JP2008231502A - Powder agitation mechanism, method for producing metallic particulate carrying powder and catalyst for fuel cell - Google Patents

Powder agitation mechanism, method for producing metallic particulate carrying powder and catalyst for fuel cell Download PDF

Info

Publication number
JP2008231502A
JP2008231502A JP2007072269A JP2007072269A JP2008231502A JP 2008231502 A JP2008231502 A JP 2008231502A JP 2007072269 A JP2007072269 A JP 2007072269A JP 2007072269 A JP2007072269 A JP 2007072269A JP 2008231502 A JP2008231502 A JP 2008231502A
Authority
JP
Japan
Prior art keywords
powder
electrode
fine particles
container
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072269A
Other languages
Japanese (ja)
Other versions
JP5008434B2 (en
Inventor
Naoki Tsukahara
尚希 塚原
Minao Nakano
美尚 中野
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007072269A priority Critical patent/JP5008434B2/en
Publication of JP2008231502A publication Critical patent/JP2008231502A/en
Application granted granted Critical
Publication of JP5008434B2 publication Critical patent/JP5008434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder agitation mechanism using a coaxial type vacuum arc vapor deposition apparatus for uniformly carrying metallic particulates on the entire surface of the powder, a production method of the metallic particulate carrying powder, and a catalyst for a fuel cell. <P>SOLUTION: The powder agitation mechanism has a striking member 3 disposed near the upper part of a container 1 for the powder and an oscillation mechanism for oscillating the container for striking the container against the striking member. The metallic particulate carrying powder is produced by using the coaxial type vacuum arc vapor deposition apparatus equipped with the agitation mechanism and the coaxial type vacuum arc vapor deposition apparatus and the coaxial type vacuum arc vapor deposition source. The catalyst for the fuel cell comprising the metallic particulate carrying powder is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粉体攪拌機構、金属微粒子担持粉体の作製方法及び燃料電池用触媒に関し、特に同軸型真空アーク蒸着装置に設けた粉体攪拌機構、この蒸着装置を用いる金属微粒子担持粉体の作製方法及びこの作製方法を利用して得られた燃料電池用触媒に関する。   The present invention relates to a powder agitation mechanism, a method for producing metal fine particle-supported powder, and a catalyst for a fuel cell, and in particular, a powder agitation mechanism provided in a coaxial vacuum arc vapor deposition apparatus, and a metal fine particle-supported powder using this vapor deposition apparatus The present invention relates to a production method and a fuel cell catalyst obtained by using this production method.

従来、例えば燃料電池用の電極触媒となる金属微粒子は、析出法、光電着法、共沈殿法といった液相法で基体となる粉体の表面に担持させている。この場合、粉体に触媒となる金属微粒子を均一に分散して担持させることが必要であるが、その担持の仕方によっては触媒性能が異なってしまうという問題がある。   Conventionally, for example, metal fine particles serving as an electrode catalyst for a fuel cell are supported on the surface of a powder serving as a substrate by a liquid phase method such as a precipitation method, a photodeposition method, or a coprecipitation method. In this case, it is necessary to uniformly disperse and support the metal fine particles serving as a catalyst on the powder, but there is a problem that the catalyst performance varies depending on the method of the support.

上記液相法による触媒担持は、還元処理、ろ過処理、800℃程度での高温処理といった工程を経なければならず、担持まで時間が掛かっていた。また、還元処理や高温処理を行う必要があるため、析出した金属微粒子が酸化するので、触媒性能が劣化してしまい、例えば燃料電池の発電性能が低下するという問題もある。   Catalyst loading by the above liquid phase method has to go through steps such as reduction treatment, filtration treatment, and high temperature treatment at about 800 ° C., and it takes time to carry the catalyst. Further, since it is necessary to perform a reduction treatment or a high temperature treatment, the deposited metal fine particles are oxidized, so that there is a problem that the catalyst performance is deteriorated, for example, the power generation performance of the fuel cell is lowered.

また、上記方法以外に、スパッタや蒸着による気相法を用いて触媒金属を担持させる方法も知られている。この場合、基板上に載置した試料皿等の容器内に粉体を入れ、その上に触媒金属を照射して粉体に担持させるため、金属が照射される粉体の上面にしか触媒金属が担持されず、このように片面に担持させた後に容器を取り出して、粉体が上下逆さまになるようにし、再度その上に触媒金属を照射して担持させるという工程が必要であった。この場合、粉体を入れた容器を揺さぶることで粉体を攪拌することも考えられるが、容器を揺さぶるだけでは粉体が容器の底面上を転がらず、単に底面上を滑っていくだけのため、粉体の表面全体に金属微粒子を担持させることはできないという問題がある。   In addition to the above method, a method of supporting a catalytic metal using a vapor phase method by sputtering or vapor deposition is also known. In this case, the powder is put in a container such as a sample pan placed on the substrate, and the catalyst metal is irradiated on the powder and supported on the powder. Thus, it was necessary to take out the container after carrying it on one side in this way, so that the powder was turned upside down, and again irradiate and carry the catalyst metal thereon. In this case, it is conceivable to stir the powder by shaking the container containing the powder, but just by shaking the container, the powder does not roll on the bottom of the container, but simply slides on the bottom. There is a problem that metal fine particles cannot be supported on the entire surface of the powder.

なお、カーボン粒子等の導電性粒子に金属微粒子を担持させてなる燃料電池用触媒が知られている(例えば、特許文献1参照)。この場合、導電性粒子と金属微粒子とを交流アーク放電により同時に蒸発させており、金属微粒子を完全に又は部分的に導電性粒子中に埋包させる手法を用いている。
特開2006−140017号公報(特許請求の範囲、段落0019等)
A fuel cell catalyst is known in which metal fine particles are supported on conductive particles such as carbon particles (see, for example, Patent Document 1). In this case, a method is used in which the conductive particles and the metal fine particles are simultaneously evaporated by AC arc discharge, and the metal fine particles are completely or partially embedded in the conductive particles.
JP 2006-140017 (Claims, paragraph 0019, etc.)

本発明の課題は、上述の従来技術の問題点を解決することにあり、同軸型真空アーク蒸着装置に設けられた粉体攪拌機構、この蒸着装置を用いる金属微粒子担持粉体の作製方法及びこの作製方法を利用して得られた燃料電池用触媒を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, a powder stirring mechanism provided in a coaxial vacuum arc vapor deposition apparatus, a method for producing metal fine particle-supported powder using this vapor deposition apparatus, and this An object of the present invention is to provide a fuel cell catalyst obtained by using the production method.

本発明の粉体攪拌機構は、円筒状のトリガ電極と、微粒子作製用金属材料で少なくとも先端部が構成された円筒状のカソード電極と、前記トリガ電極とカソード電極との周りに同軸状に配置された円筒状のアノード電極とを有し、前記トリガ電極とカソード電極とが円板状の絶縁碍子を挟んで隣接して配置されている同軸型真空アーク蒸着源を備えている同軸型真空アーク蒸着装置内に設けられた粉体攪拌機構であって、この粉体攪拌機構が、前記金属材料からなる微粒子を蒸着させる粉体を装入する粉体用容器の上方近傍に設けられた突き当て部材と、この突き当て部材に粉体用容器を突き当てるために前記粉体用容器を揺動させるための揺動機構とを有することを特徴とする。   The powder agitation mechanism of the present invention includes a cylindrical trigger electrode, a cylindrical cathode electrode having at least a tip portion made of a metal material for producing fine particles, and a coaxial arrangement around the trigger electrode and the cathode electrode. A coaxial vacuum arc provided with a coaxial vacuum arc evaporation source, wherein the trigger electrode and the cathode electrode are disposed adjacent to each other with a disc-shaped insulator interposed therebetween. A powder agitation mechanism provided in the vapor deposition apparatus, wherein the powder agitation mechanism is provided in the vicinity of the upper part of the powder container for charging the powder for vapor-depositing fine particles made of the metal material. It has a member and a rocking mechanism for rocking the powder container in order to abut the powder container against the butting member.

前記粉体用容器は、その底面に高さ5mm以下のリブを設けたものであることが好ましい。高さが5mmを超えると粉体攪拌機構を傾けた時に、その傾きの角度にもよるが、粉体がリブの上を乗り越えて転がることができず、粉体全面に金属微粒子の担持を行うことができない。   It is preferable that the powder container is provided with a rib having a height of 5 mm or less on the bottom surface. When the height exceeds 5 mm, when the powder agitation mechanism is tilted, depending on the angle of the tilt, the powder cannot get over the ribs and roll, and metal fine particles are supported on the entire surface of the powder. I can't.

前記突き当て部材は、前記同軸型真空アーク蒸着源のアノード電極先端部の近傍に設けられていることが好ましい。   The abutting member is preferably provided in the vicinity of the tip of the anode electrode of the coaxial vacuum arc deposition source.

