WO2012018075A1 - Surface treatment device and surface treatment method - Google Patents

Surface treatment device and surface treatment method Download PDF

Info

Publication number
WO2012018075A1
WO2012018075A1 PCT/JP2011/067854 JP2011067854W WO2012018075A1 WO 2012018075 A1 WO2012018075 A1 WO 2012018075A1 JP 2011067854 W JP2011067854 W JP 2011067854W WO 2012018075 A1 WO2012018075 A1 WO 2012018075A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
surface treatment
processed
cart
treatment apparatus
Prior art date
Application number
PCT/JP2011/067854
Other languages
French (fr)
Japanese (ja)
Inventor
正久 東
敦夫 中谷
栄作 中尾
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN2011800375859A priority Critical patent/CN103052734A/en
Priority to JP2012527764A priority patent/JP5811092B2/en
Publication of WO2012018075A1 publication Critical patent/WO2012018075A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a surface treatment apparatus and a surface treatment method for performing a surface treatment such as forming a thin film on the surface of an object to be treated or diffusing impurity ions.
  • a spherical solar cell in which an n-type impurity is diffused in a p-type silicon substrate is known.
  • a passivation film such as SiN x (silicon nitride) for preventing reflection and improving performance
  • SiN x silicon nitride
  • a hexagonal barrel is placed in a vacuum chamber, and the hexagonal barrel is placed in a direction perpendicular to gravity.
  • a method is known in which a thin film is formed while rotating an object disposed in a hexagonal barrel barrel while rotating about an arranged shaft (see, for example, Patent Document 1).
  • the object to be processed accommodated in the hexagonal cylinder barrel rises with the rotation of the hexagonal cylinder barrel and drops on the surface of the object to be processed by the action of gravity. A thin film is formed. If it does in this way, a spherical to-be-processed object will raise with rotation of a hexagonal cylinder barrel, will be rotated by the operation
  • the object to be processed is spherical, particularly when it is a minute member, the object to be processed has a small effect of rising following the rotation of the hexagonal barrel, and the height of the object to be processed is extremely small. turn into.
  • the objects to be processed are gathered in a substantially linear thick layer in the immediate vicinity of the lowest part of the hexagonal cylindrical barrel, so that almost no stirring action is performed. For this reason, it has been difficult to form a film with a uniform thickness on the object to be processed.
  • a surface treatment apparatus includes a container in which an object to be treated is accommodated, a surface treatment unit having a space in which the container is accommodated, and a treatment chamber into which a gas for treating the surface of the object to be treated is introduced. And a container driving mechanism for causing the container in which the object to be processed is accommodated to perform at least one of a reciprocating operation and a swinging operation.
  • a surface treatment apparatus is the surface treatment apparatus according to the first aspect, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container, and the container driving mechanism includes the container, the electrode The object to be processed contained in the container is configured to roll in a plane substantially parallel to the plate.
  • a surface treatment apparatus is the surface treatment apparatus according to any one of the first aspect and the second aspect, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container.
  • the container drive mechanism is configured to swing the container in a direction perpendicular to the electrode plate.
  • the surface treatment apparatus according to a fourth aspect of the present invention is the surface treatment apparatus according to any one of the first to third aspects, wherein the container drive mechanism has at least a pair of rollers and a drive unit that drives the rollers. .
  • a surface treatment apparatus according to a fifth aspect of the present invention is the surface treatment apparatus according to any one of the first to fourth aspects.
  • the container drive mechanism includes a stopper that stops the movement of the container.
  • the surface treatment apparatus is the surface treatment apparatus according to any one of the first to fifth aspects, wherein the surface treatment unit forms a thin film on the surface of a spherical, columnar or polyhedral object to be treated. It has a plasma generation unit for film formation.
  • the surface treatment method according to the seventh aspect of the present invention includes a housing step for housing a container in which the object to be processed is stored, and at least one of a reciprocating operation and a swinging operation of the container to place the object in the container. And a processing step of processing the surface of the object to be processed while rolling.
  • a surface treatment method according to an eighth aspect of the present invention is the surface treatment method according to the seventh aspect, wherein the container is caused to perform at least one of a reciprocating motion and a rocking motion in a plane substantially perpendicular to gravity.
  • a surface treatment method according to a ninth aspect of the present invention is the surface treatment method according to the seventh aspect or the eighth aspect, wherein the container is swung in the direction of gravity.
  • the surface of the object to be processed can be uniformly processed by reciprocating or swinging the container.
  • FIG. 2 is a cross-sectional view taken along the line II-II for explaining the transport system structure of the film forming chamber of FIG.
  • the perspective view of the conveyance mechanism provided in the film-forming chamber of FIG. (A)-(C) is a side view for explaining the reciprocating motion of the container.
  • FIGS. 5A to 5C are cross-sectional views showing the state of rolling of the object to be processed in the container in FIGS. 4A to 4C, respectively.
  • FIGS. 7A to 7C are side views for explaining a first modified example of the operation of the container.
  • FIGS. FIGS. 7A to 7H are side views for explaining a second modified example of the operation of the container.
  • FIGS. FIGS. 9A to 9C are side views for explaining a third modification of the operation of the container.
  • FIGS. Sectional drawing which shows the 1st modification of a container accommodating part. Sectional drawing which shows the 2nd modification of a container accommodating part.
  • FIG. 1 is a block diagram of an in-line plasma CVD (Chemical Vapor Deposition) apparatus showing an embodiment of the present invention.
  • the plasma CVD apparatus 1 includes a load chamber 10, a heating chamber 20, and a film formation chamber 30.
  • the load chamber 10 is a chamber for mounting the container 51 containing the object to be processed on the cart 41.
  • the container 51 is formed with an accommodating portion 52 that opens from the upper surface in the thickness direction.
  • the accommodating portion 52 has a flat bottom surface, and a small object to be processed such as a spherical shape, a cylindrical shape, or a polyhedron is accommodated in the accommodating portion 52.
  • the load chamber 10 is provided with a transport mechanism 60A.
  • the transport mechanism 60 ⁇ / b> A includes a large number of rollers 11.
  • a cart 41 is mounted on the roller 11. Details of the transport mechanism will be described later.
  • the heating chamber 20 is a chamber for preheating the object to be processed.
  • the heating chamber 20 is provided with a lamp heater 22 and a transport mechanism 60B.
  • the transport mechanism 60 ⁇ / b> B includes a large number of rollers 21.
  • the workpiece is heated by a lamp heater.
  • a vacuum pump 25 for exhausting the gas in the heating chamber 20 is provided via the gas valve 27 and piping.
  • the film forming chamber 30 is a chamber for performing processing on the surface of the object to be processed.
  • the film forming chamber 30 is provided with a transport mechanism 60C.
  • the transport mechanism 60 ⁇ / b> C includes a large number of rollers 31.
  • a cart 41 is mounted on the roller 31, and a sheathed heater 33 is provided on the lower surface of the cart 41 to heat the object to be processed contained in the container 51 via the cart 41.
  • An electrode plate 34 is provided above the sheathed heater 33 and the roller 31.
  • An RF power source 35 is connected to the electrode plate 34.
  • a mass flow controller 36 and an introduction gas valve for adjusting the flow rate of the source gas supplied into the film forming chamber 30 are provided.
  • An exhaust valve 39 and a vacuum pump 38 are provided for exhausting gas flowing through the mass flow controller 36 and the gas introduction valve 37 during film formation.
  • FIG. 2 is a cross-sectional view of the region including the transport mechanism 60C and the sheathed heater 33 in the film forming chamber 30 of FIG. 1 taken along the line II-II.
  • FIG. 3 shows the cart 41, the container 51, and the transport mechanism 60C. It is a perspective view. However, in FIG. 3, the base 61, the support mechanism, and the like are not shown for the convenience of the drawing.
  • the transport mechanisms 60A and 60B have the same structure as the transport mechanism 60C.
  • the roller 31 and the mechanism for driving the roller 31 are formed symmetrically on the left and right. Although only two pairs of each roller 31 are shown in FIG. 1, in practice, a large number of pairs are arranged with one pair on the left and right.
  • FIG. 3 shows the cart 41, the container 51, and the transport mechanism 60C. It is a perspective view. However, in FIG. 3, the base 61, the support mechanism, and the like are not shown for the convenience of the drawing.
  • the transport mechanisms 60A and 60B have the same structure
  • Each roller 31 is rotatably supported on a base 61 (see FIG. 2) by a rotation shaft 77 thereof.
  • a motor 62 is disposed outside the base 61, and a rotating shaft 63 of the motor 62 is coupled to a bevel gear 64.
  • a bevel gear 72 meshes with the bevel gear 64. The shaft angle between the bevel gear 64 and the bevel gear 72 is 90 degrees.
  • a shaft 71 is provided at the center of the bevel gear 72.
  • Four bevel gears 73 are provided on the shaft 71.
  • Each bevel gear 73 is disposed in a region corresponding to the rotation shaft 77 of the roller 31, and a bevel gear 74 that meshes with each bevel gear 73 is provided on the rotation shaft 77 of each roller 31.
  • the shaft angle of the bevel gear 73 and the bevel gear 74 is 90 degrees.
  • a cart 41 is mounted on the roller 31.
  • the cart 41 is moved in the rotation direction of the roller 31 by driving the motor 62 and rotating the roller 31.
  • a container 51 is fixed on the cart 41 by a fixing tool (not shown). Accordingly, the container 51 is moved integrally with the cart 41 by the roller 31.
  • the transport mechanism 60C is configured as described above, and as shown in FIG. 3, when the rotating shaft 63 of the motor 62 rotates clockwise as indicated by the ⁇ mark, the bevel gear 64-the bevel gear 72-the shaft 71- The rotating shaft 77 of the roller 31 is rotated counterclockwise via the bevel gear 73-bevel gear 74, and the cart 41 mounted on the roller 31 is conveyed in the left direction.
  • the rotation shaft 63 of the motor 62 is rotated counterclockwise, the rotation shaft 77 of the roller 31 is rotated clockwise through the same transmission path, and the cart 41 mounted on the roller 31 is conveyed to the right. .
  • a sheathed heater 33 is provided between the left and right rollers 31 on the lower surface of the cart 41.
  • the sheathed heater 33 has a structure in which a heating element 82 such as a nichrome wire is held in a metal case 81 and an inorganic insulating material is firmly filled therebetween.
  • the sheathed heater 33 is disposed on the lower surface of the cart 41 so as to be close to the cart 41, and quickly heats the target object accommodated in the accommodating portion 52 of the container 51 via the cart 41 and the container 51. To do.
  • the container 51 in which the object to be processed is accommodated in the accommodating portion 52 is attached to the cart 41 mounted on the roller 11 of the load chamber 10.
  • the cart 41 to which the container 51 is attached may be disposed on the roller 11 so that the object to be processed is accommodated in the accommodating portion 52 of the container 51.
  • the element for solar cells which has an n type diffused layer on the surface of spherical p-type silicon can be mentioned.
  • the solar cell element is a spherical body having a diameter of about 0.5 to 1.0 mm. This illustration is not meant to limit the invention, but is intended to clarify.
  • Opening the gate valve 2 and driving the motor to rotate the roller 11 conveys the cart 41 and the container 51 to the heating chamber 20.
  • the gate valve 2 is closed, the heating chamber 20 is evacuated by the vacuum pump 25, and the object to be processed accommodated in the accommodating portion 52 of the container 51 is preheated by the lamp heater 22.
  • the cart 51 and the container 51 containing the preheated object to be processed are conveyed to the film forming chamber 30.
  • the gate valve 3 is closed, and the film forming chamber 30 is evacuated by the vacuum pump 38.
