WO2020179189A1 - Antireflection film, optical element, and method for forming antireflection film - Google Patents

Antireflection film, optical element, and method for forming antireflection film Download PDF

Info

Publication number
WO2020179189A1
WO2020179189A1 PCT/JP2019/049550 JP2019049550W WO2020179189A1 WO 2020179189 A1 WO2020179189 A1 WO 2020179189A1 JP 2019049550 W JP2019049550 W JP 2019049550W WO 2020179189 A1 WO2020179189 A1 WO 2020179189A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical
optical surface
convex
optical element
Prior art date
Application number
PCT/JP2019/049550
Other languages
French (fr)
Japanese (ja)
Inventor
穣 澁谷
和生 川俣
涼 橋本
Original Assignee
株式会社タムロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムロン filed Critical 株式会社タムロン
Publication of WO2020179189A1 publication Critical patent/WO2020179189A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to an antireflection film, an optical element provided with the antireflection film, and a method for forming an antireflection film.
  • an optical element having a multi-layered antireflection film on a convex optical surface is known.
  • Each optical thin film constituting the multilayer structure is usually formed by a vacuum deposition method or a sputtering method.
  • d0 is the physical film thickness of the film provided at the center of the convex optical surface
  • is the inclination angle of the convex optical surface indicated by the angle formed by the normal line and the optical axis at the measurement location. ..
  • the reflection characteristics of the peripheral part shift to the short wavelength side. Further, since the incident angle of light with respect to the optical surface becomes large in the peripheral portion, the reflection characteristic of the peripheral portion shifts to the short wavelength side. Therefore, when an antireflection film in which an optical thin film whose physical film thickness in the peripheral portion is thinner than the center is laminated is provided on an optical element whose convex optical surface has a maximum inclination angle ⁇ of 25° or more, Due to the influence of both the physical film thickness and the incident angle, there is a problem that the reflection characteristic of the peripheral portion is largely shifted to the short wavelength side, and a ghost is generated.
  • Patent Document 1 a film is formed while irradiating ions or plasma onto a convex surface of an optical element that rotates about the optical axis in a posture in which the lens optical axis is inclined by 70° with respect to the vapor deposition source.
  • Membrane methods are disclosed.
  • Patent Document 2 when vapor deposition particles from a single evaporation source are attached to the convex surface of an optical element that revolves around other axes while rotating about the optical axis, the vapor deposition particles with a predetermined shape are shielded by a shielding plate.
  • a film forming method for shielding the adhesion of the particles is disclosed.
  • a film forming method is disclosed in which a resputtering treatment step of depositing sputtered particles on the concave surface of the optical element again and an oxidation treatment step of irradiating the metal film with an oxygen radical beam to perform an oxidation treatment are performed.
  • the reflectance of light having a small incident angle ⁇ can be suppressed to be low in a region having a small inclination angle ⁇ .
  • the incident angle ⁇ is an angle formed by the normal line at the measurement point on the optical surface of the optical element and the incident direction of light.
  • the film forming method disclosed in Patent Document 1 since the physical film thickness is made uniform by rotating the optical element around the optical axis, it is possible to form a film on two or more optical elements at the same time. There is a problem that productivity is low.
  • the film forming method disclosed in Patent Document 2 since it is necessary to change the shape of the shielding plate depending on the size and shape of the optical element and the degree of contamination of the chamber affects the film formation, a desired film thickness can be obtained for a long time. There is a problem that it is difficult to obtain an optical thin film having The film forming method disclosed in Patent Document 3 has a problem that it cannot be applied to a convex optical surface of an optical element.
  • the film thickness distribution is controlled by controlling the amount of evaporation from the evaporation source to limit the amount of deposition particles.
  • the antireflection film disclosed in Patent Document 4 has a reflectance of 0.3% or less when light (ultraviolet rays) having a main wavelength of 193.4 nm is incident on the center of the lens at an incident angle of 0 to 35°.
  • the reflectance when the ultraviolet rays are incident on the peripheral portion of the lens at an incident angle of 10 to 40° can be set to 0.3% or less, and the optical characteristics at all positions are determined by considering the incident angle of light. It is said to have such optical characteristics as an antireflection effect.
  • Patent Document 4 discloses antireflection performance when light having only a specific wavelength is incident, it does not disclose antireflection performance when light having a wide wavelength band is incident. .. Further, in the film forming method disclosed in Patent Document 4, a first evaporation source arranged directly below the revolution axis of the lens and a second evaporation source arranged directly below the revolution trajectory of the lens are used for a lens that revolves around its axis. A film is formed by the source and the third evaporation source.
  • the optical element according to the present invention is an optical element having a convex optical surface having a maximum tilt angle of 25° or more, and is characterized in that the above-mentioned antireflection film is provided on the convex optical surface.
  • a method for forming an antireflection film according to the present invention is a method for forming an antireflection film for forming the above-described antireflection film, wherein the convex optical of the optical element is rotated while rotating the optical element.
  • a film forming step of forming a film by depositing a film forming material from a film forming source on the surface side, and an ion from an ion source or a plasma from a plasma source on the convex optical surface side of the rotating optical element.
  • the film-forming material deposited at the center of the convex optical surface side is densified while being removed more than the peripheral portion of the convex optical surface side,
  • Each of the optical thin films constituting the multilayer structure is formed by performing the film forming step and the irradiation step.
  • the antireflection film of the present invention is provided with a multilayer structure composed of a plurality of optical thin films provided in an optical element having a convex optical surface having a maximum tilt angle of 25° or more, and each optical thin film is the convex optical surface. At least a part of the film provided in the region where the inclination angle ⁇ of the surface is 25 ° or more is thicker than the physical film thickness of the film provided at the center of the convex optical surface. According to the present invention, since each optical thin film has the above-mentioned film thickness distribution, light having a wide wavelength band is large in a region where the inclination angle ⁇ of the convex optical surface of the optical element having a maximum inclination angle of 25 ° or more is large. It is possible to provide an antireflection film capable of suppressing reflection of light in a wide wavelength band to be low when entering at an incident angle and an optical element including the antireflection film.
  • the above-mentioned antireflection film can be formed by forming the optical thin film of each layer by performing the above-described film forming step and irradiation step. Therefore, according to the present invention, it is possible to provide a method for forming an antireflection film having excellent productivity.
  • FIG. 1 is a front view of the film-forming apparatus
  • FIG. 1 is a bottom view of the optical element supporting device as viewed from below. It is a figure which shows the optical element which provides the antireflection film of Examples 1, 3 and Comparative Example 1.
  • (A) is the spectral reflectance of incident light having an incident angle ⁇ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 0°.
  • (B) shows the spectral reflection of incident light having incident angles ⁇ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 35°. Shows the ratio, (c) of the incident light having an incident angle ⁇ of 40°, 50°, 60° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 60°.
  • Shows spectral reflectance. 5 is a graph showing the spectral reflectance of the antireflection film of Example 2.
  • A is the spectral reflectance of incident light having an incident angle ⁇ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 0°.
  • B shows the spectral reflection of incident light having incident angles ⁇ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 35°.
  • Shows spectral reflectance. 7 is a graph showing the spectral reflectance of the antireflection film of Example 3.
  • (A) shows the spectral reflectance of incident light having incident angles ⁇ of 0 °, 10 °, and 20 °, measured at a location corresponding to a location where the inclination angle ⁇ of the optical surface on the antireflection film is 0 °.
  • (B) shows the spectral reflection of incident light having incident angles ⁇ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 35°. Shows the ratio, (c) of the incident light having an incident angle ⁇ of 50°, 60°, 70° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 70°. Shows spectral reflectance. 9 is a graph showing the spectral reflectance of the antireflection film of Example 4.
  • (A) shows the spectral reflectance of incident light having incident angles ⁇ of 0 °, 10 °, and 20 °, measured at a location corresponding to a location where the inclination angle ⁇ of the optical surface of the antireflection film is 0 °.
  • (B) are the spectral reflectances of incident light having incident angles ⁇ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 35°.
  • (C) is a spectrum of incident light having incident angles ⁇ of 50°, 60°, and 70° measured at a position corresponding to a position where the tilt angle ⁇ of the optical surface on the antireflection film is 70°.
  • the reflectance is shown. It is a graph which shows the spectral reflectance of the antireflection film of Comparative Example 1.
  • A is the spectral reflectance of incident light having an incident angle ⁇ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 0°.
  • B shows the spectral reflection of incident light having incident angles ⁇ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 35°. Indicates the rate. It is a graph which shows the spectral reflectance of the antireflection film of Comparative Example 1.
  • (A) is the spectral reflectance of incident light having incident angles ⁇ of 40°, 50°, and 60° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 60°.
  • (B) shows the spectral reflection of incident light having incident angles ⁇ of 50°, 60°, and 70° measured at a position corresponding to a position where the inclination angle ⁇ of the optical surface on the antireflection film is 70°. Indicates the rate.
  • the anti-reflection film according to the present invention is a convex optical surface in which the maximum inclination angle ⁇ of the inclination angle ⁇ of the convex optical surface indicated by the angle between the normal line and the optical axis at the measurement point is 25 ° or more.
  • the antireflection film is provided on a convex optical surface where the maximum tilt angle of the optical element is 25° or more, and has a multilayer structure in which n layers (n is an integer of 2 or more) of optical thin films are laminated.
  • the convex optical surface having the maximum inclination angle of 25° or more means an optical surface in which there is a portion where the inclination angle ⁇ is 25° or more when the inclination angle ⁇ is measured in the convex optical surface.
  • the convex optical surface having a maximum inclination angle of 25° or more is an optical surface whose inclination angle gradually increases from the center toward the peripheral portion
  • the inclination angle ⁇ of the peripheral portion of the convex optical surface is ⁇ .
  • the convex optical surface may be a surface having a curvature or a free-form surface.
  • the angle ⁇ /2 is 25° when the angle formed by the normals of any two points on the convex optical surface is ⁇ .
  • the line segment forming the angle ⁇ /2 can be regarded as the optical axis of the optical element having the convex optical surface.
  • FIG. 1 shows an antireflection film according to an embodiment of the present invention.
  • the antireflection film 1 shown in FIG. 1 is provided on the optical element 11 having a convex optical surface 11a having a maximum tilt angle of 90°, that is, a peripheral tilt angle ⁇ of 90°.
  • the maximum tilt angle of the antireflection film is not limited to 90°, and can be any angle as long as it is 25° or more.
  • the convex optical surface 11a may be abbreviated as "optical surface 11a”.
  • the antireflection film 1 shown in FIG. 1 has a multilayer structure in which seven layers of optical thin films 2 are laminated, and the number of layers can be any number as long as it is two or more layers.
  • the hatching of the optical thin film 2 in FIG. 1 is omitted.
  • Each optical thin film forming the multilayer structure is a film provided in a region in which an inclination angle ⁇ of the convex optical surface is 25° or more when centered on a point where the convex optical surface of the optical element and the optical axis are orthogonal to each other. At least a part of the film is thicker than the physical film thickness of the film provided at the center of the convex optical surface.
  • each optical thin film forming the multilayer structure has the above-mentioned film thickness distribution, a region where the inclination angle ⁇ of the convex optical surface of the optical element having the maximum inclination angle of 25° or more is large.
  • the reflection of light can be suppressed to a low level over a wide wavelength band.
  • the antireflection performance will be described in detail.
  • light having a small incident angle ⁇ is incident on a region where the tilt angle ⁇ of the convex optical surface is small, while light is incident on a region where the tilt angle ⁇ is large.
  • Light with a large incident angle ⁇ is incident.
  • the larger the incident angle ⁇ of light the more the spectral characteristics shift to the shorter wavelength side.
  • at least a part of the film provided in the region where the inclination angle ⁇ of the convex optical surface is 25 ° or more is the physical film thickness of the film provided at the center of the convex optical surface.
  • the antireflection film according to the present invention when light having a wide wavelength band is incident at a large incident angle in a region where the inclination angle ⁇ of the convex optical surface is large, the light is reflected over a wide wavelength band. Can be kept low.
  • the antireflection film according to the present invention has, for example, a wavelength in the region where the inclination angle ⁇ of the convex optical surface of the optical element having the maximum inclination angle of 25° or more is 35°.
  • the reflectance of the light of the above wavelength can be suppressed to 1% or less.
  • the reflectance of light can be suppressed to 10% or less. ..
  • the reflectance of light can be suppressed to 20% or less.
  • At least a part of the film provided in the region where the inclination angle ⁇ of the convex optical surface is 25 ° or more and less than 80 ° is located at the center of the convex optical surface. It is preferably thicker than the physical film thickness of the film to be provided.
  • each optical thin film the entire film provided in the region where the inclination angle ⁇ of the convex optical surface is 25 ° or more and less than 75 ° is thicker than the physical film thickness of the film provided at the center of the convex optical surface. It is more preferable that it is a thing.
  • the antireflection film formed by laminating such an optical thin film can more reliably obtain the effect of suppressing the reflection of light to a low level over the wide wavelength band described above.
  • the inclination of the convex optical surface is set.
  • the physical film thickness of a portion thicker than the physical film thickness of the film provided in the center of the convex optical surface satisfies the following conditional expression. preferable. 1 ⁇ dx/d0 ⁇ 1.3
  • the physical film thickness is thicker than the physical film thickness d0 of the film provided in the center of the convex optical surface. Then, the physical film thickness dx at an arbitrary measurement point is within the range of 1 to 1.3 times the physical film thickness d0 of the film provided at the center, and there is an excessively thick physical film portion at that part. It means that it does not exist. In that case, it is possible to more reliably suppress the reflection of light incident on a region where the inclination angle ⁇ of the convex optical surface of the optical element is large at a large incident angle, and it is also possible to suppress the occurrence of ghosts.
  • the film thickness of the optical thin film can be measured with a cross-section SEM or a contact-type film thickness meter.
  • the reflectance of the optical thin film can be measured by an ellipsometer or the like, and the film thickness or the refractive index can be calculated from the reflectance by simulation.
  • the high refractive index layer preferably contains one or more metal oxides selected from the group consisting of TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 and HfO 2 . Such a high refractive index layer can realize a high refractive index of 2.0 or more.
  • the low refractive index layer preferably contains SiO 2 alone or a mixture of SiO 2 and Al 2 O 3 . Such a low refractive index layer can reduce the refractive index to 1.50 or less.
  • the low refractive index layer as the final layer preferably contains SiO 2 .
  • the intermediate refractive index layer preferably contains a metal oxide such as Al 2 O 3 , Y 2 O 3 , YbF 2 , or a mixture such as Al 2 O 3 + La 2 O 3 .
  • a metal oxide such as Al 2 O 3 , Y 2 O 3 , YbF 2 , or a mixture such as Al 2 O 3 + La 2 O 3 .
  • Such an intermediate refractive index layer can realize a refractive index of 1.50 or more and 2.0 or less.
  • the optical thin film 2a of the first layer, the optical thin film 2c of the third layer, the optical thin film 2e of the fifth layer, and the optical thin film 2f of the seventh layer are composed of SiO 2 and have a low refractive index.
  • the optical thin film 2b as the second layer, the optical thin film 2d as the fourth layer, and the optical thin film 2f as the sixth layer may be layers, and may be high refractive index layers made of TiO 2 .
  • Each optical thin film constituting the antireflection film described above can be formed by a film forming method described later. Since ions or plasma is used in the film forming method, the optical thin film contains an element that constitutes ions or plasma. For example, when Ar is plasmatized to form a film, it can be confirmed by secondary ion mass spectrometry (SIMS) that the optical thin film contains 1 ⁇ 10 19 atomic%/cm 3 or more of Ar. However, when the optical thin film contains 1 ⁇ 10 22 atomic%/cm 3 or more of Ar, the optical thin film may not be densified, which is not preferable.
  • SIMS secondary ion mass spectrometry
  • the film forming material deposited at the center of the convex optical surface side is densified while being removed more than the peripheral portion of the convex optical surface, and the ion source Alternatively, an irradiation step of shielding the ion or the plasma from being incident on the ion source or the region of the convex optical surface far from the plasma source by the region of the convex optical surface near the plasma source.
  • the optical thin film forming the multilayer structure is formed by performing the film forming step and the irradiation step.
  • the method for forming an antireflection film according to the present invention can be carried out by the film forming apparatus shown in FIGS. 2 and 3, for example.
  • the film forming apparatus shown in FIGS. 2 and 3 is one of the embodiments, and is not limited thereto.
  • various forms such as sputtering, CVD and the like can be applied as the film forming source, and the film forming process is not limited to the film forming process of the present embodiment.
  • this film forming apparatus will be described.
  • the film forming apparatus 21 shown in FIG. 2 includes an optical element supporting device 41 having a planetary rotation mechanism, a vapor deposition source 51 as a film forming source, an ion gun 61, and a film forming chamber 31 capable of holding a vacuum inside. Equipped with.
  • the ion gun 61 for irradiating ions is used, but instead of the ion gun 61, a plasma gun for irradiating plasma may be used.
  • the optical element support device 41 is hung from the ceiling wall of the film forming chamber 31, is a rotatable disk-shaped support base 42, and is hung on the peripheral portion of the support base 42, and is a rotatable disk-shaped optical element holder. And 43.
  • the support base 42 rotates by the drive of a first motor (not shown).
  • the axis of rotation of the support base 42 is L1.
  • the optical element holder 43 rotates by driving a second motor (not shown).
  • the rotation axis of the optical element holder 43 is L2. Further, the optical element holder 43 revolves around the rotation axis L1 of the support base 42 as a rotation axis when driven by the first motor.
  • Six optical element holders 43 are arranged at equal intervals on the support base 42. However, in FIG. 2, only two optical element holders 43 are shown and the other optical element holders 43 are omitted.
  • the optical element holder 43 is suspended from the support base 42 so that the film forming surface 43a on which the optical element 11 is attached and the film is formed faces diagonally downward.
  • the orientation of the film forming surface 43a is adjusted by the angle adjusting mechanism 44.
  • FIG. 2 shows a state in which the film-forming surface 43a is tilted by 20 ° with respect to the vertical direction.
  • a plurality of optical elements 11 are concentrically arranged around the rotation axis L2 of the optical element holder 43 with the optical surface 11a on which the antireflection film is formed facing outward.
  • optical elements 11 can be arranged at equal intervals around the rotation axis L2 of the optical element holder 43, and 14 optical elements 11 can be arranged at equal intervals on the outer circumference thereof.
  • the optical element support device 41 is provided with six optical element holders 43, and 14 optical elements 11 can be arranged in each optical element holder 43, so that a maximum of 84 optics can be arranged. It is possible to form a film on the element 11 at the same time.
  • the optical element 11 attached to the film formation surface 43a has a posture in which the optical axis OA is inclined with respect to the vertical direction.
  • the optical axis OA of each optical element 11 and the rotation axis L2 of the optical element holder 43 are parallel, but they do not necessarily have to be parallel.
  • the vapor deposition source 51 is provided at the bottom of the film forming chamber 21 and inside the orbit of the optical element holder 43.
  • the position of the vapor deposition source 51 is not limited to this position.
  • the vapor deposition source 51 can be provided at a horizontal position with respect to the optical element holder 43.
  • the thin-film deposition source 51 forms a thin-film deposition material that is a film-forming material by using an electron gun, resistance heating, a sputtering source, sputtering with an ion gun or a plasma gun, heating vapor deposition with a plasma gun, a chemical vapor deposition method, ion plating, or the like.
  • the vapor deposition material is incident on the optical surface 11a side of the optical element 11 from the direction D1 inclined at the angle ⁇ with respect to the optical axis OA.
  • the angle ⁇ can be adjusted by changing the position of the vapor deposition source 51, the direction of the film formation surface 43a, and the like.
  • FIG. 2 shows a state in which the angle ⁇ is 70°.
  • the ion gun 61 is also the bottom of the film forming chamber 21, is inside the revolution trajectory of the optical element holder 43, and is the vapor deposition source 51 with respect to the rotation axis L1 of the support substrate 42. It is provided on the opposite side.
  • the position of the ion gun 61 is not limited to this position as long as self-shielding can be performed, as will be described later.
  • the ion gun 61 irradiates ions at high speed.
  • one or more rare gases or nitrogen selected from the group of He, Ne, Ar, Xe, and Xr and O 2 are appropriately introduced into the ion gun 61, and these gases are ionized by the ion gun 61.
  • First and second optical thin films 2a are formed on the optical surface 11a of the optical element 11 by repeating the following film forming step and irradiation step simultaneously or alternately, and subsequently, the second layer optical thin film is formed.
  • the optical thin film 2g of the seventh layer is sequentially formed from 2b.
  • formation of the optical thin film 2a as the first layer will be described in detail.
  • the film forming process is performed as follows.
  • the optical thin film 2a of the first layer is formed by using Al 2 O 3 as the vapor deposition source 51.
  • the vapor deposition source 51 is heated to evaporate the vapor-deposited substance (Al 2 O 3 ) in a state where the optical element 11 is rotated around the rotation axis L1 of the support substrate 42 and the rotation axis L2 of the optical element holder 43 as rotation axes.
  • a film is formed by depositing the vapor-deposited substance on the optical surface 11a of the optical element 11.
  • the vapor deposition substance is incident on the optical surface 11a from various directions, but is mainly incident on the optical surface 11a from a direction D1 inclined with respect to the optical axis OA.
  • the irradiation step is performed as follows. Ion irradiation is performed by the ion gun 61 in a state where the optical element 11 is rotated with the rotation axis L1 of the support base 42 and the rotation axis L2 of the optical element holder 43 as rotation axes.
  • the ions collide with the vapor deposition material deposited on the optical surface 11 a of the optical element 11 energy is imparted to the deposited vapor deposition material.
  • the ions act as assisting the film formation, and the film formed on the optical surface 11a is densified.
  • the deposited material deposited on the optical surface 11a is removed, and the film is thinned.
  • the ions irradiated by the ion gun 61 are intentionally accelerated by the accelerating voltage, the straightness is higher than that of the vapor-deposited substance from the thin-film deposition source 51. Therefore, the ions enter the optical surface 11a from the direction D2 that is inclined with respect to the optical axis OA of the optical element 11.
  • the optical surface 11a of the optical element 11 is an optical surface having a deep R such that there is a portion having an inclination angle of 25° or more. Therefore, the region on the optical surface 11a near the ion gun 61 shields the ion from entering the region on the optical surface 11a far from the ion gun 61 (the region R surrounded by the double chain line in FIG. 3).
  • Self-shielding does not occur at the center of the optical surface 11a, but occurs at the periphery.
  • the central portion of the optical surface 11a is an incident area where ions are incident, regardless of the rotation of the optical element 11.
  • the central portion of the optical surface 11a means a circular area within a predetermined distance from the center of the optical surface 11a of the optical element 11.
  • the incident region and the shield region where the incident of ions is shielded are switched with the rotation of the optical element 11.
  • the optical element 11 since the optical element 11 is arranged around the rotation axis L2 of the optical element holder 43, the ion irradiation position on the optical surface 11a is moved up, down, left and right as the optical element holder 43 rotates. Also changes.
  • the ions irradiated by the ion gun 61 have high straightness, even if the ion irradiation position on the optical surface 11a changes with the rotation of the optical element holder 43, self-shielding is sufficiently generated. , It is possible to scrape a large amount of the vapor-deposited substance deposited on the central portion of the optical surface 11a.
  • the ion irradiation in the irradiation step reduces the thickness and densifies the film formed on the optical surface 11a in the film forming step. Then, by repeating the above-mentioned film forming step and irradiation step simultaneously or alternately, the film formed on the optical surface 11a gradually becomes thicker, and the film formed at the center of the optical surface 11a becomes thicker. Also, the physical film thickness of the film provided in the region where the inclination angle ⁇ of the optical surface 11a is 25° or more becomes thicker.
  • the conditions of the film forming process and the irradiation process are appropriately changed, and which of the film forming process and the irradiation process is given priority, and the process is repeated while keeping a balance.
  • the first-layer optical thin film 2a made of Al 2 O 3 and having a desired film thickness can be formed on the convex optical surface 11a of the optical element 11.
  • the physical film thickness of the film provided in the region where the inclination angle ⁇ of the optical surface 11a is 25 ° or more is larger than that of the film provided at the center of the optical surface 11a. It's getting thicker.
  • the film forming step and the irradiation step are repeated while appropriately changing the material of the vapor deposition source 51, and the remaining optical thin films 2b to 2g are formed on the optical thin film 2a of the first layer.
  • the optical thin films 2b to 2g of the second to seventh layers have the same film thickness distribution as the optical thin film 2a of the first layer.
  • the antireflection film 1 having a multilayer structure composed of optical thin films 2a to 2g can be formed on the optical surface 11a of the optical element 11 shown in FIG.
  • a film is formed by a film forming process.
  • An irradiation step is performed before the film thickness reaches 10 nm, and the surface layer of the film is scraped off to reduce the thickness of the film to form a sublayer.
  • the sub-layers are laminated to form the first-layer optical thin film 2a having a desired film thickness.
  • the obtained optical thin film 2a of the first layer is not preferable because a dense layer and a non-dense layer are laminated and become inhomogeneous in the depth direction. From the above, it is more preferable to perform the film forming step and the irradiation step at the same time rather than alternately. When simultaneously performed, only the dense layers are laminated, and the optical thin film 2a of the first layer that is uniform in the depth direction can be obtained.
  • the film forming step is mainly performed, and the film on the optical surface 11a becomes thick.
  • the ion gun 61 the irradiation process is mainly performed, and the film on the optical surface 11a becomes thin.
  • the rate at which the film becomes thicker in the film forming step that is, the deposition rate of the vapor deposition material can be controlled by the above-described film forming conditions.
  • the rate at which the film becomes thin in the irradiation step that is, the rate at which the vapor deposition material is removed by ions can be controlled by the ion irradiation energy described above.
  • the angle ⁇ formed with the OA will be described.
  • the vapor deposition material from the vapor deposition source 51 rises in a spread manner.
  • the deposition amount of the vapor deposition substance on the optical surface 11a is the largest.
  • the angle between the optical axis OA of the optical element 11 and the vertical direction at that position is defined as the angle ⁇ .
  • the angle ⁇ is 70 °, but the angle ⁇ is preferably 0 ° or more and 90 ° or less, and more preferably 45 ° or more and 90 ° or less.
  • the angle ⁇ is 0 °, the optical axis OA of the optical element 11 coincides with the vertical direction.
  • the angle ⁇ exceeds 90°, the optical axis OA of the optical element 11 faces upward from the horizontal direction. It is not preferable because the deposition amount of the vapor deposition material on the center of the optical surface 11a is reduced and the film formation rate is slowed down.
  • the angle ⁇ is 0 ° or more and as small as possible.
  • An example of a small angle ⁇ is a film forming apparatus having a plane planetary rotation mechanism for forming an optical multilayer filter on a flat plate glass.
  • the angle ⁇ is less than 45°, the deposition amount of the vapor deposition material in the central portion of the optical surface 11a increases while the deposition amount in the peripheral portion becomes excessively small in the film forming process.
  • the optical surface 11a in order to make the physical film thickness provided in the region where the inclination angle ⁇ of the optical surface 11a is 25° or more larger than that of the film provided in the center of the optical surface 11a, the optical surface 11a should be formed in the irradiation step. It is necessary to remove more of the film provided in the central part of the, and the irradiation process may take a long time. From the above, in order to shorten the time required for the irradiation step, the angle ⁇ is more preferably 45° or more and 90° or less.
  • the angle ⁇ Since the ions emitted from the ion gun 61 have straightness, the amount of the ions incident on the optical surface 11a is the largest when the optical element 11 is located at a position facing the irradiation port of the ion gun 61.
  • the angle formed by the optical axis OA of the optical element 11 at that position and the line segment connecting the center of the optical surface 11a and the ion gun 61 is defined as the angle ⁇ .
  • the angle ⁇ is 70 °, but the angle ⁇ is preferably 45 ° or more and 90 ° or less.
  • the angle ⁇ is 45° or more, at least a part of the film provided in the region where the inclination angle ⁇ of the optical surface 11a is 25° or more is more than the physical film thickness of the film provided in the center of the optical surface 11a. It is possible to realize a film thickness distribution that is thick.
  • the angle ⁇ is preferably set to 60° or more. If the angle ⁇ is less than 45°, the self-shielding at the time of ion irradiation becomes insufficient and it is difficult to realize the above film thickness distribution, which is not preferable.
  • the angle exceeds 90° the ion irradiation amount to the central portion of the optical surface 11a decreases, and it becomes difficult to scrape the film at the central portion, which is not preferable.
  • the optical element 11 rotates about an axis different from the optical axis OA as a rotation axis. Specifically, the optical element 11 is rotated around the rotation axis L1 of the support base 42 and around the rotation axis L2 of the optical element holder 43 by the optical element support device 41 provided with the planetary rotation mechanism. Therefore, the optical element 11 moves (rotates) in the horizontal direction with the rotation of the support base 42 about the rotation axis L1 and in the vertical direction with the rotation of the optical element holder 43 with the rotation axis L2 as the axis. , Move left and right.
  • the film thickness formed by the film forming step differs depending on the mounting position of the optical element 11 on the optical element holder 43, that is, the distance from the rotation axis L2 to the optical element 11. Further, the range of the ion incident region and the shielding region on the optical surface 11a differs depending on the mounting position of the optical element 1.
  • the film forming step and the irradiation step are performed in a state where the optical element 11 is moved in the horizontal direction, the vertical direction, and the horizontal direction, the plurality of optical elements 11 are subjected to regardless of the mounting position of the optical element 11.
  • the antireflection film 1 can be formed evenly. Therefore, the film forming method of the present embodiment is suitable for mass production of the antireflection film 1.
  • the optical element 11 may be rotated so that self-shielding occurs during the irradiation step, and the rotating method is not limited to this.
  • the antireflection film 1 having the same film thickness distribution as the optical thin film 2 of each layer can be simultaneously formed on a maximum of 84 optical elements 11. , Excellent productivity can be obtained.
  • the film forming method using the film forming apparatus 21 shown in FIG. 2 has been described, but the present invention is not limited to this.
  • a general-purpose sputtering apparatus generally used for forming a thin film may be used.
  • a film forming method using a general-purpose sputtering apparatus will be briefly described with reference to FIG.
  • the general-purpose sputtering apparatus includes an optical element supporting device 101, a vapor deposition source 111, and an ion gun 121 in a film forming chamber whose inside can be kept in vacuum.
  • the vapor deposition source 111 and the ion gun 121 the same ones as the vapor deposition source 51 and the ion gun 61 shown in FIG. 4 can be used.
  • the optical element support device 101 includes a disk-shaped support base 102 and an optical element holder 103 arranged on the support base 102 and having a diameter smaller than that of the support base 102.
  • the optical element support device 101 is suspended from the ceiling wall of the film forming chamber so that the film forming surface 103a of the optical element holder 103 faces the bottom of the film forming chamber.
  • the support base 102 rotates about the center of the rotation axis L1, and two or more optical element holders 103 are arranged around the rotation axis L1.
  • the optical element holder 103 rotates with its center as the rotation axis L2.
  • the vapor deposition source 111 is provided, for example, at the bottom of the film forming chamber and directly below the rotation trajectory of the optical element holder 103.
  • the ion source 121 is provided, for example, at the bottom of the film forming chamber and directly below the rotation trajectory of the optical element holder 103, at a position different from that of the vapor deposition source 111.
  • the ion gun 121 emits ions obliquely upward.
  • the optical element according to the present invention is characterized by including the above-described antireflection film on the convex optical surface side having a maximum inclination angle of 25° or more. According to the present invention, by providing the above-mentioned antireflection film, when light having a wide wavelength band is incident on a region having a large inclination angle ⁇ at a large incident angle ⁇ , the reflection of light is lowered over a wide wavelength band.
  • An optical element that can be suppressed can be provided. Examples of the optical element include a photographing optical element and a projection optical element.
  • the lens includes, for example, an interchangeable lens of a single-lens reflex camera, a lens mounted on a digital camera (DSC), and a mobile phone.
  • DSC digital camera
  • Various lenses such as lenses used in cameras can be mentioned.
  • the optical thin film of each layer constituting the antireflection film provided in the optical element can be formed by the film forming step of depositing the vapor deposition substance and the irradiation step of irradiating with ions or plasma as described above. Therefore, when the optical thin film of the first layer is formed on the convex optical surface described above, ions, plasma, electrons and the like may collide with the convex optical surface in the irradiation step.
  • the optical element is made of a specific glass material, for example, when it is made of a glass material such as FCD1 containing fluorine, when accelerated electrons or the like collide with a convex optical surface, light absorption occurs in the optical element. Is not preferable.
  • the protective layer can be formed by a normal vacuum deposition method that does not use ions or plasma.
  • the protective layer can be formed by performing the above-described film forming process using the vapor deposition source 51.
  • the thickness of the protective layer is preferably 0.5 nm or more, more preferably 5 nm or more.
  • the thickness of the protective layer is less than 0.5 nm, the coating on the convex optical surface becomes insufficient, and the rare gas or nitrogen adheres to the convex optical surface when forming the optical thin film of the first layer. May not be prevented, which is not preferable.
  • the optical element according to the present invention may be provided with an antifouling film or a hard film as a functional film on the surface of the antireflection film.
  • an antifouling film coated with fluorine or a hard film made of diamond-like carbon (DLC) or SiO x N y can be provided.
  • the film thickness of the functional film is preferably 10 nm or less in order to prevent the influence on the optical characteristics.
  • the antireflection film 1 including the 11 optical thin films 2 is formed on the convex optical surface 11a of the optical element 11 by performing the above-described film forming method using the film forming apparatus 21 shown in FIG. Formed.
  • the optical thin films 2 of the first layer, the third layer, the fifth layer, the seventh layer, the ninth layer, and the eleventh layer constituting the antireflection film 1 are made of SiO 2
  • the second layer, the fourth layer, and the sixth layer are composed of SiO 2
  • the optical thin films 2 of the layers, the eighth layer and the tenth layer are made of TiO 2 .
  • optical element As the optical element 11, a material having TAF1 and a shape shown in FIG. 5 was used. In the optical element 11 shown in FIG. 5, when the tilt angle ⁇ was measured at an arbitrary position on the convex optical surface 11a, the tilt angle was 65°. From this, the maximum inclination angle of the convex optical surface 11a in the optical element 11 used in this example is 65° or more.
  • the symbol IL in FIG. 5 means the incident direction of incident light.
  • Two or more optical elements 11 are arranged around the rotation axis L2 of the optical element holder 43, and the optical element holder 43 is tilted to maintain a posture in which the film forming surface 43a is tilted by 10 ° with respect to the vertical direction.
  • the optical element 11 was rotated by rotating the optical element holder 43 while rotating the supporting substrate 42.
  • Oxygen gas with a flow rate of 20 sccm was introduced into the film forming chamber 31 to adjust the vacuum degree to 1.5 ⁇ 10 ⁇ 2 Pa.
  • the optical element 11 was heated to a temperature of 250° C., the above-described film forming step and the irradiation step were repeated to form each of the 11 optical thin films 2.
  • optical element 11 As the optical element 11, a material having TAF1 and a shape shown in FIG. 6 was used. In the optical element 11 shown in FIG. 6, when the tilt angle ⁇ was measured at an arbitrary position on the convex optical surface 11a, the tilt angle was 80°. From this, the maximum tilt angle of the convex optical surface 11a in the optical element 11 used in this example is 80° or more. It is also apparent from FIG. 6 that the optical element 11 used in this example has a larger maximum tilt angle than the optical element 11 used in Example 1.
  • Example 1 Film forming conditions
  • the optical element 11 was rotated in the same manner as in Example 1 except that the film formation surface 43a of the optical element holder 43 was held in a posture in which it was inclined by 7° with respect to the vertical direction.
  • the atmosphere in the film forming chamber 31 was the same as in Example 1.
  • the point where the vapor-deposited substance evaporated from the vapor deposition source 51 is incident on the optical surface 11a of the optical element 11 mainly from the direction D1 inclined at an angle ⁇ 83 ° with respect to the optical axis OA. Except for this, the procedure was the same as in Example 1.
  • the antireflection film 1 including the seven optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 1 under the following film forming conditions.
  • the optical thin films 2 of the first layer, the third layer, and the fifth layer constituting the antireflection film 1 are made of Al 2 O 3
  • the optical thin films 2 of the second layer, the fourth layer, and the sixth layer are TiO 2 and La. consist of a mixture of the 2 O 3, the seventh layer made of SiO 2.
  • the rotation condition of the optical element 11 is the same as that in the second embodiment.
  • the atmosphere in the film forming chamber 31 was the same as in Example 2.
  • Al 2 O 3 is used for forming the optical thin film 2 of the first layer, the third layer, and the fifth layer as the vapor deposition source 51, and the second layer, the fourth layer, and the sixth layer are formed.
  • a mixture of TiO 2 and La 2 O 3 was used for film formation of the optical thin film 2
  • SiO 2 was used for film formation of the optical thin film 2 of the seventh layer, and the same procedure was used for Example 2.
  • the irradiation process was performed in exactly the same manner as in Example 2 except that the acceleration voltage of the ion gun 61 was changed to 1.2 kV.
  • the antireflection film 1 including the seven optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 2 under the following film forming conditions.
  • the material constituting each optical thin film 2 of the antireflection film 1 is the same as that of the second embodiment.
  • the optical element 11 was rotated in the same manner as in Example 1 except that the film formation surface 43a of the optical element holder 43 was held in a posture in which it was inclined at 5° with respect to the vertical direction. Then, the film forming process was performed in exactly the same manner as in Example 2.
  • an antireflection film 1 composed of 11 layers of optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 1 by a film forming method different from that in Example 1.
  • the material constituting each optical thin film 2 of the antireflection film 1 is the same as that of the first embodiment.
  • This film forming apparatus includes a dome in which the optical element 11 is arranged in a film forming chamber capable of holding the inside in a vacuum, and the same vapor deposition source 51 and ion source 61 as those used in Example 1.
  • This dome has a dome shape unlike the optical element holder used in Example 1.
  • the dome is hung on the ceiling wall of the film forming chamber in an upwardly convex posture, and rotates about the center of the dome.
  • the inner concave surface of the dome is a film forming surface, and the optical element 11 is arranged on the film forming surface.
  • 300 or more optical elements 11 can be arranged around the rotation axis of the film formation surface. Since the film-forming surface is concave, the optical element 11 attached to the film-forming surface has a posture in which the optical axis OA of the optical element 11 is inclined 5 to 30° with respect to the vertical direction.
  • the film forming step and the irradiation step were carried out in the same manner as in Example 1.
  • Comparative Example 2 In this comparative example, the antireflection film 1 consisting of 11 layers of the optical thin film 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 2 by the same film forming method as in Comparative Example 1. The material forming each optical thin film 2 of the antireflection film 1 is the same as that of Comparative Example 1.
  • the film thickness distribution of the optical thin film 2 in each layer was the same as long as the material was the same, regardless of the layer number from the optical element 11 side.
  • the film thickness distribution of the optical thin film 2 for each material is shown in FIGS.
  • the angle ⁇ on the horizontal axis in the figure is an angle corresponding to the inclination angle ⁇ of the optical surface 11a of the optical element 11 at the measurement location on the antireflection film 1.
  • the spectral reflectance of the antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was measured by a reflection spectroscopic film thickness meter FE-3000 manufactured by Otsuka Electronics Co., Ltd. At this time, the wavelength of the incident light is set to a position corresponding to a position on the optical surface 11a of the optical element 11 on the antireflection film 1 where the inclination angle ⁇ is 0°, 35°, 60°, 70°.
  • Abrasion resistance The antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated for abrasion resistance.
  • a reciprocating abrasion tester TYPE30 manufactured by Shinto Kagaku Co., Ltd. a moving distance of 10 mm was reciprocated 100 times at a moving speed of 1200 mm/min while a load of 500 g was applied.
  • the optical thin film 2 on the outermost surface of the antireflection film 1 the center (the position where the inclination angle ⁇ of the optical surface 11a corresponds to 0 °) and the peripheral portion (the position where the inclination angle ⁇ of the optical surface 11 corresponds to 60 °).
  • the presence or absence of scratches was visually observed.
  • "Abrasion resistance” column in Table 1 " ⁇ " indicates that no scratches were observed in both the central and peripheral parts, and "x” marks indicate that scratches were not observed in at least one of the central or peripheral parts. Indicates what was observed.
  • each optical thin film 2 of Examples 1 to 4 was measured at the center, that is, the tilt angle ⁇ was 0°, regardless of the material forming the optical thin film.
  • the physical film thickness at the location is the smallest, and the physical film thickness becomes thicker as the tilt angle ⁇ at the measurement location becomes larger, and the physical film thickness becomes the thickest in the region where the tilt angle ⁇ is 60° to 70°.
  • dx / d0 which is the ratio of the physical film thickness dx at an arbitrary measurement point to the physical film thickness d0 at the center, is larger than 1 and falls within the range of less than 1.3.
  • dx / d0 is larger than 1 and falls within the range of less than 1.3 at the measurement point where the inclination angle ⁇ is 0 ° or more and 60 ° or less and the measurement point where the inclination angle ⁇ is 80 °.
  • dx/d0 exceeds 1.3 at the measurement point where the inclination angle ⁇ is 70°.
  • each of the optical thin films 2 of Comparative Examples 1 and 2 has the thickest physical film thickness at the center regardless of the material constituting the optical thin film, and the inclination angle of the measurement point.
  • the physical film thickness decreases as ⁇ increases.
  • the antireflection film 1 of Examples 1 to 4 is the center of the antireflection film 1, that is, a position where the inclination angle ⁇ of the optical surface 11a of the optical element 11 is 0 ° (optical).
  • the reflectance of light having a wavelength of 420 nm or more and 680 nm or less and an incident angle ⁇ of 0 ° or more and 20 ° or less was 0.5% or less.
  • the antireflection film 1 of Examples 1 to 4 is light having a wavelength of 420 nm or more and 680 nm or less, which is incident on a region where the inclination angle ⁇ of the convex optical surface 11a of the optical element 11 is small at a small incident angle ⁇ .
  • the reflectance increases when the wavelength exceeds 550 nm, and exceeds 10% when the wavelength is 680 nm. Further, when measured at a location corresponding to a location where the inclination angle ⁇ of the optical surface 11a is 60 °, the reflectance of light having a wavelength of 420 nm or more and 680 nm or less and an incident angle ⁇ of 30 ° or more and 50 ° or less is 10. It greatly exceeds %, reaching nearly 30%.
  • the antireflection film 1 of Comparative Example 1 suppresses the reflection of light having a wavelength of 420 nm or more and 680 nm or less, which is incident on a region where the inclination angle ⁇ of the convex optical surface 11a is large and has a large incident angle ⁇ . It is clear that you can not.
  • the spectral reflection characteristics of the antireflection film 1 of Comparative Example 2 were similar to those of the antireflection film 1 of Comparative Example 1.
  • the antireflection film 1 of Examples 1 to 4 is for light in a wide wavelength band incident on a region where the inclination angle ⁇ of the convex optical surface of the optical element is large at a large incident angle ⁇ . It has been clarified that it is possible to suppress the reflection to a low level and also to suppress the reflection of light in a wide wavelength band that is incident at a small incident angle ⁇ in a region where the inclination angle ⁇ of the convex optical surface of the optical element is small. .. Then, it was revealed that the antireflection film 1 of each of Examples 1 to 4 had no unevenness in the reflection color, almost no ghost, and excellent abrasion resistance.
  • Optical thin film 2a-2g Optical thin film of each layer 11 Optical element 11a Convex optical surface 51,111 Deposition source 61,121 Ion gun (ion source) D1 Incident direction when the vapor-deposited material is incident on the convex optical surface side D2 Incident direction when ions or plasma are incident on the convex optical surface side OA Optical axis of the optical element ⁇ Vaporized material with respect to the optical axis of the optical element Angle formed by the incident direction of ⁇ The angle formed by the incident direction of ions or plasma with respect to the optical axis of the optical element