前記突き当て部材を設けずに、前記同軸型真空アーク蒸着源のアノード電極先端の外縁部を、前記突き当て部材として機能し得るように構成しても良い。   You may comprise so that the outer edge part of the anode electrode front-end | tip of the said coaxial type vacuum arc vapor deposition source may function as the said abutting member, without providing the said abutting member.

本発明の金属微粒子担持粉体の作製方法は、円筒状のトリガ電極、微粒子作製用金属材料で少なくとも先端部が構成された円筒状のカソード電極、及び前記トリガ電極とカソード電極との周りに同軸状に配置された円筒状のアノード電極を有し、前記トリガ電極とカソード電極とが円板状の絶縁碍子を挟んで隣接して配置されている同軸型真空アーク蒸着源と、底面に5mm以下のリブが設けられている粉体用容器の上方近傍に設けられた突き当て部材及びこの突き当て部材に粉体用容器を突き当てるために粉体用容器を揺動させるための揺動機構からなる粉体攪拌機構とを備えている同軸型真空アーク蒸着装置を用い、前記トリガ電極とアノード電極との間にトリガ放電をパルス的に発生させて、前記カソード電極とアノード電極との間にアーク放電を断続的に誘起させ、前記カソード電極の金属材料から生じるプラズマ化された金属微粒子を、前記粉体用容器内に装入された粉体に蒸着せしめる静止蒸着工程と、次いでこの粉体を前記粉体攪拌機構により攪拌しながら、前記プラズマ化された金属微粒子を粉体に蒸着せしめる攪拌蒸着工程とを繰り返して粉体表面に金属微粒子を担持せしめることを特徴とする。   The method for producing a metal fine particle-supported powder of the present invention comprises a cylindrical trigger electrode, a cylindrical cathode electrode having at least a tip portion made of a metal material for producing fine particles, and coaxial around the trigger electrode and the cathode electrode. A coaxial vacuum arc evaporation source having a cylindrical anode electrode arranged in a shape, the trigger electrode and the cathode electrode being arranged adjacent to each other with a disc-shaped insulator interposed therebetween, and a bottom surface of 5 mm or less From the abutting member provided in the vicinity of the upper part of the powder container provided with the rib, and the swing mechanism for swinging the powder container in order to abut the powder container against the abutting member Using a coaxial vacuum arc deposition apparatus equipped with a powder agitation mechanism, and generating a trigger discharge between the trigger electrode and the anode electrode in a pulsed manner between the cathode electrode and the anode electrode. A static vapor deposition step of intermittently inducing a spark discharge to deposit plasma-form fine metal particles generated from the metal material of the cathode electrode on the powder charged in the powder container; While the body is stirred by the powder stirring mechanism, the stirring and vapor deposition step of depositing the plasma-formed metal fine particles on the powder is repeated so that the metal fine particles are supported on the powder surface.

前記攪拌は、粉体用容器の上縁部を突き当て部材に突き当て、その物理的衝撃により行われ、また、前記突き当て部材を含んでいない粉体攪拌機構を備えた同軸型真空アーク蒸着装置を用いる場合には、前記攪拌は、同軸型真空アーク蒸着源のアノード電極先端の外縁部に粉体用容器を突き当てて行われる。   The agitation is performed by abutting the upper edge portion of the powder container against the abutting member, and by physical impact thereof. Also, the coaxial vacuum arc deposition provided with the powder agitating mechanism not including the abutting member. In the case of using an apparatus, the agitation is performed by abutting a powder container against the outer edge of the tip of the anode electrode of the coaxial vacuum arc deposition source.

前記担持された金属微粒子の粒径は、1〜10nmである。上記したような同軸型アーク真空蒸着源及び粉体攪拌機構を備えた蒸着装置を利用することにより、このような粒径を有する金属微粒子を制御して作製することができる。   The supported metal fine particles have a particle size of 1 to 10 nm. By using a vapor deposition apparatus equipped with a coaxial arc vacuum vapor deposition source and a powder stirring mechanism as described above, metal fine particles having such a particle size can be controlled and produced.

前記粉体は、カーボンブラック等のカーボン、酸化アルミニウム、酸化シリコン及び酸化チタンの粉体か選ばれた少なくとも1種であることが好ましい。   The powder is preferably at least one selected from powders of carbon such as carbon black, aluminum oxide, silicon oxide and titanium oxide.

本発明の燃料電池用触媒は、上記した金属微粒子担持粉体の作製方法に従って、粒径10〜100nmのカーボン粉体の表面に金属微粒子を金属触媒として担持させてなることを特徴とする。このカーボン粉体表面に担持させた金属微粒子の粒径は、1〜10nmである。このように、カーボン粉体表面に所定の粒径を有する均一な微粒子金属触媒が担持されているので、燃料電池の電気特性(酸化還元反応)が向上することができる。   The fuel cell catalyst of the present invention is characterized in that metal fine particles are supported as a metal catalyst on the surface of a carbon powder having a particle size of 10 to 100 nm in accordance with the method for producing a metal fine particle-supported powder. The particle size of the metal fine particles supported on the surface of the carbon powder is 1 to 10 nm. As described above, since the uniform fine metal catalyst having a predetermined particle diameter is supported on the surface of the carbon powder, the electric characteristics (oxidation-reduction reaction) of the fuel cell can be improved.

本発明の粉体攪拌機構を備えた同軸型真空アーク蒸着装置を用いれば、粉体の片面だけでなく粉体全面にまんべんなく金属微粒子を担持させることが可能であり、例えば燃料電気等の電極触媒として十分な性能を発揮できる触媒材料を提供できるという効果を奏する。   By using the coaxial vacuum arc deposition apparatus equipped with the powder agitation mechanism of the present invention, it is possible to carry fine metal particles evenly on the entire surface of the powder as well as on one side of the powder. For example, an electrode catalyst such as fuel electricity As a result, it is possible to provide a catalyst material capable of exhibiting sufficient performance.

また、本発明の燃料電池用触媒によれば、カーボン粉体表面に所定の粒径を有する均一な微粒子金属触媒が担持されているので、燃料電池の電気特性(酸化還元反応)が向上するという効果を奏する。   Further, according to the fuel cell catalyst of the present invention, since the uniform fine metal catalyst having a predetermined particle size is supported on the surface of the carbon powder, the electrical characteristics (oxidation-reduction reaction) of the fuel cell are improved. There is an effect.

本発明に係る粉体攪拌機構の一実施の形態によれば、金属材料からなる微粒子を表面に蒸着させる粉体を装入する粉体用容器の上方近傍に設けられた突き当て部材(障害物)と、この突き当て部材に粉体用容器の上縁部を突き当てるために粉体用容器を揺動させるための揺動機構とを有する粉体攪拌機構が提供され、この粉体用容器の底面には所定の高さのリブが設けられている。   According to one embodiment of the powder agitation mechanism according to the present invention, the abutting member (obstacle) provided near the upper part of the powder container in which the powder for depositing the fine particles made of the metal material is deposited. ) And a rocking mechanism for rocking the powder container to abut the upper edge of the powder container against the butting member. A rib having a predetermined height is provided on the bottom surface of.

上記揺動機構は、粉体用容器を揺りかごのように左右に揺動して、容器上縁部を突き当て部材に突き当てることができる機構であれば、特に制限はなく、公知の機構を有するものであれば良い。   The swing mechanism is not particularly limited as long as the powder container can swing left and right like a cradle and the upper edge of the container can be abutted against the abutting member. What is necessary is just to have.

また、上記突き当て部材は、粉体用容器の上方であって、粉体用容器が突き当てられ、粉体が一様に攪拌され得るような位置に設けられてあれば良い。この場合、粉体用容器の横断面の大きさを勘案して突き当て部材を設ける位置を適宜設定すれば良い。この突き当て部材は、例えば、同軸型真空アーク蒸着装置のアノード電極先端部の近傍に設けられていれば良く、また、同軸型真空アーク蒸着装置のアノード電極先端の外縁部自体が、この突き当て部材として機能するように構成しても良い。この突き当て部材及びアノード電極は、粉体用容器の材質と同等又はそれ以上の硬度を持った材料から作製されていれば良い。   The abutting member may be provided above the powder container so that the powder container is abutted and the powder can be uniformly stirred. In this case, the position where the abutting member is provided may be appropriately set in consideration of the size of the cross section of the powder container. For example, the abutting member may be provided in the vicinity of the tip of the anode electrode of the coaxial vacuum arc deposition apparatus, and the outer edge of the anode electrode of the coaxial vacuum arc deposition apparatus itself is the abutting member. You may comprise so that it may function as a member. The abutting member and the anode electrode may be made of a material having a hardness equal to or higher than that of the powder container.