  • the raw material is introduced into the film forming chamber 30 by adjusting the flow rate by the mass flow controller 36 while heating the object in the container 52 of the container 51 by the sheath heater 33. Further, power is supplied from the RF power source 35 to the electrode plate 34.
  • the cart 41 is made of carbon or the like, plasma is generated using the electrode plate 34 as a cathode and the cart 41 as an anode.
  • SiNx as a passivation film on the surface of a spherical solar cell element to be processed
  • SiH 4 silane
  • NH 3 ammonia
  • N 2 nitrogen gas
  • FIGS. 5A to 5C are side views showing the movement states of the cart 41 and the container 51 conveyed by the conveyance mechanism 60C.
  • FIGS. 5A to 5C are respectively the same as FIG.
  • FIG. 6 is a view for illustrating a rolling state of an object to be processed 55 accommodated in an accommodating portion 52 of a container 51 at positions corresponding to (C) to (C).
  • FIG. 4A shows a state before the motor 62 rotates. In this state, the cart 41 and the container 51 are stationary, and the bottom surface of the container 52 of the container 51 is substantially flat. Therefore, the workpiece 55 accommodated in the container 52 of the container 51 is As shown in FIG. 4 (A), it is distributed almost uniformly over the entire bottom surface of the accommodating portion 52.
  • the motor 62 is driven to rotate the rotating shaft 63 in the clockwise direction, and the roller is passed through the transmission path of the bevel gear 64 -the bevel gear 72 -the shaft 71 -the bevel gear 73 -the bevel gear 74. 31 is rotated counterclockwise.
  • the container 51 is moved together with the cart 41 in the direction of the left arrow (left side) shown in the figure, and the state shown in FIG. 4B is obtained.
  • the motor 62 is stopped at this position, as shown in FIG. 5B, the workpiece 55 accommodated in the accommodating portion 52 of the container 51 rotates the bottom surface of the accommodating portion 52 by the action of inertia force. It moves while contacting the inner wall on the left side of the accommodating portion 52.
  • the rotating shaft 63 of the motor 62 is rotated counterclockwise, which is the reverse direction, and the roller 31 is rotated clockwise through the same transmission path as described above.
  • the container 51 is moved together with the cart 41 in the direction of the ⁇ mark (right side) shown in the figure, and the state shown in FIG.
  • the motor 62 is stopped at the timing when the cart 41 and the container 51 reach the position shown in FIG. 4 (C), as shown in FIG. 5 (C)
  • the object to be processed accommodated in the accommodating portion 52 of the container 51. 55 moves while rotating the bottom surface of the housing portion 52 by the action of inertial force, and abuts on the right inner wall of the housing portion 52.
  • the driving shown in FIGS. 4B to 4C is repeated, and during this time, the film formation on the object 55 is continued, so that a thin film is uniformly formed on the entire surface of each object 55. can do.
  • the entire surface of the solar cell element is supplied by supplying SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen gas) as source gases. Then, SiN x is formed in a uniform film thickness.
  • the container 51 is reciprocated to form a thin film on the surface of the object to be processed 55 while rolling the bottom surface of the accommodating part 52 of the spherical object to be processed 55.
  • the thin film formed on the entire surface can have a uniform thickness.
  • the object to be processed 55 is accommodated in the accommodating part 52 having a substantially flat bottom surface, the object to be processed 55 is widely dispersed on the bottom surface of the accommodating part 52 and the rolling area is widened. Rolling is ensured, and the amount of objects to be processed that can be accommodated in the accommodating portion 52 can be increased. Note that other operations may be performed on the container 51 instead of the reciprocating operation. The modification is shown below.
  • FIG. 6A to 6C are diagrams for explaining a method of swinging the container 51.
  • FIG. The transport mechanism 60 has a support shaft 67 at the center of the base 61 that serves as the center of swinging of the base 61.
  • FIG. 6A shows a state in which the base 61 is stationary in a direction substantially perpendicular to the gravity (horizontal direction). From this state, when the base 61 is rotated clockwise about the support shaft 67 as shown by the arrow ⁇ in the figure, the container 51 is tilted downward with the cart 41 as shown in FIG. 6B. To do. For this reason, the target object accommodated in the accommodating part 52 of the container 51 moves to the lower right side while the target object 55 rotates the bottom surface of the accommodating part 52.
  • the container 51 is moved upward together with the cart 41 as shown in FIG. 6C. Tilt. For this reason, the object to be processed accommodated in the accommodating part 52 of the container 51 moves downward on the left side while the object to be processed 55 rotates the bottom surface of the accommodating part 52.
  • a thin film is formed on the surface of the object to be processed.
  • a thin film having a uniform thickness can also be formed on the surface of the object to be processed by swinging the container in which the object to be processed is accommodated.
  • an appropriate driving mechanism such as connecting a rod of a reciprocating cylinder or an eccentric cam rotated by a motor to the end of the base 61 is adopted. Can do.
  • FIGS. 7A to 7H are views for explaining a method for causing a container to perform a combined operation of a reciprocating operation and a swinging operation.
  • FIG. 7A shows a state where the base 61 is stationary in a state (horizontal state) perpendicular to gravity. In this state, the motor 62 is driven and the roller 31 is rotated to move the cart 41 and the container 51 in the left direction as indicated by ⁇ , and the base 61 is supported by the support shaft 67 as indicated by ⁇ .
  • FIG. 7B the container 51 is slightly lowered to the right.
  • the motor 62 is driven in the reverse direction, the roller 31 is rotated, and the cart 41 and the container 51 are moved in the left direction as indicated by ⁇ and as indicated by ⁇ .
  • the container 51 is slightly lowered to the right as shown in FIG.
  • the motor 62 is driven in the same direction and the roller 31 is rotated to move the cart 41 and the container 51 further to the left as indicated by ⁇ and as indicated by ⁇ .
  • the container 51 becomes horizontal as shown in FIG.
  • the driving shown in FIGS. 7A to 7H is repeatedly performed, and during this time, the film formation on the target object 55 is continued to form a thin film uniformly on the entire surface of each target object 55. can do.
  • the container 51 is reciprocated in the horizontal direction and is swung in the direction in which the gravity acts, so that the object to be processed accommodated in the container 52 of the container 51 is Horizontal inertial force and gravity act. For this reason, it is possible to further ensure the rolling of the object to be processed.
  • (Variation 3 of container operation) 8A to 8C show examples in which the inertial force acting on the object to be processed can be further increased.
  • stoppers 68 are provided at both ends of the base 61. The distance between the stoppers 68 is larger than the length of the cart 41, and the cart 41 can reciprocate between the stoppers 68. Moreover, the outer side surface of the both sides of the container 51 is contact
  • FIG. 8A shows a state where the motor 62 is not driven and is stopped. From this state, the motor 62 is driven, and the cart 31 and the container 51 are moved in the leftward direction indicated by ⁇ in FIG. If the motor 62 is continuously driven, the left end of the cart 41 collides with the left stopper 68 as shown in FIG. 8B. Due to the impact caused by the collision, the object to be processed accommodated in the accommodating portion 52 of the container 51 rolls reliably.
  • the cart 41 is caused to collide with the stopper 68, and the workpiece 55 accommodated in the accommodation portion 52 of the container 51 is rolled by the impact force at that time, and the cart 41 collides with the stopper 68. Since the impact at that time is larger than when the motor 62 is suddenly stopped, the rolling of the object to be processed in the accommodating portion 52 is ensured. Further, the impact force can be set to an arbitrary magnitude by adjusting the conveyance speed of the container 51.
  • FIG. 9 shows a cross-sectional view of a modified example of the accommodating portion 52 of the container 51.
  • gentle inclined portions 52 b are formed on both side edges of the bottom surface 52 a of the accommodating portion 52.
  • a steep slope 52c is formed following the gentle slope 52b.
  • the gentle inclined portion 52b prevents a minute object to be processed from being caught in a vertical corner portion that is a boundary portion between the bottom surface and the side surface, thereby restricting rolling. Further, the steep inclined portion 52c prevents the object to be processed from jumping out of the accommodating portion 52 from the gentle inclined portion 52b.
  • FIG. 10 shows a cross-sectional view of another modified example of the container 51.
  • the bottom surface 52d of the accommodating portion 52 has an arc shape.
  • the side surface of the accommodating portion 52 is a straight steeply inclined surface 52e with R at the end.
  • an overhang portion 52f is formed on the upper portion of the steeply inclined surface 52e. The overhang portion 52 f prevents the object to be processed from jumping out of the storage portion 52. Moreover, the overhang portion 52 f still drops the object to be processed that has jumped out of the storage portion 52 into the storage portion 52 again.
  • the roughness of the bottom surface of the container 52 also affects the rolling operation of the object to be processed.
  • the bottom surface of the accommodating portion 52 may be a mirror surface.
  • fine irregularities may be formed on the bottom surface of the housing portion 52.
  • the object to be processed is a polyhedron
  • the bottom surface of the accommodating part 52 is a mirror surface, one surface of the object to be processed slides on the bottom surface of the accommodating part 52 and is difficult to roll. In such a case, it is recommended to form fine irregularities on the bottom surface of the accommodating portion 52.
  • the fine unevenness formed on the bottom surface of the accommodating portion 52 is too deep or the pitch of the unevenness is larger than each surface size of the polyhedron, the polyhedron will be retained in the recess. .
  • the reciprocating operation and the swinging operation is performed on the container 51, so that the object 55 is moved on the surface of the object 55 while rolling the bottom surface of the container 52. Since the thin film is formed, the thin film formed on the entire surface of the object 55 can be made to have a uniform thickness. Further, since the object to be processed 55 is accommodated in the accommodating part 52 having a substantially flat bottom surface, the object to be processed 55 is widely dispersed on the bottom surface of the accommodating part 52, and the rolling area is widened. The moving operation can be further ensured, and the amount of the object to be processed that can be accommodated in the accommodating portion 52 can be increased to improve the productivity.
  • the case where a thin film is formed on the object to be processed has been described as an example.
  • the object to be processed is diffused or irradiated with an ion beam or the like to cause physical or chemical changes.
  • the present invention can be applied to various types of processing including the case where the process is performed.
  • the apparatus for processing the object to be processed is not limited to the plasma CVD apparatus but can be applied to other apparatuses such as a sputtering apparatus.
  • the container may be moved in a two-dimensional manner instead of a one-dimensional manner, such as by swinging the container in the horizontal state.
  • the operation of the container may be a combination of these operations and the swinging operation in the direction of gravity.
  • the processing object 55 has been described in the embodiment in which the processing object 55 is accommodated in a container 51 different from the cart 41. It can also be set as the form to do.
  • the surface treatment apparatus of the present invention can be variously modified and configured.
  • the surface treatment apparatus has a container that accommodates the object to be treated, and a space that accommodates the container.
  • a surface processing unit having a processing chamber into which a gas for processing is introduced, and a container driving mechanism for causing a container in which an object to be processed is accommodated to reciprocate or swing. If it is.
  • the present invention provides an accommodating process for accommodating a container in which an object to be treated is accommodated, and the object to be processed while rolling the object to be processed in the container by causing the container to reciprocate or swing.
  • the present invention is applied to any of the surface treatment methods including a treatment process for treating the surface of the body.

