織布(厚さ0.20mm、密度0.32g/cm、目付62.1g/m)を用いた。この多孔質基材を前記FEP分散希釈水溶液に、室温、1分間含浸させた後、引き上げた。さらにその後約110℃、10分間乾燥させ、次いで、約360℃で15分間、該FEP処理多孔質基材を焼成して、多孔質導電性基材を製造した。これを多孔質導電性基材(0)とした。
(実施例1) 多孔質導電性基材(1)の作製
撥水撥油剤(大日本インキ化学工業製「NH-15」;パーフルオロアルキル基含有メタクリレート70重量部に対してステアリルアクリレート30重量部を含む組成物を共重合して得られる共重合体15重量%をトルエン中に含む非水分散体。パーフルオロアルキル基の炭素原子数がC6〜C12の混合物で平均C9。)を、NH-15とトルエンとの重量比が1:5となるようにトルエンで希釈して、NH-15分散希釈溶液を調製した。多孔質基材として、炭化不織布(厚さ0.20mm、密度0.32g/cm、目付62.1g/m)を用いた。この多孔質基材をNH-15分散希釈溶液に、室温、10秒間含浸させた後、引き上げた。さらにその後約100℃、2分間乾燥させ、次いで約160℃、5分間熱処理して多孔質導電性基材を製造した。これを多孔質導電性基材(1)とした。
(測定例1) 撥水撥油剤の基材への付着量の測定
比較例1および実施例1で製造された多孔質導電性基材(0)および(1)を含浸させる前の基材重量とFEP分散液水溶液量を計測し、さらに、含浸後の該水溶液の残量を計測し、その差から基材への付着量を求めた。その結果を表1に示す。
(測定例2)基材に付着したフッ素量の測定
比較例1および実施例1で製造された多孔質導電性機材(0)および(1)に付着したフッ素量をアリザリンコンプレクソン法により測定した。
すなわち、石英製酸素フラスコに吸収液として蒸留水10mLを入れた後、重さを測定した多孔質導電性基材試料を酸素で満たしたフラスコ内で完全燃焼させた。適量の蒸留水にて内壁を洗い落とし、吸収液と洗浄液を300mLのメスフラスコに移し、蒸留水にて300mLとした。その5mLを50mLのメスフラスコに採り、ドータイト・アルフッソン(同仁化学製)の5%水溶液20mLを加えた後、蒸留水にて50mLとした。1時間放置後625nmの吸光度を測定し、得られた吸光度より、フッ素イオン量を算出しフッ素量を求めた。その結果を表1に示す。
(測定例3)接触角の測定
接触角の測定は、JIS−K−6768:1999に準拠した方法で、自動接触角計OCA20(データフィジックス社、設定温度23±0.2℃)を用いて測定した。その結果を表1に示す。
(測定例4)多孔質導電性基材の導電性評価
多孔質導電性基材の導電性は、抵抗を測定することにより評価した。実際には、多孔質導電性基材を5cm角に切り取り、続いて、同寸法の金メッキ電極2枚を用意し、該金メッキ電極2枚で、前記多孔質導電性基材をはさみ、更に、油圧プレスにて0.5MPaの圧力下、定電流電源で10mAの交流(I)を印加した。この時の電極間の電圧降下(ΔV)を電圧計で測定し求められた抵抗値(ΔV/I)を導電性の指標とした。その結果を表1に示す。
Figure 2008235246
(測定例5)多孔質導電性基材の耐久性
多孔質導電性基材を硫酸水溶液にて加熱し、経時的に撥水性を測定しガス拡散層の耐久性の評価の指標とした。
内壁をテフロン(商標名:E.I. du Pont de Nemours and Company)でコートしたステンレス容器を用い1M濃度の硫酸水溶液に多孔質導電性基材を浸し、約90℃にて加熱した。測定例3に基づき接触角と測定例4に基づき抵抗値測定した。その結果を表2に示す。
Figure 2008235246
Figure 2008235246
(実施例2) 多孔質導電性基材(2)の作製
NH-15とトルエンとの重量比が1:10となるようにトルエンで希釈して、NH-15分散希釈溶液を調製した以外は(実施例1)と同様に行い、多孔質導電性基材(2)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は4.4重量%、フッ素量換算1.1重量%であった。
(実施例3) 多孔質導電性基材(3)の作製
NH-15とトルエンとの重量比が1:20となるようにトルエンで希釈して、NH-15分散希釈溶液を調製した以外は(実施例1)と同様に行い、多孔質導電性基材(3)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は2.1重量%、フッ素量換算0.6重量%であった。
(実施例4) 多孔質導電性基材(4)の作製
NH-15とトルエンとの重量比が1:2.5となるようにトルエンで希釈して、NH-15分散希釈溶液を調製した以外は(実施例1)と同様に行い、多孔質導電性基材(4)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は18.6重量%、フッ素量換算6.2重量%であった。
(実施例5) 多孔質導電性基材(5)の作製
NH-15とトルエンとの重量比が1:1.5となるようにトルエンで希釈して、NH-15分散希釈溶液を調製した以外は(実施例1)と同様に行い、多孔質導電性基材(5)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は31.1重量%、フッ素量換算9.5重量%であった。
(実施例6) 多孔質導電性基材(6)の作製
