JP2006342384A - Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module - Google Patents

Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module Download PDF

Info

Publication number
JP2006342384A
JP2006342384A JP2005168145A JP2005168145A JP2006342384A JP 2006342384 A JP2006342384 A JP 2006342384A JP 2005168145 A JP2005168145 A JP 2005168145A JP 2005168145 A JP2005168145 A JP 2005168145A JP 2006342384 A JP2006342384 A JP 2006342384A
Authority
JP
Japan
Prior art keywords
spherical lens
filter film
full
spherical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005168145A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kawasaki
信幸 川崎
Takemori Masujima
健守 益嶋
Shuji Kano
修司 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2005168145A priority Critical patent/JP2006342384A/en
Publication of JP2006342384A publication Critical patent/JP2006342384A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in a conventional method for depositing a non-reflective filter film or the like by performing the coating on a surface of a spherical lens by using a vacuum vapor deposition method or the like, it is difficult to deposit a uniform filter film over the entire surface, the method cannot be applied to a spherical lens of a very small outside diameter, and vapor deposition scraps are deposited on the spherical lens. <P>SOLUTION: In a method for manufacturing a spherical lens with a full-face filter film to be film-deposited, a supporting container 9 of a spherical lens 8 is supported above a feed source 3 of a filter film material 2 in a vacuum chamber 1 in a rotating and revolving manner. The axis 13 of the rotating motion is inclined with respect to the vertical direction by the predetermined angle θ. The supporting container has a net-shaped part 11 at least on a bottom side. The filter film material is fed from the feed source by loading a spherical glass on the net-shaped part and turning the supporting container while rolling the spherical glass to the net-shaped part. The filter film material is coated on the entire surface of the spherical glass. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,例えば光や像を変換する画像処理分野や光通信分野において用いられ,LD(レーザダイオード)やPD(フォトダイオード)等の光半導体素子と光導波路又は光ファイバとを高効率で結合させるために用いられる全面フィルタ膜付き球レンズの製造方法,製造装置及び全面フィルタ膜付き球レンズ並びに光モジュールに関するものである。   The present invention is used, for example, in the field of image processing and optical communication for converting light and images, and optical semiconductor elements such as LDs (laser diodes) and PDs (photodiodes) and optical waveguides or optical fibers are coupled with high efficiency. The present invention relates to a manufacturing method, a manufacturing apparatus, a spherical lens with a full filter film, and an optical module.

球レンズの表面に,真空蒸着法等を用いてコーティングして無反射フィルタ膜等を形成する方法が,従来から種々提案されている。   Various methods have been proposed in the past for forming a non-reflective filter film or the like by coating the surface of a spherical lens using a vacuum deposition method or the like.

例えば特許文献1には,真空蒸着法により球レンズにフィルタ膜を形成する方法において,球レンズを,半径の異なる2つの同心円によって接触位置が規定された環状転動面に沿って所定の速度で回転させながら,フィルタ膜材料の供給源から蒸発粒子を供給し,2つの同心円間の空隙を経て球レンズの表面にコーティングすることにより無反射フィルタ膜を形成する方法が記載されている。   For example, in Patent Document 1, in a method of forming a filter film on a spherical lens by vacuum evaporation, the spherical lens is moved at a predetermined speed along an annular rolling surface whose contact position is defined by two concentric circles having different radii. A method of forming an antireflection filter film by supplying evaporated particles from a filter film material supply source while rotating and coating the surface of a spherical lens through a gap between two concentric circles is described.

また特許文献2には,真空チャンバ内の上部に,網目を有する円筒状容器を傾斜状態で回転可能に設置し,多数の被着フィルタ膜体を収納した容器を回転させながら,真空チャンバ内の下部に配置したるつぼから金属材料を蒸発させ,網目を通して被着フィルタ膜体にコーティングする方法と,上側を開口させた鍋状容器を真空チャンバ内の下部に傾斜状態で回転可能に設置すると共に,真空チャンバ内の上部にフィルタ膜材料の供給源,即ちスパッタリングのターゲットを配置し,多数の被着フィルタ膜体を収納した容器を回転させながら,供給源からの金属粒子を,開口を介して被着フィルタ膜体にコーティングする方法が記載されている。   In Patent Document 2, a cylindrical container having a mesh is rotatably installed at an upper part in a vacuum chamber, and a container containing a large number of adherent filter film bodies is rotated while the container in the vacuum chamber is rotated. A method of evaporating the metal material from the crucible placed at the bottom and coating the adherent filter membrane through the mesh, and a pan-like container with an upper opening opened in the lower part of the vacuum chamber in an inclined state, A filter film material supply source, that is, a sputtering target, is disposed in the upper part of the vacuum chamber, and the metal particles from the supply source are applied through the openings while rotating a container containing a large number of deposited filter film bodies. A method for coating an adherent filter membrane is described.

また特許文献3には,球レンズの外周につばを設けると共に,球レンズよりも大きく,つばよりも小さな開口の支持穴を有するコーティング用治具を設け,球レンズをつばを以てコーティング用治具の支持穴に支持した状態で片側ずつコーティングを行う構成が記載されている。   In Patent Document 3, a collar is provided on the outer periphery of the spherical lens, a coating jig having a support hole having an opening larger than the spherical lens and smaller than the collar is provided, and the spherical lens is attached to the coating jig with the collar. A configuration is described in which coating is performed one side at a time while being supported in a support hole.

さらに特許文献4には,ホルダの内部に球レンズを低融点ガラスリング成形体により溶着した後,球レンズ及びガラス溜まりのホルダ開口部を臨む面に物理的気相成長法により耐湿保護フィルタ膜を形成し,その後,ホルダと光半導体素子とを結合して光モジュールを製造する方法が記載されている。
特開平2−26851号公報 特開平11−241157号公報 特開平10−319213号公報 特開平9−230179号公報
Further, in Patent Document 4, a spherical lens is welded to the inside of a holder by a low melting glass ring molded body, and then a moisture-resistant protective filter film is formed on the surface facing the holder opening of the spherical lens and the glass pool by physical vapor deposition. A method is described in which an optical module is manufactured by forming and then combining a holder and an optical semiconductor element.
JP-A-2-26851 Japanese Patent Laid-Open No. 11-241157 JP-A-10-319213 Japanese Patent Laid-Open No. 9-230179

しかしながら以上の従来技術では次に示すような課題がある。   However, the above prior art has the following problems.