Abstract

This surface treatment method comprises a step for accommodating a container in which an object to be treated is accommodated, and a treatment step for treating a surface of the object while the container is caused to perform a reciprocating motion and/or a swinging motion, and the object is caused to roll in the container.

Description

表面処理装置および表面処理方法Surface treatment apparatus and surface treatment method
 この発明は、被処理体の表面に薄膜を成膜したり、不純物イオンを拡散する等の表面処理を施すための表面処理装置および表面処理方法に関する。 The present invention relates to a surface treatment apparatus and a surface treatment method for performing a surface treatment such as forming a thin film on the surface of an object to be treated or diffusing impurity ions.
 p型シリコン基板にn型不純物を拡散した球状の太陽電池が知られている。このような球状の部材の表面に不純物イオンを拡散したり、あるいは反射防止兼性能向上用の、例えばSiNx(窒化シリコン)等のパッシベーション膜を成膜する場合、通常の基板への表面処理と同様な方法では、均一な厚さに処理することが困難である。 A spherical solar cell in which an n-type impurity is diffused in a p-type silicon substrate is known. When diffusing impurity ions on the surface of such a spherical member, or forming a passivation film such as SiN x (silicon nitride) for preventing reflection and improving performance, surface treatment on a normal substrate and In a similar method, it is difficult to process to a uniform thickness.
 球状の被処理体の表面に、スパッタリング法あるいはプラズマCVD法により薄膜を形成する方法として、真空チャンバ内に六角筒型バレルを配置し、この六角筒型バレルを、重力に対して垂直な方向に配置された軸を中心に回転させ、六角筒型バレル内に収容された被処理体を攪拌させながら薄膜を形成する方法が知られている(例えば、特許文献1参照)。 As a method of forming a thin film on the surface of a spherical object by sputtering or plasma CVD, a hexagonal barrel is placed in a vacuum chamber, and the hexagonal barrel is placed in a direction perpendicular to gravity. A method is known in which a thin film is formed while rotating an object disposed in a hexagonal barrel barrel while rotating about an arranged shaft (see, for example, Patent Document 1).
特開2006-257472号公報JP 2006-257472 A
 上記先行文献に記載された方法では、六角筒型バレル内に収容された被処理体は、六角筒型バレルの回転に伴って上昇し、重力の作用によって落下させながら、被処理体の表面に薄膜を形成するものである。このようにすれば、球状の被処理体は、六角筒型バレルの回転に伴って上昇し、重力の作用によって落下する動作によって回転させ、全表面に薄膜が形成される。
 しかしながら、被処理体が球状の場合、特に、微小な部材である場合には、被処理体は、六角筒型バレルの回転に追随して上昇する作用が小さくなり、上昇する高さが極めて小さくなってしまう。つまり、被処理体は、六角筒型バレルの最も低い箇所の直ぐ近傍に、ほぼ直線状の厚い層状に集合し、殆ど攪拌作用が行われない状態となる。このため、被処理体に均一な厚さに成膜をすることが困難であった。
In the method described in the above-mentioned prior document, the object to be processed accommodated in the hexagonal cylinder barrel rises with the rotation of the hexagonal cylinder barrel and drops on the surface of the object to be processed by the action of gravity. A thin film is formed. If it does in this way, a spherical to-be-processed object will raise with rotation of a hexagonal cylinder barrel, will be rotated by the operation | movement which falls by the effect | action of gravity, and a thin film will be formed in the whole surface.
However, when the object to be processed is spherical, particularly when it is a minute member, the object to be processed has a small effect of rising following the rotation of the hexagonal barrel, and the height of the object to be processed is extremely small. turn into. In other words, the objects to be processed are gathered in a substantially linear thick layer in the immediate vicinity of the lowest part of the hexagonal cylindrical barrel, so that almost no stirring action is performed. For this reason, it has been difficult to form a film with a uniform thickness on the object to be processed.
 本発明の表面処理装置は、被処理体が収容される容器と、容器を収容する空間を有し、被処理体の表面を処理するためのガスが導入される処理室を有する表面処理ユニットと、被処理体が収容される容器を、往復動作または揺動動作の少なくとも一つの動作をさせる容器駆動機構とを具備する。
 本発明の第2の態様による表面処理装置は、第1の態様における表面処理装置において、表面処理ユニットは、容器と対向する面が平坦な電極板を含み、容器駆動機構は、容器を、電極板にほぼ平行な面内において、容器に収容される被処理体を転動させるように構成されている。
 本発明の第3の態様による表面処理装置は、第1の態様または第2の態様のいずれかの態様における表面処理装置において、表面処理ユニットは、容器と対向する面が平坦な電極板を含み、容器駆動機構は、容器を、電極板に垂直な方向に揺動動作させるように構成されている。
 本発明の第4の態様による表面処理装置は、第1乃至第3の態様のいずれかの態様における表面処理装置において、容器駆動機構は、少なくとも一対のローラと、ローラを駆動する駆動ユニットを有する。
 本発明の第5の態様による表面処理装置は、第1乃至第4の態様のいずれかの態様における表面処理装置において、容器駆動機構は、容器の移動を停止させるストッパを含む。
 本発明の第6の態様による表面処理装置は、第1乃至第5の態様のいずれかの態様における表面処理装置において、表面処理ユニットは、球状、柱状または多面体の被処理体の表面に薄膜を成膜するためのプラズマ発生ユニットを有する。
A surface treatment apparatus according to the present invention includes a container in which an object to be treated is accommodated, a surface treatment unit having a space in which the container is accommodated, and a treatment chamber into which a gas for treating the surface of the object to be treated is introduced. And a container driving mechanism for causing the container in which the object to be processed is accommodated to perform at least one of a reciprocating operation and a swinging operation.
A surface treatment apparatus according to a second aspect of the present invention is the surface treatment apparatus according to the first aspect, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container, and the container driving mechanism includes the container, the electrode The object to be processed contained in the container is configured to roll in a plane substantially parallel to the plate.
A surface treatment apparatus according to a third aspect of the present invention is the surface treatment apparatus according to any one of the first aspect and the second aspect, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container. The container drive mechanism is configured to swing the container in a direction perpendicular to the electrode plate.
The surface treatment apparatus according to a fourth aspect of the present invention is the surface treatment apparatus according to any one of the first to third aspects, wherein the container drive mechanism has at least a pair of rollers and a drive unit that drives the rollers. .
A surface treatment apparatus according to a fifth aspect of the present invention is the surface treatment apparatus according to any one of the first to fourth aspects. The container drive mechanism includes a stopper that stops the movement of the container.
The surface treatment apparatus according to a sixth aspect of the present invention is the surface treatment apparatus according to any one of the first to fifth aspects, wherein the surface treatment unit forms a thin film on the surface of a spherical, columnar or polyhedral object to be treated. It has a plasma generation unit for film formation.
 本発明の第7の態様による表面処理方法は、被処理体が収容される容器を収容する収容工程と、容器を往復動作あるいは揺動動作の少なくとも一方の動作をさせて被処理体を容器内で転動させながら被処理体の表面に処理を施す処理工程とを備えている。
 本発明の第8の態様による表面処理方法は、第7の態様の表面処理方法において、重力に対してほぼ垂直な面内において、容器を往復動作あるいは揺動動作の少なくとも一方の動作をさせる。
 本発明の第9の態様による表面処理方法は、第7の態様または第8の態様における表面処理方法において、容器を、重力方向に揺動動作させる。
The surface treatment method according to the seventh aspect of the present invention includes a housing step for housing a container in which the object to be processed is stored, and at least one of a reciprocating operation and a swinging operation of the container to place the object in the container. And a processing step of processing the surface of the object to be processed while rolling.
A surface treatment method according to an eighth aspect of the present invention is the surface treatment method according to the seventh aspect, wherein the container is caused to perform at least one of a reciprocating motion and a rocking motion in a plane substantially perpendicular to gravity.
A surface treatment method according to a ninth aspect of the present invention is the surface treatment method according to the seventh aspect or the eighth aspect, wherein the container is swung in the direction of gravity.
 この発明によれば、容器を往復動作または揺動動作させることにより、被処理体の表面を均一に処理することができるという効果を奏する。 According to the present invention, there is an effect that the surface of the object to be processed can be uniformly processed by reciprocating or swinging the container.
この発明のインライン式プラズマCVD装置のブロック図。The block diagram of the in-line type plasma CVD apparatus of this invention. 図1の成膜室の搬送系構造を説明するためのII―II線切断断面図。FIG. 2 is a cross-sectional view taken along the line II-II for explaining the transport system structure of the film forming chamber of FIG. 図1の成膜室に設けられた搬送機構の斜視図。The perspective view of the conveyance mechanism provided in the film-forming chamber of FIG. (A)~(C)は容器の往復動作を説明するための側面図。(A)-(C) is a side view for explaining the reciprocating motion of the container. (A)~(C)は、それぞれ、図4(A)~(C)における容器内の被処理体の転動の状態を示す断面図。FIGS. 5A to 5C are cross-sectional views showing the state of rolling of the object to be processed in the container in FIGS. 4A to 4C, respectively. (A)~(C)は、容器の動作の第1の変形例を説明するための側面図。FIGS. 7A to 7C are side views for explaining a first modified example of the operation of the container. FIGS. (A)~(H)は、容器の動作の第2の変形例を説明するための側面図。FIGS. 7A to 7H are side views for explaining a second modified example of the operation of the container. FIGS. (A)~(C)は、容器の動作の第3の変形例を説明するための側面図。FIGS. 9A to 9C are side views for explaining a third modification of the operation of the container. FIGS. 容器収容部の第1の変形例を示す断面図。Sectional drawing which shows the 1st modification of a container accommodating part. 容器収容部の第2の変形例を示す断面図。Sectional drawing which shows the 2nd modification of a container accommodating part.