以下、本発明に係る粉体攪拌機構の一実施の形態を図1及び2を参照して詳細に説明する。図1(a)は、粉体攪拌機構を組み込んだ真空チャンバの断面を模式的に示す断面図であり、図1(b)は、図1(a)の模式的側面図であり、図2(a)は、粉体用容器の模式的上面図であり、そして図2(b)は、粉体用容器の模式的断面図である。   Hereinafter, an embodiment of a powder stirring mechanism according to the present invention will be described in detail with reference to FIGS. FIG. 1A is a cross-sectional view schematically showing a cross-section of a vacuum chamber incorporating a powder stirring mechanism, and FIG. 1B is a schematic side view of FIG. FIG. 2A is a schematic top view of the powder container, and FIG. 2B is a schematic cross-sectional view of the powder container.

図1及び2に模式的に示すように、本発明の粉体攪拌機構は、粉体Sを装入する粉体用容器1の上方近傍(図1では、同軸型真空アーク蒸着源2のアノード電極外周部近傍)に設けられた円筒状の突き当て部材3と図示していない公知の揺動機構とからなり、この粉体用容器1は、皿等の形状を有し、粉体用容器載置台4の上に載置される。この揺動機構は、粉体用容器1をその中心を支点として左右に揺動させて、この粉体用容器の上縁部を突き当て部材3に突き当てるようにする公知の揺動機構である。突き当て部材3の形状は、円筒状に限らず、粉体用容器1の上縁部が突き当たり、その物理的衝撃により粉体Sが転がって攪拌できるように構成されているものであれば良く、例えば板状でも良い。図1中、5は真空チャンバを示す。粉体用容器1の底面には一般に高さ5mm以下、好ましくは1〜5mm、より好ましくは1〜2mmのリブ1aが複数本設けられている。このリブの高さは、揺動せしめる角度にもよるが、粉体の転動が良好になるように、すなわち粉体用容器の揺動により粉体がリブを乗り越えて良好な転がりを達成できるように、適宜選択すれば良い。   As schematically shown in FIGS. 1 and 2, the powder agitation mechanism of the present invention is in the vicinity of the upper part of the powder container 1 in which the powder S is charged (in FIG. 1, the anode of the coaxial vacuum arc evaporation source 2). The cylindrical abutting member 3 provided in the vicinity of the outer periphery of the electrode) and a known rocking mechanism (not shown). The powder container 1 has a shape such as a dish, and is a powder container. It is mounted on the mounting table 4. This swinging mechanism is a known swinging mechanism that swings the powder container 1 left and right with its center as a fulcrum, so that the upper edge of the powder container abuts against the abutting member 3. is there. The shape of the abutting member 3 is not limited to a cylindrical shape, and any shape is acceptable as long as the upper edge of the powder container 1 abuts and the powder S can be rolled and stirred by the physical impact. For example, a plate shape may be used. In FIG. 1, 5 indicates a vacuum chamber. The bottom surface of the powder container 1 is generally provided with a plurality of ribs 1a having a height of 5 mm or less, preferably 1 to 5 mm, more preferably 1 to 2 mm. Although the height of the ribs depends on the angle at which the ribs are swung, the powder can overcome the ribs and achieve good rolling so that the powder rolls well, that is, the powder container swings. As such, it may be selected as appropriate.

次いで、上記粉体攪拌機構を備えた同軸型アーク真空蒸着装置及びこの蒸着装置を用いた本発明の金属微粒子作製方法の一実施の形態を図3を参照して詳細に説明する。   Next, an embodiment of a coaxial arc vacuum deposition apparatus equipped with the powder stirring mechanism and a method for producing metal fine particles of the present invention using this deposition apparatus will be described in detail with reference to FIG.

図3に示すように、同軸型真空アーク蒸着装置31は、円筒状の真空チャンバ32を有し、この真空チャンバ内の下方には、粉体用容器載置台33が水平に配置されている。真空チャンバ32には、図示されていないが、容器載置台33上に載置される粉体用容器34を揺動させるための公知の揺動機構が設けられている。   As shown in FIG. 3, the coaxial vacuum arc deposition apparatus 31 has a cylindrical vacuum chamber 32, and a powder container mounting table 33 is horizontally disposed below the vacuum chamber. Although not shown, the vacuum chamber 32 is provided with a known rocking mechanism for rocking the powder container 34 mounted on the container mounting table 33.

粉体用容器34内の粉体Sを加熱できるように容器載置台にはヒータ等の加熱手段(図示せず)を設け、所望により、粉体を所定の温度に加熱できるようにしてもよい。載置台33は1又は複数個設けられ、それぞれに、粉体用容器34が保持されて取り付けられ得るようになっている。真空チャンバ32内の上方には、各粉体用容器34と対向して、1又は複数個の後述する同軸型真空アーク蒸着源(アークプラズマガン)35が、カソード電極35a側を容器載置台33に向けて配置されている。これにより、金属微粒子が、真空チャンバ32内の上方から下方に向かって飛翔し、粉体用容器34内の粉体Sに蒸着でき、必要に応じて、粉体用容器34を上記した粉体攪拌機構により揺動させて粉体Sを攪拌し、粉体S表面に均一に金属微粒子を蒸着させることができるように構成されている。   The container mounting table may be provided with heating means (not shown) such as a heater so that the powder S in the powder container 34 can be heated so that the powder can be heated to a predetermined temperature if desired. . One or a plurality of mounting tables 33 are provided, and a powder container 34 can be held and attached to each. Above the inside of the vacuum chamber 32, one or a plurality of later-described coaxial type vacuum arc vapor deposition sources (arc plasma guns) 35 face the respective powder containers 34, and the cathode electrode 35a side faces the container mounting table 33. It is arranged toward the. Thereby, the metal fine particles can fly from the upper side to the lower side in the vacuum chamber 32, and can be deposited on the powder S in the powder container 34. If necessary, the powder container 34 is made of the above-described powder. The powder S is agitated by being swung by a stirring mechanism so that metal fine particles can be uniformly deposited on the surface of the powder S.

真空チャンバ32の壁面には、ガス導入系36及び真空排気系37が接続されている。このガス導入系36は、バルブ36a、マスフローコントローラー36b及びガスボンベ36cがこの順序で金属製配管で接続されている。また、真空排気系37は、バルブ37a、ターボ分子ポンプ37b、バルブ37c及びロータリーポンプ37dがこの順序で金属製真空配管で接続されており、真空チャンバ32内を好ましくは10−5Pa以下に真空排気できるように構成されている。 A gas introduction system 36 and a vacuum exhaust system 37 are connected to the wall surface of the vacuum chamber 32. In the gas introduction system 36, a valve 36a, a mass flow controller 36b, and a gas cylinder 36c are connected in this order by metal piping. The vacuum exhaust system 37 includes a valve 37a, a turbo molecular pump 37b, a valve 37c, and a rotary pump 37d connected in this order by a metal vacuum pipe, and the vacuum chamber 32 is preferably evacuated to 10 −5 Pa or less. It is configured to allow exhaust.

図3に示すように、同軸型真空アーク蒸着装置31に設けられた同軸型真空アーク蒸着源35は、その一端が閉じ、粉体用容器34に対向する他端が開口しており、白金、コバルト、鉄、ニッケル、ルテニウム、及びチタン等から選ばれた蒸着用金属材料で構成されている円筒状のカソード電極35aと、ステンレス等から構成されている円筒状のアノード電極35bと、ステンレス等から構成されている円板状のトリガ電極(例えば、リング状のトリガ電極)35cと、カソード電極35aとトリガ電極35cとの間に両者を離間させるために設けられた円板状の絶縁碍子35dとから構成されている。カソード電極35aが、粉体用容器34に対向して設けられている。カソード電極35aと絶縁碍子35dとトリガ電極35cとの3つの部品は、図示していないが、ネジ等で密着させて取り付けられている。また、アノード電極35bは、図示していないが支柱で真空フランジに取り付けられ、この真空フランジは真空チャンバ32の上面に取り付けられている。カソード電極35aは、アノード電極35bの内部に同軸状にアノード電極の壁面から一定の距離だけ離して設けられている。カソード電極35aは、上記したように、その少なくとも先端部(アノード電極35bの開口部A側の端部に相当する)が、前記金属材料から構成されていても良い。   As shown in FIG. 3, the coaxial vacuum arc deposition source 35 provided in the coaxial vacuum arc deposition apparatus 31 has one end closed and the other end facing the powder container 34 opened, and platinum, From a cylindrical cathode electrode 35a made of a metal material for vapor deposition selected from cobalt, iron, nickel, ruthenium, titanium, etc., a cylindrical anode electrode 35b made of stainless steel, etc., and from stainless steel etc. A disc-shaped trigger electrode (for example, a ring-shaped trigger electrode) 35c, and a disc-shaped insulator 35d provided to separate the cathode electrode 35a and the trigger electrode 35c from each other; It is composed of A cathode electrode 35 a is provided to face the powder container 34. Although not shown, the three components of the cathode electrode 35a, the insulator 35d, and the trigger electrode 35c are attached in close contact with screws or the like. Although not shown, the anode electrode 35 b is attached to a vacuum flange by a support column, and this vacuum flange is attached to the upper surface of the vacuum chamber 32. The cathode electrode 35a is provided coaxially inside the anode electrode 35b and separated from the wall surface of the anode electrode by a certain distance. As described above, at least the tip of the cathode electrode 35a (corresponding to the end of the anode electrode 35b on the opening A side) may be made of the metal material.