まず特許文献1の方法では,環状転動面の内径・外径の半径差により球レンズは全周にわたり連続的に変化させることができ,全面に蒸着することが可能となるということを企図するものであるが,球レンズは固定軌道に沿って移動するものであるため,蒸着フィルタ膜が帯状に付着し易く,コート面に若干の継ぎ目が生じてしまうなど均一性が低下する。また,環状転動面に設置できる球レンズの数は,例えば実施例においては1個というように限られてしまい,生産性が悪い。一方,環状転動面についても,内径・外径の位置を精密に設定しなければならず,成膜時の治工具のばらつきが大きくなり,また内外径差が変化することで球レンズの回転環境が異なり,付着するフィルタ膜厚にばらつきが生じ,均一性が低下する。また,微小外径の球レンズ,例えばφ0.5mm球レンズに対して全周に成膜を行う場合には,環状転動面の内径・外径差は0.5mm以下にしなければならず,微小レンズに対して最適な内径・外径差を持つ環状転動面を製作することは不可能である。   First, in the method of Patent Document 1, it is intended that the spherical lens can be continuously changed over the entire circumference due to the difference in radius between the inner and outer diameters of the annular rolling surface and can be deposited on the entire surface. However, since the spherical lens moves along a fixed trajectory, the vapor deposition filter film easily adheres in a strip shape, and the uniformity is reduced, for example, a slight seam is formed on the coated surface. Further, the number of spherical lenses that can be installed on the annular rolling surface is limited to, for example, one in the embodiment, and productivity is poor. On the other hand, the position of the inner and outer diameters of the annular rolling surface must be set precisely, the variation of jigs and tools during film formation increases, and the difference in inner and outer diameters causes the rotation of the ball lens. The environment is different, the film thickness of the attached filter varies, and the uniformity decreases. In addition, when film formation is performed on the entire circumference of a spherical lens with a small outer diameter, such as a φ0.5 mm spherical lens, the difference between the inner and outer diameters of the annular rolling surface must be 0.5 mm or less. It is impossible to manufacture an annular rolling surface having an optimum inner / outer diameter difference for the lens.

また特許文献2の方法では,多数の被着フィルタ膜体を収納した容器を回転させる回転軸は,所定の傾斜角度で固定されていて,フィルタ膜材料の供給源との相対位置関係が変化しないため,多数の被着フィルタ膜体の夫々とフィルタ膜材料の供給源との相対位置関係が必ずしもランダムにはならず,結果としてコーティングされたフィルタ膜厚の均一性を低下させてしまう。またフィルタ膜材料の供給源が被着フィルタ膜体の容器よりも上方に配置されたものでは,蒸着カス(ゴミ)が球レンズに付着してしまい,球レンズ表面の外観が悪くなる。   In the method of Patent Document 2, the rotating shaft for rotating a container containing a large number of adherent filter membrane bodies is fixed at a predetermined inclination angle, and the relative positional relationship with the filter membrane material supply source does not change. For this reason, the relative positional relationship between each of the many deposited filter membrane bodies and the supply source of the filter membrane material is not necessarily random, and as a result, the uniformity of the coated filter film thickness is reduced. Further, when the supply source of the filter film material is disposed above the container of the deposited filter film body, the vapor deposition residue (dust) adheres to the spherical lens, and the appearance of the spherical lens surface is deteriorated.

また特許文献3,4の方法は,球レンズの全面にフィルタ膜をコーティングするものではない。   In addition, the methods of Patent Documents 3 and 4 do not coat the entire surface of the spherical lens with a filter film.

更に以上の各特許文献1〜4に記載された方法では,微小レンズ,例えばφ0.5mmの球レンズの表面にコーティングを行うのは非常に困難であった。
本発明は以上の課題を解決することを目的とするものである。
Further, in the methods described in the above Patent Documents 1 to 4, it is very difficult to coat the surface of a microlens, for example, a φ0.5 mm spherical lens.
The present invention aims to solve the above problems.

以上の課題を解決するために,本発明では,まず,気相成長法により球レンズの全面にフィルタ膜材料のコーティングを施し,成膜する方法において,真空チャンバ内におけるフィルタ膜材料の供給源の上方に球レンズの支持容器を回転運動可能に支持すると共に,この支持容器は少なくとも底面側に網状部を形成し,網状部に球状ガラスを載せて支持容器を回転させることにより,球状ガラスを網状部に対して転動させながら,供給源からフィルタ膜材料を供給して,球状ガラスの全面にフィルタ膜材料のコーティングを施し,成膜することとした全面フィルタ膜付き球レンズの製造方法を提案する。   In order to solve the above-described problems, in the present invention, first, a filter film material coating is applied to the entire surface of a spherical lens by vapor deposition, and in the method of forming a film, the supply source of the filter film material in the vacuum chamber is reduced. The support container of the spherical lens is supported so as to be capable of rotating, and the support container is formed with a net-like portion at least on the bottom side, and the spherical glass is formed into a net-like shape by placing the spherical glass on the net-like portion and rotating the support vessel. Proposes a manufacturing method for a spherical lens with a filter film that is formed by coating the filter film material on the entire surface of the spherical glass by supplying the filter film material from the supply source while rolling to the part. To do.

また本発明では,真空チャンバ内におけるフィルタ膜材料の供給源の上方に球レンズの支持容器を自転運動及び公転運動可能に支持し,自転運動の回転軸は鉛直方向に対して所定角度傾斜させると共に,この支持容器は少なくとも底面側に網状部を形成した全面フィルタ膜付き球レンズの製造装置を提案する。   Further, in the present invention, the support container of the spherical lens is supported above the filter membrane material supply source in the vacuum chamber so as to be capable of rotating and revolving, and the rotation axis of the rotation is inclined by a predetermined angle with respect to the vertical direction. , This supporting container proposes an apparatus for producing a spherical lens with a full-surface filter film in which a net-like portion is formed at least on the bottom side.

また本発明では,上記の方法又は装置において,支持容器は,自転運動及び公転運動可能とし,自転運動の回転軸は鉛直方向に対して所定角度傾斜させた全面フィルタ膜付き球レンズの製造方法又は装置を提案する。   Further, in the present invention, in the above method or apparatus, the support container is capable of rotating and revolving, and the rotation axis of the rotating motion is inclined by a predetermined angle with respect to the vertical direction. Propose the device.

そして本発明では,上記の方法又は装置において,網状部は,目開きを球レンズの直径の10〜90%とすることを提案する。   In the present invention, in the above method or apparatus, it is proposed that the mesh portion has an opening of 10 to 90% of the diameter of the spherical lens.

また本発明では,上記の方法又は装置において,網状部は,線状体を編んだ構成としたり,または多数の穴を形成した板体として構成することを提案する。   Further, in the present invention, in the above-described method or apparatus, it is proposed that the mesh portion is configured by knitting a linear body or a plate body in which a large number of holes are formed.

そして本発明では,上記の方法又は装置において,網状部を線状体を編んで構成するものにおいて,線状体の径を0.1〜1mmとすることを提案する。   The present invention proposes that the diameter of the linear body is 0.1 to 1 mm in the above-described method or apparatus in which the mesh portion is formed by knitting a linear body.

また本発明では,上記の方法又は装置において,網状部は,平面状に形成したり,又は凹面状に形成することを提案する。   Further, in the present invention, in the above method or apparatus, it is proposed that the mesh portion is formed in a planar shape or a concave shape.