 以下、この発明の表面処理装置および表面処理方法の一実施形態について説明する。
 図1は、本発明の一実施形態を示すインライン式プラズマCVD(Chemical Vapor Deposition)装置のブロック図ある。プラズマCVD装置1は、ロード室10、加熱室20、成膜室30を備えている。
Hereinafter, an embodiment of a surface treatment apparatus and a surface treatment method of the present invention will be described.
FIG. 1 is a block diagram of an in-line plasma CVD (Chemical Vapor Deposition) apparatus showing an embodiment of the present invention. The plasma CVD apparatus 1 includes a load chamber 10, a heating chamber 20, and a film formation chamber 30.
 ロード室10は、被処理体が収容された容器51を、カート41上に取り付けるための室である。容器51には、上面から厚さ方向に開口された収容部52が形成されている。収容部52は底面が平坦状とされ、この収容部52内には、球状、円柱状または多面体等の微小な被処理体が収容される。ロード室10には、搬送機構60Aが設けられている。搬送機構60Aは多数のローラ11を備えている。このローラ11上に、カート41が搭載される。搬送機構の詳細については、後述する。 The load chamber 10 is a chamber for mounting the container 51 containing the object to be processed on the cart 41. The container 51 is formed with an accommodating portion 52 that opens from the upper surface in the thickness direction. The accommodating portion 52 has a flat bottom surface, and a small object to be processed such as a spherical shape, a cylindrical shape, or a polyhedron is accommodated in the accommodating portion 52. The load chamber 10 is provided with a transport mechanism 60A. The transport mechanism 60 </ b> A includes a large number of rollers 11. A cart 41 is mounted on the roller 11. Details of the transport mechanism will be described later.
 加熱室20は、被処理体を予備加熱するための室である。加熱室20には、ランプヒータ22、搬送機構60Bが設けられている。搬送機構60Bは多数のローラ21を備えている。被処理体はランプヒータにより加熱される。また、ガスバルブ27および配管を介して、加熱室20内のガスを排気する真空ポンプ25が設けられている。 The heating chamber 20 is a chamber for preheating the object to be processed. The heating chamber 20 is provided with a lamp heater 22 and a transport mechanism 60B. The transport mechanism 60 </ b> B includes a large number of rollers 21. The workpiece is heated by a lamp heater. Further, a vacuum pump 25 for exhausting the gas in the heating chamber 20 is provided via the gas valve 27 and piping.
 成膜室30は、被処理体の表面に処理を施すための室である。成膜室30には、搬送機構60Cが設けられている。搬送機構60Cは多数のローラ31を備えている。ローラ31上にはカート41が搭載され、このカート41の下面に、カート41を介して容器51内に収容された被処理体を加熱するシーズヒータ33が設けられている。
 シーズヒータ33およびローラ31の上方には、電極板34が設けられている。電極板34にはRF電源35が接続されている。また、成膜室30内に供給される原料ガスの流量を調整するマスフローコントローラ36および導入ガスバルブが設けられている。成膜時にマスフローコントローラ36およびガス導入バルブ37を通して流れるガスを排気するための排気バルブ39及び真空ポンプ38が設けられている。
The film forming chamber 30 is a chamber for performing processing on the surface of the object to be processed. The film forming chamber 30 is provided with a transport mechanism 60C. The transport mechanism 60 </ b> C includes a large number of rollers 31. A cart 41 is mounted on the roller 31, and a sheathed heater 33 is provided on the lower surface of the cart 41 to heat the object to be processed contained in the container 51 via the cart 41.
An electrode plate 34 is provided above the sheathed heater 33 and the roller 31. An RF power source 35 is connected to the electrode plate 34. In addition, a mass flow controller 36 and an introduction gas valve for adjusting the flow rate of the source gas supplied into the film forming chamber 30 are provided. An exhaust valve 39 and a vacuum pump 38 are provided for exhausting gas flowing through the mass flow controller 36 and the gas introduction valve 37 during film formation.
 図2は、図1の成膜室30内の搬送機構60Cおよびシーズヒータ33を含む領域をII―II線で切断した断面図であり、図3は、カート41、容器51および搬送機構60Cの斜視図である。但し、図3においては、図面の都合上、基台61、支持機構等は図示を省略されている。搬送機構60Aおよび60Bも搬送機構60Cと同様な構造を有する。
 搬送機構60Cは、ローラ31およびローラ31を駆動する機構が左右に対称に形成されている。
 各ローラ31は、図1では、二対のみが図示されているが、実際には、左右の1個ずつを一対として多数対が配置されている。図3では四対が図示されているが、これは一例であって、適宜の数量とすることができる。各ローラ31は、その回転軸77が基台61(図2参照)に回転可能に支持されている。基台61の外側にはモータ62が配置されており、モータ62の回転軸63は、傘歯車64に結合されている。傘歯車64には、傘歯車72が噛合っている。傘歯車64と傘歯車72との軸角は90度である。
2 is a cross-sectional view of the region including the transport mechanism 60C and the sheathed heater 33 in the film forming chamber 30 of FIG. 1 taken along the line II-II. FIG. 3 shows the cart 41, the container 51, and the transport mechanism 60C. It is a perspective view. However, in FIG. 3, the base 61, the support mechanism, and the like are not shown for the convenience of the drawing. The transport mechanisms 60A and 60B have the same structure as the transport mechanism 60C.
In the transport mechanism 60C, the roller 31 and the mechanism for driving the roller 31 are formed symmetrically on the left and right.
Although only two pairs of each roller 31 are shown in FIG. 1, in practice, a large number of pairs are arranged with one pair on the left and right. In FIG. 3, four pairs are illustrated, but this is an example and can be an appropriate number. Each roller 31 is rotatably supported on a base 61 (see FIG. 2) by a rotation shaft 77 thereof. A motor 62 is disposed outside the base 61, and a rotating shaft 63 of the motor 62 is coupled to a bevel gear 64. A bevel gear 72 meshes with the bevel gear 64. The shaft angle between the bevel gear 64 and the bevel gear 72 is 90 degrees.
 傘歯車72の中心には、軸71が設けられている。軸71には、4個の傘歯車73が設けられている。各傘歯車73は、ローラ31の回転軸77に対応する領域に配置されており、各傘歯車73に噛合う傘歯車74が各ローラ31の回転軸77に設けられている。傘歯車73と傘歯車74の軸角は90度である。 A shaft 71 is provided at the center of the bevel gear 72. Four bevel gears 73 are provided on the shaft 71. Each bevel gear 73 is disposed in a region corresponding to the rotation shaft 77 of the roller 31, and a bevel gear 74 that meshes with each bevel gear 73 is provided on the rotation shaft 77 of each roller 31. The shaft angle of the bevel gear 73 and the bevel gear 74 is 90 degrees.
 ローラ31上にはカート41が搭載される。このカート41は、モータ62を駆動してローラ31を回転することによりローラ31の回転方向に移動される。カート41上には、容器51が固定具(図示せず)により固定されている。従って、容器51は、カート41と一体的にローラ31によって移動される。 A cart 41 is mounted on the roller 31. The cart 41 is moved in the rotation direction of the roller 31 by driving the motor 62 and rotating the roller 31. A container 51 is fixed on the cart 41 by a fixing tool (not shown). Accordingly, the container 51 is moved integrally with the cart 41 by the roller 31.
 搬送機構60Cは、このように構成されており、図3に示すように、モータ62の回転軸63が→印に示すように時計方向に回転すると、傘歯車64-傘歯車72-軸71-傘歯車73-傘歯車74を介してローラ31の回転軸77を反時計方向に回転し、ローラ31上に搭載されたカート41を左側方向に搬送する。また、モータ62の回転軸63を反時計方向に回転すると、同じ伝達経路を経て、ローラ31の回転軸77を時計方向に回転し、ローラ31上に搭載されたカート41を右側方向に搬送する。 The transport mechanism 60C is configured as described above, and as shown in FIG. 3, when the rotating shaft 63 of the motor 62 rotates clockwise as indicated by the → mark, the bevel gear 64-the bevel gear 72-the shaft 71- The rotating shaft 77 of the roller 31 is rotated counterclockwise via the bevel gear 73-bevel gear 74, and the cart 41 mounted on the roller 31 is conveyed in the left direction. When the rotation shaft 63 of the motor 62 is rotated counterclockwise, the rotation shaft 77 of the roller 31 is rotated clockwise through the same transmission path, and the cart 41 mounted on the roller 31 is conveyed to the right. .
 カート41の下面における左右のローラ31間には、シーズヒータ33が設けられている。シーズヒータ33は、金属ケース81の中に、ニクロム線等の発熱体82を保持し、両者間に無機絶縁材料が強固に充填された構造を有する。このシーズヒータ33は、カート41の下面に、カート41に接近して配置されており、カート41および容器51を介して、容器51の収容部52内に収容された被処理体を速やかに加熱する。 A sheathed heater 33 is provided between the left and right rollers 31 on the lower surface of the cart 41. The sheathed heater 33 has a structure in which a heating element 82 such as a nichrome wire is held in a metal case 81 and an inorganic insulating material is firmly filled therebetween. The sheathed heater 33 is disposed on the lower surface of the cart 41 so as to be close to the cart 41, and quickly heats the target object accommodated in the accommodating portion 52 of the container 51 via the cart 41 and the container 51. To do.
 次に、このプラズマCVD装置1により被処理体の表面に薄膜を形成する方法について説明する。
 先ず、ロード室10のローラ11上に搭載されたカート41に、収容部52内に被処理体が収容された容器51を取り付ける。容器51が取り付けられたカート41をローラ11上に配置して、容器51の収容部52内に被処理体を収容するようにしてもよい。
 被処理体の一例として、球状のp型シリコンの表面にn型拡散層を有する太陽電池用素子を挙げることができる。太陽電池用素子は、直径が0.5~1.0mm程度の球状体である。この例示は、本発明を限定する意味ではなく、理解を明確にすることを目的とするものである。
Next, a method for forming a thin film on the surface of the object to be processed by the plasma CVD apparatus 1 will be described.
First, the container 51 in which the object to be processed is accommodated in the accommodating portion 52 is attached to the cart 41 mounted on the roller 11 of the load chamber 10. The cart 41 to which the container 51 is attached may be disposed on the roller 11 so that the object to be processed is accommodated in the accommodating portion 52 of the container 51.