トリガ電極35cは、前記ターゲット材料ないしはカソード電極35aとの間にアルミナ等から構成された絶縁碍子(ワッシャ碍子)35dを挟んで取り付けられている。絶縁碍子35dはカソード電極35aとトリガ電極35cとを絶縁するように取り付けられており、また、トリガ電極35cは絶縁体を介してカソード電極35aに取り付けられていてもよい。これらのアノード電極35bとカソード電極35aとトリガ電極35cとは、絶縁碍子35d及び絶縁体により電気的に絶縁が保たれていることが好ましい。この絶縁碍子35dと絶縁体とは、一体型に構成されたものであっても、別々に構成されたものでも良い。   The trigger electrode 35c is attached with an insulator (washer insulator) 35d made of alumina or the like sandwiched between the target material or the cathode electrode 35a. The insulator 35d is attached so as to insulate the cathode electrode 35a from the trigger electrode 35c, and the trigger electrode 35c may be attached to the cathode electrode 35a via an insulator. These anode electrode 35b, cathode electrode 35a, and trigger electrode 35c are preferably electrically insulated by an insulator 35d and an insulator. The insulator 35d and the insulator may be configured integrally or may be configured separately.

カソード電極35aとトリガ電極35cとの間にはパルストランスからなるトリガ電源35eが接続されており、また、カソード電極35aとアノード電極35bとの間にはアーク電源35fが接続されている。アーク電源35fは、直流電圧源35gとコンデンサユニット35hとからなり、このコンデンサユニット35hの両端は、それぞれ、カソード電極35aとアノード電極35bとに接続され、コンデンサユニット35hと直流電圧源35gとは並列接続されている。   A trigger power source 35e composed of a pulse transformer is connected between the cathode electrode 35a and the trigger electrode 35c, and an arc power source 35f is connected between the cathode electrode 35a and the anode electrode 35b. The arc power source 35f includes a DC voltage source 35g and a capacitor unit 35h. Both ends of the capacitor unit 35h are connected to a cathode electrode 35a and an anode electrode 35b, respectively. The capacitor unit 35h and the DC voltage source 35g are connected in parallel. It is connected.

コンデンサユニット35hは、1つ又は複数個のコンデンサ(図3では、1個のコンデンサを例示してある)が接続したものであって、その1つの容量が例えば2200μF(耐電圧160V)であり、直流電圧源35gにより随時充電される。トリガ電源35eは、入力200Vのパルス電圧を約17倍に変圧して、3.4kV(数μA)、極性:プラスを出力している。アーク電源35fは、100V、数Aの容量の直流電源であって、直流電圧源35gからコンデンサユニット35h(例えば、4個のコンデンサユニットの場合、8800μF)に充電している。この充電時間は約1秒かかるので、本システムにおいて8800μFで放電を繰り返す場合の周期は、1Hzで行われる。トリガ電源35eのプラス出力端子はトリガ電極35cに接続され、マイナス端子はアーク電源35fの直流電圧源35gのマイナス側出力端子と同じ電位に接続され、カソード電極35aに接続されている。アーク電源35fの直流電圧源35gのプラス端子はグランド電位に接地され、アノード電極35bに接続されている。コンデンサユニット35hの両端子は直流電圧源35gのプラス端子及びマイナス端子間に接続されている。図3中、35iはケーブルを示し、放電時の放電電流の流れを矢印→で示してある。実際には、放電電流の電流の大部分は電子によるものなので、実際の電子の流れる向きは矢印と逆になるが、図3では簡易的に電気的な配線図による電気回路で示してあるので、電流の流れの方向として示してある。   The capacitor unit 35h is connected to one or a plurality of capacitors (one capacitor is illustrated in FIG. 3), and one capacitor thereof is, for example, 2200 μF (withstand voltage 160V), The battery is charged at any time by the DC voltage source 35g. The trigger power supply 35e transforms the pulse voltage of the input 200V to about 17 times, and outputs 3.4 kV (several μA) and polarity: plus. The arc power supply 35f is a DC power supply having a capacity of 100 V and several A, and charges a capacitor unit 35h (for example, 8800 μF in the case of four capacitor units) from the DC voltage source 35g. Since this charging time takes about 1 second, the period when discharging is repeated at 8800 μF in this system is 1 Hz. The positive output terminal of the trigger power supply 35e is connected to the trigger electrode 35c, and the negative terminal is connected to the same potential as the negative output terminal of the DC voltage source 35g of the arc power supply 35f, and is connected to the cathode electrode 35a. The plus terminal of the DC voltage source 35g of the arc power supply 35f is grounded to the ground potential and connected to the anode electrode 35b. Both terminals of the capacitor unit 35h are connected between the plus terminal and the minus terminal of the DC voltage source 35g. In FIG. 3, reference numeral 35i denotes a cable, and the flow of the discharge current during discharge is indicated by an arrow →. Actually, since most of the discharge current is due to electrons, the actual flow direction of electrons is opposite to the direction of the arrow. However, in FIG. 3, the electric circuit is simply shown as an electric circuit diagram. , Shown as the direction of current flow.

次に、図3に示す同軸型真空アーク蒸着装置31を用いて、粉体用容器34内に装入された粉体Sの表面に金属微粒子を担持せしめるプロセスについて説明する。   Next, a process for supporting metal fine particles on the surface of the powder S charged in the powder container 34 using the coaxial vacuum arc deposition apparatus 31 shown in FIG. 3 will be described.

例えば、まず、直流電圧源35gによりコンデンサユニット35hに100V〜400Vで電荷を充電し、コンデンサユニット35hの容量を8800μF以下、間欠運転の周期を1〜5Hz、放電時間を1000μs以下に設定する。次いで、トリガ電源35eからトリガ電極35cにパルス電圧を出力し(出力:3.4kV)、カソード電極35aとトリガ電極35cとの間にワッシャ碍子35dを介して印加することで、カソード電極35aとトリガ電極35cとの間にトリガ放電(ワッシャ碍子表面での沿面放電)を発生させる。この際、カソード電極35aとワッシャ碍子35dとのつなぎ目から電子が発生する。このトリガ放電によって、カソード電極35aの側面とアノード電極35b内面との間で、コンデンサユニット35hに蓄電された電荷が真空アーク放電され、カソード電極35aに多量のアーク電流が流入し、このアーク放電により、カソード電極35aから白金等の金属材料のプラズマが形成される。コンデンサユニット35hに蓄電された電荷の放出により放電は停止する。このトリガ放電を複数回繰り返し、そのトリガ放電毎にアーク放電を誘起させることが好ましい。   For example, first, the capacitor unit 35h is charged with 100V to 400V by the DC voltage source 35g, the capacity of the capacitor unit 35h is set to 8800 μF or less, the intermittent operation cycle is set to 1 to 5 Hz, and the discharge time is set to 1000 μs or less. Next, a pulse voltage is output from the trigger power source 35e to the trigger electrode 35c (output: 3.4 kV), and is applied between the cathode electrode 35a and the trigger electrode 35c via a washer insulator 35d. Trigger discharge (creeping discharge on the washer insulator surface) is generated between the electrode 35c. At this time, electrons are generated from the joint between the cathode electrode 35a and the washer insulator 35d. By this trigger discharge, the electric charge stored in the capacitor unit 35h is vacuum-arced between the side surface of the cathode electrode 35a and the inner surface of the anode electrode 35b, and a large amount of arc current flows into the cathode electrode 35a. Then, plasma of a metal material such as platinum is formed from the cathode electrode 35a. Discharging is stopped by the discharge of the electric charge stored in the capacitor unit 35h. It is preferable to repeat this trigger discharge a plurality of times and induce arc discharge for each trigger discharge.

上記したアーク放電の間、金属材料の融解により発生した微粒子(プラズマ化している原子状イオンやクラスタや電子等)が形成される。この微粒子をアノード電極35bの開口部(放出口)Aから真空チャンバ32内に放出させ、開口部Aに対向して設置されている粉体用容器34内の粉体Sに対して、上記のようにして形成された金属微粒子を供給し、粉体Sに金属微粒子を付着させ、凝集せしめて直径数nm(例えば、1〜10nm)の金属微粒子が付着され担持された粒子を形成する。この粉体Sは、室温であっても、加熱手段により所定の温度に加熱されていても良い。   During the above-described arc discharge, fine particles (atomic ions, clusters, electrons, etc. that are turned into plasma) generated by melting the metal material are formed. The fine particles are discharged into the vacuum chamber 32 from the opening (discharge port) A of the anode electrode 35b, and the powder S in the powder container 34 installed facing the opening A is subjected to the above-described operation. The metal fine particles formed as described above are supplied, and the metal fine particles are adhered to the powder S and aggregated to form particles on which metal fine particles having a diameter of several nm (for example, 1 to 10 nm) are adhered and carried. The powder S may be at room temperature or heated to a predetermined temperature by a heating means.