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The antireflection film according to the present invention is provided in an optical element having a convex optical surface. The maximum inclination angle of an inclination angle θ of the convex optical surface, which is shown by an angle formed by a normal line and an optical axis at a measurement location, is 25° or more. The antireflection film is characterized by having a multilayer structure composed of a plurality of optical thin films provided on the convex optical surface side, wherein, in each of the optical thin films, when a point at which the convex optical surface and the optical axis intersect at right angles is defined as a center, at least part of the film provided in a region where the inclination angle θ of the convex optical surface is 25° or more is thicker than the physical film thickness of the film provided in the center of the convex optical surface.

Description

反射防止膜、光学素子及び反射防止膜の成膜方法Antireflection film, optical element, and method for forming antireflection film
 本件発明は、反射防止膜、それを備える光学素子及び反射防止膜の成膜方法に関する。 The present invention relates to an antireflection film, an optical element provided with the antireflection film, and a method for forming an antireflection film.
 従来、凸の光学面に多層構造の反射防止膜を備える光学素子が知られている。多層構造を構成する各光学薄膜は、通常、真空蒸着法やスパッタ法によって成膜される。このような方法で成膜された光学薄膜では、一般的に、任意の測定箇所における物理膜厚dxはdx=d0cosθの式に概ね従い、中心よりも周辺部の物理膜厚が薄い。ここで、d0は、凸の光学面の中心に設けた膜の物理膜厚であり、θは、測定箇所における法線と光軸とがなす角度によって示される凸の光学面の傾斜角度である。 Conventionally, an optical element having a multi-layered antireflection film on a convex optical surface is known. Each optical thin film constituting the multilayer structure is usually formed by a vacuum deposition method or a sputtering method. In the optical thin film formed by such a method, the physical film thickness dx at an arbitrary measurement location generally follows the equation of dx=d0cosθ, and the physical film thickness at the peripheral portion is thinner than at the center. Here, d0 is the physical film thickness of the film provided at the center of the convex optical surface, and θ is the inclination angle of the convex optical surface indicated by the angle formed by the normal line and the optical axis at the measurement location. ..
 中心よりも周辺部の物理膜厚が薄いため、周辺部の反射特性が短波長側へシフトする。さらに、周辺部では光学面に対する光の入射角度が大きくなるため、周辺部の反射特性が短波長側へシフトする。そのため、凸の光学面の最大傾斜角度θが25°以上である光学素子に、中心よりも周辺部の物理膜厚が薄い光学薄膜を積層した反射防止膜を設けた場合には、光学薄膜の物理膜厚と入射角度の両方の影響によって、周辺部の反射特性が短波長側へ大きくシフトし、ゴーストが発生するという問題がある。 Since the physical film thickness of the peripheral part is thinner than that of the center, the reflection characteristics of the peripheral part shift to the short wavelength side. Further, since the incident angle of light with respect to the optical surface becomes large in the peripheral portion, the reflection characteristic of the peripheral portion shifts to the short wavelength side. Therefore, when an antireflection film in which an optical thin film whose physical film thickness in the peripheral portion is thinner than the center is laminated is provided on an optical element whose convex optical surface has a maximum inclination angle θ of 25° or more, Due to the influence of both the physical film thickness and the incident angle, there is a problem that the reflection characteristic of the peripheral portion is largely shifted to the short wavelength side, and a ghost is generated.
 このような光学特性を改善するため、近年、中心から周辺部に亘って物理膜厚が均一な光学薄膜が提案されている。例えば、特許文献1には、蒸着源に対してレンズ光軸を70°傾斜させた姿勢で光軸を中心に回転する光学素子の凸面に対して、イオン又はプラズマを照射しながら成膜する成膜方法が開示されている。特許文献2には、光軸を中心に自転しつつ他の軸の周りを公転する光学素子の凸面に単一の蒸発源からの蒸着粒子が付着する際に、所定形状の遮蔽板によって蒸着粒子の付着を遮蔽する成膜方法が開示されている。特許文献3には、金属ターゲットから放出されたスパッタ粒子を光学素子の凹面に蒸着させて金属膜を形成するスパッタ処理工程と、当該金属膜にイオンビームを照射して当該金属膜から放出されたスパッタ粒子を再度、前記光学素子の凹面に蒸着させる再スパッタ処理工程と、前記金属膜に酸素ラジカルビームを照射して酸化処理を行う酸化処理工程とを行う成膜方法が開示されている。 In order to improve such optical characteristics, in recent years, an optical thin film having a uniform physical film thickness from the center to the periphery has been proposed. For example, in Patent Document 1, a film is formed while irradiating ions or plasma onto a convex surface of an optical element that rotates about the optical axis in a posture in which the lens optical axis is inclined by 70° with respect to the vapor deposition source. Membrane methods are disclosed. In Patent Document 2, when vapor deposition particles from a single evaporation source are attached to the convex surface of an optical element that revolves around other axes while rotating about the optical axis, the vapor deposition particles with a predetermined shape are shielded by a shielding plate. A film forming method for shielding the adhesion of the particles is disclosed. In Patent Document 3, a sputtering process step of forming sputtered particles emitted from a metal target on a concave surface of an optical element to form a metal film, and irradiating the metal film with an ion beam to emit the metal film A film forming method is disclosed in which a resputtering treatment step of depositing sputtered particles on the concave surface of the optical element again and an oxidation treatment step of irradiating the metal film with an oxygen radical beam to perform an oxidation treatment are performed.
 ところが、上記光学素子に物理膜厚が均一な光学薄膜を積層した反射防止膜を設けた場合には、傾斜角度θが小さい領域では入射角度φが小さい光の反射率を低く抑えることができるものの、傾斜角度θが大きい領域では入射角度φが大きい光の反射率を低く抑えることができないという問題がある。ここで、入射角度φは、光学素子の光学面上の測定箇所における法線と光の入射方向とのなす角度である。 However, when an antireflection film in which an optical thin film having a uniform physical film thickness is laminated is provided on the optical element, the reflectance of light having a small incident angle φ can be suppressed to be low in a region having a small inclination angle θ. In the region where the inclination angle θ is large, there is a problem that the reflectance of light having a large incident angle φ cannot be suppressed low. Here, the incident angle φ is an angle formed by the normal line at the measurement point on the optical surface of the optical element and the incident direction of light.
 さらに、特許文献1に開示の成膜方法は、光学素子を光軸を中心として回転させることによって物理膜厚を均一化するため、2個以上の光学素子に対して同時に成膜することができず生産性が低いという問題がある。特許文献2に開示の成膜方法は、光学素子のサイズや形状によって遮蔽板の形状を変更する必要がある上にチャンバーの汚れ具合が成膜に影響するため、長期に亘って所望の膜厚を有する光学薄膜を得ることが困難であるという問題がある。特許文献3に開示の成膜方法は、光学素子の凸の光学面には適用できないという問題がある。なぜなら、スパッタ処理工程によって凸の光学面に形成された金属膜にイオンビームを照射すると、凸の光学面から放出されたスパッタ粒子は凸の光学面から離間する方向へ進むため、このスパッタ粒子を凸の光学面に再度成膜させることができないからである。 Further, in the film forming method disclosed in Patent Document 1, since the physical film thickness is made uniform by rotating the optical element around the optical axis, it is possible to form a film on two or more optical elements at the same time. There is a problem that productivity is low. In the film forming method disclosed in Patent Document 2, since it is necessary to change the shape of the shielding plate depending on the size and shape of the optical element and the degree of contamination of the chamber affects the film formation, a desired film thickness can be obtained for a long time. There is a problem that it is difficult to obtain an optical thin film having The film forming method disclosed in Patent Document 3 has a problem that it cannot be applied to a convex optical surface of an optical element. This is because, when the metal film formed on the convex optical surface by the sputtering process is irradiated with an ion beam, the sputtered particles emitted from the convex optical surface move in a direction away from the convex optical surface, so that the sputtered particles are This is because the film cannot be formed again on the convex optical surface.
 一方、中心部よりも周辺部の物理膜厚が厚い光学薄膜も提案されている。例えば、特許文献4には、3層の光学薄膜からなり、1層目及び3層目の光学薄膜は中心部と周辺部の物理膜厚が均一であり、2層目の光学薄膜は中心部よりも周辺部の物理膜厚が厚い反射防止膜が開示されている。この反射防止膜を構成する各光学薄膜は、光軸を中心に自転しつつ他の軸の周りを公転する凸の光学素子に複数の蒸発源からの蒸着粒子が付着する際に、絞り板によって蒸発源からの蒸発量を制御して蒸着粒子の付着量を制限することにより、膜厚分布が制御されたものである。そして、特許文献4に開示の反射防止膜は、主波長が193.4nmである光(紫外線)が0~35°の入射角度でレンズ中心部に入射したときの反射率を0.3%以下とし、上記紫外線が10~40°の入射角度でレンズ周辺部に入射したときの反射率を0.3%以下とすることができ、全ての位置における光学特性を光の入射角度を考慮した一様な反射防止効果等の光学特性を備えるとされている。 On the other hand, an optical thin film having a thicker physical film thickness in the peripheral portion than in the central portion has also been proposed. For example, in Patent Document 4, it is composed of three layers of optical thin films, the first and third layers of optical thin films have uniform physical film thickness in the central portion and the peripheral portion, and the second layer optical thin film has a central portion. There is disclosed an antireflection film having a larger physical film thickness in the peripheral portion than that. Each optical thin film that constitutes this antireflection film is formed by a diaphragm plate when vapor deposition particles from a plurality of evaporation sources adhere to a convex optical element that revolves around the other axis while rotating about the optical axis. The film thickness distribution is controlled by controlling the amount of evaporation from the evaporation source to limit the amount of deposition particles. The antireflection film disclosed in Patent Document 4 has a reflectance of 0.3% or less when light (ultraviolet rays) having a main wavelength of 193.4 nm is incident on the center of the lens at an incident angle of 0 to 35°. The reflectance when the ultraviolet rays are incident on the peripheral portion of the lens at an incident angle of 10 to 40° can be set to 0.3% or less, and the optical characteristics at all positions are determined by considering the incident angle of light. It is said to have such optical characteristics as an antireflection effect.
特開2006-91600号公報Japanese Unexamined Patent Publication No. 2006-91600 特開2010-138477号公報JP, 2010-138477, A 特開2012-128321号公報Japanese Unexamined Patent Publication No. 2012-128321 特開2003-7585号公報Japanese Unexamined Patent Publication No. 2003-7585
 しかしながら、特許文献4には、特定の波長のみの光が入射したときの反射防止性能については開示されているものの、波長帯域の広い光が入射したときの反射防止性能については一切開示されていない。さらに、特許文献4に開示の成膜方法は、自公転するレンズに対して、レンズの公転軸の直下に配置された第一蒸発源と、レンズの公転軌道の直下に配置された第二蒸発源及び第三蒸発源とによって成膜を行う。よって、レンズと各蒸発源との位置関係が重要であり、レンズの公転軌道上、すなわち、レンズの公転軸の同心円上にレンズを一列に並べることが必須であるため、生産性が低いという不都合がある。 However, although Patent Document 4 discloses antireflection performance when light having only a specific wavelength is incident, it does not disclose antireflection performance when light having a wide wavelength band is incident. .. Further, in the film forming method disclosed in Patent Document 4, a first evaporation source arranged directly below the revolution axis of the lens and a second evaporation source arranged directly below the revolution trajectory of the lens are used for a lens that revolves around its axis. A film is formed by the source and the third evaporation source. Therefore, the positional relationship between the lens and each evaporation source is important, and it is essential to arrange the lenses in a row on the orbit of the lens, that is, on the concentric circles of the revolution axes of the lens, which is inconvenient in terms of low productivity. There is.
 そこで、本件発明は、最大傾斜角度が25°以上である光学素子の凸の光学面の傾斜角度が大きい領域に波長帯域の広い光が大きな入射角度で入射するときに、広い波長帯域に亘って光の反射を低く抑えることができる反射防止膜及びそれを備える光学素子を提供することを目的とする。さらに、本件発明は、そのような反射防止膜の生産性に優れた成膜方法を提供することを目的とする。 Therefore, the present invention provides a wide wavelength band when light with a wide wavelength band is incident at a large incident angle in a region where the maximum tilt angle is 25° or more and the convex optical surface of the optical element has a large tilt angle. It is an object of the present invention to provide an antireflection film capable of suppressing light reflection low and an optical element provided with the antireflection film. A further object of the present invention is to provide a film forming method having excellent productivity of such an antireflection film.
 そこで、本件発明者らは、上述の課題を解決するため鋭意検討を行った結果、以下の発明に想到した。 Therefore, the inventors of the present invention have made the following inventions as a result of extensive studies to solve the above-mentioned problems.
 即ち、本件発明に係る反射防止膜は、測定箇所における法線と光軸とがなす角度によって示される凸の光学面の傾斜角度θの最大傾斜角度が25°以上である凸の光学面を有する光学素子に設ける反射防止膜であって、前記凸の光学面側に設ける複数の光学薄膜からなる多層構造を備え、各光学薄膜は、前記凸の光学面と前記光軸とが直交する点を中心とするとき、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いことを特徴とする。 That is, the antireflection film according to the present invention has a convex optical surface in which the maximum inclination angle θ of the convex optical surface indicated by the angle between the normal line and the optical axis at the measurement location is 25° or more. An antireflection film provided on an optical element, comprising a multilayer structure composed of a plurality of optical thin films provided on the convex optical surface side, each optical thin film has a point where the convex optical surface and the optical axis are orthogonal to each other. When centered, at least a part of the film provided in the region where the inclination angle θ of the convex optical surface is 25 ° or more is thicker than the physical film thickness of the film provided at the center of the convex optical surface. And
 本件発明に係る光学素子は、最大傾斜角度が25°以上である凸の光学面を有する光学素子であって、上述した反射防止膜を前記凸の光学面に備えることを特徴とする。 The optical element according to the present invention is an optical element having a convex optical surface having a maximum tilt angle of 25° or more, and is characterized in that the above-mentioned antireflection film is provided on the convex optical surface.
 本件発明に係る反射防止膜の成膜方法は、上述した反射防止膜を形成するための反射防止膜の成膜方法であって、前記光学素子を回転させながら、当該光学素子の前記凸の光学面側に成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを前記光軸に対して傾斜した方向から照射することにより、前記凸の光学面側の中心に堆積した成膜材料を当該凸の光学面側の周辺部よりも多く除去しつつ緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、前記成膜工程と前記照射工程とを行うことにより、前記多層構造を構成する各光学薄膜を形成することを特徴とする。 A method for forming an antireflection film according to the present invention is a method for forming an antireflection film for forming the above-described antireflection film, wherein the convex optical of the optical element is rotated while rotating the optical element. A film forming step of forming a film by depositing a film forming material from a film forming source on the surface side, and an ion from an ion source or a plasma from a plasma source on the convex optical surface side of the rotating optical element. By irradiating from a direction inclined with respect to the optical axis, the film-forming material deposited at the center of the convex optical surface side is densified while being removed more than the peripheral portion of the convex optical surface side, An irradiation step of shielding the ion or the plasma from being incident on the ion source or the region of the convex optical surface far from the plasma source by the region of the convex optical surface near the source or the plasma source. Each of the optical thin films constituting the multilayer structure is formed by performing the film forming step and the irradiation step.
 本件発明の反射防止膜は、最大傾斜角度が25°以上である凸の光学面を有する光学素子に設ける複数の光学薄膜からなる多層構造を備えるものであり、各光学薄膜は、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いものである。本件発明によれば、各光学薄膜が上述した膜厚分布を備えるため、最大傾斜角度が25°以上である光学素子の凸の光学面の傾斜角度θが大きい領域に波長帯域の広い光が大きな入射角度で入射するときに、広い波長帯域で光の反射を低く抑えることができる反射防止膜及びそれを備える光学素子を提供することができる。 The antireflection film of the present invention is provided with a multilayer structure composed of a plurality of optical thin films provided in an optical element having a convex optical surface having a maximum tilt angle of 25° or more, and each optical thin film is the convex optical surface. At least a part of the film provided in the region where the inclination angle θ of the surface is 25 ° or more is thicker than the physical film thickness of the film provided at the center of the convex optical surface. According to the present invention, since each optical thin film has the above-mentioned film thickness distribution, light having a wide wavelength band is large in a region where the inclination angle θ of the convex optical surface of the optical element having a maximum inclination angle of 25 ° or more is large. It is possible to provide an antireflection film capable of suppressing reflection of light in a wide wavelength band to be low when entering at an incident angle and an optical element including the antireflection film.
 そして、本件発明の反射防止膜の成膜方法は、上述した成膜工程と照射工程とを行うことにより、各層の光学薄膜を成膜し上記反射防止膜を形成することができる。よって、本件発明によれば、生産性に優れた反射防止膜の成膜方法を提供することができる。 Then, in the method for forming an antireflection film of the present invention, the above-mentioned antireflection film can be formed by forming the optical thin film of each layer by performing the above-described film forming step and irradiation step. Therefore, according to the present invention, it is possible to provide a method for forming an antireflection film having excellent productivity.
本件発明に係る反射防止膜を示す模式的断面図である。It is a typical sectional view showing the antireflection film concerning the present invention. 本件発明に係る反射防止膜の成膜方法を実施する成膜装置の模式図である。It is a schematic diagram of the film forming apparatus which carries out the film forming method of the antireflection film which concerns on this invention. 図2に示す成膜装置の要部拡大図である。It is a principal part enlarged view of the film-forming apparatus shown in FIG. 本発明に係る反射防止膜の成膜方法を実施する成膜装置の概略図である。(a)は成膜装置の正面図であり、(b)は光学素子支持装置を下側から見た底面図である。It is the schematic of the film forming apparatus which carries out the film forming method of the antireflection film which concerns on this invention. (A) is a front view of the film-forming apparatus, (b) is a bottom view of the optical element supporting device as viewed from below. 実施例1、3及び比較例1の反射防止膜を設ける光学素子を示す図である。It is a figure which shows the optical element which provides the antireflection film of Examples 1, 3 and Comparative Example 1. 実施例2、4及び比較例2の反射防止膜を設ける光学素子を示す図である。It is a figure which shows the optical element which provides the antireflection film of Examples 2, 4 and Comparative Example 2. 実施例1から2の反射防止膜を構成する各光学薄膜の膜厚分布を示すグラフである。(a)は実施例1を示し、(b)は実施例2を示す。It is a graph which shows the film thickness distribution of each optical thin film which constitutes the antireflection film of Examples 1 and 2. (A) shows Example 1 and (b) shows Example 2. 実施例3から4の反射防止膜を構成する各光学薄膜の膜厚分布を示すグラフである。(a)は実施例3を示し、(b)は実施例4を示す。6 is a graph showing the film thickness distribution of each optical thin film constituting the antireflection film of Examples 3 to 4. (A) shows Example 3 and (b) shows Example 4. 比較例1から2の反射防止膜を構成する各光学薄膜の膜厚分布を示すグラフである。(a)は比較例1を示し、(b)は比較例2を示す。It is a graph which shows the film thickness distribution of each optical thin film which constitutes the antireflection film of Comparative Examples 1 and 2. (A) shows Comparative Example 1 and (b) shows Comparative Example 2. 実施例1の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜上の光学面の傾斜角度θが0°である箇所に対応する箇所で測定した、入射角度φが0°、10°、20°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが35°である箇所に対応する箇所で測定した、入射角度φが20°、30°、40°である入射光の分光反射率を示し、(c)は反射防止膜上の光学面の傾斜角度θが60°である箇所に対応する箇所で測定した、入射角度φが40°、50°、60°である入射光の分光反射率を示す。3 is a graph showing the spectral reflectance of the antireflection film of Example 1. (A) is the spectral reflectance of incident light having an incident angle φ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 0°. (B) shows the spectral reflection of incident light having incident angles φ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 35°. Shows the ratio, (c) of the incident light having an incident angle φ of 40°, 50°, 60° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 60°. Shows spectral reflectance. 実施例2の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜上の光学面の傾斜角度θが0°である箇所に対応する箇所で測定した、入射角度φが0°、10°、20°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが35°である箇所に対応する箇所で測定した、入射角度φが20°、30°、40°である入射光の分光反射率を示し、(c)は反射防止膜上の光学面の傾斜角度θが70°である箇所に対応する箇所で測定した、入射角度φが50°、60°、70°である入射光の分光反射率を示す。5 is a graph showing the spectral reflectance of the antireflection film of Example 2. (A) is the spectral reflectance of incident light having an incident angle φ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 0°. (B) shows the spectral reflection of incident light having incident angles φ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 35°. Shows the ratio, (c) of the incident light having an incident angle φ of 50°, 60°, 70° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 70°. Shows spectral reflectance. 実施例3の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜上の光学面の傾斜角度θが0°である箇所に対応する箇所で測定した、入射角度φが0°、10°、20°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが35°である箇所に対応する箇所で測定した、入射角度φが20°、30°、40°である入射光の分光反射率を示し、(c)は反射防止膜上の光学面の傾斜角度θが70°である箇所に対応する箇所で測定した、入射角度φが50°、60°、70°である入射光の分光反射率を示す。7 is a graph showing the spectral reflectance of the antireflection film of Example 3. (A) shows the spectral reflectance of incident light having incident angles φ of 0 °, 10 °, and 20 °, measured at a location corresponding to a location where the inclination angle θ of the optical surface on the antireflection film is 0 °. (B) shows the spectral reflection of incident light having incident angles φ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 35°. Shows the ratio, (c) of the incident light having an incident angle φ of 50°, 60°, 70° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 70°. Shows spectral reflectance. 実施例4の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜の光学面の傾斜角度θが0°である箇所に対応する箇所で測定した、入射角度φが0°、10°、20°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが35°である箇所に対応する箇所で測定した、入射角度φが20°、30°、40°である入射光の分光反射率を示し、(c)は反射防止膜上の光学面の傾斜角度θが70°である箇所に対応する箇所で測定した、入射角度φが50°、60°、70°である入射光の分光反射率を示す。9 is a graph showing the spectral reflectance of the antireflection film of Example 4. (A) shows the spectral reflectance of incident light having incident angles φ of 0 °, 10 °, and 20 °, measured at a location corresponding to a location where the inclination angle θ of the optical surface of the antireflection film is 0 °. , (B) are the spectral reflectances of incident light having incident angles φ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 35°. (C) is a spectrum of incident light having incident angles φ of 50°, 60°, and 70° measured at a position corresponding to a position where the tilt angle θ of the optical surface on the antireflection film is 70°. The reflectance is shown. 比較例1の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜上の光学面の傾斜角度θが0°である箇所に対応する箇所で測定した、入射角度φが0°、10°、20°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが35°である箇所に対応する箇所で測定した、入射角度φが20°、30°、40°である入射光の分光反射率を示す。It is a graph which shows the spectral reflectance of the antireflection film of Comparative Example 1. (A) is the spectral reflectance of incident light having an incident angle φ of 0°, 10°, 20° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 0°. (B) shows the spectral reflection of incident light having incident angles φ of 20°, 30°, and 40° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 35°. Indicates the rate. 比較例1の反射防止膜の分光反射率を示すグラフである。(a)は反射防止膜上の光学面の傾斜角度θが60°である箇所に対応する箇所で測定した、入射角度φが40°、50°、60°である入射光の分光反射率を示し、(b)は反射防止膜上の光学面の傾斜角度θが70°である箇所に対応する箇所で測定した、入射角度φが50°、60°、70°である入射光の分光反射率を示す。It is a graph which shows the spectral reflectance of the antireflection film of Comparative Example 1. (A) is the spectral reflectance of incident light having incident angles φ of 40°, 50°, and 60° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 60°. (B) shows the spectral reflection of incident light having incident angles φ of 50°, 60°, and 70° measured at a position corresponding to a position where the inclination angle θ of the optical surface on the antireflection film is 70°. Indicates the rate.