多孔質基材として、カーボンペーパー(東レ株式会社製「TGP−H−060」厚さ0.19mm、密度0.44g/cm)を用いた以外は(実施例1)と同様に行い、多孔質導電性基材(6)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は8.5重量%、フッ素量換算2.6重量%であった。
(実施例7) 多孔質導電性基材(7)の作製
撥水撥油剤(ダイキン工業製「ユニダイン TG656」、パーフルオロアルキル基含有アクリレートとアルキルアクリレートを含む組成物を共重合して得られる共重合体15重量%をターペン中に含む非水分散体)を用いた以外は(実施例1)と同様に行い、多孔質導電性基材(7)を製造した。なお、測定例1および2と同様の測定を行ったところ、撥水撥油剤の付着量は8.9重量%、フッ素量換算2.4重量%であった。
(実施例8)水素−空気型燃料電池の単電池の作製
触媒は約50重量%白金担時カーボン(田中貴金属株式会社製「TEC10E50E」)100重量部に対して、水280重量部、高分子電解質の分散液(米国デュポン社製「20%Nafion溶液」)230重量部を混合し、触媒組成物を調製した。
この触媒組成物をポリプロピレンフィルム上にワイヤーバーを用いたバーコーティングにより塗布し乾燥することで触媒層とした。触媒層の塗布量は白金の含有量が1cm当たり0.35mgになるよう調整した。
触媒層付きポリプロピレンフィルムを6cm角に切り取り、高分子電解質膜(米国デュポン社製「Nafion112膜」)の両面に触媒層が内側になるように挟み、約145℃で2分間ホットプレスした後、ポリプロピレンフィルムを除去し、触媒層電解質膜接合体を作製した。
この触媒層電解質膜接合体に、上記の実施例1で得られた多孔質導電性基材(1)をガス拡散層として配し、膜・電極接合体(MEA)とし、さらにその外側にセパレータを配した後、これらを締結して水素−空気型燃料電池の単電池(A)を作製した。以下同様に多孔質導電性基材(2)を用いて水素−空気型燃料電池の単電池(B)、多孔質導電性基材(3)を用いて水素−空気型燃料電池の単電池(C)、多孔質導電性基材(4)を用いて水素−空気型燃料電池の単電池(D)、多孔質導電性基材(5)を用いて水素−空気型燃料電池の単電池(E)、多孔質導電性基材(6)を用いて水素−空気型燃料電池の単電池(F)、多孔質導電性基材(7)を用いて水素−空気型燃料電池の単電池(G)、比較例1の多孔質導電性基材(0)を用いて水素−空気型燃料電池の単電池(H)、をそれぞれ作製した。
(測定例6)電池特性を評価
試験方法は、各燃料電池のアノードに純水素ガスを、カソードに空気をそれぞれ75℃のバブラーを通して供給し、電池温度を75℃、燃料ガス利用率を75%、空気利用率を40%、電流密度を0.2A/cmとして作動させた。こうして、水素−空気燃料電池としての電池電圧でガス拡散性やガス拡散層の強度を判断した。試験開始から10時間後(初
期特性)と1000時間後(耐久試験)の電池電圧の結果を表4に示す。
Figure 2008235246
以上の測定例から、実施例1で得られた多孔質導電性基材(1)はフッ素量が2.8%にも係わらず、比較例1のフッ素量が8.5%に比べ、接触角が大きく撥水性に優れていることが明らかとなった。また抵抗値において、実施例1で得られた多孔質導電性基材(1)は1.01mΩを示したのに対し比較例1で得られた多孔質導電性基材(0)は3.28mΩとなり、撥水性のみならず導電性にも優れていることが明らかとなった。さらに、耐久性においても、実施例で得られた多孔質導電性基材(1)は、比較例1で得られた多孔質導電性基材(0)と、同程度の耐久性を有することが明かとなった。
また、本発明の燃料電池A〜Fは、比較例の燃料電池Gと比べ、同等かそれ以上の優れた電池特性を示した。実施例5の燃料電池Eが低い電圧を示したが樹脂の付着量が多くガス拡散層の導電性が悪いためだと考える。更に実施例3の燃料電池Cが1000時間後低い電圧を示したのは樹脂の付着量が少なく、経時と共にガス拡散層の撥水性が低下しためだと考える。
さらに比較例1で示している従来用いられているFEP水系分散液による多孔質導電性基材の製造では含有する界面活性剤の除去の為、約360℃の焼成工程が必要であったものの、本発明の多孔質導電性基材は含有する溶剤および/または不純物を除去できる温度、すなわち、実施例1では約160℃といった低温での熱処理であっても、より優れた撥水性と電気的接触性を示し、また同程度の耐久性および耐熱水性を示すことから、より簡便で低コストでの製造も可能であることが明かとなった。
本発明の固体高分子型燃料電池用のガス拡散層、ガス拡散電極およびその製造方法は、固体高分子型燃料電池以外の電池に用いられる電極などにも適用できる。
本発明に係るガス拡散層および膜・電極接合体を用いた固体高分子型燃料電池の構造を示す模式図である。 固体高分子型燃料電池の発電の原理を示す模式図である。 有機溶剤中に含まれる粒子状の共重合体が、熱処理による脱溶剤によりフッ素化アルキル基と疎水性を示すアルキル基がそれぞれ主鎖に対して回転する作用メカニズムを表す概念図である。 本願の共重合体が繊維表面に付着した際の概念図、および、FEPが繊維表面に付着し、かつ焼成工程を経て造膜した際の概念図である。
符号の説明
11・・・高分子電解質膜
12・・・燃料極
13・・・酸化剤極
14・・・膜・電極接合体
15・・・セパレータ
16・・・流路
17・・・触媒層
18・・・ガス拡散層
110・・・外部回路
111・・・外部負荷