As an example of a to-be-processed object, the element for solar cells which has an n type diffused layer on the surface of spherical p-type silicon can be mentioned. The solar cell element is a spherical body having a diameter of about 0.5 to 1.0 mm. This illustration is not meant to limit the invention, but is intended to clarify.
 仕切弁2を開き、モータを駆動してローラ11を回転することにより、カート41および容器51を加熱室20に搬送する。仕切弁2を閉じ、真空ポンプ25により加熱室20を真空にして、ランプヒータ22により容器51の収容部52内に収容された被処理体を予備加熱する。 Opening the gate valve 2 and driving the motor to rotate the roller 11 conveys the cart 41 and the container 51 to the heating chamber 20. The gate valve 2 is closed, the heating chamber 20 is evacuated by the vacuum pump 25, and the object to be processed accommodated in the accommodating portion 52 of the container 51 is preheated by the lamp heater 22.
 次に、仕切弁3を開き、モータを駆動してローラ21を回転することにより、カート41および予備加熱された被処理体が収容された容器51を成膜室30に搬送する。仕切弁3を閉じ、真空ポンプ38により、成膜室30内を真空にする。シーズヒータ33により、容器51の収容部52内の被処理体を加熱しながらマスフローコントローラ36により流量を調整して原材料を成膜室30内に導入する。また、RF電源35から電極板34に電力を供給する。カート41がカーボン等により形成されていると、電極板34を陰極、カート41を陽極として、プラズマが発生する。 Next, by opening the gate valve 3 and driving the motor to rotate the roller 21, the cart 51 and the container 51 containing the preheated object to be processed are conveyed to the film forming chamber 30. The gate valve 3 is closed, and the film forming chamber 30 is evacuated by the vacuum pump 38. The raw material is introduced into the film forming chamber 30 by adjusting the flow rate by the mass flow controller 36 while heating the object in the container 52 of the container 51 by the sheath heater 33. Further, power is supplied from the RF power source 35 to the electrode plate 34. When the cart 41 is made of carbon or the like, plasma is generated using the electrode plate 34 as a cathode and the cart 41 as an anode.
 被処理体である球状の太陽電池用素子の表面にパッシベーション膜としてSiNxを形成する一例について説明する。この例では、原料ガスとして、SiH4(シラン)、NH3(アンモニア)、N2(窒素ガス)を供給する。この成膜工程中、モータ63を駆動してカート41および容器51を、図1において、左右方向に往復移動させ、容器51の収容部52内に収容された被処理体を収容部52内において転動させる。 An example of forming SiNx as a passivation film on the surface of a spherical solar cell element to be processed will be described. In this example, SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen gas) are supplied as source gases. During this film forming process, the motor 63 is driven to reciprocate the cart 41 and the container 51 in the left-right direction in FIG. 1, and the object to be processed accommodated in the accommodating part 52 of the container 51 is contained in the accommodating part 52. Roll.
 図4(A)~(C)は、搬送機構60Cにより搬送されるカート41と容器51の移動状態を示す側面図であり、図5(A)~(C)は、それぞれ、図4(A)~(C)に対応する位置における容器51の収容部52内に収容された被処理体55の転動の状態を示すための図である。
 図4(A)は、モータ62が回転する前の状態を示す。この状態では、カート41および容器51は静止しており、容器51の収容部52の底面はほぼ平坦とされているので、容器51の収容部52内に収容された被処理体55は、図4(A)に図示されるように、収容部52の底面の全面にほぼ一様に分散している。
4A to 4C are side views showing the movement states of the cart 41 and the container 51 conveyed by the conveyance mechanism 60C. FIGS. 5A to 5C are respectively the same as FIG. FIG. 6 is a view for illustrating a rolling state of an object to be processed 55 accommodated in an accommodating portion 52 of a container 51 at positions corresponding to (C) to (C).
FIG. 4A shows a state before the motor 62 rotates. In this state, the cart 41 and the container 51 are stationary, and the bottom surface of the container 52 of the container 51 is substantially flat. Therefore, the workpiece 55 accommodated in the container 52 of the container 51 is As shown in FIG. 4 (A), it is distributed almost uniformly over the entire bottom surface of the accommodating portion 52.
 図4(A)の状態から、モータ62を駆動して回転軸63を時計方向に回転させ、傘歯車64-傘歯車72-軸71-傘歯車73-傘歯車74の伝達経路を介してローラ31を反時計方向に回転させる。これにより、同図に図示の←印(左側)方向にカート41と共に容器51が移動されて、図4(B)に示す状態となる。この位置で、モータ62を停止すると、図5(B)に示すように、容器51の収容部52内に収容されている被処理体55は、慣性力の作用で収容部52の底面を回転しながら移動し、収容部52の左側の内壁に当接する。 From the state of FIG. 4A, the motor 62 is driven to rotate the rotating shaft 63 in the clockwise direction, and the roller is passed through the transmission path of the bevel gear 64 -the bevel gear 72 -the shaft 71 -the bevel gear 73 -the bevel gear 74. 31 is rotated counterclockwise. As a result, the container 51 is moved together with the cart 41 in the direction of the left arrow (left side) shown in the figure, and the state shown in FIG. 4B is obtained. When the motor 62 is stopped at this position, as shown in FIG. 5B, the workpiece 55 accommodated in the accommodating portion 52 of the container 51 rotates the bottom surface of the accommodating portion 52 by the action of inertia force. It moves while contacting the inner wall on the left side of the accommodating portion 52.
 次に、モータ62の回転軸63を逆方向である反時計方向に回転させ、上述と同じ伝達経路を介して、ローラ31を時計方向に回転させる。これにより、同図に図示の→印(右側)方向にカート41と共に容器51が移動されて図4(C)に示す状態となる。カート41と容器51が図4(C)に示す位置に達したタイミングでモータ62を停止すると、図5(C)に示すように、容器51の収容部52内に収容されている被処理体55は、慣性力の作用で収容部52の底面を回転しながら移動し、収容部52の右側の内壁に当接する。 Next, the rotating shaft 63 of the motor 62 is rotated counterclockwise, which is the reverse direction, and the roller 31 is rotated clockwise through the same transmission path as described above. As a result, the container 51 is moved together with the cart 41 in the direction of the → mark (right side) shown in the figure, and the state shown in FIG. When the motor 62 is stopped at the timing when the cart 41 and the container 51 reach the position shown in FIG. 4 (C), as shown in FIG. 5 (C), the object to be processed accommodated in the accommodating portion 52 of the container 51. 55 moves while rotating the bottom surface of the housing portion 52 by the action of inertial force, and abuts on the right inner wall of the housing portion 52.
 図4(B)~図4(C)に図示される駆動を、繰り返し行い、その間、被処理体55への成膜を続けることにより、各被処理体55の全表面に均一に薄膜を形成することができる。例えば、被処理体55が上述した太陽電池用素子の場合、原料ガスとして、SiH4(シラン)、NH3(アンモニア)、N2(窒素ガス)を供給することにより、太陽電池用素子の全表面にSiNxが均一な膜厚に成膜される。 The driving shown in FIGS. 4B to 4C is repeated, and during this time, the film formation on the object 55 is continued, so that a thin film is uniformly formed on the entire surface of each object 55. can do. For example, in the case where the object 55 is the above-described solar cell element, the entire surface of the solar cell element is supplied by supplying SiH 4 (silane), NH 3 (ammonia), and N 2 (nitrogen gas) as source gases. Then, SiN x is formed in a uniform film thickness.
 上述した実施形態では、容器51を往復動作させることにより、球状の被処理体55を収容部52の底面を転動させながら被処理体55の表面に薄膜を形成するので、被処理体55の全表面に形成される薄膜を均一な厚さにすることができる。また、被処理体55を底面がほぼ平坦状の収容部52内に収容するので、被処理体55は収容部52の底面に広く分散され、転動する領域が広くなるので、被処理体の転動が確実となり、また、収容部52内に収容できる被処理体の量を多くすることができる。
 なお、容器51に対しては往復動作に変えて他の動作をさせてもよい。以下にその変形例を示す。
In the above-described embodiment, the container 51 is reciprocated to form a thin film on the surface of the object to be processed 55 while rolling the bottom surface of the accommodating part 52 of the spherical object to be processed 55. The thin film formed on the entire surface can have a uniform thickness. Further, since the object to be processed 55 is accommodated in the accommodating part 52 having a substantially flat bottom surface, the object to be processed 55 is widely dispersed on the bottom surface of the accommodating part 52 and the rolling area is widened. Rolling is ensured, and the amount of objects to be processed that can be accommodated in the accommodating portion 52 can be increased.
Note that other operations may be performed on the container 51 instead of the reciprocating operation. The modification is shown below.
(容器動作の変形例1)
 図6(A)~(C)は、容器51を揺動動作させる方法を説明するための図である。
 搬送機構60は、基台61の中心に、基台61の揺動の中心となる支軸67を有する。図6(A)は、基台61が重力に対してほぼ垂直な方向(水平方向)に静止している状態を示す。この状態から、図示の↑印の如く、基台61を支軸67を中心に時計方向に回転すると、図6(B)に図示されているように、カート41と共に容器51が右下がりに傾斜する。このため、容器51の収容部52内に収容された被処理体は、被処理体55が収容部52の底面を回転しながら、右側下方に移動する。
(Variation 1 of container operation)
6A to 6C are diagrams for explaining a method of swinging the container 51. FIG.
The transport mechanism 60 has a support shaft 67 at the center of the base 61 that serves as the center of swinging of the base 61. FIG. 6A shows a state in which the base 61 is stationary in a direction substantially perpendicular to the gravity (horizontal direction). From this state, when the base 61 is rotated clockwise about the support shaft 67 as shown by the arrow ↑ in the figure, the container 51 is tilted downward with the cart 41 as shown in FIG. 6B. To do. For this reason, the target object accommodated in the accommodating part 52 of the container 51 moves to the lower right side while the target object 55 rotates the bottom surface of the accommodating part 52.