 以下、本件発明に係る反射防止膜及びその成膜方法、並びに、反射防止膜を備える光学素子の実施の形態を説明する。 Hereinafter, embodiments of an antireflection film and a film forming method thereof according to the present invention, and an optical element including the antireflection film will be described.
1.反射防止膜
 本件発明に係る反射防止膜は、測定箇所における法線と光軸とがなす角度によって示される凸の光学面の傾斜角度θの最大傾斜角度が25°以上である凸の光学面を有する光学素子に設ける反射防止膜であって、前記凸の光学面側に設ける複数の光学薄膜からなる多層構造を備え、各光学薄膜は、前記凸の光学面と前記光軸とが直交する点を中心とするとき、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いことを特徴とする。
1. Anti-reflection film The anti-reflection film according to the present invention is a convex optical surface in which the maximum inclination angle θ of the inclination angle θ of the convex optical surface indicated by the angle between the normal line and the optical axis at the measurement point is 25 ° or more. An antireflection film provided on an optical element having a multi-layer structure composed of a plurality of optical thin films provided on the convex optical surface side, and each optical thin film is a point at which the convex optical surface and the optical axis are orthogonal to each other. When at least a part of the film provided in the region where the inclination angle θ of the convex optical surface is 25° or more is thicker than the physical film thickness of the film provided in the center of the convex optical surface. Characterize.
 反射防止膜は、光学素子の最大傾斜角度が25°以上である凸の光学面に設けるものであり、n層(nは2以上の整数)の光学薄膜が積層した多層構造を備える。最大傾斜角度が25°以上である凸の光学面とは、凸の光学面内で傾斜角度θを測定したとき、傾斜角度θが25°以上である箇所が存在するような光学面をいう。例えば、最大傾斜角度が25°以上である凸の光学面が、中心から周辺部に向かって傾斜角度が徐々に大きくなる光学面である場合には、凸の光学面の周辺部の傾斜角度θは25°以上である。凸の光学面は、曲率を有する面であってもよく、自由曲面であってもよい。最大傾斜角度が25°以上であって自由曲面である凸の光学面とは、凸の光学面上の任意の2点の法線のなす角度をγとするとき、角度γ/2が25°以上である光学面をいう。このとき、角度γ/2を形成する線分を、凸の光学面を備える光学素子の光軸とみなすことができる。 The antireflection film is provided on a convex optical surface where the maximum tilt angle of the optical element is 25° or more, and has a multilayer structure in which n layers (n is an integer of 2 or more) of optical thin films are laminated. The convex optical surface having the maximum inclination angle of 25° or more means an optical surface in which there is a portion where the inclination angle θ is 25° or more when the inclination angle θ is measured in the convex optical surface. For example, when the convex optical surface having a maximum inclination angle of 25° or more is an optical surface whose inclination angle gradually increases from the center toward the peripheral portion, the inclination angle θ of the peripheral portion of the convex optical surface is θ. Is 25 ° or more. The convex optical surface may be a surface having a curvature or a free-form surface. With a convex optical surface having a maximum inclination angle of 25° or more and being a free-form surface, the angle γ/2 is 25° when the angle formed by the normals of any two points on the convex optical surface is γ. The above optical surface. At this time, the line segment forming the angle γ/2 can be regarded as the optical axis of the optical element having the convex optical surface.
 図1に、本件発明の実施の形態である反射防止膜を示す。図1に示す反射防止膜1は、最大傾斜角度が90°、すなわち、周辺部の傾斜角度θが90°である凸の光学面11aを備える光学素子11に設けるものである。但し、反射防止膜の最大傾斜角度は90°に限定されるものではなく、25°以上であれば任意の角度とすることができる。以下、凸の光学面11aを「光学面11a」と略記することがある。図1に示す反射防止膜1は、7層の光学薄膜2が積層した多層構造を備えるが、層の数は2層以上であれば任意の数とすることができる。7層の各光学薄膜2は、光学面11aに近い側から順に、第1層の光学薄膜2a、第2層の光学薄膜2b、第3層の光学薄膜2c、第4層の光学薄膜2d、第5層の光学薄膜2e、第6層の光学薄膜2f、第7層の光学薄膜gとも表記する。なお、図1中の光学薄膜2のハッチングを省略する。 FIG. 1 shows an antireflection film according to an embodiment of the present invention. The antireflection film 1 shown in FIG. 1 is provided on the optical element 11 having a convex optical surface 11a having a maximum tilt angle of 90°, that is, a peripheral tilt angle θ of 90°. However, the maximum tilt angle of the antireflection film is not limited to 90°, and can be any angle as long as it is 25° or more. Hereinafter, the convex optical surface 11a may be abbreviated as "optical surface 11a". The antireflection film 1 shown in FIG. 1 has a multilayer structure in which seven layers of optical thin films 2 are laminated, and the number of layers can be any number as long as it is two or more layers. In each of the seven layers, the optical thin film 2 of the first layer, the optical thin film 2b of the second layer, the optical thin film 2c of the third layer, the optical thin film 2d of the fourth layer, in order from the side closer to the optical surface 11a, Also referred to as the fifth layer optical thin film 2e, the sixth layer optical thin film 2f, and the seventh layer optical thin film g. The hatching of the optical thin film 2 in FIG. 1 is omitted.
 多層構造を構成する各光学薄膜は、光学素子の凸の光学面と前記光軸とが直交する点を中心とするとき、凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、凸の光学面の中心に設ける膜の物理膜厚よりも厚くなっている。 Each optical thin film forming the multilayer structure is a film provided in a region in which an inclination angle θ of the convex optical surface is 25° or more when centered on a point where the convex optical surface of the optical element and the optical axis are orthogonal to each other. At least a part of the film is thicker than the physical film thickness of the film provided at the center of the convex optical surface.
 本件発明に係る反射防止膜は、多層構造を構成する各光学薄膜が上述した膜厚分布を備えるため、最大傾斜角度が25°以上である光学素子の凸の光学面の傾斜角度θが大きい領域に波長帯域の広い光が大きな入射角度で入射するときに、広い波長帯域に亘って光の反射を低く抑えることができる。 In the antireflection film according to the present invention, since each optical thin film forming the multilayer structure has the above-mentioned film thickness distribution, a region where the inclination angle θ of the convex optical surface of the optical element having the maximum inclination angle of 25° or more is large. When light with a wide wavelength band enters at a large incident angle, the reflection of light can be suppressed to a low level over a wide wavelength band.
 ここで、反射防止性能について詳述する。通常、光学素子の凸の光学面に対して光が入射するとき、凸の光学面の傾斜角度θが小さい領域には入射角度φの小さい光が入射する一方、傾斜角度θが大きい領域には入射角度φの大きい光が入射する。光の入射角度φが大きいほど、分光特性は短波長側へシフトする。これに対し、本件発明に係る反射防止膜では、凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、凸の光学面の中心に設ける膜の物理膜厚よりも厚いことにより、分光特性の短波長側へのシフトを打ち消すことができる。この結果、本件発明に係る反射防止膜によれば、凸の光学面の傾斜角度θが大きい領域に波長帯域の広い光が大きな入射角度で入射するときに、広い波長帯域に亘って光の反射を低く抑えることができる。 Here, the antireflection performance will be described in detail. Normally, when light is incident on the convex optical surface of an optical element, light having a small incident angle φ is incident on a region where the tilt angle θ of the convex optical surface is small, while light is incident on a region where the tilt angle θ is large. Light with a large incident angle φ is incident. The larger the incident angle φ of light, the more the spectral characteristics shift to the shorter wavelength side. On the other hand, in the antireflection film according to the present invention, at least a part of the film provided in the region where the inclination angle θ of the convex optical surface is 25 ° or more is the physical film thickness of the film provided at the center of the convex optical surface. By being thicker than, the shift of the spectral characteristics to the short wavelength side can be canceled out. As a result, according to the antireflection film according to the present invention, when light having a wide wavelength band is incident at a large incident angle in a region where the inclination angle θ of the convex optical surface is large, the light is reflected over a wide wavelength band. Can be kept low.
 具体的に反射防止性能を示すと、本件発明に係る反射防止膜は、例えば、最大傾斜角度が25°以上である光学素子の凸の光学面の傾斜角度θが35°である領域に、波長420nm以上680nmの光が20°以上40°以下の入射角度φで入射したとき、上記波長の光の反射率を1%以下に抑えることができる。前記凸の光学面の傾斜角度θが60°である領域に、上記波長の光が40°以上60°以下の入射角度φで入射したとき、光の反射率を10%以下に抑えることができる。凸の光学面の傾斜角度θが70°である領域に、上記波長の光が70°の入射角度φで入射したとき、光の反射率を20%以下に抑えることができる。 Specifically showing the antireflection performance, the antireflection film according to the present invention has, for example, a wavelength in the region where the inclination angle θ of the convex optical surface of the optical element having the maximum inclination angle of 25° or more is 35°. When the light of 420 nm or more and 680 nm is incident at the incident angle φ of 20° or more and 40° or less, the reflectance of the light of the above wavelength can be suppressed to 1% or less. When light of the above wavelength is incident on the region where the inclination angle θ of the convex optical surface is 60° at an incident angle φ of 40° or more and 60° or less, the reflectance of light can be suppressed to 10% or less. .. When light of the above wavelength is incident on the region where the inclination angle θ of the convex optical surface is 70° at an incident angle φ of 70°, the reflectance of light can be suppressed to 20% or less.
 各光学薄膜は、光学素子の有効領域を考慮すると、前記凸の光学面の傾斜角度θが25°以上80°未満である領域に設ける膜の少なくとも一部が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いものであることが好ましい。 Considering the effective region of the optical element, at least a part of the film provided in the region where the inclination angle θ of the convex optical surface is 25 ° or more and less than 80 ° is located at the center of the convex optical surface. It is preferably thicker than the physical film thickness of the film to be provided.
 そして、各光学薄膜は、前記凸の光学面の傾斜角度θが25°以上75°未満である領域に設ける膜の全体が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いものであることがより好ましい。このような光学薄膜を積層した反射防止膜は、上述した広い波長帯域に亘って光の反射を低く抑える効果をより確実に得ることができる。 Then, in each optical thin film, the entire film provided in the region where the inclination angle θ of the convex optical surface is 25 ° or more and less than 75 ° is thicker than the physical film thickness of the film provided at the center of the convex optical surface. It is more preferable that it is a thing. The antireflection film formed by laminating such an optical thin film can more reliably obtain the effect of suppressing the reflection of light to a low level over the wide wavelength band described above.
 さらに、各光学薄膜は、前記凸の光学面の中心に設ける膜の物理膜厚をd0とし、当該光学薄膜の任意の測定箇所における物理膜厚をdxとするとき、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜のうち、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚い部分の物理膜厚が、以下の条件式を満たすものであることが好ましい。
       1<dx/d0≦1.3
Further, for each optical thin film, when the physical film thickness of the film provided at the center of the convex optical surface is d0 and the physical film thickness at an arbitrary measurement point of the optical thin film is dx, the inclination of the convex optical surface is set. Among the films provided in the region where the angle θ is 25° or more, the physical film thickness of a portion thicker than the physical film thickness of the film provided in the center of the convex optical surface satisfies the following conditional expression. preferable.
1<dx/d0≦1.3
 この条件式は、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜のうち、物理膜厚が前記凸の光学面の中心に設ける膜の物理膜厚d0よりも厚い部分では、任意の測定箇所における物理膜厚dxが前記中心に設ける膜の物理膜厚d0の1倍以上1.3倍以下の範囲に収まっていて、その部分に物理膜厚が過度に厚い箇所が存在しないことを意味する。その場合には、光学素子の凸の光学面の傾斜角度θが大きい領域に大きな入射角度で入射した光の反射を、より確実に抑制することができると共に、ゴーストの発生を抑制することができる。一方、上記条件式を満たさない場合、すなわち、光学素子の凸の光学面の傾斜角度θが25°以上である領域に設ける膜にdx/d0≦1である部分が存在する場合には、その領域に入射した光の反射を抑制できないことがあるため好ましくない。また、光学素子の凸の光学面の傾斜角度θが25°以上である領域に設ける膜に1.3<dx/d0である部分が存在する場合には、上述した分光特性の短波長側へのシフトを過度に打ち消して長波長側へシフトさせてしまい、青色のゴーストが発生することがあるため好ましくない。 In this conditional expression, in the film provided in the region where the inclination angle θ of the convex optical surface is 25° or more, the physical film thickness is thicker than the physical film thickness d0 of the film provided in the center of the convex optical surface. Then, the physical film thickness dx at an arbitrary measurement point is within the range of 1 to 1.3 times the physical film thickness d0 of the film provided at the center, and there is an excessively thick physical film portion at that part. It means that it does not exist. In that case, it is possible to more reliably suppress the reflection of light incident on a region where the inclination angle θ of the convex optical surface of the optical element is large at a large incident angle, and it is also possible to suppress the occurrence of ghosts. .. On the other hand, when the above conditional expression is not satisfied, that is, when there is a portion of dx/d0≦1 in the film provided in the region where the inclination angle θ of the convex optical surface of the optical element is 25° or more, It may not be possible to suppress the reflection of the light incident on the region, which is not preferable. In addition, when the film provided in the region where the inclination angle θ of the convex optical surface of the optical element is 25° or more exists in a portion where 1.3<dx/d0 exists, the spectral characteristics described above are shifted to the short wavelength side. Is excessively canceled to shift to the longer wavelength side, and a blue ghost may occur, which is not preferable.
 上記光学薄膜の膜厚は、断面SEMや接触式の膜厚計で測定することができる。或いは、光学薄膜の反射率をエリプソメータ等によって測定し、シミュレーションによって反射率から膜厚や屈折率を算出することができる。 The film thickness of the optical thin film can be measured with a cross-section SEM or a contact-type film thickness meter. Alternatively, the reflectance of the optical thin film can be measured by an ellipsometer or the like, and the film thickness or the refractive index can be calculated from the reflectance by simulation.
 ところで、本件発明に係る反射防止膜は、反射率をより低減するために、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを備えることが好ましい。さらに、反射防止膜は、屈折率が高屈折率層と低屈折率層との中間である中間屈折率層を備えてもよい。高屈折率層、低屈折率層及び中間屈折率層を、適宜組み合わせて反射防止膜を構成することができる。 By the way, in order to further reduce the reflectance, the antireflection film according to the present invention preferably includes an optical thin film having a high refractive index layer and an optical thin film having a low refractive index layer. Further, the antireflection film may include an intermediate refractive index layer having a refractive index intermediate between those of the high refractive index layer and the low refractive index layer. The high-refractive index layer, the low-refractive index layer, and the intermediate-refractive index layer can be appropriately combined to form an antireflection film.
 高屈折率層としては、TiO、Nb、ZrO、La、Ta、HfOの群より選択される1種以上の金属酸化物を含むものが好ましい。このような高屈折率層は、2.0以上の高屈折率を実現することができる。また、低屈折率層としては、SiOを単独で含むか、又は、SiOとAlとの混合物を含むものが好ましい。このような低屈折率層は、屈折率を1.50以下に低減することができる。そして、最終層の低屈折率層はSiOを含むものが好ましい。さらに、中間屈折率層としては、Al、Y、YbF等の金属酸化物や、Al+La等の混合物を含むものが好ましい。このような中間屈折率層は、1.50以上2.0以下の屈折率を実現することができる。例えば、図1に示す反射防止膜1において、第1層の光学薄膜2a、第3層の光学薄膜2c、第5層の光学薄膜2e及び第7の光学薄膜2fをSiOからなる低屈折率層とし、第2層の光学薄膜2b、第4層の光学薄膜2d及び第6層の光学薄膜2fをTiOからなる高屈折率層としてもよい。 The high refractive index layer preferably contains one or more metal oxides selected from the group consisting of TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 and HfO 2 . Such a high refractive index layer can realize a high refractive index of 2.0 or more. Further, the low refractive index layer preferably contains SiO 2 alone or a mixture of SiO 2 and Al 2 O 3 . Such a low refractive index layer can reduce the refractive index to 1.50 or less. The low refractive index layer as the final layer preferably contains SiO 2 . Further, the intermediate refractive index layer preferably contains a metal oxide such as Al 2 O 3 , Y 2 O 3 , YbF 2 , or a mixture such as Al 2 O 3 + La 2 O 3 . Such an intermediate refractive index layer can realize a refractive index of 1.50 or more and 2.0 or less. For example, in the antireflection film 1 shown in FIG. 1, the optical thin film 2a of the first layer, the optical thin film 2c of the third layer, the optical thin film 2e of the fifth layer, and the optical thin film 2f of the seventh layer are composed of SiO 2 and have a low refractive index. The optical thin film 2b as the second layer, the optical thin film 2d as the fourth layer, and the optical thin film 2f as the sixth layer may be layers, and may be high refractive index layers made of TiO 2 .
 上述した反射防止膜を構成する各光学薄膜は、後述する成膜方法によって形成することができる。成膜方法の中でイオン又はプラズマを使用するため、光学薄膜はイオン又はプラズマを構成する元素を含むものとなる。例えば、Arをプラズマ化して成膜した場合には、二次イオン質量分析(SIMS)によって、光学薄膜が1×1019原子%/cm以上のArを含むことを確認することができる。但し、光学薄膜が1×1022原子%/cm以上のArを含む場合には、当該光学薄膜が緻密化していないことがあるため好ましくない。 Each optical thin film constituting the antireflection film described above can be formed by a film forming method described later. Since ions or plasma is used in the film forming method, the optical thin film contains an element that constitutes ions or plasma. For example, when Ar is plasmatized to form a film, it can be confirmed by secondary ion mass spectrometry (SIMS) that the optical thin film contains 1×10 19 atomic%/cm 3 or more of Ar. However, when the optical thin film contains 1×10 22 atomic%/cm 3 or more of Ar, the optical thin film may not be densified, which is not preferable.
2.反射防止膜の成膜方法
 次に、上述した反射防止膜の成膜方法の実施の形態を説明する。本件発明に係る反射防止膜の成膜方法は、上述した反射防止膜を形成するための反射防止膜の成膜方法であって、前記光学素子を回転させながら、当該光学素子の前記凸の光学面側に成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを前記光軸に対して傾斜した方向から照射することにより、前記凸の光学面側の中心に堆積した成膜材料を当該凸の光学面の周辺部よりも多く除去しつつ緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、前記成膜工程と前記照射工程とを行うことにより、前記多層構造を構成する各光学薄膜を形成することを特徴とする。
2. Method of Forming Antireflection Film Next, an embodiment of the method of forming the antireflection film described above will be described. A method for forming an antireflection film according to the present invention is a method for forming an antireflection film for forming the above-described antireflection film, wherein the convex optical of the optical element is rotated while rotating the optical element. A film forming step of forming a film by depositing a film forming material from a film forming source on the surface side, and an ion from an ion source or a plasma from a plasma source on the convex optical surface side of the rotating optical element. By irradiating from a direction inclined with respect to the optical axis, the film forming material deposited at the center of the convex optical surface side is densified while being removed more than the peripheral portion of the convex optical surface, and the ion source Alternatively, an irradiation step of shielding the ion or the plasma from being incident on the ion source or the region of the convex optical surface far from the plasma source by the region of the convex optical surface near the plasma source. The optical thin film forming the multilayer structure is formed by performing the film forming step and the irradiation step.
 本件発明に係る反射防止膜の成膜方法は、例えば、図2及び図3に示す成膜装置によって実施することができる。図2及び図3に示す成膜装置は、実施の形態の一つであり、これに限定されるものではない。特に、成膜工程については、様々な形態、例えばスパッタ、CVD等を成膜ソースとして適用することが可能であり、本実施形態の成膜工程に限定されない。はじめに、この成膜装置の実施の形態について説明する。 The method for forming an antireflection film according to the present invention can be carried out by the film forming apparatus shown in FIGS. 2 and 3, for example. The film forming apparatus shown in FIGS. 2 and 3 is one of the embodiments, and is not limited thereto. In particular, regarding the film forming process, various forms such as sputtering, CVD and the like can be applied as the film forming source, and the film forming process is not limited to the film forming process of the present embodiment. First, an embodiment of this film forming apparatus will be described.
 図2に示す成膜装置21は、内部を真空に保持可能な成膜室31内に、遊星回転機構を備える光学素子支持装置41と、成膜ソースとしての蒸着源51と、イオン銃61とを備える。本実施形態では、イオンを照射するイオン銃61を用いるが、イオン銃61に代えて、プラズマを照射するプラズマ銃を用いてもよい。 The film forming apparatus 21 shown in FIG. 2 includes an optical element supporting device 41 having a planetary rotation mechanism, a vapor deposition source 51 as a film forming source, an ion gun 61, and a film forming chamber 31 capable of holding a vacuum inside. Equipped with. In this embodiment, the ion gun 61 for irradiating ions is used, but instead of the ion gun 61, a plasma gun for irradiating plasma may be used.
 光学素子支持装置41は、成膜室31の天井壁から吊り下げられ、回転可能な円盤状の支持基体42と、支持基体42の周縁部に吊り下げられ、回転可能な円盤状の光学素子ホルダ43とを備える。支持基体42は、図示しない第1モータの駆動によって自転する。支持基体42の自転軸をL1とする。光学素子ホルダ43は、図示しない第2モータの駆動によって自転する。光学素子ホルダ43の自転軸をL2とする。また、光学素子ホルダ43は、第1モータの駆動によって、支持基体42の自転軸L1を回転軸として公転する。支持基体42には6個の光学素子ホルダ43が等間隔に配設されている。但し、図2では2個の光学素子ホルダ43のみを記載し、他の光学素子ホルダ43については記載を省略する。 The optical element support device 41 is hung from the ceiling wall of the film forming chamber 31, is a rotatable disk-shaped support base 42, and is hung on the peripheral portion of the support base 42, and is a rotatable disk-shaped optical element holder. And 43. The support base 42 rotates by the drive of a first motor (not shown). The axis of rotation of the support base 42 is L1. The optical element holder 43 rotates by driving a second motor (not shown). The rotation axis of the optical element holder 43 is L2. Further, the optical element holder 43 revolves around the rotation axis L1 of the support base 42 as a rotation axis when driven by the first motor. Six optical element holders 43 are arranged at equal intervals on the support base 42. However, in FIG. 2, only two optical element holders 43 are shown and the other optical element holders 43 are omitted.