以上の本発明においては,気相成長法としては,真空蒸着法,イオンプレーティング法,イオンアシスト法,イオンビーム蒸着法等の物理的気相成長法や化学的気相成長法を適用することができる。   In the present invention described above, as the vapor phase growth method, a physical vapor phase growth method such as a vacuum vapor deposition method, an ion plating method, an ion assist method, an ion beam vapor deposition method or a chemical vapor deposition method is applied. Can do.

そして本発明では,以上の方法又は装置によって,球レンズの全面にフィルタ膜材料をコーティングして成る全面フィルタ膜付き球レンズを提案する。   The present invention proposes a spherical lens with an entire filter film formed by coating the entire surface of the spherical lens with a filter film material by the above method or apparatus.

そして本発明では,球レンズの全面にコーティングするフィルタ膜は,屈折率1.3〜2.5の光学フィルタ膜が単層または多層で構成されているものとしたり,反射率0〜95%までの吸収フィルタ膜が単層又は多層で構成されているものとすることを提案する。   In the present invention, the filter film to be coated on the entire surface of the spherical lens is such that an optical filter film having a refractive index of 1.3 to 2.5 is constituted by a single layer or a multilayer, or an absorption filter film having a reflectance of 0 to 95%. Is composed of a single layer or multiple layers.

また本発明では,以上の球レンズを,半導体レーザ又は光導波路に結合して成る光モジュールを提案する。   The present invention also proposes an optical module in which the above spherical lens is coupled to a semiconductor laser or an optical waveguide.

以上の構成において,支持容器の網状部に載せられた球レンズは,鉛直方向に対して所定角度傾斜している回転軸の回りの自転運動により,網状部に対して転動するので,網状部側に位置する球レンズの面が連続的に変化すると共に,支持容器の自転運動と公転運動によって,網状部とフィルタ膜材料の供給源との相対位置関係も連続的に変化するため,フィルタ膜材料の供給源に向いている球レンズの面が連続的に,しかもランダムに変化する。このため,網状部の開口を透過したフィルタ膜材料の粒子を,球レンズの表面に均一に付着させてコーティングを行うことができ,全面に渡って均一なフィルタ膜を形成することができる。   In the above configuration, the spherical lens placed on the mesh portion of the support container rolls with respect to the mesh portion by rotation around a rotation axis inclined at a predetermined angle with respect to the vertical direction. The surface of the spherical lens located on the side changes continuously, and the relative positional relationship between the mesh and the filter film material source changes continuously due to the rotation and revolution of the support container. The surface of the spherical lens facing the material source changes continuously and randomly. For this reason, it is possible to coat the particles of the filter film material that have passed through the openings of the mesh portion uniformly on the surface of the spherical lens, thereby forming a uniform filter film over the entire surface.

支持容器において球レンズは網状部によって支持されるので,網状部の目開きを適切に設定することにより,従来の方法では不可能であった例えばφ0.5mm以下の球レンズに対してもコーティングによる成膜が可能となる。   Since the spherical lens is supported by the mesh part in the support container, by appropriately setting the mesh opening of the mesh part, for example, a spherical lens having a diameter of 0.5 mm or less, which is impossible with the conventional method, is also coated. Film formation is possible.

また網状部には,支持容器の自転による球レンズの転動を阻害しない限り,数多くの球レンズを収納することができ,一度に多数の球レンズに対して成膜することができ,生産性が大幅に向上する。   In addition, the reticulated portion can accommodate many ball lenses as long as the rolling of the ball lens due to the rotation of the support container is not hindered, and a film can be formed on many ball lenses at a time. Is greatly improved.

網状部としては,線状体を編んだ,文字通りの網を用いる他,パンチングメタル等の多数の穴を形成した板体を用いることができ,またその形状としては,運動時に球レンズが落下しない構成であれば,平面状,凹面状等適宜である。   As the net-like part, it is possible to use a plate with a number of holes, such as punching metal, in addition to using a literal net knitted, literally, and the shape does not cause the ball lens to fall during movement. If it is a configuration, a flat shape, a concave shape or the like is appropriate.

以上のように全面にフィルタ膜を成膜した球レンズは,方向性が全くないため,半導体レーザ又は光導波路に結合して光モジュールを組み立てる際,容易に組立が可能であるため,光モジュール化の際の生産性が向上し,安価に製造することができる。   As described above, the spherical lens with the filter film formed on the entire surface has no directionality, so it can be easily assembled when assembling an optical module by coupling to a semiconductor laser or an optical waveguide. Productivity is improved and can be manufactured at low cost.

次に本発明の実施例を添付図面を参照して説明する。
図1は本発明に係る方法を実施する装置の実施例として,イオンアシスト方式の電子ビーム真空蒸着装置の全体構成を示す模式図であり,また図2は要部を拡大して示す模式図である。
図において符号1は真空チャンバであり,この真空チャンバ1内の下部にフィルタ膜材料2を入れた供給源容器3を設置すると共に,この供給源容器3に近接して,電子ビーム4を発生する電子銃5を設置し,更にイオンビーム6を発生されるイオン銃7を設置している。一方,真空チャンバ1の上部には,成膜を行う球レンズ8を支持する支持容器9を設置している。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing an overall configuration of an ion-assisted electron beam vacuum deposition apparatus as an embodiment of an apparatus for carrying out the method according to the present invention, and FIG. 2 is a schematic diagram showing an enlarged main part. is there.
In the figure, reference numeral 1 denotes a vacuum chamber. A supply source container 3 in which a filter film material 2 is placed is installed in the lower part of the vacuum chamber 1 and an electron beam 4 is generated in the vicinity of the supply source container 3. An electron gun 5 is installed, and an ion gun 7 that generates an ion beam 6 is installed. On the other hand, a support container 9 for supporting a spherical lens 8 for film formation is installed in the upper part of the vacuum chamber 1.

支持容器9は側壁部10と底面部を有するトレイ状に構成されており,底面部は,平面状の網状部11として形成されている。図においては,この網状部11は,多数の穴を開口12として形成した板体,例えばパンチングメタル(打抜金網)により構成しているが,後述するように,線状体を編んだ構成の,文字通りの網により構成することができるものである。また網状部11の材質としては,金属製に限らず,合成樹脂製,ガラス製,セラミックス製等,後述する成膜時における脱ガス性,耐熱性を考慮して,成膜に影響を及ばさない材料であれば適宜である。   The support container 9 is configured in a tray shape having a side wall portion 10 and a bottom surface portion, and the bottom surface portion is formed as a planar net-like portion 11. In the figure, the mesh portion 11 is constituted by a plate body in which a large number of holes are formed as openings 12, for example, a punching metal (punched metal mesh). , Which can be composed of literal nets. In addition, the material of the mesh portion 11 is not limited to a metal, but may be made of synthetic resin, glass, ceramics, etc., which affects the film formation in consideration of degassing property and heat resistance during film formation described later. It is appropriate if there is no material.