 次に、図示の↓印の如く、基台61を、支軸67を中心に反時計方向に回転すると、図6(C)に図示されているように、カート41と共に容器51が右上がりに傾斜する。このため、容器51の収容部52内に収容された被処理体は、被処理体55が収容部52の底面を回転しながら、左側下方に移動する。図6(B)~図6(C)に図示された動作を繰り返し行いながら、その間、被処理体の表面に薄膜を形成する。
 このようの被処理体が収容された容器を揺動動作させることによっても、被処理体の表面に均一な厚さの薄膜を形成することができる。
 なお、基台61を駆動する構造として、基台61の端部に、往復動作するシリンダのロッドを連結する、またはモータにより回転される偏心カムを連結する等、適宜な駆動機構を採用することができる。
Next, when the base 61 is rotated counterclockwise about the support shaft 67 as shown by the ↓ mark in the figure, the container 51 is moved upward together with the cart 41 as shown in FIG. 6C. Tilt. For this reason, the object to be processed accommodated in the accommodating part 52 of the container 51 moves downward on the left side while the object to be processed 55 rotates the bottom surface of the accommodating part 52. While repeatedly performing the operations shown in FIGS. 6B to 6C, a thin film is formed on the surface of the object to be processed.
A thin film having a uniform thickness can also be formed on the surface of the object to be processed by swinging the container in which the object to be processed is accommodated.
As a structure for driving the base 61, an appropriate driving mechanism such as connecting a rod of a reciprocating cylinder or an eccentric cam rotated by a motor to the end of the base 61 is adopted. Can do.
(容器動作の変形例2)
 図7(A)~(H)は、容器に、往復動作と揺動動作の複合的な動作をさせる方法を説明するための図である。
 図7(A)は、基台61を、重力に対して、垂直な状態(水平状態)に静止している状態を示す。
 この状態で、モータ62を駆動し、ローラ31を回転させて、←印に示すようにカート41と容器51を左側方向に移動させると共に、↑印に示すように基台61を、支軸67を中心に時計方向に回転させると、図7(B)に図示するように容器51は少し右下がりの状態となる。
(Variation 2 of container operation)
FIGS. 7A to 7H are views for explaining a method for causing a container to perform a combined operation of a reciprocating operation and a swinging operation.
FIG. 7A shows a state where the base 61 is stationary in a state (horizontal state) perpendicular to gravity.
In this state, the motor 62 is driven and the roller 31 is rotated to move the cart 41 and the container 51 in the left direction as indicated by ←, and the base 61 is supported by the support shaft 67 as indicated by ↑. As shown in FIG. 7B, the container 51 is slightly lowered to the right.
 図7(B)の状態から、さらに、モータ62を同方向に駆動し、ローラ31を回転させて、←印に示すようにカート41と容器51をさらに左側方向に移動させると共に、↑印に示すように基台61を、支軸67を中心にさらに時計方向に回転させると、図7(C)に図示するように容器51はさらに右下がりの状態となる。 From the state of FIG. 7B, the motor 62 is further driven in the same direction, the roller 31 is rotated, and the cart 41 and the container 51 are moved further leftward as indicated by ← and ↑ As shown in FIG. 7, when the base 61 is further rotated clockwise about the support shaft 67, the container 51 is further lowered to the right as shown in FIG.
 図7(C)の状態で、モータ62を逆方向に回転させて、ローラ31を逆方向に回転し、→印に示すようにカート41と容器51を右側方向に移動させると共に、↓印に示すように基台61を、支軸67を中心に反時計方向に回転させると、図7(D)に図示するように容器51は少し右下がりの状態となる。
 図7(D)の状態から、さらに、モータ62を同方向に駆動し、ローラ31を回転させて、→印に示すようにカート41と容器51をさらに右側方向に移動させると共に、↓印に示すように基台61を、支軸67を中心にさらに反時計方向に回転させると、図7(E)に図示するように、カート41と容器51は水平状態となる。
In the state of FIG. 7C, the motor 62 is rotated in the reverse direction, the roller 31 is rotated in the reverse direction, and the cart 41 and the container 51 are moved in the right direction as indicated by the → mark, and the ↓ mark is displayed. As shown, when the base 61 is rotated counterclockwise about the support shaft 67, the container 51 is slightly lowered to the right as shown in FIG.
From the state of FIG. 7D, the motor 62 is further driven in the same direction, the roller 31 is rotated, and the cart 41 and the container 51 are moved further to the right as shown by the → mark, and As shown in FIG. 7, when the base 61 is further rotated counterclockwise around the support shaft 67, the cart 41 and the container 51 are in a horizontal state as shown in FIG.
 図7(E)の状態から、さらに、モータ62を同方向に駆動し、ローラ31を回転させて、→印に示すようにカート41と容器51をさらに右側方向に移動させると共に、↓印に示すように基台61を、支軸67を中心にさらに反時計方向に回転させると、図6(F)に図示するように容器51は少し右上がりの状態となる。
 図7(F)の状態から、さらに、モータ62を同方向に駆動し、ローラ31を回転させて、→印に示すようにカート41と容器51をさらに右側方向に移動させると共に、↓印に示すように基台61を、支軸67を中心にさらに反時計方向に回転させると、図7(G)に図示するように容器51はさらに右上がりの状態となる。
From the state of FIG. 7E, the motor 62 is further driven in the same direction, the roller 31 is rotated, and the cart 41 and the container 51 are moved further to the right as indicated by the → mark, and the ↓ mark As shown in FIG. 6, when the base 61 is further rotated counterclockwise around the support shaft 67, the container 51 is slightly raised to the right as shown in FIG.
From the state of FIG. 7F, the motor 62 is further driven in the same direction, the roller 31 is rotated, and the cart 41 and the container 51 are further moved to the right as shown by the → mark, and the ↓ mark As shown, when the base 61 is further rotated counterclockwise about the support shaft 67, the container 51 is further raised to the right as shown in FIG.
 図7(G)の状態から、モータ62を逆方向に駆動し、ローラ31を回転させて、←印に示すようにカート41と容器51を左側方向に移動させると共に、↑印に示すように基台61を、支軸67を中心に時計方向に回転させると、図7(H)に図示するように容器51は少し右下がりの状態となる。
 図7(H)の状態から、モータ62を同方向に駆動し、ローラ31を回転させて、←印に示すようにカート41と容器51をさらに左側方向に移動させると共に、↑印に示すように基台61を、支軸67を中心にさらに時計方向に回転させると、図7(A)に図示するように容器51は水平状態となる。 
From the state of FIG. 7G, the motor 62 is driven in the reverse direction, the roller 31 is rotated, and the cart 41 and the container 51 are moved in the left direction as indicated by ← and as indicated by ↑. When the base 61 is rotated clockwise about the support shaft 67, the container 51 is slightly lowered to the right as shown in FIG.
From the state of FIG. 7H, the motor 62 is driven in the same direction and the roller 31 is rotated to move the cart 41 and the container 51 further to the left as indicated by ← and as indicated by ↑. When the base 61 is further rotated clockwise about the support shaft 67, the container 51 becomes horizontal as shown in FIG.
 図7(A)~図7(H)に図示される駆動を、繰り返し行い、その間、被処理体55への成膜を続けることにより、各被処理体55の全表面に均一に薄膜を形成することができる。
 この容器動作の変形例2では、容器51を水平方向に往復動作させながら、且つ、重力の作用する方向に揺動動作させるので、容器51の収容部52内に収容された被処理体には、水平方向の慣性力と重力とが作用する。このため、被処理体の転動をさらに確実にすることができる。
The driving shown in FIGS. 7A to 7H is repeatedly performed, and during this time, the film formation on the target object 55 is continued to form a thin film uniformly on the entire surface of each target object 55. can do.
In the second variation of the container operation, the container 51 is reciprocated in the horizontal direction and is swung in the direction in which the gravity acts, so that the object to be processed accommodated in the container 52 of the container 51 is Horizontal inertial force and gravity act. For this reason, it is possible to further ensure the rolling of the object to be processed.
(容器動作の変形例3)
 図8(A)~(C)は、被処理体に作用する慣性力を一層大きくすることができる例を示す。
 この実施例の搬送機構60には、基台61の両端にストッパ68が設けられている。ストッパ68の間隔は、カート41の長さより大きくされ、ストッパ68間でカート41が往復動作可能な長さとなっている。また、容器51の両側の外側面は、カート41に植立されたストップピン56に当接され、長さ方向への移動が規制されている。
(Variation 3 of container operation)
8A to 8C show examples in which the inertial force acting on the object to be processed can be further increased.
In the transport mechanism 60 of this embodiment, stoppers 68 are provided at both ends of the base 61. The distance between the stoppers 68 is larger than the length of the cart 41, and the cart 41 can reciprocate between the stoppers 68. Moreover, the outer side surface of the both sides of the container 51 is contact | abutted to the stop pin 56 planted by the cart 41, and the movement to a length direction is controlled.
 図8(A)は、モータ62が駆動されず、停止した状態である。この状態から、モータ62を駆動して、ローラ31により、カート41と容器51を同図の←印に示された左側方向に移動する。モータ62を駆動し続けると、図8(B)に図示されるように、左側のストッパ68にカート41の左端が衝突する。この衝突による衝撃により、容器51の収容部52内に収容されている被処理物は、確実に転動する。 FIG. 8A shows a state where the motor 62 is not driven and is stopped. From this state, the motor 62 is driven, and the cart 31 and the container 51 are moved in the leftward direction indicated by ← in FIG. If the motor 62 is continuously driven, the left end of the cart 41 collides with the left stopper 68 as shown in FIG. 8B. Due to the impact caused by the collision, the object to be processed accommodated in the accommodating portion 52 of the container 51 rolls reliably.
 図8(B)の状態になったら、モータ62の駆動を停止し、直後に、逆方向に回転させる。そして、→印に示されるようにカート41と容器51を右側方向に移動させ、今度は、図8(C)に図示されるように、カート41の右端を右側のストッパ68に衝突させる。この後は、モータ62の駆動を停止し、直後に、逆回転をさせる。これにより、図8(A)に示す状態を経て、図8(B)の状態となる。このように、図8(A)~図8(C)に図示された動作を繰り返し行い、その間、被処理体55への成膜を続けることにより、各被処理体55の全表面に均一に薄膜を形成することができる。 When the state shown in FIG. 8B is reached, the drive of the motor 62 is stopped and immediately after that, the motor 62 is rotated in the reverse direction. Then, the cart 41 and the container 51 are moved in the right direction as indicated by the → mark, and this time, the right end of the cart 41 is caused to collide with the right stopper 68 as shown in FIG. Thereafter, the driving of the motor 62 is stopped, and immediately after that, reverse rotation is performed. As a result, the state shown in FIG. 8B is obtained after the state shown in FIG. In this manner, the operations shown in FIGS. 8A to 8C are repeated, and during this time, the film formation on the target object 55 is continued, so that the entire surface of each target object 55 is uniformly distributed. A thin film can be formed.