 本実施形態では、光学素子ホルダ43は、光学素子11が取り付けられて成膜が行われる成膜面43aが斜め下方向を向くように支持基体42に吊り下げられている。成膜面43aの向きは、角度調節機構44によって調整される。図2は、成膜面43aが鉛直方向に対して20°傾いた状態を示している。成膜面43aには、反射防止膜が形成される光学面11aを外側に向けた状態で、複数の光学素子11が光学素子ホルダ43の自転軸L2の周囲に同心円状に配置される。例えば、光学素子ホルダ43の自転軸L2の周囲に7個の光学素子11を等間隔に配置し、その外周に14個の光学素子11を等間隔に配置することができる。但し、図2では2個の光学素子11のみを記載し、他の光学素子11については記載を省略する。このように、本実施形態では、光学素子支持装置41に6個の光学素子ホルダ43が設けられ、各光学素子ホルダ43に14個の光学素子11を配置可能であるため、最大84個の光学素子11に対して同時に成膜が可能である。そして、成膜面43aに取り付けられた光学素子11は、光軸OAが鉛直方向に対して傾斜した姿勢をとる。本実施形態では、成膜面43aが平坦であるため、各光学素子11の光軸OAと光学素子ホルダ43の自転軸L2とが平行であるが、必ずしも平行でなくてもよい。 In the present embodiment, the optical element holder 43 is suspended from the support base 42 so that the film forming surface 43a on which the optical element 11 is attached and the film is formed faces diagonally downward. The orientation of the film forming surface 43a is adjusted by the angle adjusting mechanism 44. FIG. 2 shows a state in which the film-forming surface 43a is tilted by 20 ° with respect to the vertical direction. On the film-forming surface 43a, a plurality of optical elements 11 are concentrically arranged around the rotation axis L2 of the optical element holder 43 with the optical surface 11a on which the antireflection film is formed facing outward. For example, seven optical elements 11 can be arranged at equal intervals around the rotation axis L2 of the optical element holder 43, and 14 optical elements 11 can be arranged at equal intervals on the outer circumference thereof. However, in FIG. 2, only two optical elements 11 are shown and the other optical elements 11 are omitted. As described above, in the present embodiment, the optical element support device 41 is provided with six optical element holders 43, and 14 optical elements 11 can be arranged in each optical element holder 43, so that a maximum of 84 optics can be arranged. It is possible to form a film on the element 11 at the same time. The optical element 11 attached to the film formation surface 43a has a posture in which the optical axis OA is inclined with respect to the vertical direction. In the present embodiment, since the film formation surface 43a is flat, the optical axis OA of each optical element 11 and the rotation axis L2 of the optical element holder 43 are parallel, but they do not necessarily have to be parallel.
 本実施形態では、蒸着源51は、図2に示すように、成膜室21の底部であって光学素子ホルダ43の公転軌道の内方に設けている。但し、蒸着源51の位置は、この位置に限定されない。例えば、サイドスパッタを行う場合には、蒸着源51を光学素子ホルダ43に対して水平方向の位置に設けることができる。蒸着源51は、電子銃、抵抗加熱、スパッタ源、イオン銃やプラズマ銃によるスパッタ、プラズマ銃による加熱蒸着、化学的蒸着法、イオンプレーティング等を用いて、成膜材料である蒸着物質を成膜することができる。蒸着源51として、例えば、TiO、Nb、ZrO、La、Ta、HfO、SiO、Al等、種々の光学材料を使用することができる。蒸着源51からの蒸着物質は、広がりをもちながら上昇し、光学素子11の光学面11a、光学素子ホルダ43等に堆積する。蒸着物質は、様々な方向から光学素子11の光学面11a側に入射するが、主に鉛直下方向から入射する。すなわち、蒸着物質は、主に、光軸OAに対して傾斜した方向から光学素子11の光学面11aに入射する。例えば、ある瞬間には、蒸着物質は、光軸OAに対して角度αで傾斜した方向D1から光学素子11の光学面11a側に入射する。角度αは、蒸着源51の位置や成膜面43aの向き等を変えることによって調整することができる。図2は、角度αが70°である状態を示している。そして、蒸着物質の光学面11a側への堆積速度は、成膜室31内の圧力(真空度)、蒸着源51の位置、蒸着源51の成膜条件(抵抗加熱の温度や蒸発面積、電子銃の電子線サイズ、エミッション電流、加速電圧)等によって制御することができる。 In the present embodiment, as shown in FIG. 2, the vapor deposition source 51 is provided at the bottom of the film forming chamber 21 and inside the orbit of the optical element holder 43. However, the position of the vapor deposition source 51 is not limited to this position. For example, when performing side sputtering, the vapor deposition source 51 can be provided at a horizontal position with respect to the optical element holder 43. The thin-film deposition source 51 forms a thin-film deposition material that is a film-forming material by using an electron gun, resistance heating, a sputtering source, sputtering with an ion gun or a plasma gun, heating vapor deposition with a plasma gun, a chemical vapor deposition method, ion plating, or the like. Can be membrane. As the vapor deposition source 51, for example, various optical materials such as TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , HfO 2 , SiO 2 , and Al 2 O 3 can be used. .. The vapor deposition material from the vapor deposition source 51 rises while spreading and is deposited on the optical surface 11 a of the optical element 11, the optical element holder 43, and the like. The vapor deposition substance enters the optical surface 11a side of the optical element 11 from various directions, but mainly enters from the vertically downward direction. That is, the vapor deposition material mainly enters the optical surface 11a of the optical element 11 from a direction inclined with respect to the optical axis OA. For example, at a certain moment, the vapor deposition material is incident on the optical surface 11a side of the optical element 11 from the direction D1 inclined at the angle α with respect to the optical axis OA. The angle α can be adjusted by changing the position of the vapor deposition source 51, the direction of the film formation surface 43a, and the like. FIG. 2 shows a state in which the angle α is 70°. The deposition rate of the vapor deposition material on the optical surface 11a side is determined by the pressure (vacuum degree) in the film deposition chamber 31, the position of the vapor deposition source 51, the film deposition conditions of the vapor deposition source 51 (temperature of resistance heating, evaporation area, electron It can be controlled by the electron beam size of the gun, emission current, acceleration voltage, etc.
 本実施形態では、イオン銃61もまた、成膜室21の底部であって、光学素子ホルダ43の公転軌道の内方であって、支持基体42の自転軸L1に対して蒸着源51とは反対側の位置に設けている。但し、イオン銃61の位置は、後述するように、自己遮蔽を行うことができるのであれば、この位置に限定されない。イオン銃61は、イオンを高速で照射する。本実施形態では、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガス又は窒素と適宜Oをイオン銃61に導入し、イオン銃61によってそれらのガスをイオン化して照射する。イオン銃61によって照射されたイオンは、加速されているため高い直進性を有している。イオン銃61は、イオンを所定の方向に向けて照射する。例えば、ある瞬間には、イオン銃61は、イオンが光軸OAに対して角度βで傾斜した方向D2から光学素子11の光学面11a側に入射するように、イオンを照射する。角度βは、イオン銃61の位置や照射角度を変えることによって調整することができる。図2では、角度βが70°である状態を示している。イオン銃61の照射エネルギーは、加速電圧、ビーム電流、ビーム電圧、成膜圧力、ガス導入種、ガス導入量等によって制御することができる。 In the present embodiment, the ion gun 61 is also the bottom of the film forming chamber 21, is inside the revolution trajectory of the optical element holder 43, and is the vapor deposition source 51 with respect to the rotation axis L1 of the support substrate 42. It is provided on the opposite side. However, the position of the ion gun 61 is not limited to this position as long as self-shielding can be performed, as will be described later. The ion gun 61 irradiates ions at high speed. In the present embodiment, one or more rare gases or nitrogen selected from the group of He, Ne, Ar, Xe, and Xr and O 2 are appropriately introduced into the ion gun 61, and these gases are ionized by the ion gun 61. And irradiate. The ions irradiated by the ion gun 61 have high straightness because they are accelerated. The ion gun 61 irradiates ions in a predetermined direction. For example, at a certain moment, the ion gun 61 irradiates the ions so that the ions are incident on the optical surface 11a side of the optical element 11 from the direction D2 inclined at an angle β with respect to the optical axis OA. The angle β can be adjusted by changing the position of the ion gun 61 and the irradiation angle. FIG. 2 shows a state in which the angle β is 70 °. The irradiation energy of the ion gun 61 can be controlled by the acceleration voltage, the beam current, the beam voltage, the film forming pressure, the gas introduction species, the gas introduction amount, and the like.
 次に、反射防止膜の成膜方法の実施の形態について説明する。ここでは、図1に示す反射防止膜1を成膜する方法について説明する。以下の成膜工程と照射工程とを同時に又は交互に繰り返し行うことによって、まず、光学素子11の光学面11a上に第1層の光学薄膜2aを形成し、続いて、第2層の光学薄膜2bから第7層の光学薄膜2gを順に形成する。以下、第1層の光学薄膜2aの形成について詳しく説明する。 Next, an embodiment of a method for forming an antireflection film will be described. Here, a method of forming the antireflection film 1 shown in FIG. 1 will be described. First and second optical thin films 2a are formed on the optical surface 11a of the optical element 11 by repeating the following film forming step and irradiation step simultaneously or alternately, and subsequently, the second layer optical thin film is formed. The optical thin film 2g of the seventh layer is sequentially formed from 2b. Hereinafter, formation of the optical thin film 2a as the first layer will be described in detail.
(成膜工程)
 成膜工程は、以下のようにして行う。本実施形態では、蒸着源51にAlを用いて第1層の光学薄膜2aを形成する。支持基体42の自転軸L1及び光学素子ホルダ43の自転軸L2を回転軸として光学素子11を回転させた状態で、蒸着源51を加熱して蒸着物質(Al)を蒸発させる。蒸着物質が光学素子11の光学面11a上に堆積することにより、膜が形成される。蒸着物質は、光学面11a上に様々な方向から入射するが、主に光軸OAに対して傾斜した方向D1から光学面11aに入射する。光学素子11が上述のように回転しているため、光学素子11の光学面11a上に形成される膜の膜厚分布は、上述したdx=d0cosθの式に概ね従う。すなわち、成膜工程によって光学面11a上に形成される膜は、光学面11aの中心で物理膜厚が最も厚く、傾斜角度θが大きくなって光学面11aの周辺部に近付くにつれて物理膜厚が薄くなっている。
(Film forming process)
The film forming process is performed as follows. In this embodiment, the optical thin film 2a of the first layer is formed by using Al 2 O 3 as the vapor deposition source 51. The vapor deposition source 51 is heated to evaporate the vapor-deposited substance (Al 2 O 3 ) in a state where the optical element 11 is rotated around the rotation axis L1 of the support substrate 42 and the rotation axis L2 of the optical element holder 43 as rotation axes. A film is formed by depositing the vapor-deposited substance on the optical surface 11a of the optical element 11. The vapor deposition substance is incident on the optical surface 11a from various directions, but is mainly incident on the optical surface 11a from a direction D1 inclined with respect to the optical axis OA. Since the optical element 11 is rotating as described above, the film thickness distribution of the film formed on the optical surface 11a of the optical element 11 substantially conforms to the above equation of dx=d0 cos θ. That is, the film formed on the optical surface 11a by the film forming process has the thickest physical film thickness at the center of the optical surface 11a, and the physical film thickness increases as the inclination angle θ increases and approaches the peripheral portion of the optical surface 11a. It is thin.
(照射工程)
 照射工程は、以下のようにして行う。支持基体42の自転軸L1及び光学素子ホルダ43の自転軸L2を回転軸として光学素子11を回転させた状態で、イオン銃61によってイオンを照射する。イオンが光学素子11の光学面11a上に堆積した蒸着物質に衝突すると、堆積した蒸着物質にエネルギーが付与される。その結果、イオンが衝突した箇所では、イオンが成膜をアシストするものとして作用し、光学面11a上に形成された膜が緻密化される。さらに、光学面11a上に堆積した蒸着物質が除去され、膜が減厚される。蒸着物質に衝突したイオンは、その一部が何らかの形態で膜の中に残存する。
(Irradiation process)
The irradiation step is performed as follows. Ion irradiation is performed by the ion gun 61 in a state where the optical element 11 is rotated with the rotation axis L1 of the support base 42 and the rotation axis L2 of the optical element holder 43 as rotation axes. When the ions collide with the vapor deposition material deposited on the optical surface 11 a of the optical element 11, energy is imparted to the deposited vapor deposition material. As a result, at the position where the ions collide, the ions act as assisting the film formation, and the film formed on the optical surface 11a is densified. Further, the deposited material deposited on the optical surface 11a is removed, and the film is thinned. Some of the ions that have collided with the vapor deposition material remain in the film in some form.
 イオン銃61によって照射されたイオンは、加速電圧によって意図的に加速されているため、蒸着源51からの蒸着物質と比較して、直進性が高い。そのため、イオンは、光学素子11の光軸OAに対して傾斜した方向D2から光学面11aに入射する。光学素子11の光学面11aは、傾斜角度が25°以上である箇所が存在するようなRの深い光学面である。そのため、光学面11aのイオン銃61に近い側の領域によって、光学面11aのイオン銃61から遠い側の領域(図3中、二重鎖線で囲んだ領域R)へのイオンの入射が遮蔽される。これを「自己遮蔽」と称す。自己遮蔽は、光学面11aの中心部では生じず、周辺部で生じる。具体的には、光学面11aの中心部は、光学素子11の回転に関係なく、イオンが入射される入射領域となる。ここで、光学面11aの中心部とは、光学素子11の光学面11aの中心から所定距離以内の円領域を意味する。一方、光学面11aの周辺部は、光学素子11の回転に伴って、入射領域とイオンの入射が遮蔽される遮蔽領域とが入れ替わる。その結果、光学面11aの中心部では、周辺部と比較して、イオンが多く入射し、光学面11a上からの蒸着物質の除去量が多くなる。例えば、光学面11aの中心部では、光学面11a上に堆積した蒸着物質のうちの20%以上が除去されるのに対し、光学面11aの周辺部での除去量は数%程度に留まる。なお、本実施形態では、光学素子ホルダ43の自転軸L2の周囲に光学素子11を配置しているため、光学面11aへのイオン照射位置は、光学素子ホルダ43の自転に伴って上下左右にも変化する。ところが、イオン銃61によって照射されたイオンは直進性が高いため、光学素子ホルダ43の回転に伴って光学面11aへのイオン照射位置が上下左右に変化しても、自己遮蔽が十分に生じて、光学面11aの中心部に堆積した蒸着物質を多く削ることができる。 Since the ions irradiated by the ion gun 61 are intentionally accelerated by the accelerating voltage, the straightness is higher than that of the vapor-deposited substance from the thin-film deposition source 51. Therefore, the ions enter the optical surface 11a from the direction D2 that is inclined with respect to the optical axis OA of the optical element 11. The optical surface 11a of the optical element 11 is an optical surface having a deep R such that there is a portion having an inclination angle of 25° or more. Therefore, the region on the optical surface 11a near the ion gun 61 shields the ion from entering the region on the optical surface 11a far from the ion gun 61 (the region R surrounded by the double chain line in FIG. 3). It This is called "self-shielding". Self-shielding does not occur at the center of the optical surface 11a, but occurs at the periphery. Specifically, the central portion of the optical surface 11a is an incident area where ions are incident, regardless of the rotation of the optical element 11. Here, the central portion of the optical surface 11a means a circular area within a predetermined distance from the center of the optical surface 11a of the optical element 11. On the other hand, in the peripheral portion of the optical surface 11a, the incident region and the shield region where the incident of ions is shielded are switched with the rotation of the optical element 11. As a result, a large amount of ions are incident on the central portion of the optical surface 11a as compared with the peripheral portion, and the amount of the vapor-deposited substance removed from the optical surface 11a is large. For example, 20% or more of the vapor deposition material deposited on the optical surface 11a is removed at the central portion of the optical surface 11a, whereas the removal amount at the peripheral portion of the optical surface 11a is only about several percent. In this embodiment, since the optical element 11 is arranged around the rotation axis L2 of the optical element holder 43, the ion irradiation position on the optical surface 11a is moved up, down, left and right as the optical element holder 43 rotates. Also changes. However, since the ions irradiated by the ion gun 61 have high straightness, even if the ion irradiation position on the optical surface 11a changes with the rotation of the optical element holder 43, self-shielding is sufficiently generated. , It is possible to scrape a large amount of the vapor-deposited substance deposited on the central portion of the optical surface 11a.
 このように、照射工程でのイオン照射によって、成膜工程によって光学面11a上に形成した膜が減厚されると共に緻密化される。そして、上述した成膜工程と照射工程とを同時に又は交互に繰り返し行うことにより、光学面11a上に形成された膜が徐々に厚くなっていくと共に、光学面11aの中心に設けられた膜よりも、光学面11aの傾斜角度θが25°以上である領域に設けられた膜の物理膜厚がより厚くなっていく。このとき、成膜工程及び照射工程の条件を適宜変更し、成膜工程及び照射工程のいずれを優先して行うか、バランスを取りながら繰り返し行う。以上により、光学素子11の凸の光学面11a上に、Alからなり所望の膜厚を有する第1層の光学薄膜2aを形成することができる。第1層の光学薄膜2aの膜厚分布は、光学面11aの傾斜角度θが25°以上である領域に設けられた膜の物理膜厚が、光学面11aの中心に設けられた膜よりも厚くなっている。 As described above, the ion irradiation in the irradiation step reduces the thickness and densifies the film formed on the optical surface 11a in the film forming step. Then, by repeating the above-mentioned film forming step and irradiation step simultaneously or alternately, the film formed on the optical surface 11a gradually becomes thicker, and the film formed at the center of the optical surface 11a becomes thicker. Also, the physical film thickness of the film provided in the region where the inclination angle θ of the optical surface 11a is 25° or more becomes thicker. At this time, the conditions of the film forming process and the irradiation process are appropriately changed, and which of the film forming process and the irradiation process is given priority, and the process is repeated while keeping a balance. As described above, the first-layer optical thin film 2a made of Al 2 O 3 and having a desired film thickness can be formed on the convex optical surface 11a of the optical element 11. Regarding the film thickness distribution of the optical thin film 2a of the first layer, the physical film thickness of the film provided in the region where the inclination angle θ of the optical surface 11a is 25 ° or more is larger than that of the film provided at the center of the optical surface 11a. It's getting thicker.
 その後、蒸着源51の材料を適宜変更しながら、成膜工程と照射工程とを条件を適宜変更しながら繰り返し行い、第1層の光学薄膜2aの上に、残りの光学薄膜2b~2gを形成する。第2層から第7層の光学薄膜2b~2gは、第1層の光学薄膜2aと同様の膜厚分布を備える。以上のようにして、図1に示す、光学素子11の光学面11a上に、光学薄膜2a~2gからなる多層構造を備える反射防止膜1を形成することができる。 After that, the film forming step and the irradiation step are repeated while appropriately changing the material of the vapor deposition source 51, and the remaining optical thin films 2b to 2g are formed on the optical thin film 2a of the first layer. To do. The optical thin films 2b to 2g of the second to seventh layers have the same film thickness distribution as the optical thin film 2a of the first layer. As described above, the antireflection film 1 having a multilayer structure composed of optical thin films 2a to 2g can be formed on the optical surface 11a of the optical element 11 shown in FIG.
 成膜工程と照射工程とを交互に行う場合には、次のように行うのが好ましい。まず、成膜工程によって膜を形成する。膜厚が10nmに達する前に照射工程を行い、膜の表層を削り取って膜を減厚することによってサブ層を形成する。この成膜工程と照射工程とを繰り返すことによってサブ層を積層し、所望の膜厚を有する第1層の光学薄膜2aを形成する。これに対し、膜厚が10nmを超えた後に照射工程を行ったのでは、サブ層の表層部では緻密化の効果が生じる一方、サブ層の深層部では緻密化の効果が生じない。そのため、得られた第1層の光学薄膜2aは、緻密な層と緻密でない層とが積層し、深さ方向に不均質なものとなるため好ましくない。以上のことから、成膜工程と照射工程とを交互に行うよりも、同時に行う方がより好ましい。同時に行う場合には、緻密な層のみが積層し、深さ方向に均質な第1層の光学薄膜2aを得ることができる。 When the film forming process and the irradiation process are alternately performed, it is preferable to perform as follows. First, a film is formed by a film forming process. An irradiation step is performed before the film thickness reaches 10 nm, and the surface layer of the film is scraped off to reduce the thickness of the film to form a sublayer. By repeating the film forming process and the irradiation process, the sub-layers are laminated to form the first-layer optical thin film 2a having a desired film thickness. On the other hand, if the irradiation step is performed after the film thickness exceeds 10 nm, the effect of densification occurs in the surface layer portion of the sub layer, while the effect of densification does not occur in the deep layer portion of the sub layer. Therefore, the obtained optical thin film 2a of the first layer is not preferable because a dense layer and a non-dense layer are laminated and become inhomogeneous in the depth direction. From the above, it is more preferable to perform the film forming step and the irradiation step at the same time rather than alternately. When simultaneously performed, only the dense layers are laminated, and the optical thin film 2a of the first layer that is uniform in the depth direction can be obtained.
 本実施形態の装置構成では、光学素子11が蒸着源51に近付いたときに、主に成膜工程が行われ、光学面11a上の膜が厚くなる。一方、光学素子11がイオン銃61に近付いたときには、主に照射工程が行われ、光学面11a上の膜が薄くなる。そして、成膜工程において膜が厚くなる速度、すなわち、蒸着物質の堆積速度は、上述した成膜条件によって制御することができる。また、照射工程において膜が薄くなる速度、すなわち、イオンによる蒸着物質の除去速度は、上述したイオン照射エネルギーによって制御することができる。 In the apparatus configuration of the present embodiment, when the optical element 11 approaches the vapor deposition source 51, the film forming step is mainly performed, and the film on the optical surface 11a becomes thick. On the other hand, when the optical element 11 approaches the ion gun 61, the irradiation process is mainly performed, and the film on the optical surface 11a becomes thin. The rate at which the film becomes thicker in the film forming step, that is, the deposition rate of the vapor deposition material can be controlled by the above-described film forming conditions. In addition, the rate at which the film becomes thin in the irradiation step, that is, the rate at which the vapor deposition material is removed by ions can be controlled by the ion irradiation energy described above.
 ここで、図2を参照しながら、蒸着物質の光学面11aへの入射方向D1と光学素子11の光軸OAとのなす角度α、及び、イオンの光学面11aへの入射方向D2と光軸OAとのなす角度βについて説明する。まず、角度αについて説明する。蒸着源51からの蒸着物質は、広がりをもって上昇する。光学素子1が蒸着源51の直上に位置するときに、蒸着物質の光学面11aへの堆積量は最も多くなる。例えば、その位置における光学素子11の光軸OAと鉛直方向とがなす角度を角度αと規定する。本実施形態では、角度αを70°としているが、角度αは0°以上90°以下が好ましく45°以上90°以下の範囲であることがより好ましい。角度αが0°であるとき、光学素子11の光軸OAは鉛直方向に一致する。角度αが90°を超えると、光学素子11の光軸OAが水平方向よりも上を向く。蒸着物質の光学面11aの中心部への堆積量が減少して、成膜速度が遅くなるため好ましくない。一方、光学素子ホルダ43での取り付け位置に関係なく複数の光学素子11に対して均等に成膜するためには、角度αは0°以上でなるべく小さい方が好ましい。角度αが小さい例としては、平板ガラスに光学多層膜フィルターを成膜する平面遊星回転機構を有する成膜装置を挙げることができる。しかし、角度αが45°未満であると、成膜工程において、光学面11aの中心部での蒸着物質の堆積量が多くなる一方、周辺部での堆積量が過度に少なくなる。その場合、光学面11aの傾斜角度θが25°以上である領域に設けられた物理膜厚を、光学面11aの中心に設けられた膜よりも厚くするためには、照射工程で光学面11aの中心部に設けられた膜をより多く削る必要があり、照射工程に長時間を要することがある。以上のことから、照射工程に要する時間をより短くするためには、角度αは45°以上90°以下がより好ましい。 Here, referring to FIG. 2, the angle α formed by the incident direction D1 of the vapor-deposited substance on the optical surface 11a and the optical axis OA of the optical element 11, and the incident direction D2 and the optical axis of the ions on the optical surface 11a. The angle β formed with the OA will be described. First, the angle α will be described. The vapor deposition material from the vapor deposition source 51 rises in a spread manner. When the optical element 1 is located directly above the vapor deposition source 51, the deposition amount of the vapor deposition substance on the optical surface 11a is the largest. For example, the angle between the optical axis OA of the optical element 11 and the vertical direction at that position is defined as the angle α. In the present embodiment, the angle α is 70 °, but the angle α is preferably 0 ° or more and 90 ° or less, and more preferably 45 ° or more and 90 ° or less. When the angle α is 0 °, the optical axis OA of the optical element 11 coincides with the vertical direction. When the angle α exceeds 90°, the optical axis OA of the optical element 11 faces upward from the horizontal direction. It is not preferable because the deposition amount of the vapor deposition material on the center of the optical surface 11a is reduced and the film formation rate is slowed down. On the other hand, in order to form a film evenly on a plurality of optical elements 11 regardless of the mounting position on the optical element holder 43, it is preferable that the angle α is 0 ° or more and as small as possible. An example of a small angle α is a film forming apparatus having a plane planetary rotation mechanism for forming an optical multilayer filter on a flat plate glass. However, if the angle α is less than 45°, the deposition amount of the vapor deposition material in the central portion of the optical surface 11a increases while the deposition amount in the peripheral portion becomes excessively small in the film forming process. In that case, in order to make the physical film thickness provided in the region where the inclination angle θ of the optical surface 11a is 25° or more larger than that of the film provided in the center of the optical surface 11a, the optical surface 11a should be formed in the irradiation step. It is necessary to remove more of the film provided in the central part of the, and the irradiation process may take a long time. From the above, in order to shorten the time required for the irradiation step, the angle α is more preferably 45° or more and 90° or less.