この支持容器9は網状部11に垂直な方向の回転軸13の回りに自転運動可能に支持すると共に,鉛直方向の回転軸14の回りに公転運動可能に支持されており,この際,自転運動を行う回転軸13は,鉛直方向に対して所定角度θだけ傾斜している。   The support container 9 is supported so as to be capable of rotating about a rotation axis 13 in a direction perpendicular to the mesh portion 11, and is supported to be capable of revolving around a rotation axis 14 in the vertical direction. The rotating shaft 13 for performing the inclination is inclined by a predetermined angle θ with respect to the vertical direction.

ここで支持容器9を回転軸13の回りに自転運動可能とすると共に,回転軸14の回りに公転運動可能に支持する機構,即ち自公転機構は,例えば回転軸13を支持した支持部材を,円軌跡に沿って運動可能とする機構等,適宜に構成することができる。勿論,この自公転機構の機構要素は,支持容器9の下方の供給源容器3からのフィルタ膜材料2の蒸着を阻害しない位置に配置する。   Here, the support container 9 is capable of rotating around the rotating shaft 13 and is supported so as to be able to revolve around the rotating shaft 14, that is, the self-revolving mechanism includes, for example, a supporting member that supports the rotating shaft 13. A mechanism that can move along a circular locus can be appropriately configured. Of course, the mechanical elements of the self-revolving mechanism are arranged at positions that do not hinder the deposition of the filter film material 2 from the supply source container 3 below the support container 9.

以上の構成において,本発明による全面フィルタ膜付き球レンズの製造方法について更に詳しく説明する。
まず,コーティングを施していない球レンズ8を洗浄により表面の異物・油分等を取り除く。次いで洗浄した球レンズ8の所定数を支持容器9内に投入し,これを真空チャンバ1内の所定位置にセットする。そして供給源容器3にはフィルタ膜材料2を入れる。
In the above configuration, the method for manufacturing a spherical lens with a full filter film according to the present invention will be described in more detail.
First, the foreign material, oil, etc. on the surface are removed by cleaning the uncoated ball lens 8. Next, a predetermined number of cleaned ball lenses 8 are put into the support container 9 and set at a predetermined position in the vacuum chamber 1. Then, the filter membrane material 2 is placed in the supply source container 3.

この状態で,真空ポンプ(図示省略)にて,例えば真空度10×10-3Pa台まで排気し,電子銃5からの電子ビーム4により蒸着材料としてのフィルタ膜材料2を加熱し,蒸発させる。こうして蒸発した粒子17は,上方の支持容器9方向に飛び出し,イオン銃7から照射されたイオンビーム6からエネルギーを受け取り,支持容器9の網状部11の開口12から支持容器9内に入って,球レンズ8の表面に付着し,薄膜を形成する。 In this state, the vacuum pump (not shown) is evacuated, for example, to a degree of vacuum of 10 × 10 −3 Pa, and the filter film material 2 as a vapor deposition material is heated and evaporated by the electron beam 4 from the electron gun 5. . The particles 17 thus evaporated jump out toward the upper support container 9, receive energy from the ion beam 6 irradiated from the ion gun 7, enter the support container 9 from the opening 12 of the mesh portion 11 of the support container 9, and It adheres to the surface of the spherical lens 8 and forms a thin film.

この際,支持容器9は,図示を省略している自公転機構により,自転運動15と公転運動16を行うので,支持容器9の網状部11に載せられた球レンズ8は,鉛直方向に対して所定角度θ傾斜している回転軸13の回りの自転運動により,網状部11に対して転動するので,網状部11側に位置する球レンズ8の面が連続的に変化すると共に,支持容器9の自転運動15と公転運動16によって,網状部11とフィルタ膜材料2の供給源3との相対位置関係も連続的に変化するため,フィルタ膜材料2の供給源3に向いている球レンズ8の面が連続的に,しかもランダムに変化する。   At this time, since the support container 9 performs the rotation motion 15 and the rotation motion 16 by a rotation mechanism that is not shown, the ball lens 8 placed on the mesh portion 11 of the support container 9 moves in the vertical direction. The surface of the spherical lens 8 located on the mesh portion 11 side is continuously changed and supported by the rotation of the mesh portion 11 by the rotation around the rotation shaft 13 inclined at a predetermined angle θ. Since the relative positional relationship between the mesh portion 11 and the supply source 3 of the filter membrane material 2 is continuously changed by the rotation motion 15 and the revolution motion 16 of the container 9, the sphere facing the supply source 3 of the filter membrane material 2. The surface of the lens 8 changes continuously and randomly.

このため,網状部11の開口12を透過したフィルタ膜材料2の粒子を,球レンズ8の表面に均一に付着させてコーティングを行うことができ,全面に渡って均一なフィルタ膜18を形成することができる。そして付着させたフィルタ膜材料2および膜厚の制御により所望の光学フィルタ膜18を形成することができる。   For this reason, the particles of the filter film material 2 that have passed through the openings 12 of the mesh portion 11 can be uniformly applied to the surface of the spherical lens 8 to perform coating, and a uniform filter film 18 is formed over the entire surface. be able to. A desired optical filter film 18 can be formed by controlling the attached filter film material 2 and the film thickness.

支持容器9において球レンズ8は網状部11によって支持されるので,網状部11の目開きを,例えば球レンズ8の直径の10〜90%の範囲で適切に設定することにより,従来の方法では不可能であった例えばφ0.5mm以下の球レンズ8に対してもコーティングによる成膜が可能となる。   Since the spherical lens 8 is supported by the mesh portion 11 in the support container 9, in the conventional method, the mesh opening of the mesh portion 11 is appropriately set within a range of, for example, 10 to 90% of the diameter of the spherical lens 8. For example, it is possible to form a film by coating even on a spherical lens 8 having a diameter of 0.5 mm or less.

また網状部11には,支持容器9の自転による球レンズ8の転動を阻害しない限り,数多くの球レンズ8を収納することができ,一度に多数の球レンズ8に対して成膜することができ,生産性が大幅に向上する。   In addition, the reticulated portion 11 can accommodate a large number of spherical lenses 8 as long as the rolling of the spherical lens 8 due to the rotation of the support container 9 is not hindered. And productivity is greatly improved.

網状部11としては,上述したようにパンチングメタル等の多数の穴を形成した板体を用いる他,図4に示すように,線状体19を編んだ,文字通りの網を用いることができる。またその形状としては,上記運動時に球レンズ8が落下しない構成であれば,図1,図2及び図4に示すように平面状とする他,図5又は図6に示すように凹面状に形成することもできる。   As the mesh portion 11, as described above, a plate body in which a large number of holes such as punching metal are formed can be used, and as shown in FIG. 4, a literal mesh knitted with a linear body 19 can be used. As for the shape, if the ball lens 8 does not fall during the above-mentioned movement, it has a planar shape as shown in FIGS. 1, 2 and 4, and a concave shape as shown in FIG. 5 or FIG. It can also be formed.