本実施の形態によれば、上記同軸型真空アーク蒸着源35の近傍にコンデンサユニット35hを取り付けたものを用い、上記した放電条件を用いて行うことにより、1〜10nm程度の金属微粒子を形成することができると共に、金属微粒子を粉体に密着性よく付着させ、担持せしめることができる。コンデンサユニット35hを同軸型真空アーク蒸着源35の近傍に取り付ける場合、カソード電極35a及びアノード電極35bとの接続ラインを短く、例えば、100mm以下、好ましくは10mm〜100mm程度の距離になるように取り付ければ良い。   According to the present embodiment, metal particles having a size of about 1 to 10 nm are formed by using the above-described discharge conditions using a capacitor unit 35h attached in the vicinity of the coaxial vacuum arc deposition source 35. In addition, the fine metal particles can be adhered to and supported on the powder with good adhesion. When the capacitor unit 35h is attached in the vicinity of the coaxial vacuum arc vapor deposition source 35, the connection line between the cathode electrode 35a and the anode electrode 35b is short, for example, 100 mm or less, preferably 10 mm to 100 mm. good.

上記した金属微粒子の放出は次のようにして行われる。カソード電極35aに多量の電流が流れるので、カソード電極35aに磁場が形成され、この時発生したプラズマ中の電子(この電子はカソード電極35aからアノード電極35bの円筒内面に飛行する)が自己形成した磁場によってローレンツ力を受け、前方に飛行する。一方、プラズマ中のカソード電極材料の金属イオンは、電子が前記したように飛行し分極することでクーロン力により前方の電子に引きつけられるようにして前方に飛行し、粉体S上に金属微粒子が付着し、担持されることになる。   The metal fine particles are released as follows. Since a large amount of current flows through the cathode electrode 35a, a magnetic field is formed at the cathode electrode 35a, and electrons in the plasma generated at this time (the electrons fly from the cathode electrode 35a to the cylindrical inner surface of the anode electrode 35b) are self-formed. It receives Lorentz force by the magnetic field and flies forward. On the other hand, the metal ions of the cathode electrode material in the plasma fly forward so that the electrons fly and polarize as described above, and are attracted to the electrons ahead by the Coulomb force. It will adhere and be carried.

上記したアーク放電の間、白金等の金属の融解により発生した微粒子(プラズマ化している原子状イオンやクラスタや電子等)が形成される。この微粒子をアノード電極35aの開口部Aから真空チャンバ32内に放出させ、粉体用容器34内に装入したカーボンブラックS上に供給し、まず粉体Sを攪拌することなく室温で所定のショット数で静止蒸着せしめる工程と、その後粉体Sを上記のようにして攪拌しながら室温で所定のショット数で蒸着せしめる工程とを所定の回数繰り返して、蒸着せしめ、カーボンブラック表面に白金等の金属の微粒子を担持せしめる。攪拌の際、粉体用容器34の上縁部を突き当て部材(図示せず)や、アノード電極35bの先端部に突き当てて、容器に物理的衝撃を加えることで、粉体Sが容器底面に設けたリブを乗り越えて、転がりながら攪拌される。すなわち、上記金属微粒子の蒸着は、粉体Sを攪拌せずに粉体表面に金属微粒子を所定のショット数で静止蒸着させる工程と、次いで粉体Sを攪拌しながら粉体表面に金属微粒子を所定のショット数で攪拌蒸着させる工程とを交互に複数回繰り返して行う。   During the above-described arc discharge, fine particles (such as plasma-generated atomic ions, clusters, and electrons) formed by melting of a metal such as platinum are formed. The fine particles are discharged from the opening A of the anode electrode 35a into the vacuum chamber 32 and supplied onto the carbon black S charged in the powder container 34. First, the powder S is stirred at room temperature without stirring. The step of depositing statically with the number of shots and the step of depositing the powder S with a predetermined number of shots at room temperature while stirring as described above are then repeated a predetermined number of times to deposit the platinum on the carbon black surface. Supports metal fine particles. During stirring, the upper edge of the powder container 34 is abutted against an abutting member (not shown) or the tip of the anode electrode 35b, and a physical impact is applied to the container so that the powder S is contained in the container. Stir while rolling over the ribs on the bottom. That is, the metal fine particles are vapor-deposited by a step in which metal fine particles are statically vapor-deposited on the powder surface with a predetermined number of shots without stirring the powder S, and then the metal fine particles are deposited on the powder surface while stirring the powder S The process of stirring and vapor deposition with a predetermined number of shots is alternately repeated a plurality of times.

上記したような同軸型真空アーク蒸着源35を用いて燃料電池電極用の粉体(カーボンブラック)に白金等の金属触媒粒子を蒸着させることにより、粉体に白金等が、例えば粒径2〜5nm程度で形成・担持されるため、この白金等が担持した粉体を燃料電池電極として使用すると、燃料電池の電気特性(酸化還元反応)が改善される。   By depositing metal catalyst particles such as platinum on powder (carbon black) for fuel cell electrodes using the coaxial vacuum arc deposition source 35 as described above, platinum or the like is deposited on the powder, for example, with a particle size of 2 to 2. Since it is formed and supported at about 5 nm, the electrical characteristics (oxidation-reduction reaction) of the fuel cell are improved when the powder supported by platinum or the like is used as a fuel cell electrode.

前記実施の形態では、容器内に装入した粉体を同軸型真空アーク蒸着源と対向させて配置し、粉体に直接的に金属微粒子を蒸着したが、このように、蒸着源を真空チャンバ、ひいては粉体に対して鉛直に配置した場合、蒸着源からμサイズのパーティクル(液滴)が粉体内に混入する場合がある。この場合には、同軸型真空アーク蒸着源を真空チャンバに対して水平状態に取付け、磁石2個をアノード電極近傍に挟み込むように平行に配置して磁場を形成し、プラズマを偏向させて粉体に金属微粒子を蒸着させてもよい。   In the above embodiment, the powder charged in the container is arranged facing the coaxial vacuum arc vapor deposition source, and the metal fine particles are directly vapor deposited on the powder. When arranged vertically with respect to the powder, μ-size particles (droplets) may be mixed into the powder from the vapor deposition source. In this case, a coaxial vacuum arc deposition source is mounted in a horizontal state with respect to the vacuum chamber, two magnets are arranged in parallel so as to be sandwiched in the vicinity of the anode electrode, a magnetic field is formed, plasma is deflected, and powder Metal fine particles may be vapor-deposited.

本実施例では、図3に示す同軸型真空アーク蒸着源35及び公知の粉体攪拌機構(図示せず)を備えた同軸型真空アーク蒸着装置31を用い、ターゲット材として、白金で構成されたカソード電極35aを配置して、以下のようにして、φ80mm×10mmの粉体用容器34(底面に高さ1mmのリブが4本設けてある)内に装入したカーボンブラック粉体(キャボット社製、商品名:VULCAN XC-72、粒径20〜50nm)の表面に室温で白金微粒子を担持せしめた。なお、アノード電極35bの先端(開口部A)からカーボンブラック粉体までの距離を約40mmに設定して実施した。   In this example, a coaxial vacuum arc deposition source 31 provided with a coaxial vacuum arc deposition source 35 and a known powder stirring mechanism (not shown) shown in FIG. 3 was used, and the target material was composed of platinum. A carbon black powder (Cabot Corp.) placed in a powder container 34 (having four ribs with a height of 1 mm on the bottom surface) having a diameter of 80 mm × 10 mm as shown in FIG. (Product name: VULCAN XC-72, particle size 20-50 nm) was supported with platinum fine particles at room temperature. In addition, the distance from the tip (opening A) of the anode electrode 35b to the carbon black powder was set to about 40 mm.

まず、白金微粒子を形成する前に、直流電圧源35gによりコンデンサユニット35h(本実施例では4つのコンデンサを設けた)に電荷を充電し、アーク電圧を100Vとし、コンデンサユニット35hの容量を8800μFに設定した。次いで、トリガ電源35eからトリガ電極35cにパルス電圧を出力し(出力:3.4kV)、カソード電極35aとトリガ電極35cとの間にワッシャ碍子35dを介して印加することで、カソード電極35aとトリガ電極35cとの間にトリガ放電を発生させた。カソード電極35aとワッシャ碍子35dとのつなぎ目から電子が発生した。この時、カソード電極35a側面とアノード電極35b内面との間で、コンデンサユニット35hに蓄電された電荷がアーク放電され、カソード電極35aに多量の電流が流入し、カソード電極35aから白金のプラズマが形成された。コンデンサユニット35hに蓄電された電荷の放出により放電は停止した。放電周期は1Hzとし、放電を繰り返し、そのトリガ放電毎にアーク放電を誘起させた。   First, before forming the platinum fine particles, the DC voltage source 35g charges the capacitor unit 35h (four capacitors are provided in this embodiment), the arc voltage is set to 100V, and the capacitance of the capacitor unit 35h is set to 8800 μF. Set. Next, a pulse voltage is output from the trigger power source 35e to the trigger electrode 35c (output: 3.4 kV), and is applied between the cathode electrode 35a and the trigger electrode 35c via a washer insulator 35d. Trigger discharge was generated between the electrode 35c. Electrons were generated from the joint between the cathode electrode 35a and the washer insulator 35d. At this time, the electric charge stored in the capacitor unit 35h is arc-discharged between the side surface of the cathode electrode 35a and the inner surface of the anode electrode 35b, a large amount of current flows into the cathode electrode 35a, and platinum plasma is formed from the cathode electrode 35a. It was done. Discharging stopped due to the discharge of the electric charge stored in the capacitor unit 35h. The discharge cycle was 1 Hz, and the discharge was repeated, and an arc discharge was induced for each trigger discharge.