Claims (15)

  1. 炭素繊維に、フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体が付着していることを特徴とする多孔質導電性基材。
  2. 更に、前記組成物が架橋性のエチレン性不飽和単量体(C)を含む請求項1記載の多孔質導電性基材。
  3. 前記架橋性のエチレン性不飽和単量体(C)がブロックイソシアネート基を有する単量体(C)である請求項2記載の多孔質導電性基材。
  4. 更に、前記組成物が共重合成分としてイソシアネート基と反応しうる官能基を有するエチレン性不飽和単量体(D)を含む請求項1〜3のいずれか一項に記載の多孔質導電性基材。
  5. 前記多孔質導電性基材が導電性不織布である請求項1〜4のいずれか一項に記載の多孔質導電性基材。
  6. 触媒層とガス拡散層とからなる燃料電池用ガス拡散電極であって、前記ガス拡散層が請求項1〜5のいずれか一項に記載の多孔質導電性基材からなることを特徴とするガス拡散電極。
  7. 前記多孔質導電性基材の少なくとも一方の面に撥水層が形成されている請求項6記載のガス拡散電極。
  8. 高分子電解質膜および該高分子電解質膜を挟む一対のガス拡散電極からなる膜・電極接合体であって、前記ガス拡散電極が請求項6または7記載のガス拡散電極からなることを特徴とする膜・電極接合体。
  9. 請求項8に記載の膜・電極接合体を有することを特徴とする燃料電池。
  10. 燃料電池に用いる多孔質導電性基材の製造方法であって、
    フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有する撥水撥油剤と、前記多孔質導電性基材とを接触させる工程(1)、前記多孔質導電性基材から前記溶剤を除去する工程(2)、を有することを特徴とする多孔質導電性基材の製造方法。
  11. 前記工程(2)が、80〜180℃の温度雰囲気下で熱処理する工程である請求項10記載の多孔質導電性基材の製造方法。
  12. 前記工程(2)が、80〜120℃の温度雰囲気下で熱処理した後、さらに、130〜180℃の温度雰囲気下で熱処理する工程である請求項10記載の多孔質導電性基材の製造方法。
  13. フッ素化アルキル基を有するエチレン性不飽和単量体(A)と、アルキル基を有するエチレン性不飽和単量体(B)とを含む組成物を重合せしめた共重合体と、溶剤を必須成分として含有することを特徴とする燃料電池部材用撥水撥油剤。
  14. 更に、前記組成物がブロックイソシアネート基を有する単量体(C)を有する請求項13記載の燃料電池部材用撥水撥油剤。
  15. 更に、前記組成物が共重合成分としてイソシアネート基と反応しうる官能基を有するエチレン性不飽和単量体(D)を有する請求項13または14記載の燃料電池部材用撥水撥油剤。
JP2007291880A 2007-02-20 2007-11-09 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤 Pending JP2008235246A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291880A JP2008235246A (ja) 2007-02-20 2007-11-09 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007039268 2007-02-20
JP2007291880A JP2008235246A (ja) 2007-02-20 2007-11-09 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤

Publications (1)

Publication Number Publication Date
JP2008235246A true JP2008235246A (ja) 2008-10-02

Family

ID=39907793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291880A Pending JP2008235246A (ja) 2007-02-20 2007-11-09 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤

Country Status (1)

Country Link
JP (1) JP2008235246A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231218A (ja) * 2008-03-25 2009-10-08 Jsr Corp 定置または携帯型燃料電池用膜電極接合体、定置または携帯型燃料電池、および、定置または携帯型燃料電池のガス拡散層用樹脂ペースト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231218A (ja) * 2008-03-25 2009-10-08 Jsr Corp 定置または携帯型燃料電池用膜電極接合体、定置または携帯型燃料電池、および、定置または携帯型燃料電池のガス拡散層用樹脂ペースト

Similar Documents

Publication Publication Date Title
JP5277740B2 (ja) 触媒層の形成方法および固体高分子形燃料電池用膜電極接合体の製造方法
JP5286797B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP5702093B2 (ja) 燃料電池用高分子膜組成物、これを用いて製造された高分子膜、ならびにこれを含む膜−電極接合体及び燃料電池
KR20060134197A (ko) 전해질막 및 막전극 접합체의 제조 방법, 및 연료 전지
JP5319067B2 (ja) E−ビームにより架橋されたポリマー電解質
CN109790244B (zh) 聚合物、固体高分子电解质膜及膜电极接合体
US8236206B2 (en) Electrode catalyst layer
JP5195286B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
EP4050041A1 (en) Fluorosulfonyl group-containing fluoropolymer and method for producing same, sulfonic acid group-containing fluoropolymer and method for producing same, solid polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
WO2005076396A1 (ja) 電解質膜および当該電解質膜を用いた燃料電池
WO2005091409A1 (ja) 電解質膜および燃料電池
JP2018055877A (ja) 固体高分子電解質膜およびその製造方法、固体高分子形燃料電池用膜電極接合体、ならびに固体高分子形燃料電池
JP2008234968A (ja) 膜電極複合体ならびにそれの製造方法および高分子電解質型燃料電池
JP2008192330A (ja) 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP2008235246A (ja) 多孔質導電性基材、ガス拡散電極、膜−電極接合体および燃料電池ならびに該基材の製造方法、燃料電池用撥水撥油剤
JP5044894B2 (ja) 固体高分子型燃料電池用プロトン伝導性電解質膜、該プロトン伝導性電解質膜の製造方法及び固体高分子型燃料電池
JP5515230B2 (ja) 定置または携帯型燃料電池用膜電極接合体、定置または携帯型燃料電池、および、定置または携帯型燃料電池のガス拡散層用樹脂ペースト
WO2017170055A1 (ja) ペルフルオロブロックポリマー、液状組成物、固体高分子電解質膜、および固体高分子形燃料電池用膜電極接合体
JP4561214B2 (ja) 電解質膜
JP2004253336A (ja) 電解質膜および当該電解質膜を用いた燃料電池
JP2008243683A (ja) 多孔質導電性基材、ガス拡散電極、膜・電極接合体および燃料電池
JP2005268032A (ja) 高分子電解質膜、その評価方法および燃料電池
JP2008135399A (ja) 電解質膜−電極接合体、燃料電池および電解質膜−電極接合体の製造方法
WO2008056704A1 (fr) Polyélectrolyte solide, son procédé de production, et ensemble membrane/électrode pour piles à combustible réalisé au moyen du polyélecrolyte
JP2024520572A (ja) プロトン交換膜