 次に、角度βについて説明する。イオン銃61から照射されたイオンは、直進性を有するため、光学素子11がイオン銃61の照射口に対向する箇所に位置するときに、イオンの光学面11aへの入射量は最も多くなる。例えば、その位置における光学素子11の光軸OAと、光学面11aの中心とイオン銃61とを結ぶ線分とがなす角度を角度βと規定する。本実施形態では、角度βを70°としているが、角度βは45°以上90°以下であることが好ましい。角度βが45°以上であることにより、光学面11aの傾斜角度θが25°以上である領域に設けられた膜の少なくとも一部が光学面11aの中心に設けられた膜の物理膜厚よりも厚いという膜厚分布を実現することができる。例えば半球形状(最大傾斜角度が90°)のように最大傾斜角度が特に大きい凸の光学面11の場合には、角度βを60°以上とすることが好ましい。角度βが45°未満であると、イオン照射時の自己遮蔽が不十分となり、上記膜厚分布を実現するのが困難であるため好ましくない。一方、角度90°を超えると、光学面11aの中央部へのイオン照射量が減り、中央部で膜を削るのが困難になるため好ましくない。 Next, the angle β will be explained. Since the ions emitted from the ion gun 61 have straightness, the amount of the ions incident on the optical surface 11a is the largest when the optical element 11 is located at a position facing the irradiation port of the ion gun 61. For example, the angle formed by the optical axis OA of the optical element 11 at that position and the line segment connecting the center of the optical surface 11a and the ion gun 61 is defined as the angle β. In the present embodiment, the angle β is 70 °, but the angle β is preferably 45 ° or more and 90 ° or less. Since the angle β is 45° or more, at least a part of the film provided in the region where the inclination angle θ of the optical surface 11a is 25° or more is more than the physical film thickness of the film provided in the center of the optical surface 11a. It is possible to realize a film thickness distribution that is thick. For example, in the case of a convex optical surface 11 having a particularly large maximum inclination angle such as a hemispherical shape (the maximum inclination angle is 90°), the angle β is preferably set to 60° or more. If the angle β is less than 45°, the self-shielding at the time of ion irradiation becomes insufficient and it is difficult to realize the above film thickness distribution, which is not preferable. On the other hand, when the angle exceeds 90°, the ion irradiation amount to the central portion of the optical surface 11a decreases, and it becomes difficult to scrape the film at the central portion, which is not preferable.
 また、本実施形態の成膜方法では、光学素子11は、光軸OAとは異なる軸を回転軸として回転する。具体的には、光学素子11は、遊星回転機構を備える光学素子支持装置41によって、支持基体42の自転軸L1を軸として回転すると共に、光学素子ホルダ43の自転軸L2を軸として回転する。そのため、光学素子11は、支持基体42の自転軸L1を軸とする回転に伴って水平方向に移動(回転)しつつ、光学素子ホルダ43の自転軸L2を軸とする回転に伴って上下方向、左右方向に移動する。このとき、光学素子11の光学素子ホルダ43への取り付け位置、すなわち、自転軸L2から光学素子11までの距離によって、成膜工程によって成膜される膜厚が異なる。また、光学素子1の取り付け位置によって、照射工程で光学面11a上のイオンの入射領域及び遮蔽領域の範囲が異なる。しかしながら、光学素子11が水平方向、上下方向、左右方向に移動した状態で、成膜工程及び照射工程が行われるため、光学素子11の取り付け位置に関係なく、複数の各光学素子11に対して反射防止膜1を均等に成膜することができる。従って、本実施形態の成膜方法は、反射防止膜1の量産に好適である。なお、光学素子11は、照射工程を行うときに自己遮蔽が生じるように回転していればよく、その回転方法についてはこれに限定されない。 Further, in the film forming method of the present embodiment, the optical element 11 rotates about an axis different from the optical axis OA as a rotation axis. Specifically, the optical element 11 is rotated around the rotation axis L1 of the support base 42 and around the rotation axis L2 of the optical element holder 43 by the optical element support device 41 provided with the planetary rotation mechanism. Therefore, the optical element 11 moves (rotates) in the horizontal direction with the rotation of the support base 42 about the rotation axis L1 and in the vertical direction with the rotation of the optical element holder 43 with the rotation axis L2 as the axis. , Move left and right. At this time, the film thickness formed by the film forming step differs depending on the mounting position of the optical element 11 on the optical element holder 43, that is, the distance from the rotation axis L2 to the optical element 11. Further, the range of the ion incident region and the shielding region on the optical surface 11a differs depending on the mounting position of the optical element 1. However, since the film forming step and the irradiation step are performed in a state where the optical element 11 is moved in the horizontal direction, the vertical direction, and the horizontal direction, the plurality of optical elements 11 are subjected to regardless of the mounting position of the optical element 11. The antireflection film 1 can be formed evenly. Therefore, the film forming method of the present embodiment is suitable for mass production of the antireflection film 1. The optical element 11 may be rotated so that self-shielding occurs during the irradiation step, and the rotating method is not limited to this.
 そして、本実施形態の成膜方法によれば、最大84個の光学素子11に対して、各層の光学薄膜2が同様の膜厚分布を備える反射防止膜1を同時に成膜することができるため、優れた生産性を得ることができる。 Then, according to the film forming method of the present embodiment, the antireflection film 1 having the same film thickness distribution as the optical thin film 2 of each layer can be simultaneously formed on a maximum of 84 optical elements 11. , Excellent productivity can be obtained.
 さらに、本実施形態では、図2に示す成膜装置21を用いた成膜方法について説明したが、これに限定されない。例えば、従来、薄膜の成膜に一般に使用される汎用スパッタ装置を用いてもよい。図4を参照しながら、汎用スパッタ装置を用いる成膜方法について簡単に説明する。汎用スパッタ装置は、図4(a)に概略を示すように、内部を真空に保持可能な成膜室内に、光学素子支持装置101と、蒸着源111と、イオン銃121とを備える。蒸着源111及びイオン銃121は、図4に示す蒸着源51及びイオン銃61と同じものを用いることができる。 Furthermore, in the present embodiment, the film forming method using the film forming apparatus 21 shown in FIG. 2 has been described, but the present invention is not limited to this. For example, a general-purpose sputtering apparatus generally used for forming a thin film may be used. A film forming method using a general-purpose sputtering apparatus will be briefly described with reference to FIG. As shown in FIG. 4A, the general-purpose sputtering apparatus includes an optical element supporting device 101, a vapor deposition source 111, and an ion gun 121 in a film forming chamber whose inside can be kept in vacuum. As the vapor deposition source 111 and the ion gun 121, the same ones as the vapor deposition source 51 and the ion gun 61 shown in FIG. 4 can be used.
 光学素子支持装置101は、円盤状の支持基体102と、支持基体102に配設され、支持基体102よりも小径の光学素子ホルダ103とを備える。光学素子支持装置101は、光学素子ホルダ103の成膜面103aが成膜室の底部を向くように、成膜室の天井壁から吊り下げられる。図4(b)に示すように、支持基体102は、その中心を自転軸L1として回転し、自転軸L1の周囲に2個以上の光学素子ホルダ103が配置される。光学素子ホルダ103は、その中心を自転軸L2として回転する。光学素子ホルダ103の成膜面103aには、その自転軸L2の周囲に2個以上の光学素子11を配置することができる。このとき、光学素子11の光軸OAは鉛直方向に一致している。また、図4(a)に示すように、蒸着源111は、例えば、成膜室の底部であって光学素子ホルダ103の回転軌道の直下に設けられる。イオン源121は、例えば、成膜室の底部かつ光学素子ホルダ103の回転軌道の直下であって、蒸着源111とは別の位置に設けられる。イオン銃121は、斜め上方に向かってイオンを照射する。イオン銃121は、光学素子11の光学面11a側に向かって、光軸OAに対して45°以上90°以下の角度βで傾斜した方向からイオンを照射させることができるように、イオン銃121の位置が調整されている。以上のような図4に示す装置構成によっても、上述した本実施形態の成膜方法を行うことができる。そして、上述した照射工程を行うときに自己遮蔽を生じさせることができる。 The optical element support device 101 includes a disk-shaped support base 102 and an optical element holder 103 arranged on the support base 102 and having a diameter smaller than that of the support base 102. The optical element support device 101 is suspended from the ceiling wall of the film forming chamber so that the film forming surface 103a of the optical element holder 103 faces the bottom of the film forming chamber. As shown in FIG. 4B, the support base 102 rotates about the center of the rotation axis L1, and two or more optical element holders 103 are arranged around the rotation axis L1. The optical element holder 103 rotates with its center as the rotation axis L2. On the film formation surface 103a of the optical element holder 103, two or more optical elements 11 can be arranged around the rotation axis L2. At this time, the optical axis OA of the optical element 11 coincides with the vertical direction. Further, as shown in FIG. 4A, the vapor deposition source 111 is provided, for example, at the bottom of the film forming chamber and directly below the rotation trajectory of the optical element holder 103. The ion source 121 is provided, for example, at the bottom of the film forming chamber and directly below the rotation trajectory of the optical element holder 103, at a position different from that of the vapor deposition source 111. The ion gun 121 emits ions obliquely upward. The ion gun 121 is capable of irradiating ions toward the optical surface 11a side of the optical element 11 from a direction inclined at an angle β of 45 ° or more and 90 ° or less with respect to the optical axis OA. The position of is adjusted. The film forming method of the present embodiment described above can also be performed by the apparatus configuration shown in FIG. 4 as described above. Then, it is possible to cause self-shielding when performing the irradiation process described above.
3.光学素子
 本件発明に係る光学素子は、最大傾斜角度が25°以上である凸の光学面側に、上述した反射防止膜を備えることを特徴とする。本件発明によれば、上述した反射防止膜を備えることにより、傾斜角度θが大きい領域に波長帯域の広い光が大きな入射角度φで入射したときに、広い波長帯域に亘って光の反射を低く抑えることができる光学素子を提供することができる。光学素子としては、撮影光学素子や投影光学素子を挙げることができ、具体的には、レンズとして、例えば、一眼レフカメラの交換レンズやデジタルカメラ(DSC)に搭載されるレンズ、携帯電話機に搭載されるデジタルカメラ用のレンズ、照射系のプロジェクター用レンズ、車等のヘッドライト用の自由曲面レンズ、レーザー加工用レンズやアキシコンレンズ、DVD、CD、ブルーレイ用のピックアップレンズ、携帯電話やスマートフォンのカメラに用いられるレンズ等、各種のレンズを挙げることができる。
3. Optical Element The optical element according to the present invention is characterized by including the above-described antireflection film on the convex optical surface side having a maximum inclination angle of 25° or more. According to the present invention, by providing the above-mentioned antireflection film, when light having a wide wavelength band is incident on a region having a large inclination angle θ at a large incident angle φ, the reflection of light is lowered over a wide wavelength band. An optical element that can be suppressed can be provided. Examples of the optical element include a photographing optical element and a projection optical element. Specifically, the lens includes, for example, an interchangeable lens of a single-lens reflex camera, a lens mounted on a digital camera (DSC), and a mobile phone. Lenses for digital cameras, lenses for irradiation system projectors, free-curved lenses for headlights of cars, laser processing lenses and axicon lenses, pickup lenses for DVDs, CDs, Blu-rays, mobile phones and smartphones Various lenses such as lenses used in cameras can be mentioned.
 光学素子に設けられる反射防止膜を構成する各層の光学薄膜は、上述したとおり、蒸着物質を堆積させる成膜工程と、イオン又はプラズマを照射する照射工程とによって形成することができる。そのため、上述した凸の光学面上に第1層の光学薄膜を成膜するときに、照射工程でイオン、プラズマ、電子等が凸の光学面に衝突することがある。光学素子が特定の硝材からなる場合、例えば、フッ素を含むFCD1のような硝材からなる場合には、凸の光学面に加速された電子等が衝突すると、光学素子において光の吸収が発生することがあり好ましくない。 The optical thin film of each layer constituting the antireflection film provided in the optical element can be formed by the film forming step of depositing the vapor deposition substance and the irradiation step of irradiating with ions or plasma as described above. Therefore, when the optical thin film of the first layer is formed on the convex optical surface described above, ions, plasma, electrons and the like may collide with the convex optical surface in the irradiation step. When the optical element is made of a specific glass material, for example, when it is made of a glass material such as FCD1 containing fluorine, when accelerated electrons or the like collide with a convex optical surface, light absorption occurs in the optical element. Is not preferable.
 そこで、本件発明に係る光学素子は、凸の光学面と反射防止膜との間に、当該凸の光学面へのイオン、プラズマ、又は電子の入射を防止するための保護層を備えることが好ましい。保護層上に第1層の光学薄膜を成膜することにより、電子等が光学素子に直接衝突することを防ぎ、光の吸収を防ぐことができる。保護層は、光学素子と同一の屈折率を有する材質からなることが好ましい。例えば、光学素子がFCD1(屈折率1.497)の硝材からなる場合、保護層を屈折率がほぼ同一であるSiOで構成するのが好ましい。屈折率がほぼ同一であることによって硝材と保護層との界面がほぼ存在しないものとみなすことができる。そのため、光学的な干渉効果がなく、保護層が存在するにも関わらず保護層が存在しないときと同等の光学特性を得ることができる。このとき、保護層の膜厚が不均一であっても、光学特性への影響を防ぐことができる。そのため、保護層は、イオンやプラズマを用いない通常の真空蒸着法等によって成膜することができる。例えば、蒸着源51を用いて上述した成膜工程を行うことによって保護層を成膜することができる。保護層の膜厚は0.5nm以上であることが好ましく、5nm以上であることがより好ましい。保護層の膜厚が0.5nm未満であると、凸の光学面への被覆が不十分となり、第1層の光学薄膜を成膜するときに凸の光学面への希ガスや窒素の付着を防ぐことができないことがあるため好ましくない。 Therefore, it is preferable that the optical element according to the present invention is provided with a protective layer between the convex optical surface and the antireflection film to prevent ions, plasma, or electrons from being incident on the convex optical surface. .. By forming the optical thin film of the first layer on the protective layer, it is possible to prevent electrons and the like from directly colliding with the optical element and prevent absorption of light. The protective layer is preferably made of a material having the same refractive index as the optical element. For example, when the optical element is made of a glass material having FCD1 (refractive index 1.497), it is preferable that the protective layer is made of SiO 2 having almost the same refractive index. Since the refractive indexes are almost the same, it can be considered that there is almost no interface between the glass material and the protective layer. Therefore, there is no optical interference effect, and it is possible to obtain the same optical characteristics as when the protective layer does not exist despite the presence of the protective layer. At this time, even if the film thickness of the protective layer is non-uniform, the influence on the optical characteristics can be prevented. Therefore, the protective layer can be formed by a normal vacuum deposition method that does not use ions or plasma. For example, the protective layer can be formed by performing the above-described film forming process using the vapor deposition source 51. The thickness of the protective layer is preferably 0.5 nm or more, more preferably 5 nm or more. If the thickness of the protective layer is less than 0.5 nm, the coating on the convex optical surface becomes insufficient, and the rare gas or nitrogen adheres to the convex optical surface when forming the optical thin film of the first layer. May not be prevented, which is not preferable.
 さらに、本件発明に係る光学素子は、反射防止膜の表面に、機能膜として防汚膜や硬質膜を備えていてもよい。例えば、フッ素コーティングを施した防汚膜や、ダイヤモンドライクカーボン(DLC)、SiOからなる硬質膜を設けることができる。光学特性への影響を防ぐため、機能膜の膜厚は10nm以下であることが好ましい。 Further, the optical element according to the present invention may be provided with an antifouling film or a hard film as a functional film on the surface of the antireflection film. For example, an antifouling film coated with fluorine or a hard film made of diamond-like carbon (DLC) or SiO x N y can be provided. The film thickness of the functional film is preferably 10 nm or less in order to prevent the influence on the optical characteristics.
 次に、実施例および比較例を示して本件発明を具体的に説明する。但し、本件発明は以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.
 本実施例では、図2に示す成膜装置21を用いて上述した成膜方法を行うことにより、光学素子11の凸の光学面11a上に11層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1を構成する第1層、第3層、第5層、第7層、第9層及び第11層の光学薄膜2はSiOからなり、第2層、第4層、第6層、第8層及び第10層の光学薄膜2はTiOからなる。 In this embodiment, the antireflection film 1 including the 11 optical thin films 2 is formed on the convex optical surface 11a of the optical element 11 by performing the above-described film forming method using the film forming apparatus 21 shown in FIG. Formed. The optical thin films 2 of the first layer, the third layer, the fifth layer, the seventh layer, the ninth layer, and the eleventh layer constituting the antireflection film 1 are made of SiO 2 , and the second layer, the fourth layer, and the sixth layer are composed of SiO 2 . The optical thin films 2 of the layers, the eighth layer and the tenth layer are made of TiO 2 .
(光学素子)
 光学素子11として、材質がTAF1であり、図5に示す形状のものを用いた。図5に示す光学素子11において、凸の光学面11a上の任意の位置で傾斜角度θを測定したところ、その傾斜角度は65°であった。このことから、本実施例で用いた光学素子11における凸の光学面11aの最大傾斜角度は65°以上である。なお、図5中の符号ILは、入射光の入射方向を意味する。
(Optical element)
As the optical element 11, a material having TAF1 and a shape shown in FIG. 5 was used. In the optical element 11 shown in FIG. 5, when the tilt angle θ was measured at an arbitrary position on the convex optical surface 11a, the tilt angle was 65°. From this, the maximum inclination angle of the convex optical surface 11a in the optical element 11 used in this example is 65° or more. The symbol IL in FIG. 5 means the incident direction of incident light.
(成膜条件)
 まず、光学素子ホルダ43の自転軸L2の周囲に2個以上の光学素子11を配置し、光学素子ホルダ43を傾けて成膜面43aが鉛直方向に対して10°傾く姿勢を保持した。支持基体42を自転させつつ、光学素子ホルダ43を自転させることにより、光学素子11を回転させた。成膜室31内に流量20sccmの酸素ガスを導入して1.5×10-2Paの真空度に調整した。そして、光学素子11を温度250℃に加熱した状態で、上述の成膜工程と照射工程とを繰り返し行うことにより、11層の各光学薄膜2を成膜した。
(Film forming conditions)
First, two or more optical elements 11 are arranged around the rotation axis L2 of the optical element holder 43, and the optical element holder 43 is tilted to maintain a posture in which the film forming surface 43a is tilted by 10 ° with respect to the vertical direction. The optical element 11 was rotated by rotating the optical element holder 43 while rotating the supporting substrate 42. Oxygen gas with a flow rate of 20 sccm was introduced into the film forming chamber 31 to adjust the vacuum degree to 1.5×10 −2 Pa. Then, while the optical element 11 was heated to a temperature of 250° C., the above-described film forming step and the irradiation step were repeated to form each of the 11 optical thin films 2.
 成膜工程では、蒸着源51として、第1層、第3層、第5層、第7層、第9層及び第11層の光学薄膜2の成膜にSiOを用い、第2層、第4層、第6層、第8層及び第10層の光学薄膜2の成膜にTiOを用いた。光学素子ホルダ43の成膜面43aが鉛直方向に対して10°傾いていることにより、蒸着源51から蒸発した蒸着物質は、主に、光軸OAに対して角度α=80°で傾斜した方向D1から、光学素子11の光学面11aに入射した。 In the film forming step, as the vapor deposition source 51, SiO 2 is used for forming the optical thin film 2 of the first layer, the third layer, the fifth layer, the seventh layer, the ninth layer and the eleventh layer, and the second layer, TiO 2 was used for forming the optical thin films 2 of the fourth layer, the sixth layer, the eighth layer and the tenth layer. Since the film formation surface 43a of the optical element holder 43 is inclined by 10° with respect to the vertical direction, the vapor deposition material evaporated from the vapor deposition source 51 is mainly inclined at an angle α=80° with respect to the optical axis OA. The light is incident on the optical surface 11a of the optical element 11 from the direction D1.
 照射工程では、イオン銃61によるイオン照射に際して、流量40sccmのArガスを導入し、イオン銃61によってArガス及び酸素ガスをイオン化して照射した。このとき、イオン銃61の加速電圧を1.5kVとした。照射されたイオンは、光軸OAに対して角度β=75°で傾斜した方向D2から、光学素子11の光学面11aに入射した。 In the irradiation step, when irradiating ions with the ion gun 61, Ar gas having a flow rate of 40 sccm was introduced, and Ar gas and oxygen gas were ionized and irradiated by the ion gun 61. At this time, the acceleration voltage of the ion gun 61 was set to 1.5 kV. The irradiated ions were incident on the optical surface 11a of the optical element 11 from the direction D2 inclined at an angle β = 75 ° with respect to the optical axis OA.
 本実施例では、以下の成膜条件で、実施例1とは異なる光学素子11の凸の光学面11a上に7層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1を構成する第1層、第3層、第5層及び第7層の光学薄膜2はSiOからなり、第2層、第4層及び第6層の光学薄膜2はTiOからなる。 In this example, the antireflection film 1 including the seven optical thin films 2 was formed on the convex optical surface 11a of the optical element 11 different from that in Example 1 under the following film forming conditions. The optical thin films 2 of the first layer, the third layer, the fifth layer and the seventh layer constituting the antireflection film 1 are made of SiO 2 , and the optical thin films 2 of the second layer, the fourth layer and the sixth layer are TiO 2 Consists of.
(光学素子)
 光学素子11として、材質がTAF1であり、図6に示す形状のものを用いた。図6に示す光学素子11において、凸の光学面11a上の任意の位置で傾斜角度θを測定したところ、その傾斜角度は80°であった。このことから、本実施例で用いた光学素子11における凸の光学面11aの最大傾斜角度は80°以上である。また、図6からも、本実施例で用いる光学素子11は、実施例1で用いた光学素子11よりも最大傾斜角度が大きいことが明らかである。
(Optical element)
As the optical element 11, a material having TAF1 and a shape shown in FIG. 6 was used. In the optical element 11 shown in FIG. 6, when the tilt angle θ was measured at an arbitrary position on the convex optical surface 11a, the tilt angle was 80°. From this, the maximum tilt angle of the convex optical surface 11a in the optical element 11 used in this example is 80° or more. It is also apparent from FIG. 6 that the optical element 11 used in this example has a larger maximum tilt angle than the optical element 11 used in Example 1.
(成膜条件)
 本実施例では、光学素子ホルダ43の成膜面43aが鉛直方向に対して7°傾く姿勢を保持したこと以外は、実施例1と同様に光学素子11を回転させた。成膜室31内の雰囲気は、実施例1と同一とした。そして、成膜工程は、蒸着源51から蒸発した蒸着物質が、主に、光軸OAに対して角度α=83°で傾斜した方向D1から、光学素子11の光学面11aに入射した点を除いて、実施例1と同一にして行った。照射工程は、イオンが光軸OAに対して角度β=78°で傾斜した方向D2から、光学素子11の光学面11aに入射するように照射を行った点を除いて、実施例1と同一にして行った。
(Film forming conditions)
In this example, the optical element 11 was rotated in the same manner as in Example 1 except that the film formation surface 43a of the optical element holder 43 was held in a posture in which it was inclined by 7° with respect to the vertical direction. The atmosphere in the film forming chamber 31 was the same as in Example 1. Then, in the film forming step, the point where the vapor-deposited substance evaporated from the vapor deposition source 51 is incident on the optical surface 11a of the optical element 11 mainly from the direction D1 inclined at an angle α = 83 ° with respect to the optical axis OA. Except for this, the procedure was the same as in Example 1. The irradiation step is the same as that of the first embodiment except that the ions are irradiated from the direction D2 inclined at an angle β = 78 ° with respect to the optical axis OA so as to be incident on the optical surface 11a of the optical element 11. I went to.
 本実施例では、以下の成膜条件で、実施例1と同一の光学素子11の凸の光学面11a上に7層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1を構成する第1層、第3層及び第5層の光学薄膜2はAlからなり、第2層、第4層及び第6層の光学薄膜2はTiOとLaとの混合物からなり、第7層はSiOからなる。 In this example, the antireflection film 1 including the seven optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 1 under the following film forming conditions. The optical thin films 2 of the first layer, the third layer, and the fifth layer constituting the antireflection film 1 are made of Al 2 O 3 , and the optical thin films 2 of the second layer, the fourth layer, and the sixth layer are TiO 2 and La. consist of a mixture of the 2 O 3, the seventh layer made of SiO 2.
(成膜条件)
 本実施例では、光学素子11の回転条件は、実施例2と同一とした。成膜室31内の雰囲気は、実施例2と同一とした。そして、成膜工程は、蒸着源51として、第1層、第3層及び第5層の光学薄膜2の成膜にAlを用い、第2層、第4層及び第6層の光学薄膜2の成膜にTiOとLaと混合物を用い、第7層の光学薄膜2の成膜にSiOを用いた点を除いて、実施例2と同一にして行った。照射工程は、イオン銃61の加速電圧を1.2kVに変更した点以外は、実施例2と全く同一にして行った。
(Film forming conditions)
In this embodiment, the rotation condition of the optical element 11 is the same as that in the second embodiment. The atmosphere in the film forming chamber 31 was the same as in Example 2. Then, in the film forming step, Al 2 O 3 is used for forming the optical thin film 2 of the first layer, the third layer, and the fifth layer as the vapor deposition source 51, and the second layer, the fourth layer, and the sixth layer are formed. A mixture of TiO 2 and La 2 O 3 was used for film formation of the optical thin film 2, and SiO 2 was used for film formation of the optical thin film 2 of the seventh layer, and the same procedure was used for Example 2. The irradiation process was performed in exactly the same manner as in Example 2 except that the acceleration voltage of the ion gun 61 was changed to 1.2 kV.
 本実施例では、以下の成膜条件で、実施例2と同一の光学素子11の凸の光学面11a上に、7層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1の各光学薄膜2を構成する材料は、実施例2と同一である。 In this example, the antireflection film 1 including the seven optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 2 under the following film forming conditions. The material constituting each optical thin film 2 of the antireflection film 1 is the same as that of the second embodiment.
(成膜条件)