上記したアーク放電の間、白金の融解により発生した微粒子(プラズマ化している原子状イオンやクラスタや電子等)が形成された。この微粒子をアノード電極35aの開口部Aから真空チャンバ32内に放出させ、粉体用容器34内に装入したカーボンブラックS上に供給し、まず粉体Sを攪拌することなく室温で400発(ショット)静止蒸着せしめ、その後、粉体用容器34を粉体攪拌機構により揺動させ、容器の上縁部をカソード電極35bの先端部に突き当てて粉体Sを攪拌しながら、室温で100ショット攪拌蒸着せしめる2つの静止/攪拌蒸着工程を10回繰り返して、合計5000ショットの蒸着工程を行い、カーボンブラック表面に白金微粒子を担持させた。攪拌の際、粉体用容器34の上縁部をアノード電極35aの先端部に突き当てて、容器に物理的衝撃を加えることで、カーボンブラックSが容器底面に設けたリブを乗り越えて、転がりながら攪拌されていることが確認できた。   During the arc discharge described above, fine particles (such as atomized ions, clusters, electrons, etc. that were turned into plasma) formed by the melting of platinum were formed. The fine particles are discharged from the opening A of the anode electrode 35a into the vacuum chamber 32 and supplied onto the carbon black S charged in the powder container 34. First, the powder S is generated at 400 room temperature without stirring. (Shot) Static deposition was performed, and then the powder container 34 was swung by the powder stirring mechanism, and the upper edge of the container was abutted against the tip of the cathode electrode 35b while stirring the powder S at room temperature. Two static / stirred vapor deposition steps of 100 shot stirring vapor deposition were repeated 10 times to perform a total of 5000 shot vapor deposition steps, and platinum fine particles were supported on the carbon black surface. When stirring, the upper edge of the powder container 34 is abutted against the tip of the anode electrode 35a and a physical impact is applied to the container, so that the carbon black S rolls over the rib provided on the bottom of the container. While stirring, it was confirmed.

かくして得られたカーボンブラック粉体上に白金微粒子が担持された粒子のTEM写真を図4に示す。図4から明らかなように、カーボンブラック粉体上に2〜5nmの白金微粒子が満遍なく分散担持されていることがわかる。この白金微粒子を担持したカーボンブラックは燃料電池の電極として有用である。
(比較例1)
FIG. 4 shows a TEM photograph of particles in which platinum fine particles are supported on the carbon black powder thus obtained. As is apparent from FIG. 4, it can be seen that platinum fine particles of 2 to 5 nm are uniformly dispersed and supported on the carbon black powder. This carbon black carrying platinum fine particles is useful as an electrode of a fuel cell.
(Comparative Example 1)

実施例1と同じカーボンブラック粉体Sをガラス板上に固定して配置し、攪拌することなく、実施例1と同じ条件でこのカーボンブラック粉体S表面に白金微粒子を担持せしめた。但し、粉体を固定して攪拌せずにショット数を増やして蒸着を行うと、薄膜が形成されてしまうため、50ショット蒸着を行った。   The same carbon black powder S as in Example 1 was fixed on a glass plate, and platinum fine particles were supported on the surface of the carbon black powder S under the same conditions as in Example 1 without stirring. However, when the powder was fixed and the deposition was carried out without increasing the number of shots, a thin film was formed, so 50 shots were deposited.

かくして得られたカーボンブラック粉体上に白金微粒子が担持された粒子のTEM写真を図5に示す。図5から明らかなように、カーボンブラック粉体上の白金微粒子が供給された面だけに白金微粒子が担持されていることがわかる。   FIG. 5 shows a TEM photograph of particles in which platinum fine particles are supported on the carbon black powder thus obtained. As is apparent from FIG. 5, it can be seen that platinum fine particles are supported only on the surface of the carbon black powder to which the platinum fine particles are supplied.

上記実施例1及び比較例1から明らかなように、本発明の粉体攪拌機構を備えた同軸型真空アーク蒸着装置を用いることにより、粉体全面に均一に満遍なく金属微粒子を担持せしめることができ、触媒としての性能を向上できることが分かる。   As is clear from Example 1 and Comparative Example 1 above, by using the coaxial vacuum arc deposition apparatus equipped with the powder agitation mechanism of the present invention, the metal fine particles can be uniformly and uniformly supported on the entire surface of the powder. It can be seen that the performance as a catalyst can be improved.

実施例1に従って形成されたカーボンブラック粉体上に白金微粒子が担持された粒子を燃料電池用の電極触媒とし、この電極触媒に対して、公知の対流ボルタンメトリー法(回転ディスク電極法)を用いる電気化学測定により、酸化還元反応で得られた電流値を測定した。この測定条件は、掃引速度50mV/sec、回転数2000rpmであった。なお、比較対照として、カーボンブラック(CB)のみについて、また、従来の液相プロセスによりカーボンブラック上に白金を担持せしめた電極触媒として、市販品:Pt20wt%/CB(ElectroChem, Inc.製)についても、同様にして、電気化学測定を行った。   Particles in which platinum fine particles are supported on carbon black powder formed according to Example 1 are used as an electrode catalyst for a fuel cell. Electricity using a known convection voltammetry method (rotating disk electrode method) is used for this electrode catalyst. The current value obtained by the oxidation-reduction reaction was measured by chemical measurement. The measurement conditions were a sweep speed of 50 mV / sec and a rotation speed of 2000 rpm. For comparison, only carbon black (CB) is used, and as an electrode catalyst in which platinum is supported on carbon black by a conventional liquid phase process, a commercially available product: Pt 20 wt% / CB (manufactured by ElectroChem, Inc.). Similarly, electrochemical measurements were performed.

上記のようにして測定した電流値のデータを、横軸に電位(V vsAg/AgCl)、縦軸に電流(A)をとり、図6にプロットする(図6中、CBはカーボンブラック、APG−Pt5000/CB)は上記実施例1で得られた電極触媒、そしてPt20wt%/CBは市販品の場合のデータを示す)。   The current value data measured as described above is plotted in FIG. 6 with the horizontal axis representing potential (V vsAg / AgCl) and the vertical axis representing current (A) (in FIG. 6, CB is carbon black, APG). -Pt5000 / CB) is the electrocatalyst obtained in Example 1 above, and Pt20 wt% / CB is the data for a commercial product).

図6から明らかなように、本発明に従って同軸型真空アーク蒸着源装置を用いて蒸着して得た電極触媒の方が、市販の白金20wt%をカーボンブラックに含有した電極触媒よりも電流値が高く、より高い触媒活性を示していることが分かる。   As is apparent from FIG. 6, the electrode catalyst obtained by vapor deposition using the coaxial vacuum arc vapor deposition source apparatus according to the present invention has a current value higher than that of the electrode catalyst containing 20 wt% of platinum in carbon black. It can be seen that the catalyst activity is higher and higher.

本発明によれば、粉体攪拌機構を備えた同軸型真空アーク蒸着装置を用いることにより、粉体全面に金属微粒子を均一に満遍なく担持せしめることが可能である。この方法を利用することにより、均一な金属微粒子からなる触媒金属を燃料電池電極用の粉体(カーボンブラック)に蒸着させることによって得られる金属微粒子は、均一な金属触媒がカーボンブラックに担持されているので、この金属触媒を利用すれば燃料電池の電気特性(酸化還元反応)が向上する。   According to the present invention, by using a coaxial vacuum arc vapor deposition apparatus equipped with a powder stirring mechanism, it is possible to uniformly and uniformly carry metal fine particles on the entire surface of the powder. By utilizing this method, the metal fine particles obtained by vapor-depositing the catalyst metal consisting of uniform metal fine particles on the powder (carbon black) for the fuel cell electrode, the uniform metal catalyst is supported on the carbon black. Therefore, the use of this metal catalyst improves the electrical characteristics (oxidation-reduction reaction) of the fuel cell.