以上のように全面にフィルタ膜18を成膜した球レンズ8は,フィルタ膜18の方向性が全くないため,半導体レーザ又は光導波路に結合して光モジュールを組み立てる際,容易に組立が可能であるため,光モジュール化の際の生産性が向上し,安価に製造することができる。   Since the spherical lens 8 having the filter film 18 formed on the entire surface as described above has no directionality of the filter film 18, it can be easily assembled when the optical module is assembled by being coupled to a semiconductor laser or an optical waveguide. As a result, productivity in the case of an optical module is improved, and it can be manufactured at low cost.

本発明において,コーティングの対象となる球レンズ8としては,レンズ外径φ0.3〜10mm,BK7,TaF3などの屈折率1.4〜2.5までの光学ガラス製の球レンズを適用することができる。これらの球レンズ8の種々の屈折率に対して,フィルタ膜18の構成を最適化することで,これらの広い範囲に渡る球レンズ8に対して適切なフィルタコーティングが可能となる。 In the present invention, the ball lens 8 to be coated, lens diameter Fai0.3~10Mm, can be applied BK7, TaF 3 optical glass ball lens to the refractive index 1.4 to 2.5, such as. By optimizing the configuration of the filter film 18 for various refractive indexes of these spherical lenses 8, an appropriate filter coating can be applied to the spherical lenses 8 over these wide ranges.

ここで,コーティングとは,無反射コート・高反射コート・バンドパス・エッジフィルタ等の光学フィルタ全般を得るために行うものであり,コーティングを行うフィルタ膜材料としては,シリコン,酸化チタン,酸化タンタル,酸化ハフニウム,酸化亜鉛,酸化ジルコン,酸化アルミ,酸化珪素,フッ化マグネシウム等の,光学フィルタに用いられている材料を適宜に用いることができる。また所望のフィルタ構成に対して,上記材料のうちの1〜5種類を選択し,高精度な計算に基づいて膜設計を行い,単数又は複数の材料による単層又は多層構造とすることで,屈折率1.3〜2.5の任意の光学フィルタ膜18を得ることができる。   Here, the coating is performed in order to obtain all optical filters such as non-reflective coating, high-reflective coating, bandpass, edge filter, and the like. Filter film materials for coating include silicon, titanium oxide, and tantalum oxide. Materials used for optical filters such as hafnium oxide, zinc oxide, zircon oxide, aluminum oxide, silicon oxide, and magnesium fluoride can be appropriately used. In addition, by selecting 1 to 5 types of the above materials for the desired filter configuration, designing the film based on high-precision calculations, and forming a single layer or multiple layers with one or more materials, An arbitrary optical filter film 18 having a refractive index of 1.3 to 2.5 can be obtained.

また,フィルタとしては,他に,光透過率調整用フィルタがあり,このためには,光学的な吸収膜として,クロム,チタン,アルミニウム,銀,ニッケル,鉄およびこれらの合金膜等をコーティングすれば良い。こうして本発明では,上記材料のうちの1〜数種類を選択し,高精度な計算に基づいて膜設計を行い,単数又は複数の材料による単層又は多層構造とすることで,反射率0〜95%までの任意の光学フィルタ膜18を得ることができる。   In addition, there is a filter for light transmittance adjustment as another filter. For this purpose, chromium, titanium, aluminum, silver, nickel, iron, and an alloy film thereof are coated as an optical absorption film. It ’s fine. Thus, in the present invention, one to several kinds of the above materials are selected, a film design is performed based on highly accurate calculation, and a single layer or a multi-layer structure made of one or a plurality of materials is used. Arbitrary optical filter films 18 up to% can be obtained.

一方,本発明において,気相成長法としては,上述したような電子ビームによる真空蒸着やスパッタリング等の物理的気相成長法の他,CVD(化学気相成長法)等を適用することができ,これらの汎用装置において,上記支持容器と自公転機構を適用することにより,容易に製造装置を構成することができる。   On the other hand, in the present invention, as the vapor deposition method, CVD (chemical vapor deposition method) or the like can be applied in addition to the above-described physical vapor deposition method such as vacuum deposition or sputtering by electron beam. In these general-purpose devices, the manufacturing device can be easily configured by applying the support container and the self-revolving mechanism.

尚,真空蒸着法を適用する場合,フィルタ膜材料の加熱方法としては,抵抗加熱法,フラッシュ蒸発法・アーク蒸発法・レーザ蒸発法・高周波加熱法等を適用すればよい。また,蒸発した粒子をプラズマ化して球レンズ8に薄膜を形成するイオンプレーティング法も有効である。   When applying the vacuum deposition method, the heating method of the filter film material may be a resistance heating method, a flash evaporation method, an arc evaporation method, a laser evaporation method, a high frequency heating method, or the like. Also effective is an ion plating method in which evaporated particles are turned into plasma to form a thin film on the spherical lens 8.

図1に示す実施例では,真空チャンバ1内に1つの支持容器9を自公転可能に支持しているが,この他,例えば図7に示すように,複数,この場合,4個の支持容器9(9a,9b,9c,9d)を真空チャンバ1内に自公転可能に支持する構成としても良い。尚,図7において,図1のものと同様な構成要素には同一の符号を付して重複する説明は省略する。   In the embodiment shown in FIG. 1, one support container 9 is supported in the vacuum chamber 1 so as to be able to rotate and revolve, but in addition, for example, as shown in FIG. 9 (9a, 9b, 9c, 9d) may be supported in the vacuum chamber 1 so as to be capable of rotating and revolving. In FIG. 7, the same components as those in FIG.

この実施例においては,同時に多数の球レンズ8にフィルタ膜18を成膜することができる。   In this embodiment, the filter film 18 can be formed on many ball lenses 8 at the same time.

次に,本発明の方法により,直径1.5mmのBK7球レンズの全周にフィルタコート(無反射コート)を形成する具体的実施例を説明する。
支持容器9は,網状部11を,金属製網により構成し,この金属製網は,大きさが直径100mmであり,半径200mm程度の球面の凹面状として構成し,その中に,洗浄した直径1.5mmの球レンズ8を約500個投入した。網状部11の目開きは球レンズ8の直径に対して10%〜90%の範囲とし,網の線径は0.1mm〜1mmの範囲とした。
Next, a specific embodiment in which a filter coat (non-reflective coat) is formed on the entire circumference of a BK7 ball lens having a diameter of 1.5 mm by the method of the present invention will be described.
The support container 9 has a mesh portion 11 made of a metal mesh, and this metal mesh has a diameter of 100 mm and a spherical concave shape with a radius of about 200 mm. Approximately 500 1.5 mm ball lenses 8 were introduced. The mesh size of the mesh portion 11 was in the range of 10% to 90% with respect to the diameter of the spherical lens 8, and the mesh wire diameter was in the range of 0.1 mm to 1 mm.