 本実施例では、光学素子ホルダ43の成膜面43aが鉛直方向に対して5°傾く姿勢を保持したこと以外は、実施例1と同様に光学素子11を回転させた。そして、成膜工程は、実施例2と全く同一にして行った。照射工程は、イオンが光軸OAに対して角度β=80°で傾斜した方向D2から、光学素子11の光学面11aに入射するように照射を行った点を除いて、実施例2と同一にして行った。
(Film forming conditions)
In this example, the optical element 11 was rotated in the same manner as in Example 1 except that the film formation surface 43a of the optical element holder 43 was held in a posture in which it was inclined at 5° with respect to the vertical direction. Then, the film forming process was performed in exactly the same manner as in Example 2. The irradiation step is the same as that of the second embodiment except that the ions are irradiated from the direction D2 inclined at an angle β = 80 ° with respect to the optical axis OA so as to enter the optical surface 11a of the optical element 11. I went to.
比較例Comparative example
[比較例1]
 本比較例では、実施例1と同一の光学素子11の凸の光学面11a上に、実施例1とは異なる成膜方法で、11層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1の各光学薄膜2を構成する材料は、実施例1と同一である。
[Comparative Example 1]
In this comparative example, an antireflection film 1 composed of 11 layers of optical thin films 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 1 by a film forming method different from that in Example 1. The material constituting each optical thin film 2 of the antireflection film 1 is the same as that of the first embodiment.
(成膜方法)
 本比較例では、成膜装置として汎用の成膜装置であるシンクロン社製のBMC1300を用いた。この成膜装置は、内部を真空に保持可能な成膜室内に、光学素子11が配置されるドームと、実施例1で用いたものと同一の蒸着源51及びイオン源61とを備える。このドームは、実施例1で用いた光学素子ホルダとは異なり、ドーム形状となっている。ドームは、上に凸となる姿勢で成膜室の天井壁に吊り下げられ、その中心を回転軸として回転する。ドームは、内側の凹面が成膜面であり、当該成膜面に光学素子11が配置される。本比較例で用いたドームには、成膜面の回転軸の周囲に300個以上の光学素子11を配置できる。成膜面が凹面であることにより、成膜面に取り付けられた光学素子11は、その光軸OAが鉛直方向に対して配置によって5~30°傾いた姿勢となる。
(Film forming method)
In this comparative example, BMC1300 manufactured by Syncron Co., Ltd., which is a general-purpose film forming apparatus, was used as the film forming apparatus. This film forming apparatus includes a dome in which the optical element 11 is arranged in a film forming chamber capable of holding the inside in a vacuum, and the same vapor deposition source 51 and ion source 61 as those used in Example 1. This dome has a dome shape unlike the optical element holder used in Example 1. The dome is hung on the ceiling wall of the film forming chamber in an upwardly convex posture, and rotates about the center of the dome. The inner concave surface of the dome is a film forming surface, and the optical element 11 is arranged on the film forming surface. In the dome used in this comparative example, 300 or more optical elements 11 can be arranged around the rotation axis of the film formation surface. Since the film-forming surface is concave, the optical element 11 attached to the film-forming surface has a posture in which the optical axis OA of the optical element 11 is inclined 5 to 30° with respect to the vertical direction.
 そして、実施例1と同様に、成膜工程及び照射工程を行った。成膜工程は、蒸着源1から蒸発した蒸着物質が、主に、光軸OAに対して角度α=5~30°で傾斜した方向D1から光学素子11の光学面11aに入射した点以外は、実施例1と全く同一にして行った。照射工程は、イオン銃によって照射されたイオンが、光軸OAに対して角度β=10~40°で傾斜した方向D2から、光学素子11の光学面11aに入射した点以外は、実施例1と全く同一にして行った。 Then, the film forming step and the irradiation step were carried out in the same manner as in Example 1. In the film forming process, except that the vapor deposition material vaporized from the vapor deposition source 1 mainly enters the optical surface 11a of the optical element 11 from the direction D1 inclined at the angle α=5 to 30° with respect to the optical axis OA. , The same as in Example 1. In the irradiation step, the first embodiment is performed except that the ions irradiated by the ion gun are incident on the optical surface 11a of the optical element 11 from the direction D2 inclined at an angle β = 10 to 40 ° with respect to the optical axis OA. It was exactly the same as.
[比較例2]
 本比較例では、実施例2と同一の光学素子11の凸の光学面11a上に、比較例1と同一の成膜方法で、11層の光学薄膜2からなる反射防止膜1を形成した。反射防止膜1の各光学薄膜2を構成する材料は、比較例1と同一である。
[Comparative Example 2]
In this comparative example, the antireflection film 1 consisting of 11 layers of the optical thin film 2 was formed on the convex optical surface 11a of the same optical element 11 as in Example 2 by the same film forming method as in Comparative Example 1. The material forming each optical thin film 2 of the antireflection film 1 is the same as that of Comparative Example 1.
[評価項目]
 得られた実施例1から4及び比較例1から2の反射防止膜1について、以下の評価を行った。
(1)光学薄膜の膜厚分布
 実施例1から4及び比較例1から2の反射防止膜1を構成する各層の光学薄膜2について、断面SEMによって膜厚を測定し、膜厚分布を求めた。膜厚の測定は、各光学薄膜2の、光学素子11の光学面11a上で傾斜角度θが0°、25°、35°、45°、60°、70°、80°である箇所に対応する箇所に対して行った。各層の光学薄膜2の膜厚分布は、その層が光学素子11側から何番目の層であるかに関係なく、材質が同一であれば同一であった。光学薄膜2の材料別の膜厚分布を図7から図9に示す。図中の横軸の角度θは、反射防止膜1上の測定箇所における、光学素子11の光学面11aの傾斜角度θに対応する角度である。
[Evaluation item]
The following evaluations were performed on the obtained antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2.
(1) Film Thickness Distribution of Optical Thin Films The film thickness distribution of the optical thin films 2 of each layer constituting the antireflection coatings 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was measured by cross-sectional SEM to obtain the film thickness distribution. .. The film thickness is measured at locations where the inclination angles θ are 0 °, 25 °, 35 °, 45 °, 60 °, 70 °, and 80 ° on the optical surface 11a of the optical element 11 of each optical thin film 2. I went to the place to do. The film thickness distribution of the optical thin film 2 in each layer was the same as long as the material was the same, regardless of the layer number from the optical element 11 side. The film thickness distribution of the optical thin film 2 for each material is shown in FIGS. The angle θ on the horizontal axis in the figure is an angle corresponding to the inclination angle θ of the optical surface 11a of the optical element 11 at the measurement location on the antireflection film 1.
(2)外観
 実施例1から4及び比較例1から2の反射防止膜1について、外観を評価した。外観の評価は、反射防止膜1に反射色のムラがあるか否かを目視で観察することによって行った。結果を表1に示す。表1中の「外観」欄において、「○」印は反射色のムラが観察されなかったことを示し、「×」印は反射色のムラが観察されたことを示す。
(2) Appearance The appearance of the antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated. The appearance was evaluated by visually observing whether or not the antireflection film 1 had unevenness in reflection color. The results are shown in Table 1. In the “Appearance” column in Table 1, “◯” indicates that no reflection color unevenness was observed, and “x” indicates that reflection color unevenness was observed.
(3)ゴースト
 実施例1から4及び比較例1から2の反射防止膜1について、ゴーストが発生するか否か評価した。この評価は、ストレイライト試験によって行った。結果を表1に示す。表1中の「ゴースト」欄において、「○」印はゴーストが全く発生しなかったことを示し、「△」印は弱いゴーストが発生したことを示し、「×」印は強いゴーストが発生したことを示す。
(3) Ghost With respect to the antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2, it was evaluated whether or not a ghost occurs. This evaluation was performed by the stray light test. The results are shown in Table 1. In the "ghost" column in Table 1, "○" indicates that no ghost occurred, "△" indicates that a weak ghost occurred, and "x" indicates that a strong ghost occurred. Indicates that.
(4)分光反射特性
 実施例1から4及び比較例1から2の反射防止膜1について、大塚電子株式会社製の反射分光膜厚計FE-3000によって分光反射率を測定した。このとき、反射防止膜1上の、光学素子11の光学面11a上で傾斜角度θが0°、35°、60°、70°である箇所に対応する箇所に対して、入射光の波長を350nm以上1000nm以下の範囲で変化させながら、0°、10°、20°、30°、40°、50°、60°、70°の入射角度φで入射させたときの分光反射率を測定した。結果を図10から図15及び表1に示す。表1は、例えば、実施例1では、反射防止膜1の中心、すなわち、光学素子11の光学面11a上で傾斜角度θが0°である箇所(光学面11aの中心)に対応する箇所で、光の波長を上記範囲で変化させながら入射角度φ0°で入射した光の反射率を測定したとき、平均反射率は0.1%であり、最大反射率は0.2%であったことを示している。
(4) Spectral Reflection Characteristics The spectral reflectance of the antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was measured by a reflection spectroscopic film thickness meter FE-3000 manufactured by Otsuka Electronics Co., Ltd. At this time, the wavelength of the incident light is set to a position corresponding to a position on the optical surface 11a of the optical element 11 on the antireflection film 1 where the inclination angle θ is 0°, 35°, 60°, 70°. The spectral reflectance was measured when the light was incident at an incident angle of φ of 0 °, 10 °, 20 °, 30 °, 40 °, 50 °, 60 °, and 70 ° while changing in the range of 350 nm or more and 1000 nm or less. .. The results are shown in FIGS. 10 to 15 and Table 1. Table 1 shows, for example, in the first embodiment, a portion corresponding to the center of the antireflection film 1, that is, a portion on the optical surface 11a of the optical element 11 where the inclination angle θ is 0 ° (center of the optical surface 11a). The average reflectance was 0.1% and the maximum reflectance was 0.2% when the reflectance of the light incident at the incident angle φ0° was measured while changing the wavelength of the light within the above range. Is shown.
(5)耐磨耗性
 実施例1から4及び比較例1から2の反射防止膜1について、耐磨耗性を評価した。まず、新東科学株式会社製の往復磨耗試験機TYPE30を用いて、500g重の荷重を付与した状態で移動距離10mmを移動速度1200mm/分で100往復させた。そして、反射防止膜1の最表面の光学薄膜2について、中心(光学面11aの傾斜角度θが0°に対応する位置)及び周辺部(光学面11の傾斜角度θが60°に対応する位置)のキズの有無を目視で観察した。表1中の「耐磨耗性」欄において、「○」印は中心及び周辺部の両方でキズが観察されなかったことを示し、「×」印は中心又は周辺部の少なくとも一方でキズが観察されたことを示す。
(5) Abrasion resistance The antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 and 2 was evaluated for abrasion resistance. First, using a reciprocating abrasion tester TYPE30 manufactured by Shinto Kagaku Co., Ltd., a moving distance of 10 mm was reciprocated 100 times at a moving speed of 1200 mm/min while a load of 500 g was applied. Then, regarding the optical thin film 2 on the outermost surface of the antireflection film 1, the center (the position where the inclination angle θ of the optical surface 11a corresponds to 0 °) and the peripheral portion (the position where the inclination angle θ of the optical surface 11 corresponds to 60 °). ) The presence or absence of scratches was visually observed. In the "Abrasion resistance" column in Table 1, "○" indicates that no scratches were observed in both the central and peripheral parts, and "x" marks indicate that scratches were not observed in at least one of the central or peripheral parts. Indicates what was observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 以下、各実施例及び比較例の評価結果について述べる。
(1)光学薄膜の膜厚分布に関する評価結果
 図7から図9を参照しながら、実施例1から4及び比較例1から2の反射防止膜1を構成する各光学薄膜2の膜厚分布について述べる。図7及び図8に示すように、実施例1から4の各光学薄膜2は、光学薄膜を構成する材質がいずれの場合であっても、中心、すなわち、傾斜角度θが0°である測定箇所における物理膜厚が最も小さく、測定箇所の傾斜角度θが大きくなるにつれて物理膜厚が厚くなり、傾斜角度θが60°から70°である領域で物理膜厚が最も厚くなっている。そして、実施例1から3の各光学薄膜2は、中心の物理膜厚d0に対する任意の測定箇所における物理膜厚dxの比であるdx/d0が1より大きく1.3未満の範囲に収まっている。さらに、実施例4の光学薄膜2は、傾斜角度θが0°以上60°以下である測定箇所及び80°である測定箇所ではdx/d0が1より大きく1.3未満の範囲に収まっているが、傾斜角度θが70°である測定箇所ではdx/d0が1.3を超えている。
[Evaluation results]
The evaluation results of each example and comparative example will be described below.
(1) Evaluation Results Regarding Thickness Distribution of Optical Thin Film Regarding the thickness distribution of each optical thin film 2 constituting the antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 to 2 with reference to FIGS. 7 to 9. Describe. As shown in FIGS. 7 and 8, each optical thin film 2 of Examples 1 to 4 was measured at the center, that is, the tilt angle θ was 0°, regardless of the material forming the optical thin film. The physical film thickness at the location is the smallest, and the physical film thickness becomes thicker as the tilt angle θ at the measurement location becomes larger, and the physical film thickness becomes the thickest in the region where the tilt angle θ is 60° to 70°. Then, in each of the optical thin films 2 of Examples 1 to 3, dx / d0, which is the ratio of the physical film thickness dx at an arbitrary measurement point to the physical film thickness d0 at the center, is larger than 1 and falls within the range of less than 1.3. There is. Further, in the optical thin film 2 of Example 4, dx / d0 is larger than 1 and falls within the range of less than 1.3 at the measurement point where the inclination angle θ is 0 ° or more and 60 ° or less and the measurement point where the inclination angle θ is 80 °. However, dx/d0 exceeds 1.3 at the measurement point where the inclination angle θ is 70°.
 一方、図9に示すように、比較例1から2の各光学薄膜2は、光学薄膜を構成する材質がいずれの場合であっても、中心の物理膜厚が最も厚く、測定箇所の傾斜角度θが大きくなるにつれて物理膜厚が薄くなっている。そして、比較例1から2の各光学薄膜2は、任意の測定箇所における物理膜厚dxがdx=d0cosθの式に概ね従っている。 On the other hand, as shown in FIG. 9, each of the optical thin films 2 of Comparative Examples 1 and 2 has the thickest physical film thickness at the center regardless of the material constituting the optical thin film, and the inclination angle of the measurement point. The physical film thickness decreases as θ increases. Then, each of the optical thin films 2 of Comparative Examples 1 and 2 generally follows the equation that the physical film thickness dx at an arbitrary measurement point is dx = d0cosθ.
(2)外観に関する評価結果
 表1を参照しながら、実施例1から4及び比較例1から2の反射防止膜1の外観について述べる。実施例1から4の反射防止膜1は、反射色のムラが観察されておらず外観が優れている。一方、比較例1から2の反射防止膜1は、反射色のムラが観察され、外観が劣っている。反射色のムラは、反射防止膜1の中心を基準として中心対称に観察された。
(2) Evaluation result regarding appearance The appearance of the antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 and 2 will be described with reference to Table 1. The antireflection film 1 of each of Examples 1 to 4 has an excellent appearance with no unevenness of the reflection color being observed. On the other hand, in the antireflection film 1 of Comparative Examples 1 and 2, unevenness of the reflection color was observed and the appearance was inferior. The unevenness of the reflected color was observed center-symmetrically with respect to the center of the antireflection film 1.
(3)ゴーストに関する評価結果
 表1を参照しながら、実施例1から4及び比較例1から2の反射防止膜1のゴーストの有無について述べる。実施例1から3の反射防止膜1は、ゴーストが全く観察されなかった。実施例4の反射防止膜1は、弱い青色のゴーストが観察された。一方、比較例1から2の反射防止膜1は、強いゴーストが観察された。
(3) Evaluation result regarding ghost With reference to Table 1, the presence or absence of ghost in the antireflection film 1 of Examples 1 to 4 and Comparative Examples 1 and 2 will be described. No ghost was observed in the antireflection film 1 of Examples 1 to 3. In the antireflection film 1 of Example 4, a weak blue ghost was observed. On the other hand, strong ghosts were observed in the antireflection films 1 of Comparative Examples 1 and 2.
(4)分光反射特性に関する評価結果
 表1及び図10から図15を参照しながら、実施例1から4及び比較例1から2の反射防止膜1の分光反射特性について述べる。図9から図13に示すように、実施例1から4の反射防止膜1は、反射防止膜1の中心、すなわち、光学素子11の光学面11aの傾斜角度θが0°である箇所(光学面11aの中心)に対応する箇所で測定したとき、波長が420nm以上680nm以下であって入射角度φが0°以上20°以下である光の反射率が0.5%以下であった。また、反射防止膜1上の光学面11aの傾斜角度θが35°である箇所に対応する箇所で測定したとき、波長が上記範囲であって入射角度φが20°以上40°以下の光の反射率が1%以下であった。そして、反射防止膜1上の光学面11aの傾斜角度θが70°である箇所に対応する箇所で測定したとき、波長が上記範囲であって入射角度φが50°以上60°以下である光の反射率が7%以下であった。さらには、反射防止膜1上の光学面11aの傾斜角度θが70°である箇所に対応する箇所で測定したとき、波長が上記範囲であって入射角度φが70°である光の反射率が15%以下であった。これらの結果から、実施例1から4の反射防止膜1は、光学素子11の凸の光学面11aの傾斜角度θが小さい領域に小さな入射角度φで入射した、波長が420nm以上680nm以下の光の反射を低く抑えることができると共に、凸の光学面11aの傾斜角度θが大きい領域に大きな入射角度φで入射した上記波長の光の反射を低く抑えることができることが明らかである。すなわち、実施例1から実施例3の反射防止膜1は、中心から周辺部までの全体に亘って、広い波長帯域の光に対する反射防止特性に優れることが明らかである。
(4) Evaluation Results Regarding Spectral Reflection Characteristics With reference to Table 1 and FIGS. 10 to 15, the spectral reflection characteristics of the antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2 will be described. As shown in FIGS. 9 to 13, the antireflection film 1 of Examples 1 to 4 is the center of the antireflection film 1, that is, a position where the inclination angle θ of the optical surface 11a of the optical element 11 is 0 ° (optical). When measured at a location corresponding to the center of the surface 11a), the reflectance of light having a wavelength of 420 nm or more and 680 nm or less and an incident angle φ of 0 ° or more and 20 ° or less was 0.5% or less. Further, when measured at a location corresponding to a location where the inclination angle θ of the optical surface 11a on the antireflection film 1 is 35 °, light having a wavelength in the above range and an incident angle φ of 20 ° or more and 40 ° or less The reflectance was 1% or less. Then, when measured at a location corresponding to a location where the inclination angle θ of the optical surface 11a on the antireflection film 1 is 70 °, light having a wavelength in the above range and an incident angle φ of 50 ° or more and 60 ° or less. Was less than 7%. Furthermore, when measured at a location corresponding to a location where the tilt angle θ of the optical surface 11a on the antireflection film 1 is 70°, the reflectance of light whose wavelength is in the above range and whose incident angle φ is 70°. Was 15% or less. From these results, the antireflection film 1 of Examples 1 to 4 is light having a wavelength of 420 nm or more and 680 nm or less, which is incident on a region where the inclination angle θ of the convex optical surface 11a of the optical element 11 is small at a small incident angle φ. It is clear that it is possible to suppress the reflection of light having a large incident angle φ in a region where the inclination angle θ of the convex optical surface 11a is large, and it is also possible to suppress the reflection of light having the above-described wavelength to be low. That is, it is apparent that the antireflection films 1 of Examples 1 to 3 have excellent antireflection properties for light in a wide wavelength band over the entire area from the center to the periphery.
 一方、図12に示すように、比較例1の反射防止膜1は、光学面11aの傾斜角度θが0°である箇所に対応する箇所で測定したとき、波長が上記範囲であって入射角度φが0°以上20°以下の光の反射率は0.5%以下であった。しかしながら、光学面11aの傾斜角度θが35°である箇所に対応する箇所で測定したとき、波長が420nm以上550nm以下であって入射角度φが20°以上40°以下の光の反射率は1%以下であったが、波長が550nmを超えると反射率が大きくなり、波長が680nmであると反射率が10%を超えている。さらに、光学面11aの傾斜角度θが60°である箇所に対応する箇所で測定したとき、波長が420nm以上680nm以下であって入射角度φが30°以上50°以下の光の反射率は10%を大きく上回り、30%近くに達する。これらの結果から、比較例1の反射防止膜1は、凸の光学面11aの傾斜角度θが大きい領域に大きな入射角度φで入射した、波長が420nm以上680nm以下の光の反射を低く抑えることができないことが明らかである。そして、比較例2の反射防止膜1の分光反射特性は、比較例1の反射防止膜1と同様の結果であった。 On the other hand, as shown in FIG. 12, the antireflection film 1 of Comparative Example 1 has a wavelength in the above range and an incident angle when measured at a location corresponding to a location where the inclination angle θ of the optical surface 11a is 0 °. The reflectance of light with φ of 0° or more and 20° or less was 0.5% or less. However, when measured at a location corresponding to the location where the inclination angle θ of the optical surface 11a is 35 °, the reflectance of light having a wavelength of 420 nm or more and 550 nm or less and an incident angle φ of 20 ° or more and 40 ° or less is 1. % Or less, the reflectance increases when the wavelength exceeds 550 nm, and exceeds 10% when the wavelength is 680 nm. Further, when measured at a location corresponding to a location where the inclination angle θ of the optical surface 11a is 60 °, the reflectance of light having a wavelength of 420 nm or more and 680 nm or less and an incident angle φ of 30 ° or more and 50 ° or less is 10. It greatly exceeds %, reaching nearly 30%. From these results, the antireflection film 1 of Comparative Example 1 suppresses the reflection of light having a wavelength of 420 nm or more and 680 nm or less, which is incident on a region where the inclination angle θ of the convex optical surface 11a is large and has a large incident angle φ. It is clear that you can not. The spectral reflection characteristics of the antireflection film 1 of Comparative Example 2 were similar to those of the antireflection film 1 of Comparative Example 1.
(5)耐磨耗性に関する評価結果
 表1を参照しながら、実施例1から4及び比較例1から2の反射防止膜1の耐磨耗性外観について述べる。実施例1から4の反射防止膜1は、中心及び周辺部の両方でキズが観察されず、耐磨耗性に優れている。一方、比較例1から2の反射防止膜1は、中心又は周辺部の少なくとも一方でキズが観察され、耐磨耗性が劣っている。これらのことから、実施例1から4の反射防止膜1が耐磨耗性に優れるのは、光学薄膜2を形成した際にイオン銃61によるイオン照射によって光学薄膜2が緻密化された結果、耐磨耗性が向上したからであると考えられる。
(5) Results of Evaluation Regarding Abrasion Resistance With reference to Table 1, the abrasion resistance appearances of the antireflection films 1 of Examples 1 to 4 and Comparative Examples 1 and 2 will be described. The antireflection film 1 of each of Examples 1 to 4 has excellent abrasion resistance, with no flaws observed in both the center and the peripheral portion. On the other hand, the antireflection films 1 of Comparative Examples 1 and 2 are inferior in abrasion resistance because scratches are observed on at least one of the central or peripheral portions. From these facts, the reason why the antireflection film 1 of Examples 1 to 4 is excellent in abrasion resistance is that the optical thin film 2 is densified by ion irradiation with an ion gun 61 when the optical thin film 2 is formed. It is considered that this is because the wear resistance was improved.
(6)総評
 以上の結果から、実施例1から4の反射防止膜1は、光学素子の凸の光学面の傾斜角度θが大きい領域に大きな入射角度φで入射した、広い波長帯域の光の反射を低く抑えることができると共に、光学素子の凸の光学面の傾斜角度θが小さい領域に小さな入射角度φで入射した、広い波長帯域の光の反射を低く抑えることができることが明らかになった。そして、実施例1から4の反射防止膜1は、反射色のムラもなく、ゴーストがほとんど生じない上に耐磨耗性に優れることが明らかになった。
(6) Overall Review From the above results, the antireflection film 1 of Examples 1 to 4 is for light in a wide wavelength band incident on a region where the inclination angle θ of the convex optical surface of the optical element is large at a large incident angle φ. It has been clarified that it is possible to suppress the reflection to a low level and also to suppress the reflection of light in a wide wavelength band that is incident at a small incident angle φ in a region where the inclination angle θ of the convex optical surface of the optical element is small. .. Then, it was revealed that the antireflection film 1 of each of Examples 1 to 4 had no unevenness in the reflection color, almost no ghost, and excellent abrasion resistance.
 本件発明に係る反射防止膜及びそれを備える光学素子は、最大傾斜角度が25°以上であるようなRの深い凸の光学面を備える、撮影光学素子や投影光学素子等の種々の光学素子に好適である。そして、本件発明に係る反射防止膜の成膜方法は、これらの反射防止膜の形成に好適である。 INDUSTRIAL APPLICABILITY The antireflection film and the optical element including the same according to the present invention can be applied to various optical elements such as a photographing optical element and a projection optical element that have a deep convex optical surface of R having a maximum tilt angle of 25° or more. It is suitable. The antireflection film forming method according to the present invention is suitable for forming these antireflection films.
  1 反射防止膜
  2 光学薄膜
  2a~2g 各層の光学薄膜
  11 光学素子
  11a 凸の光学面
  51,111 蒸着源
  61,121 イオン銃(イオン源)
  D1 蒸着物質が凸の光学面側へ入射するときの入射方向
  D2 イオン又はプラズマが凸の光学面側へ入射するときの入射方向
  OA 光学素子の光軸
  α 光学素子の光軸に対して蒸着物質の入射方向がなす角度
  β 光学素子の光軸に対してイオン又はプラズマの入射方向がなす角度
1 Anti-reflection film 2 Optical thin film 2a-2g Optical thin film of each layer 11 Optical element 11a Convex optical surface 51,111 Deposition source 61,121 Ion gun (ion source)
D1 Incident direction when the vapor-deposited material is incident on the convex optical surface side D2 Incident direction when ions or plasma are incident on the convex optical surface side OA Optical axis of the optical element α Vaporized material with respect to the optical axis of the optical element Angle formed by the incident direction of β The angle formed by the incident direction of ions or plasma with respect to the optical axis of the optical element