 この実施形態では、カート41をストッパ68に衝突させ、その際の衝撃力で容器51の収容部52に収容された被処理物55を転動させる方法であり、カート41がストッパ68に衝突する際の衝撃は、モータ62を急に停止するより大きいので、収容部52内の被処理体の転動を確実にする。また、容器51の搬送速度を調整することにより、衝撃力を任意の大きさに設定することが可能である。 In this embodiment, the cart 41 is caused to collide with the stopper 68, and the workpiece 55 accommodated in the accommodation portion 52 of the container 51 is rolled by the impact force at that time, and the cart 41 collides with the stopper 68. Since the impact at that time is larger than when the motor 62 is suddenly stopped, the rolling of the object to be processed in the accommodating portion 52 is ensured. Further, the impact force can be set to an arbitrary magnitude by adjusting the conveyance speed of the container 51.
 また、容器51の収容部52の形状も、種々、変形することが可能であり、以下に、その変形例を示す。
(収容部形状の変形例1)
 図9は、容器51の収容部52の変形例の断面図を示す。この変形例では、収容部52の底面52aの両側縁に緩やかな傾斜部52bが形成されている。また、緩やかな傾斜部52bに引き続いて急な傾斜部52cが形成されている。緩やかな傾斜部52bは、微小な被処理体が底面と側面との境界部である垂直な角部に挟まって、転動が規制されるのを防止する。また、急な傾斜部52cは、被処理体が緩やかな傾斜部52bから、収容部52の外部に飛び出すのを防止する。
Moreover, the shape of the accommodating part 52 of the container 51 can also be variously modified, and the modified example is shown below.
(Variation 1 of the shape of the accommodating portion)
FIG. 9 shows a cross-sectional view of a modified example of the accommodating portion 52 of the container 51. In this modification, gentle inclined portions 52 b are formed on both side edges of the bottom surface 52 a of the accommodating portion 52. A steep slope 52c is formed following the gentle slope 52b. The gentle inclined portion 52b prevents a minute object to be processed from being caught in a vertical corner portion that is a boundary portion between the bottom surface and the side surface, thereby restricting rolling. Further, the steep inclined portion 52c prevents the object to be processed from jumping out of the accommodating portion 52 from the gentle inclined portion 52b.
(収容部形状の変形例2)
 図10は、容器51の別の変形例の断面図を示す。この変形例においては、収容部52の底面52dが円弧状となっている。収容部52の側面は、端部にRがついた直線状の急傾斜面52eとなっている。また、急傾斜面52eの上部には、オーバーハング部52fが形成されている。オーバーハング部52fは、被処理体が収容部52から飛び出すのを防止する。また、オーバーハング部52fは、それでも、収容部52から飛び出した被処理体を、再び、収容部52内に落下させる。
(Modification 2 of shape of housing part)
FIG. 10 shows a cross-sectional view of another modified example of the container 51. In this modification, the bottom surface 52d of the accommodating portion 52 has an arc shape. The side surface of the accommodating portion 52 is a straight steeply inclined surface 52e with R at the end. Further, an overhang portion 52f is formed on the upper portion of the steeply inclined surface 52e. The overhang portion 52 f prevents the object to be processed from jumping out of the storage portion 52. Moreover, the overhang portion 52 f still drops the object to be processed that has jumped out of the storage portion 52 into the storage portion 52 again.
 収容部52の底面の粗さも被処理体の転動動作に影響を与える。被処理体が球状であれば、収容部52の底面は鏡面であってもよい。また、被処理体と収容部の底面に多少の摩擦力を付与するために、収容部52の底面に微細な凹凸を形成してもよい。被処理体が多面体の場合は、収容部52の底面が鏡面であると、被処理体の一面が、収容部52の底面上を滑ってしまい、転動しにくくなる。このような場合には、収容部52の底面に微細な凹凸を形成することが推奨される。但し、収容部52の底面に形成される微細な凹凸が、深すぎたり、凹凸のピッチが多面体の各表面サイズより大きいと多面体は凹部内に停留するようになってしまうので留意する必要がある。 The roughness of the bottom surface of the container 52 also affects the rolling operation of the object to be processed. If the object to be processed is spherical, the bottom surface of the accommodating portion 52 may be a mirror surface. Further, in order to apply some frictional force to the object to be processed and the bottom surface of the housing portion, fine irregularities may be formed on the bottom surface of the housing portion 52. When the object to be processed is a polyhedron, if the bottom surface of the accommodating part 52 is a mirror surface, one surface of the object to be processed slides on the bottom surface of the accommodating part 52 and is difficult to roll. In such a case, it is recommended to form fine irregularities on the bottom surface of the accommodating portion 52. However, it should be noted that if the fine unevenness formed on the bottom surface of the accommodating portion 52 is too deep or the pitch of the unevenness is larger than each surface size of the polyhedron, the polyhedron will be retained in the recess. .
 以上の通り、本発明は、容器51を、往復動作または揺動動作の少なくとも一つの動作をさせることにより、被処理体55を収容部52の底面を転動させながら被処理体55の表面に薄膜を形成するので、被処理体55の全表面に形成される薄膜を均一な厚さにすることができる。また、被処理体55を底面がほぼ平坦状の収容部52内に収容するので、被処理体55は収容部52の底面に広く分散され、転動する領域が広くなり、被処理体の転動動作を一層確実とすることができ、また、収容部52内に収容できる被処理体の量を多くして生産性を向上することができる。 As described above, according to the present invention, at least one of the reciprocating operation and the swinging operation is performed on the container 51, so that the object 55 is moved on the surface of the object 55 while rolling the bottom surface of the container 52. Since the thin film is formed, the thin film formed on the entire surface of the object 55 can be made to have a uniform thickness. Further, since the object to be processed 55 is accommodated in the accommodating part 52 having a substantially flat bottom surface, the object to be processed 55 is widely dispersed on the bottom surface of the accommodating part 52, and the rolling area is widened. The moving operation can be further ensured, and the amount of the object to be processed that can be accommodated in the accommodating portion 52 can be increased to improve the productivity.
 なお、上記実施形態では被処理体上に薄膜を形成する場合を例として説明したが、被処理体に不純物イオンを拡散したり、イオンビーム等を照射して、物理的あるいは化学的変化を与えたりする場合等を含め、各種の処理を行う場合に適用することが可能である。 In the above-described embodiment, the case where a thin film is formed on the object to be processed has been described as an example. However, the object to be processed is diffused or irradiated with an ion beam or the like to cause physical or chemical changes. The present invention can be applied to various types of processing including the case where the process is performed.
 被処理体の処理を行う装置についても、プラズマCVD装置に限らず、スパッタ装置等他の装置にも適用が可能である。水平状態において、容器を往復動作させる例で説明したが、水平状態においても、容器を揺動動作させる等、一次元的でなく、二次元的な動作をさせるようにしてもよい。また、容器の動作として、これらの動作と重力方向での揺動動作とを組み合わせた動作とすることもできる。 The apparatus for processing the object to be processed is not limited to the plasma CVD apparatus but can be applied to other apparatuses such as a sputtering apparatus. Although the example in which the container is reciprocated in the horizontal state has been described, the container may be moved in a two-dimensional manner instead of a one-dimensional manner, such as by swinging the container in the horizontal state. Further, the operation of the container may be a combination of these operations and the swinging operation in the direction of gravity.
 被処理体55は、カート41とは別の容器51に収容する実施形態で説明したが、カート41に被処理体の収容部を設けて、被処理体55を直接カート41の収容部に収容する形態とすることもできる。 The processing object 55 has been described in the embodiment in which the processing object 55 is accommodated in a container 51 different from the cart 41. It can also be set as the form to do.
 その他、本発明の表面処理装置は、種々、変形して構成することが可能であり、要は、被処理体が収容される容器と、容器を収容する空間を有し、被処理体の表面を処理するためのガスが導入される処理室を有する表面処理ユニットと、被処理体が収容される容器を、往復動作または揺動動作の少なくとも一つの動作をさせる容器駆動機構とを具備するものであればよい。 In addition, the surface treatment apparatus of the present invention can be variously modified and configured. In short, the surface treatment apparatus has a container that accommodates the object to be treated, and a space that accommodates the container. A surface processing unit having a processing chamber into which a gas for processing is introduced, and a container driving mechanism for causing a container in which an object to be processed is accommodated to reciprocate or swing. If it is.
 また、本発明は、被処理体が収容される容器を収容する収容工程と、容器を往復動作あるいは揺動動作の少なくとも一方の動作をさせて被処理体を容器内で転動させながら被処理体の表面に処理を施す処理工程とを備える表面処理方法のいずれにも適用される。 In addition, the present invention provides an accommodating process for accommodating a container in which an object to be treated is accommodated, and the object to be processed while rolling the object to be processed in the container by causing the container to reciprocate or swing. The present invention is applied to any of the surface treatment methods including a treatment process for treating the surface of the body.
 以上では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第175176号(2010年8月4日出願)



