次いで支持容器9を蒸着装置の真空チャンバ1内の所定位置にセットした。蒸着装置の真空チャンバ1内には,鉛直方向の公転軸と,鉛直方向から約30°傾けた自転軸を持つ自公転機構を設けており,球レンズ8を収納した支持容器8を,30°傾けたまま,1rpmの公転速度および0.5rpmの自転速度で回転させながら,上述した真空蒸着を行った。   Next, the support container 9 was set at a predetermined position in the vacuum chamber 1 of the vapor deposition apparatus. In the vacuum chamber 1 of the vapor deposition apparatus, a self-revolution mechanism having a vertical revolution axis and a rotation axis inclined by about 30 ° from the vertical direction is provided, and the support container 8 containing the ball lens 8 is placed at 30 ° While being tilted, the above-described vacuum deposition was performed while rotating at a revolution speed of 1 rpm and a rotation speed of 0.5 rpm.

真空蒸着条件は,無反射膜の形成材料の種類と球レンズ8の直径に応じて選定し,この具体例では,Ta2O5/SiO2のマルチコートを採用している。しかしながら,球レンズ8の材質により最適な設計を行うため,MgF2,Al2O3,TiO2等の光学フィルタ用蒸着材料をフィルタ膜材料として使用することもできる。 The vacuum deposition conditions are selected according to the type of material for forming the antireflective film and the diameter of the ball lens 8, and in this specific example, a multi-coat of Ta 2 O 5 / SiO 2 is adopted. However, since an optimum design is performed depending on the material of the spherical lens 8, a vapor deposition material for optical filters such as MgF 2 , Al 2 O 3, and TiO 2 can be used as the filter film material.

この具体例では,網状部11の網のサイズ(目開き・線径)を変えるだけで,直径φ0.3mm〜2.5mmの球レンズ8に対して成膜可能であり,本発明方法及び装置を適用することにより,種々のサイズの球レンズ8の全周コーティングが可能であることを確認した。   In this specific example, it is possible to form a film on the spherical lens 8 having a diameter of φ0.3 mm to 2.5 mm only by changing the mesh size (opening / wire diameter) of the mesh portion 11. It was confirmed that the application of this method enables coating the entire circumference of ball lenses 8 of various sizes.

具体的な数値としては,BK7球レンズへの無反射コーティング後のレンズ透過率は,球レンズ8の全方向に対して98%以上(反射率0.3%以下)であった。また全周にわたり無反射特性が確認できた。(コーティングなしの場合 91%程度)。また成膜後の球レンズ8の表面は,従来からの方法と同等以上の品質が得られた。またコーティングしたフィルタ膜の密着力についても,テープテスト・鉛筆硬度試験を行った結果,表1に示すように,従来品と同等以上であった。更に,光通信用レンズとしての信頼性を評価するため,表2に示す試験を実施し,試験後の透過率および外観を評価した。これらのすべての試験について,全方向に対して透過率98%以上を満足しており,従来法と同等以上の高信頼性が実現できることが分かった。

Figure 2006342384
Figure 2006342384
Specifically, the lens transmittance after anti-reflection coating on the BK7 ball lens was 98% or more (reflectance 0.3% or less) in all directions of the ball lens 8. In addition, non-reflective characteristics were confirmed over the entire circumference. (About 91% without coating). Further, the surface of the spherical lens 8 after the film formation had a quality equivalent to or better than the conventional method. Also, the adhesive strength of the coated filter film was equal to or higher than that of the conventional product as shown in Table 1 as a result of the tape test and the pencil hardness test. Furthermore, in order to evaluate the reliability as a lens for optical communication, the test shown in Table 2 was conducted, and the transmittance and appearance after the test were evaluated. In all these tests, the transmittance was 98% or more in all directions, and it was found that high reliability equivalent to or better than the conventional method could be realized.
Figure 2006342384
Figure 2006342384

本発明は以上のとおりであるので,以下に示すような特徴を有し,産業上の利用可能性が大である。
1.支持容器の網状部に載せられた球レンズは,支持容器の自転運動と公転運動によって,フィルタ膜材料の供給源に向いている球レンズの面が連続的に,しかもランダムに変化するため,網状部の開口を透過したフィルタ膜材料の粒子を,球レンズの表面に均一に付着させてコーティングを行うことができ,全面に渡って均一なフィルタ膜を形成することができる。
Since the present invention is as described above, the present invention has the following characteristics and has great industrial applicability.
1. The spherical lens placed on the mesh part of the support container has a mesh-like shape because the surface of the spherical lens facing the filter membrane material source changes continuously and randomly due to the rotation and revolution of the support container. The film of the filter film material that has passed through the opening of the part can be uniformly deposited on the surface of the spherical lens for coating, and a uniform filter film can be formed over the entire surface.

2.支持容器において球レンズは網状部によって支持されるので,網状部の目開きを適切に設定することにより,従来の方法では不可能であった例えばφ0.5mm以下の球レンズに対してもコーティングによる成膜が可能となる。   2. Since the spherical lens is supported by the mesh part in the support container, by appropriately setting the mesh opening of the mesh part, for example, a spherical lens having a diameter of 0.5 mm or less, which is impossible with the conventional method, is also coated. Film formation is possible.

3.網状部には,支持容器の自転による球レンズの転動を阻害しない限り,数多くの球レンズを収納することができ,一度に多数の球レンズに対して成膜することができ,生産性が大幅に向上する。   3. As long as the rotation of the ball lens due to the rotation of the support container is not hindered, the mesh part can accommodate a large number of ball lenses, and can form a film on many ball lenses at a time. Greatly improved.

4.フィルタ膜材料の供給源が,球レンズを収納した支持容器よりも下方に配置されているので,蒸着カス(ゴミ)が球レンズに付着することを防止することができる。   4). Since the supply source of the filter film material is disposed below the support container containing the ball lens, it is possible to prevent vapor deposition debris (dust) from adhering to the ball lens.

5.以上のように全面にフィルタ膜を成膜した球レンズは,方向性が全くないため,半導体レーザ又は光導波路に結合して光モジュールを組み立てる際,容易に組立が可能であるため,光モジュール化の際の生産性が向上し,安価に製造することができる。   5. As described above, the spherical lens with the filter film formed on the entire surface has no directionality, so it can be easily assembled when assembling an optical module by coupling to a semiconductor laser or an optical waveguide. Productivity is improved and can be manufactured at low cost.

本発明に係る方法を実施する装置の実施例として,イオンアシスト方式の電子ビーム真空蒸着装置の全体構成を示す模式図である。1 is a schematic diagram showing an overall configuration of an ion-assisted electron beam vacuum deposition apparatus as an embodiment of an apparatus for carrying out a method according to the present invention. 図1の要部を拡大して示す模式図である。It is a schematic diagram which expands and shows the principal part of FIG. 球レンズの全面にフィルタ膜を成膜した状態を示す断面図である。It is sectional drawing which shows the state which formed the filter film into the whole surface of the spherical lens. 支持容器の他の例を示す断面図である。It is sectional drawing which shows the other example of a support container. 支持容器の更に他の例を示す断面図である。It is sectional drawing which shows another example of a support container. 支持容器の更に他の例を示す断面図である。It is sectional drawing which shows another example of a support container. 複数の支持容器内に収納した球レンズを同時に処理する実施例を示す模式的斜視図である。It is a typical perspective view which shows the Example which processes simultaneously the spherical lens accommodated in the several support container.