Claims (14)

  1.  測定箇所における法線と光軸とがなす角度によって示される凸の光学面の傾斜角度θの最大傾斜角度が25°以上である凸の光学面を有する光学素子に設ける反射防止膜であって、
     前記凸の光学面側に設ける複数の光学薄膜からなる多層構造を備え、
     各光学薄膜は、前記凸の光学面と前記光軸とが直交する点を中心とするとき、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜の少なくとも一部が、前記凸の光学面の中心に設ける膜の物理膜厚よりも厚いことを特徴とする反射防止膜。
    An antireflection film provided on an optical element having a convex optical surface having a maximum inclination angle of 25° or more of the inclination angle θ of the convex optical surface indicated by the angle formed by the normal line and the optical axis at the measurement point,
    A multilayer structure comprising a plurality of optical thin films provided on the convex optical surface side,
    When each optical thin film is centered on a point where the convex optical surface and the optical axis are orthogonal to each other, at least a part of the film provided in a region where the inclination angle θ of the convex optical surface is 25° or more, An antireflection film, which is thicker than a physical film thickness of a film provided at the center of the convex optical surface.
  2.  前記各光学薄膜は、前記凸の光学面の傾斜角度θが25°以上80°未満である領域に設ける膜の少なくとも一部が、前記凸の光学面の前記中心に設ける膜の物理膜厚よりも厚いものである請求項1に記載の反射防止膜。 In each of the optical thin films, at least a part of the film provided in the region where the inclination angle θ of the convex optical surface is 25 ° or more and less than 80 ° is larger than the physical film thickness of the film provided at the center of the convex optical surface. The antireflection film according to claim 1, which is also thick.
  3.  前記各光学薄膜は、前記光学素子の前記凸の光学面の傾斜角度θが25°以上75°未満である領域に設ける膜の全体が、前記凸の光学面の前記中心に設ける膜の物理膜厚よりも厚いものである請求項2に記載の反射防止膜。 In each of the optical thin films, the entire film provided in a region where the inclination angle θ of the convex optical surface of the optical element is 25° or more and less than 75° is a physical film of a film provided in the center of the convex optical surface. The antireflection film according to claim 2, which is thicker than the thickness.
  4.  前記各光学薄膜は、前記凸の光学面の中心に設ける膜の物理膜厚をd0とし、当該光学薄膜の任意の測定箇所における物理膜厚をdxとするとき、前記凸の光学面の傾斜角度θが25°以上である領域に設ける膜のうち、前記中心に設ける膜の物理膜厚よりも厚い部分の物理膜厚が、以下の条件式を満たすものである請求項1から請求項3のいずれか一項に記載の反射防止膜。
           1<dx/d0≦1.3
    When the physical film thickness of the film provided at the center of the convex optical surface of each optical thin film is d0 and the physical film thickness at an arbitrary measurement point of the optical thin film is dx, the inclination angle of the convex optical surface is defined as dx. The physical film thickness of a portion of the film provided in the region where θ is 25° or more, which is thicker than the physical film thickness of the film provided in the center, satisfies the following conditional expression: The antireflection film according to any one of items.
    1<dx/d0≦1.3
  5.  前記光学薄膜は、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガス元素又は窒素を含むものである請求項1から請求項4のいずれか一項に記載の反射防止膜。 The antireflection film according to any one of claims 1 to 4, wherein the optical thin film contains one or more rare gas elements or nitrogen selected from the group of He, Ne, Ar, Xe, and Xr. ..
  6.  前記多層構造は、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを含み、
     前記高屈折率層は、TiO、Nb、ZrO、La、Ta、HfOの群より選択される1種以上の金属酸化物を含むものである請求項1から請求項5のいずれか一項に記載の反射防止膜。
    The multilayer structure includes an optical thin film which is a high refractive index layer and an optical thin film which is a low refractive index layer,
    The high refractive index layer contains at least one metal oxide selected from the group consisting of TiO 2 , Nb 2 O 5 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , and HfO 2. The antireflection film according to claim 5.
  7.  前記多層構造は、高屈折率層である光学薄膜と低屈折率層である光学薄膜とを含み、
     前記低屈折率層は、SiOを含むか又はSiOとAlとの混合物を含むものである請求項1から請求項6のいずれか一項に記載の反射防止膜。
    The multilayer structure includes an optical thin film which is a high refractive index layer and an optical thin film which is a low refractive index layer,
    The low refractive index layer, an antireflection film according to claims 1 mixture is intended to include the one or SiO 2 and Al 2 O 3 containing SiO 2 in any one of claims 6.
  8.  前記最大傾斜角度が25°以上である凸の光学面を有する光学素子であって、
     請求項1から請求項7のいずれか一項に記載の反射防止膜を前記凸の光学面側に備えることを特徴とする光学素子。
    An optical element having a convex optical surface in which the maximum tilt angle is 25° or more,
    An optical element comprising the antireflection film according to any one of claims 1 to 7 on the convex optical surface side.
  9.  前記凸の光学面と前記反射防止膜との間に、当該凸の光学面へのイオン又はプラズマの入射を防止するための保護層を備える請求項7に記載の光学素子。 The optical element according to claim 7, further comprising a protective layer between the convex optical surface and the antireflection film to prevent ions or plasma from being incident on the convex optical surface.
  10.  前記反射防止膜の表面に設けた機能膜を備える請求項8又は請求項9に記載の光学素子。 The optical element according to claim 8 or 9, comprising a functional film provided on the surface of the antireflection film.
  11.  請求項1から請求項7のいずれか一項に記載の反射防止膜を形成するための反射防止膜の成膜方法であって、
     前記光学素子を回転させながら、当該光学素子の前記凸の光学面側に成膜ソースからの成膜材料を堆積させて膜を形成する成膜工程と、
     回転する前記光学素子の前記凸の光学面側に、イオン源からのイオン又はプラズマ源からのプラズマを前記光軸に対して傾斜した方向から照射することにより、前記凸の光学面側の中心に堆積した成膜材料を当該凸の光学面側の周辺部よりも多く除去しつつ緻密化し、前記イオン源又は前記プラズマ源に近い側の前記凸の光学面の領域によって、前記イオン源又は前記プラズマ源から遠い側の前記凸の光学面の領域への前記イオン又は前記プラズマの入射を遮蔽する照射工程とを備え、
     前記成膜工程と前記照射工程とを行うことにより、前記多層構造を構成する各光学薄膜を形成することを特徴とする反射防止膜の成膜方法。
    A method for forming an antireflection film for forming the antireflection film according to claim 1.
    A film forming step of forming a film by depositing a film forming material from a film forming source on the convex optical surface side of the optical element while rotating the optical element;
    On the convex optical surface side of the rotating optical element, by irradiating ions from an ion source or plasma from a plasma source from a direction inclined with respect to the optical axis, the center of the convex optical surface side. The deposited film-forming material is densified while removing more than the peripheral portion on the optical surface side of the convex, and the ion source or the plasma is formed by the region of the convex optical surface on the side close to the ion source or the plasma source. An irradiation step of blocking the incidence of the ions or the plasma to the region of the convex optical surface on the side far from the source,
    A method of forming an antireflection film, characterized in that each of the optical thin films constituting the multilayer structure is formed by performing the film forming step and the irradiation step.
  12.  前記照射工程は、前記光学素子の前記凸の光学面側に、前記イオン又は前記プラズマを前記光軸に対して45°以上90°以下の角度で傾斜した方向から照射するものである請求項11に記載の反射防止膜の成膜方法。 The irradiation step is to irradiate the convex optical surface side of the optical element with the ions or the plasma from a direction inclined at an angle of 45 ° or more and 90 ° or less with respect to the optical axis. The method for forming an antireflection film according to [4].
  13.  前記光学素子を、前記光軸とは異なる軸を回転軸として回転させるものである請求項11から請求項12のいずれか一項に記載の反射防止膜の成膜方法。 The method for forming an antireflection film according to any one of claims 11 to 12, wherein the optical element is rotated about an axis different from the optical axis as a rotation axis.
  14.  前記イオン又は前記プラズマは、He、Ne、Ar、Xe、Xrの群より選択される1種以上の希ガス又は窒素から形成したイオン又はプラズマである請求項11から請求項13のいずれか一項に記載の反射防止膜の成膜方法。 The ion or the plasma is any one of claims 11 to 13 which is an ion or plasma formed from one or more rare gases or nitrogen selected from the group of He, Ne, Ar, Xe, and Xr. The method for forming an antireflection film according to.
PCT/JP2019/049550 2019-03-06 2019-12-18 Antireflection film, optical element, and method for forming antireflection film WO2020179189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-040263 2019-03-06
JP2019040263A JP7349798B2 (en) 2019-03-06 2019-03-06 Anti-reflection film, optical element and anti-reflection film formation method