従って、本発明は、燃料電池等のような次世代エネルギーデバイスの技術分野において、触媒金属を担持させる際に利用可能である。また、本発明は、上記したように粉体表面に均一な金属微粒子の担持された粒子を形成できることから、カーボンナノチューブ等のナノカーボン材料の下地膜(触媒層)を作製する技術分野でも利用できる。   Therefore, the present invention can be used for supporting a catalyst metal in the technical field of next-generation energy devices such as fuel cells. In addition, since the present invention can form particles carrying uniform metal fine particles on the powder surface as described above, it can also be used in the technical field of producing a base film (catalyst layer) of a nanocarbon material such as carbon nanotubes. .

本発明に係る粉体攪拌機構の一実施の形態を示す模式図であり、(a)は粉体攪拌機構を組み込んだ真空チャンバの断面を模式的に示す断面図であり、(b)は(a)の模式的側面図である。It is a schematic diagram showing an embodiment of a powder stirring mechanism according to the present invention, (a) is a cross-sectional view schematically showing a cross section of a vacuum chamber incorporating a powder stirring mechanism, (b) is ( It is a typical side view of a). 本発明の粉体攪拌機構で用いる粉体用容器の模式図であり、(a)は粉体用容器の上面図であり、(b)は粉体用容器の断面図である。FIG. 3 is a schematic view of a powder container used in the powder stirring mechanism of the present invention, (a) is a top view of the powder container, and (b) is a cross-sectional view of the powder container. 本発明の粉体攪拌機構を備えた同軸型アーク真空蒸着装置の一構成例を模式的に示す構成図。The block diagram which shows typically the example of 1 structure of the coaxial arc vacuum evaporation system provided with the powder stirring mechanism of this invention. 実施例1で得られたカーボンブラック粉体上に白金微粒子が担持された粒子のTEM写真。4 is a TEM photograph of particles in which platinum fine particles are supported on the carbon black powder obtained in Example 1. FIG. 比較例1で得られたカーボンブラック粉体上に白金微粒子が担持された粒子のTEM写真。4 is a TEM photograph of particles in which platinum fine particles are supported on the carbon black powder obtained in Comparative Example 1. FIG. 実施例2における燃料電池用電極触媒の触媒活性を示すグラフ。6 is a graph showing the catalytic activity of a fuel cell electrode catalyst in Example 2. FIG.

符号の説明Explanation of symbols

1 粉体用容器 2 同軸型真空アーク蒸着源
3 突き当て部材 4 粉体用容器載置台
5 真空チャンバ 1a リブ
S 粉体 31 同軸型真空アーク蒸着装置
32 真空チャンバ 33 容器載置台
34 粉体用容器 35 同軸型真空アーク蒸着源
35a カソード電極 35b アノード電極
35c トリガ電極 35d 絶縁碍子
35e トリガ電源 35f アーク電源
35g 直流電圧源 35h コンデンサユニット
35i ケーブル 36 ガス導入系
36a バルブ 36b マスフローコントローラー
36c ガスボンベ 37 真空排気系
37a バルブ 37b ターボ分子ポンプ
37c バルブ 37d ロータリーポンプ
A 開口部
DESCRIPTION OF SYMBOLS 1 Container for powder 2 Coaxial type vacuum arc vapor deposition source 3 Butting member 4 Powder container mounting base 5 Vacuum chamber 1a Rib S Powder 31 Coaxial vacuum arc vapor deposition apparatus 32 Vacuum chamber 33 Container mounting base 34 Powder container 35 Coaxial vacuum arc deposition source 35a Cathode electrode 35b Anode electrode 35c Trigger electrode 35d Insulator 35e Trigger power supply 35f Arc power supply 35g DC voltage source 35h Capacitor unit 35i Cable 36 Gas introduction system 36a Valve 36b Mass flow controller 36c Gas cylinder 37 Vacuum exhaust system 37a Valve 37b Turbo molecular pump 37c Valve 37d Rotary pump A Opening

Claims (11)

円筒状のトリガ電極と、微粒子作製用金属材料で少なくとも先端部が構成された円筒状のカソード電極と、前記トリガ電極とカソード電極との周りに同軸状に配置された円筒状のアノード電極とを有し、前記トリガ電極とカソード電極とが円板状の絶縁碍子を挟んで隣接して配置されている同軸型真空アーク蒸着源を備えている同軸型真空アーク蒸着装置に設けられた粉体攪拌機構であって、この粉体攪拌機構が、前記金属材料からなる微粒子を蒸着させる粉体を装入する粉体用容器の上方近傍に設けられた突き当て部材と、この突き当て部材に粉体用容器を突き当てるために前記粉体用容器を揺動させるための揺動機構とを有することを特徴とする粉体攪拌機構。 A cylindrical trigger electrode, a cylindrical cathode electrode having at least a tip made of a metal material for producing fine particles, and a cylindrical anode electrode coaxially disposed around the trigger electrode and the cathode electrode Powder agitation provided in a coaxial vacuum arc vapor deposition apparatus having a coaxial vacuum arc vapor deposition source, the trigger electrode and the cathode electrode being disposed adjacent to each other with a disc-shaped insulator interposed therebetween And a powder agitating mechanism provided with an abutting member provided in the vicinity of an upper part of a powder container in which powder for depositing fine particles of the metal material is deposited, and a powder on the abutting member. And a rocking mechanism for rocking the powder container to abut the container. 前記粉体用容器が、その底面に高さ5mm以下のリブを設けたものであることを特徴とする請求項1記載の粉体攪拌機構。 The powder agitation mechanism according to claim 1, wherein the powder container is provided with a rib having a height of 5 mm or less on a bottom surface thereof. 前記突き当て部材が、前記同軸型真空アーク蒸着源のアノード電極先端部の近傍に設けられていることを特徴とする請求項1又は2記載の粉体攪拌機構。 The powder agitation mechanism according to claim 1 or 2, wherein the abutting member is provided in the vicinity of the tip of the anode electrode of the coaxial vacuum arc deposition source. 前記突き当て部材を設けずに、前記同軸型真空アーク蒸着源のアノード電極先端の外縁部が、突き当て部材として機能するように構成することを特徴とする請求項1又は2記載の粉体攪拌機構。 3. The powder agitation according to claim 1, wherein the outer edge portion of the tip of the anode electrode of the coaxial vacuum arc deposition source functions as an abutting member without providing the abutting member. mechanism. 円筒状のトリガ電極、微粒子作製用金属材料で少なくとも先端部が構成された円筒状のカソード電極、及び前記トリガ電極とカソード電極との周りに同軸状に配置された円筒状のアノード電極を有し、前記トリガ電極とカソード電極とが円板状の絶縁碍子を挟んで隣接して配置されている同軸型真空アーク蒸着源と、底面に5mm以下のリブが設けられている粉体用容器の上方近傍に設けられた突き当て部材及びこの突き当て部材に粉体用容器を突き当てるために粉体用容器を揺動させるための揺動機構からなる粉体攪拌機構とを備えている同軸型真空アーク蒸着装置を用い、前記トリガ電極とアノード電極との間にトリガ放電をパルス的に発生させて、前記カソード電極とアノード電極との間にアーク放電を断続的に誘起させ、前記カソード電極の金属材料から生じるプラズマ化された金属微粒子を、前記粉体用容器内に装入された粉体に蒸着せしめる静止蒸着工程と、次いでこの粉体を前記粉体攪拌機構により攪拌しながら、前記プラズマ化された金属微粒子を粉体に蒸着せしめる攪拌蒸着工程とを繰り返して粉体表面に金属微粒子を担持せしめることを特徴とする金属微粒子担持粉体の作製方法。 A cylindrical trigger electrode, a cylindrical cathode electrode having at least a tip portion made of a metal material for producing fine particles, and a cylindrical anode electrode arranged coaxially around the trigger electrode and the cathode electrode A coaxial vacuum arc evaporation source in which the trigger electrode and the cathode electrode are disposed adjacent to each other with a disc-shaped insulator interposed therebetween, and a powder container provided with a rib of 5 mm or less on the bottom surface A coaxial vacuum comprising an abutting member provided in the vicinity and a powder agitating mechanism comprising an oscillating mechanism for oscillating the powder container to abut the abutting member against the powder container Using an arc evaporation apparatus, a trigger discharge is generated in a pulse manner between the trigger electrode and the anode electrode, and an arc discharge is intermittently induced between the cathode electrode and the anode electrode, and the cathode A stationary vapor deposition step of depositing plasma-formed metal fine particles generated from the metal material of the electrode on the powder charged in the powder container, and then stirring the powder by the powder stirring mechanism, A method for producing a metal fine particle-supported powder, wherein the metal fine particles are supported on the powder surface by repeating the stirring vapor deposition step of depositing the plasma-formed metal fine particles on the powder. 前記攪拌が、粉体用容器の上縁部を突き当て部材に突き当て、その物理的衝撃により行われることを特徴とする請求項5記載の金属微粒子担持粉体の作製方法。 6. The method for producing metal fine particle-supported powder according to claim 5, wherein the stirring is performed by abutting the upper edge portion of the powder container against the abutting member and by physical impact thereof. 前記突き当て部材を含んでいない粉体攪拌機構を備えた同軸型真空アーク蒸着装置を用いる場合、前記攪拌が、前記同軸型真空アーク蒸着源のアノード電極先端の外縁部に粉体用容器を突き当てて行われることを特徴とする請求項5記載の金属微粒子担持粉体の作製方法。 In the case of using a coaxial vacuum arc vapor deposition apparatus equipped with a powder agitation mechanism that does not include the abutting member, the agitation pushes the powder container into the outer edge of the anode electrode tip of the coaxial vacuum arc vapor deposition source. 6. The method for producing a metal fine particle-supported powder according to claim 5, wherein the method is carried out by contact. 前記担持された金属微粒子の粒径が、1〜10nmであることを特徴とする請求項5〜7のいずれかに記載の金属微粒子担持粉体の作製方法。 The method for producing a metal fine particle-supported powder according to any one of claims 5 to 7, wherein a particle diameter of the supported metal fine particle is 1 to 10 nm. 前記粉体が、カーボン、酸化アルミニウム、酸化シリコン及び酸化チタンの粉体か選ばれた少なくとも1種であることを特徴とする請求項5〜8のいずれかに記載の金属微粒子担持粉体の作製方法。 9. The metal fine particle-supported powder according to claim 5, wherein the powder is at least one selected from carbon, aluminum oxide, silicon oxide, and titanium oxide powder. Method. 請求項5〜9のいずれかに記載の金属微粒子担持粉体の作製方法に従って、粒径10〜100nmのカーボン粉体の表面に金属微粒子を金属触媒として担持させてなることを特徴とする燃料電池用触媒。 A fuel cell comprising metal fine particles supported as a metal catalyst on the surface of a carbon powder having a particle size of 10 to 100 nm according to the method for producing a metal fine particle-supported powder according to claim 5. Catalyst. 前記金属微粒子の粒径が、1〜10nmであることを特徴とする請求項10記載の燃料電池用触媒。 11. The fuel cell catalyst according to claim 10, wherein the metal fine particles have a particle size of 1 to 10 nm.
JP2007072269A 2007-03-20 2007-03-20 Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell Active JP5008434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072269A JP5008434B2 (en) 2007-03-20 2007-03-20 Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072269A JP5008434B2 (en) 2007-03-20 2007-03-20 Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell

Publications (2)

Publication Number Publication Date
JP2008231502A true JP2008231502A (en) 2008-10-02
JP5008434B2 JP5008434B2 (en) 2012-08-22

Family

ID=39904661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072269A Active JP5008434B2 (en) 2007-03-20 2007-03-20 Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell

Country Status (1)

Country Link
JP (1) JP5008434B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057602A (en) * 2007-08-31 2009-03-19 Toshiba Corp Microparticle-supporting method and microparticle-supporting apparatus
JP2009057603A (en) * 2007-08-31 2009-03-19 Toshiba Corp Microparticle-supporting method and supporting apparatus
JP2010111920A (en) * 2008-11-06 2010-05-20 Ntn Corp Fixture for surface treatment for spherical body, surface treatment method for spherical body and method for producing spherical component
WO2012018075A1 (en) * 2010-08-04 2012-02-09 株式会社島津製作所 Surface treatment device and surface treatment method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139801A (en) * 1985-12-16 1987-06-23 Toyo Soda Mfg Co Ltd Sintering method
JPS6483660A (en) * 1987-09-25 1989-03-29 Tdk Corp Vacuum film formation
JPH0734246A (en) * 1992-06-25 1995-02-03 Futaba Corp Powder agitator
JPH08325723A (en) * 1995-05-26 1996-12-10 Hitachi Ltd Powder stirring device
JPH11241157A (en) * 1998-02-26 1999-09-07 Koa Corp Film attaching device and method therefor
JP2003321769A (en) * 2002-04-26 2003-11-14 Ulvac Japan Ltd Vapor deposition apparatus
JP2004018899A (en) * 2002-06-13 2004-01-22 Ulvac Japan Ltd Evaporation source and film-formation equipment
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP2005076113A (en) * 2003-09-03 2005-03-24 Kokusai Apatite Kenkyusho:Kk Apparatus for rotating coated body in sputtering equipment
JP2006007105A (en) * 2004-06-25 2006-01-12 Takayuki Abe Carrier particle and its production method
JP2006104518A (en) * 2004-10-05 2006-04-20 Hitachi Sci Syst Ltd Specimen support and ion-sputtering apparatus
JP2006140017A (en) * 2004-11-11 2006-06-01 Ritsumeikan Catalyst for fuel cell
JP2006249558A (en) * 2005-03-14 2006-09-21 Kyushu Univ Vapor deposition apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139801A (en) * 1985-12-16 1987-06-23 Toyo Soda Mfg Co Ltd Sintering method
JPS6483660A (en) * 1987-09-25 1989-03-29 Tdk Corp Vacuum film formation
JPH0734246A (en) * 1992-06-25 1995-02-03 Futaba Corp Powder agitator
JPH08325723A (en) * 1995-05-26 1996-12-10 Hitachi Ltd Powder stirring device
JPH11241157A (en) * 1998-02-26 1999-09-07 Koa Corp Film attaching device and method therefor
JP2003321769A (en) * 2002-04-26 2003-11-14 Ulvac Japan Ltd Vapor deposition apparatus
JP2004018899A (en) * 2002-06-13 2004-01-22 Ulvac Japan Ltd Evaporation source and film-formation equipment
JP2005034779A (en) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd Electrode catalyst and its production method
JP2005076113A (en) * 2003-09-03 2005-03-24 Kokusai Apatite Kenkyusho:Kk Apparatus for rotating coated body in sputtering equipment
JP2006007105A (en) * 2004-06-25 2006-01-12 Takayuki Abe Carrier particle and its production method
JP2006104518A (en) * 2004-10-05 2006-04-20 Hitachi Sci Syst Ltd Specimen support and ion-sputtering apparatus
JP2006140017A (en) * 2004-11-11 2006-06-01 Ritsumeikan Catalyst for fuel cell
JP2006249558A (en) * 2005-03-14 2006-09-21 Kyushu Univ Vapor deposition apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057602A (en) * 2007-08-31 2009-03-19 Toshiba Corp Microparticle-supporting method and microparticle-supporting apparatus
JP2009057603A (en) * 2007-08-31 2009-03-19 Toshiba Corp Microparticle-supporting method and supporting apparatus
JP2010111920A (en) * 2008-11-06 2010-05-20 Ntn Corp Fixture for surface treatment for spherical body, surface treatment method for spherical body and method for producing spherical component
WO2012018075A1 (en) * 2010-08-04 2012-02-09 株式会社島津製作所 Surface treatment device and surface treatment method
JP5811092B2 (en) * 2010-08-04 2015-11-11 株式会社島津製作所 Surface treatment apparatus and surface treatment method

Also Published As

Publication number Publication date
JP5008434B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP4999167B2 (en) Nanoparticle loading method using coaxial vacuum arc deposition source
JP5039487B2 (en) Metal vapor deposition device and powder carrier stirring method in the same
JP5008434B2 (en) Powder stirring mechanism, method for producing metal fine particle-supported powder, and catalyst for fuel cell
JP4861257B2 (en) Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source
JP4868592B2 (en) Alloy nanoparticle preparation method, alloy thin film preparation method, and coaxial vacuum arc deposition apparatus
JP5188053B2 (en) Nanoparticle production method
JP2008095163A (en) Method of forming nanometal particle and method of forming nanometal thin film, and method of controlling size of nanometal particle
JP5191691B2 (en) Method for producing catalyst material
JP5604234B2 (en) Fine particle forming apparatus and method thereof
Agawa et al. Behaviors of metal nano-particles prepared by coaxial vacuum arc deposition
JP4970191B2 (en) Fine particle formation method
JP6161053B2 (en) Vapor deposition source and fine particle forming device
JP2014159623A (en) Coating device and method
JP2007254762A (en) Method for producing nanoparticle
JP2766755B2 (en) Substrate coating method
JP5502617B2 (en) Fuel cell electrode manufacturing apparatus and method
JP2009179863A (en) Coaxial vacuum arc vapor deposition source and vapor deposition apparatus
JP5048538B2 (en) Coaxial vacuum arc deposition source and vacuum deposition equipment
JP6389810B2 (en) Method for producing ionic liquid material
JP2019049035A (en) Fine particle formation device and method therefor
JP5017017B2 (en) Nanoparticle carrying device and coaxial carrying method with coaxial vacuum arc deposition source
JP2012182067A (en) Method of manufacturing electrode catalyst
JP5923547B2 (en) Fine particle forming apparatus and method thereof
JP5016976B2 (en) Method for producing fine particle film
EP2278646A1 (en) Method for the production of an electrode catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250