符号の説明Explanation of symbols

1 真空チャンバ
2 フィルタ膜材料
3 供給源容器
4 電子ビーム
5 電子銃
6 イオンビーム
7 イオン銃
8 球レンズ
9 支持容器
10 側壁部
11 網状部
12 開口
13 回転軸(自転軸)
14 回転軸(公転軸)
15 自転運動
16 公転運動
17 蒸発粒子
18 フィルタ膜
19 線状体
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Filter membrane material 3 Supply source container 4 Electron beam 5 Electron gun 6 Ion beam 7 Ion gun 8 Ball lens 9 Support container 10 Side wall part 11 Net-like part 12 Opening 13 Rotation axis (spinning axis)
14 Rotating shaft (revolving shaft)
15 Rotating motion 16 Revolving motion 17 Evaporating particle 18 Filter film 19 Linear body

Claims (19)

気相成長法により球レンズの全面にフィルタ膜材料のコーティングを施し,成膜する方法において,真空チャンバ内におけるフィルタ膜材料の供給源の上方に球レンズの支持容器を自転運動及び公転運動可能に支持し,自転運動の回転軸は鉛直方向に対して所定角度傾斜させると共に,この支持容器は少なくとも底面側に網状部を形成し,網状部に球状ガラスを載せて支持容器を回転させることにより,球状ガラスを網状部に対して転動させながら,供給源からフィルタ膜材料を供給して,球状ガラスの全面にフィルタ膜材料のコーティングを施し,成膜することを特徴とする全面フィルタ膜付き球レンズの製造方法。 In the vapor deposition method, the entire surface of the ball lens is coated with a filter film material, and in the film forming method, the ball lens support container can be rotated and revolved above the filter film material supply source in the vacuum chamber. The rotational axis of rotation and rotation of the support container is inclined at a predetermined angle with respect to the vertical direction, and the support container is formed with a net-like part at least on the bottom side, and a spherical glass is placed on the net-like part to rotate the support container. A spherical surface with a filter membrane, characterized in that the filter membrane material is supplied from a supply source while rolling the spherical glass relative to the mesh portion, and the entire surface of the spherical glass is coated with the filter membrane material. Lens manufacturing method. 網状部は,目開きを球レンズの直径の10〜90%とすることを特徴とする請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 The method for producing a spherical lens with an entire filter film according to claim 1, wherein the mesh portion has an aperture of 10 to 90% of the diameter of the spherical lens. 網状部は,線状体を編んだ構成であることを特徴とする請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 The method for producing a spherical lens with a full-surface filter film according to claim 1, wherein the net-like portion has a configuration in which a linear body is knitted. 線状体の径を0.1〜1mmとしたことを特徴とする請求項3に記載の全面フィルタ膜付き球レンズの製造方法。 The method for producing a spherical lens with a full-surface filter film according to claim 3, wherein the diameter of the linear body is 0.1 to 1 mm. 支持容器の網状部は,多数の穴を形成した板体であることを特徴とする請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 2. The method of manufacturing a spherical lens with an entire filter film according to claim 1, wherein the mesh portion of the support container is a plate having a large number of holes. 網状部は,平面状に形成したことを特徴とする請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 The method for producing a spherical lens with a full-surface filter film according to claim 1, wherein the net-like portion is formed in a planar shape. 網状部は,凹面状に形成したことを特徴とする請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 2. The method for manufacturing a spherical lens with a full filter film according to claim 1, wherein the net-like portion is formed in a concave shape. 気相成長法は,物理的気相成長法または化学気相成長法である請求項1に記載の全面フィルタ膜付き球レンズの製造方法。 2. The method for producing a spherical lens with a full-surface filter film according to claim 1, wherein the vapor deposition method is a physical vapor deposition method or a chemical vapor deposition method. 真空チャンバ内におけるフィルタ膜材料の供給源の上方に球レンズの支持容器を自転運動及び公転運動可能に支持し,自転運動の回転軸は鉛直方向に対して所定角度傾斜させると共に,この支持容器は少なくとも底面側に網状部を形成したことを特徴とする全面フィルタ膜付き球レンズの製造装置。   A spherical lens support container is supported above the filter membrane material supply source in the vacuum chamber so as to be capable of rotating and revolving, and the rotation axis of the rotation is inclined at a predetermined angle with respect to the vertical direction. An apparatus for producing a spherical lens with a full-surface filter film, wherein a net-like portion is formed at least on the bottom side. 網状部は,目開きを球レンズの直径の10〜90%とすることを特徴とする請求項9に記載の全面フィルタ膜付き球レンズの製造装置。 The apparatus for producing a spherical lens with an entire filter film according to claim 9, wherein the mesh portion has an opening of 10 to 90% of a diameter of the spherical lens. 網状部は,線状体を編んだ構成であることを特徴とする請求項9に記載の全面フィルタ膜付き球レンズの製造装置。 The apparatus for producing a spherical lens with a full-surface filter film according to claim 9, wherein the net-like portion has a configuration in which a linear body is knitted. 線状体の径を0.1〜1mmとしたことを特徴とする請求項11に記載の全面フィルタ膜付き球レンズの製造装置。 12. The apparatus for producing a spherical lens with an entire filter film according to claim 11, wherein the diameter of the linear body is 0.1 to 1 mm. 支持容器の網状部は,多数の穴を形成した板体であることを特徴とする請求項9に記載の全面フィルタ膜付き球レンズの製造装置。 The apparatus for producing a spherical lens with a full-surface filter film according to claim 9, wherein the mesh portion of the support container is a plate body in which a large number of holes are formed. 網状部は,平面状に形成したことを特徴とする請求項9に記載の全面フィルタ膜付き球レンズの製造装置。 The apparatus for producing a spherical lens with a full-surface filter film according to claim 9, wherein the net-like portion is formed in a planar shape. 網状部は,凹面状に形成したことを特徴とする請求項9に記載の全面フィルタ膜付き球レンズの製造装置。 The apparatus for producing a spherical lens with a full-surface filter film according to claim 9, wherein the net-like portion is formed in a concave shape. 請求項1〜8までのいずれか1項に記載の製造方法又は請求項9〜15までのいずれか1項に記載の製造装置により,球レンズの全面にフィルタ膜材料をコーティングして成る全面フィルタ膜付き球レンズ。 A whole surface filter formed by coating the entire surface of a spherical lens with a filter film material by the production method according to any one of claims 1 to 8 or the production apparatus according to any one of claims 9 to 15. Ball lens with film. 球レンズの全面にコーティングされたフィルタ膜は,屈折率1.3〜2.5の光学フィルタ膜が単層または多層で構成されていることを特徴とする請求項16に記載の全面フィルタ膜付き球レンズ。 17. The spherical lens with an entire surface filter film according to claim 16, wherein the filter film coated on the entire surface of the spherical lens is composed of an optical filter film having a refractive index of 1.3 to 2.5 in a single layer or a multilayer. 球レンズの全面にコーティングされたフィルタ膜は,反射率0〜95%までの吸収フィルタ膜が単層または多層で構成されていることを特徴とする請求項16に記載の全面フィルタ膜付き球レンズ。 17. The spherical lens with a full-surface filter film according to claim 16, wherein the filter film coated on the entire surface of the spherical lens is composed of an absorption filter film having a reflectance of 0 to 95% in a single layer or a multilayer. . 請求項16〜18までのいずれか1項に記載の球レンズを半導体レーザ又は光導波路に結合して成る光モジュール。
An optical module formed by coupling the spherical lens according to any one of claims 16 to 18 to a semiconductor laser or an optical waveguide.
JP2005168145A 2005-06-08 2005-06-08 Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module Pending JP2006342384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168145A JP2006342384A (en) 2005-06-08 2005-06-08 Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168145A JP2006342384A (en) 2005-06-08 2005-06-08 Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module