Publications (1)

Publication Number Publication Date
WO2020179189A1 true WO2020179189A1 (en) 2020-09-10

Family

ID=72337250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049550 WO2020179189A1 (en) 2019-03-06 2019-12-18 Antireflection film, optical element, and method for forming antireflection film

Country Status (2)

Country Link
JP (1) JP7349798B2 (en)
WO (1) WO2020179189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI844279B (en) 2023-02-22 2024-06-01 耀穎光電股份有限公司 Anti-scattering and anti-interference coating pattern structure of an optical thin film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617641B2 (en) * 1973-08-27 1981-04-23
JPH03255401A (en) * 1990-03-06 1991-11-14 Olympus Optical Co Ltd Formation of mgf2 film on plastic substrate
JP2003007585A (en) * 2001-06-20 2003-01-10 Nikon Corp Optical component and projection aligner
JP2004269988A (en) * 2003-03-10 2004-09-30 Canon Inc Sputtering apparatus
JP2004333908A (en) * 2003-05-08 2004-11-25 Pentax Corp Optic element having antireflection film
JP2007248828A (en) * 2006-03-16 2007-09-27 Shincron:Kk Method and apparatus for forming optical thin film
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2020030237A (en) * 2018-08-20 2020-02-27 株式会社タムロン Antireflection film, optical element and method for depositing antireflection film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3255401B2 (en) 1997-12-01 2002-02-12 株式会社八木熊 Construction moving fence
JP5617641B2 (en) 2011-01-05 2014-11-05 株式会社Ihi LNG vaporization equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617641B2 (en) * 1973-08-27 1981-04-23
JPH03255401A (en) * 1990-03-06 1991-11-14 Olympus Optical Co Ltd Formation of mgf2 film on plastic substrate
JP2003007585A (en) * 2001-06-20 2003-01-10 Nikon Corp Optical component and projection aligner
JP2004269988A (en) * 2003-03-10 2004-09-30 Canon Inc Sputtering apparatus
JP2004333908A (en) * 2003-05-08 2004-11-25 Pentax Corp Optic element having antireflection film
JP2007248828A (en) * 2006-03-16 2007-09-27 Shincron:Kk Method and apparatus for forming optical thin film
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2020030237A (en) * 2018-08-20 2020-02-27 株式会社タムロン Antireflection film, optical element and method for depositing antireflection film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI847802B (en) 2022-07-22 2024-07-01 日商光馳股份有限公司 Substrate holder transfer system
TWI844279B (en) 2023-02-22 2024-06-01 耀穎光電股份有限公司 Anti-scattering and anti-interference coating pattern structure of an optical thin film

Also Published As

Publication number Publication date
JP7349798B2 (en) 2023-09-25
JP2020144208A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP4540746B2 (en) Optical thin film deposition apparatus and optical thin film manufacturing method
WO2015097898A1 (en) Process for forming multilayer antireflection film
JP2004269988A (en) Sputtering apparatus
JP4512669B2 (en) Vapor deposition apparatus and thin film device manufacturing method
CN112534307B (en) Antireflection film, optical element, and method for forming antireflection film
JP2009003348A (en) Film forming method of dimmer filter, manufacturing device of dimmer filter, dimmer filter and imaging diaphragm device using the same
WO2020179189A1 (en) Antireflection film, optical element, and method for forming antireflection film
WO2021111813A1 (en) Optical member and production method therefor
JP5921351B2 (en) Deposition equipment
US20200166672A1 (en) Optical member and producing method of optical member
US10114150B2 (en) Optical multilayer coating, optical lens, and method of manufacturing optical multilayer coating
JP4503701B2 (en) Vapor deposition apparatus and thin film device manufacturing method
US20200165716A1 (en) Film forming method and film forming apparatus
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP6053179B2 (en) Optical element, optical thin film forming apparatus, and optical thin film forming method
US9099278B2 (en) Protective enclosure for an ion gun, device for depositing materials through vacuum evaporation comprising such a protective enclosure and method for depositing materials
JP2020122193A (en) Film deposition apparatus
JP2011127199A (en) Transparent body and method for producing it
JP6714399B2 (en) Optical element and optical thin film forming method
JP2008275918A (en) Film-depositing method of antireflection layer provided with antifouling layer and film-depositing device therefor
CN116040965B (en) Broadband antireflection film and preparation method and application thereof
JP3810034B2 (en) Manufacturing method of elliptic gradation ND filter
JP2009001889A (en) Film deposition method for neutral density filter, neutral density filter using the same, and image pick-up light quantity diaphragm device
JP2023158648A (en) Optical thin film and method for manufacturing the same
JP2009093068A (en) Method of manufacturing scratch-resistant article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918488

Country of ref document: EP

Kind code of ref document: A1