 
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application 2010 No. 175176 (filed on Aug. 4, 2010)



























Claims (9)

  1.  被処理体が収容される容器と、
     前記容器を収容する空間を有し、前記被処理体の表面を処理するためのガスが導入される処理室を有する表面処理ユニットと、
     被処理体が収容される前記容器を、往復動作または揺動動作の少なくとも一つの動作をさせる容器駆動機構と
    を具備する表面処理装置。
    A container in which an object is stored;
    A surface treatment unit having a space for accommodating the container and having a treatment chamber into which a gas for treating the surface of the object to be treated is introduced;
    A surface treatment apparatus comprising: a container driving mechanism that causes the container in which an object to be processed is accommodated to perform at least one of a reciprocating operation and a swinging operation.
  2.  請求項1に記載の表面処理装置において、前記表面処理ユニットは、前記容器と対向する面が平坦な電極板を含み、前記容器駆動機構は、前記容器を、前記電極板にほぼ平行な面内において、前記容器に収容される被処理体を転動させる。 2. The surface treatment apparatus according to claim 1, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container, and the container driving mechanism is configured to place the container in a plane substantially parallel to the electrode plate. Then, the object to be processed accommodated in the container is rolled.
  3.  請求項1または2のいずれか1項に記載の表面処理装置において、前記表面処理ユニットは、前記容器と対向する面が平坦な電極板を含み、前記容器駆動機構は、前記容器を、前記電極板に垂直な方向に揺動動作させる。 3. The surface treatment apparatus according to claim 1, wherein the surface treatment unit includes an electrode plate having a flat surface facing the container, and the container driving mechanism includes the container and the electrode. Swing motion in a direction perpendicular to the plate.
  4.  請求項1乃至3のいずれか1項に記載の表面処理装置において、前記容器駆動機構は、少なくとも一対のローラと、前記ローラを駆動する駆動ユニットを有する。 4. The surface treatment apparatus according to claim 1, wherein the container drive mechanism includes at least a pair of rollers and a drive unit that drives the rollers.
  5.  請求項1乃至4のいずれか1項に記載の表面処理装置において、前記容器駆動機構は、前記容器の移動を停止させるストッパを含む。 5. The surface treatment apparatus according to claim 1, wherein the container driving mechanism includes a stopper that stops the movement of the container.
  6.  請求項1乃至5のいずれか1項に記載の表面処理装置において、前記表面処理ユニットは、球状、柱状または多面体の被処理体の表面に薄膜を成膜するためのプラズマ発生ユニットを有する。 6. The surface treatment apparatus according to claim 1, wherein the surface treatment unit includes a plasma generation unit for forming a thin film on the surface of a spherical, columnar, or polyhedral object.
  7.  被処理体が収容される容器を収容する収容工程と、
     前記容器を往復動作あるいは揺動動作の少なくとも一方の動作をさせて前記被処理体を前記容器内で転動させながら前記被処理体の表面に処理を施す処理工程とを備える表面処理方法。
    A housing step for housing a container in which the object to be processed is housed;
    And a processing step of processing the surface of the object to be processed while rolling the object in the container by causing the container to reciprocate or swing.
  8.  請求項7に記載の表面処理方法において、重力に対してほぼ垂直な面内において、前記容器を往復動作あるいは揺動動作の少なくとも一方の動作をさせる。 8. The surface treatment method according to claim 7, wherein the container is caused to perform at least one of a reciprocating motion and a rocking motion in a plane substantially perpendicular to gravity.
  9.  請求項7または8に記載の表面処理方法において、前記容器を、重力方向に揺動動作させる。 9. The surface treatment method according to claim 7, wherein the container is swung in the direction of gravity.
PCT/JP2011/067854 2010-08-04 2011-08-04 Surface treatment device and surface treatment method WO2012018075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800375859A CN103052734A (en) 2010-08-04 2011-08-04 Surface treatment device and surface treatment method
JP2012527764A JP5811092B2 (en) 2010-08-04 2011-08-04 Surface treatment apparatus and surface treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010175176 2010-08-04
JP2010-175176 2010-08-04

Publications (1)

Publication Number Publication Date
WO2012018075A1 true WO2012018075A1 (en) 2012-02-09

Family

ID=45559571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067854 WO2012018075A1 (en) 2010-08-04 2011-08-04 Surface treatment device and surface treatment method

Country Status (3)

Country Link
JP (1) JP5811092B2 (en)
CN (1) CN103052734A (en)
WO (1) WO2012018075A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211110A1 (en) * 2012-09-21 2015-07-30 Technische Universitat Wien Device for coating a substrate made of particles
JP2016122750A (en) * 2014-12-25 2016-07-07 株式会社島津製作所 Work holder and deposition device
WO2021060160A1 (en) * 2019-09-25 2021-04-01 芝浦機械株式会社 Surface treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340953A (en) * 1989-07-06 1991-02-21 Tomoegawa Paper Co Ltd Production of formed superconductor
JPH05311408A (en) * 1992-05-06 1993-11-22 Kobe Steel Ltd Inline type arc ion plating device for spherical body
JPH09228027A (en) * 1996-02-23 1997-09-02 Ntn Corp Method for coating sphere with hard carbon film
JP2007204786A (en) * 2006-01-31 2007-08-16 Bridgestone Corp Particle coating method and particle coating apparatus
JP2008231502A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Powder agitation mechanism, method for producing metallic particulate carrying powder and catalyst for fuel cell
JP2010111920A (en) * 2008-11-06 2010-05-20 Ntn Corp Fixture for surface treatment for spherical body, surface treatment method for spherical body and method for producing spherical component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409408B2 (en) * 1993-12-27 2003-05-26 日新電機株式会社 Ion implanter
US5670218A (en) * 1995-10-04 1997-09-23 Hyundai Electronics Industries Co., Ltd. Method for forming ferroelectric thin film and apparatus therefor
JP3904658B2 (en) * 1997-03-27 2007-04-11 正路 朝本 Equipment for producing half-coated granules
JP2006342384A (en) * 2005-06-08 2006-12-21 Moritex Corp Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340953A (en) * 1989-07-06 1991-02-21 Tomoegawa Paper Co Ltd Production of formed superconductor
JPH05311408A (en) * 1992-05-06 1993-11-22 Kobe Steel Ltd Inline type arc ion plating device for spherical body
JPH09228027A (en) * 1996-02-23 1997-09-02 Ntn Corp Method for coating sphere with hard carbon film
JP2007204786A (en) * 2006-01-31 2007-08-16 Bridgestone Corp Particle coating method and particle coating apparatus
JP2008231502A (en) * 2007-03-20 2008-10-02 Ulvac Japan Ltd Powder agitation mechanism, method for producing metallic particulate carrying powder and catalyst for fuel cell
JP2010111920A (en) * 2008-11-06 2010-05-20 Ntn Corp Fixture for surface treatment for spherical body, surface treatment method for spherical body and method for producing spherical component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150211110A1 (en) * 2012-09-21 2015-07-30 Technische Universitat Wien Device for coating a substrate made of particles
JP2016122750A (en) * 2014-12-25 2016-07-07 株式会社島津製作所 Work holder and deposition device
WO2021060160A1 (en) * 2019-09-25 2021-04-01 芝浦機械株式会社 Surface treatment device
CN114450082A (en) * 2019-09-25 2022-05-06 芝浦机械株式会社 Surface treatment device
TWI779356B (en) * 2019-09-25 2022-10-01 日商芝浦機械股份有限公司 Surface treatment device

Also Published As

Publication number Publication date
JPWO2012018075A1 (en) 2013-10-03
JP5811092B2 (en) 2015-11-11
CN103052734A (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5811092B2 (en) Surface treatment apparatus and surface treatment method
TWI600789B (en) Rotational type semi-batch ald deposition apparatus
KR101123532B1 (en) Method for reciprocating a workpiece through an ion beam
US9218973B2 (en) Methods of doping substrates with ALD
US7682954B2 (en) Method of impurity introduction, impurity introduction apparatus and semiconductor device produced with use of the method
KR101289504B1 (en) Reciprocating drive for scanning a workpiece through an ion beam
WO2013161768A1 (en) Film forming method, film forming device, and film forming system
KR101561741B1 (en) Thermal processing apparatus and thermal processing method
TWI238470B (en) Film coating unit and film coating method
EP2921572A1 (en) Film deposition device
TW201945567A (en) Methods and apparatus for physical vapor deposition via linear scanning with ambient control
TWI473904B (en) Method for homogeneous reacting of chemical liquid and substrate surface and apparatus thereof
TW201934787A (en) Methods and apparatus for physical vapor deposition
JP2006060159A (en) Method and apparatus for beam irradiation
KR101089626B1 (en) Laser annealing apparatus having air bearing for transferring substrate
JPS6197836A (en) Wafer etching device
JP2014014816A (en) Substrate treating method and substrate treating apparatus
JPH05311409A (en) Arc ion plating device for spherical body
KR100546873B1 (en) Apparatus for driving a holder of a substrate
KR102169017B1 (en) Sputtering device and sputtering method
KR100430737B1 (en) An etching treatment equipment for etching the edge surface of wafer
KR20170106321A (en) Film forming device and method for manufacturing coated cutting tool
JPH05311408A (en) Inline type arc ion plating device for spherical body
KR101188257B1 (en) Arm for transfering a substrate and the method for loading and unloading a substrate using the same
KR102205398B1 (en) Sputtering apparatus and method for forming thin film using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037585.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814700

Country of ref document: EP

Kind code of ref document: A1