Publications (1)

Publication Number Publication Date
JP2006342384A true JP2006342384A (en) 2006-12-21

Family

ID=37639559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168145A Pending JP2006342384A (en) 2005-06-08 2005-06-08 Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module

Country Status (1)

Country Link
JP (1) JP2006342384A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108425A (en) * 2005-10-13 2007-04-26 Nippon Electric Glass Co Ltd Method and device of manufacturing optical component, and the optical component
JP2009198756A (en) * 2008-02-21 2009-09-03 Oki Semiconductor Co Ltd Optical transceiving module, and wavelength branching filter used therefor
FR2957830A1 (en) * 2010-03-26 2011-09-30 Snecma Device for supporting e.g. fixed blade, of turboshaft engine against corrosion during deposition of aluminum coating on external surface of parts in fog phase, has equipment connected to anchoring piece to modify contact points of parts
CN103052734A (en) * 2010-08-04 2013-04-17 株式会社岛津制作所 Surface treatment device and surface treatment method
WO2014010434A1 (en) * 2012-07-13 2014-01-16 株式会社メイハン Method for forming film on spherical body
JP2017057507A (en) * 2017-01-04 2017-03-23 日立化成株式会社 Drum spattering device
JPWO2016152395A1 (en) * 2015-03-20 2017-04-27 芝浦メカトロニクス株式会社 Film forming apparatus and film forming work manufacturing method
CN108330468A (en) * 2018-03-14 2018-07-27 深圳市志橙半导体材料有限公司 A kind of the substrate support device and matrix rotating driving device of chemical vapor deposition stove
CN108977789A (en) * 2018-09-07 2018-12-11 中国工程物理研究院激光聚变研究中心 Rebound disk device and microballoon coat system
EP3567128A1 (en) * 2018-05-08 2019-11-13 IHI Hauzer Techno Coating B.V. Deposition apparatus and method of coating spherical objects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188677A (en) * 1981-05-14 1982-11-19 Matsushita Electric Ind Co Ltd Vapor depositing device for metallic thin film
JPH11241157A (en) * 1998-02-26 1999-09-07 Koa Corp Film attaching device and method therefor
JP2001336533A (en) * 2000-05-25 2001-12-07 Citizen Watch Co Ltd Rolling base material having film and method of making the film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188677A (en) * 1981-05-14 1982-11-19 Matsushita Electric Ind Co Ltd Vapor depositing device for metallic thin film
JPH11241157A (en) * 1998-02-26 1999-09-07 Koa Corp Film attaching device and method therefor
JP2001336533A (en) * 2000-05-25 2001-12-07 Citizen Watch Co Ltd Rolling base material having film and method of making the film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108425A (en) * 2005-10-13 2007-04-26 Nippon Electric Glass Co Ltd Method and device of manufacturing optical component, and the optical component
JP2009198756A (en) * 2008-02-21 2009-09-03 Oki Semiconductor Co Ltd Optical transceiving module, and wavelength branching filter used therefor
FR2957830A1 (en) * 2010-03-26 2011-09-30 Snecma Device for supporting e.g. fixed blade, of turboshaft engine against corrosion during deposition of aluminum coating on external surface of parts in fog phase, has equipment connected to anchoring piece to modify contact points of parts
CN103052734A (en) * 2010-08-04 2013-04-17 株式会社岛津制作所 Surface treatment device and surface treatment method
WO2014010434A1 (en) * 2012-07-13 2014-01-16 株式会社メイハン Method for forming film on spherical body
JPWO2016152395A1 (en) * 2015-03-20 2017-04-27 芝浦メカトロニクス株式会社 Film forming apparatus and film forming work manufacturing method
JP2017057507A (en) * 2017-01-04 2017-03-23 日立化成株式会社 Drum spattering device
CN108330468A (en) * 2018-03-14 2018-07-27 深圳市志橙半导体材料有限公司 A kind of the substrate support device and matrix rotating driving device of chemical vapor deposition stove
EP3567128A1 (en) * 2018-05-08 2019-11-13 IHI Hauzer Techno Coating B.V. Deposition apparatus and method of coating spherical objects
CN108977789A (en) * 2018-09-07 2018-12-11 中国工程物理研究院激光聚变研究中心 Rebound disk device and microballoon coat system

Similar Documents

Publication Publication Date Title
JP2006342384A (en) Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module
CN107923033A (en) Method and apparatus for sputtering multiple targets jointly
JP2006052461A (en) Magnetron sputtering device, cylindrical cathode, and method of coating thin multicomponent film on substrate
EP2490048A2 (en) Optical member, method of manufacturing the same, and optical system using the same
TWI720991B (en) Apparatus, device and process for coating of articles
WO1998052083A1 (en) Mechanism for placing optical lens blank in holder
US6123814A (en) Coating station
US20090258151A1 (en) Method and Apparatus for Coating Curved Surfaces
WO2019203024A1 (en) Transparent member and transparent-member manufacturing method
JP5921351B2 (en) Deposition equipment
CN101994095A (en) Coated umbrella stand
JP2010209443A (en) Vapor-deposition apparatus and vapor-deposition method
JP5749223B2 (en) Method for forming spherical film
JP4555638B2 (en) Thin film deposition equipment
TWI439560B (en) Coating device
JP2020122193A (en) Film deposition apparatus
WO2019198760A1 (en) Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element
KR20110041588A (en) Vacuum vapor deposition apparatus for lens coating
WO2020179189A1 (en) Antireflection film, optical element, and method for forming antireflection film
KR20030014231A (en) Film forming method, multilayer film reflector manufacturing method, and film forming device
KR20190002002A (en) Internal and external part of CCTV dome lens fixing device for vacuum coating
US20110020623A1 (en) Method and Apparatus for Repairing an Optical Component Substrate Through Coating
JPH1171671A (en) Vacuum deposition device
TWI414616B (en) Device for optical coating
TWI417405B (en) Sputtering device and sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025