WO2019198760A1 - Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element - Google Patents

Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element Download PDF

Info

Publication number
WO2019198760A1
WO2019198760A1 PCT/JP2019/015644 JP2019015644W WO2019198760A1 WO 2019198760 A1 WO2019198760 A1 WO 2019198760A1 JP 2019015644 W JP2019015644 W JP 2019015644W WO 2019198760 A1 WO2019198760 A1 WO 2019198760A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spiral
metal layer
layer
base
Prior art date
Application number
PCT/JP2019/015644
Other languages
French (fr)
Japanese (ja)
Inventor
拓男 田中
レニルクマール ムダチャティ
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2020513431A priority Critical patent/JP7325122B2/en
Publication of WO2019198760A1 publication Critical patent/WO2019198760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a light absorbing element that absorbs light in a wide wavelength range. More specifically, the present invention relates to a light absorbing element having an ultrafine metal structure that absorbs light in a wide wavelength range (for example, a visible wavelength range and a near infrared wavelength range).
  • Black coating that absorbs light in a wide wavelength range is indispensable for optical technology for the purpose of suppressing light reflection and stray light, for example.
  • it is extremely difficult to actually make a truly black one In particular, it was almost impossible to achieve black color on a flat surface.
  • a black and white structure is realized by forming a concavo-convex structure or a fuzzy structure on the surface and capturing light inside the structure. Therefore, the thickness of the layer necessary for obtaining black is increased.
  • Patent Document 1 Japanese Patent Document 1 below, for example.
  • Patent Document 1 does not disclose an ultrafine metal structure that absorbs light in a wide wavelength range. Therefore, an ultrafine metal structure that absorbs light in a wide wavelength range is desired. For example, it is desired to realize a black surface of an optical device using such an ultrafine metal structure.
  • an object of the present invention is to provide a technique for an ultrafine metal structure capable of absorbing light in a wide wavelength range.
  • the light absorption element according to the present invention comprises a spiral structure formed of a metal material,
  • the spiral structure includes a base portion and a linear portion extending from the base portion,
  • An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction
  • the linear portion extends spirally from the base point while rotating around the reference axis and moving from the base point to the outside in the radial direction.
  • a light absorber according to the present invention has the above-described light absorption element and an element support surface that supports the light absorption element, and a large number of the light absorption elements are arranged on the element support surface.
  • the manufacturing method according to the present invention is a manufacturing method of a light absorbing element, wherein the light absorbing element includes a spiral structure formed of a metal material,
  • the spiral structure includes a base portion and a linear portion extending from the base portion,
  • An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction
  • the linear part extends spirally from the base point part while turning around the reference axis and moving from the base part to the outside in the radial direction
  • a spiral metal layer formed of a metal material and having a spiral pattern is formed on the surface of the object to be processed.
  • the spiral metal layer includes a base point layer portion corresponding to the base point portion and a line corresponding to the linear portion. Including a layered portion.
  • a very fine metal structure capable of absorbing light in a wide wavelength range can be realized.
  • the structure of the light absorption element by 1st Embodiment of this invention is shown. It is a 1B-1B arrow line view of FIG. 1A. It is a flowchart which shows the manufacturing method by 1st Embodiment. It is explanatory drawing of the manufacturing method by 1st Embodiment.
  • the SEM image of the light absorption element manufactured with the manufacturing method by 1st Embodiment is shown. 3 shows a structure of a light absorption element according to a second embodiment of the present invention. It is a 5B-5B arrow line view of FIG. 5A. It is a flowchart which shows the manufacturing method by 2nd Embodiment. It is explanatory drawing of the manufacturing method by 2nd Embodiment.
  • the SEM image of the light absorption element manufactured with the manufacturing method by 2nd Embodiment is shown.
  • the structure of the light absorber by embodiment of this invention is shown. It is a 9B-9B arrow line view of FIG. 9A. It is an experimental result regarding the optical characteristic of the light absorber manufactured according to the manufacturing method of 1st Embodiment. It is an experimental result regarding the optical characteristic of the light absorber manufactured according to the manufacturing method of 2nd Embodiment.
  • FIG. 1A shows a structure of a light absorption element 10 according to the first embodiment of the present invention.
  • 1B is a view taken in the direction of arrows 1B-1B in FIG. 1A.
  • the light absorbing element 10 absorbs light in a wide wavelength range.
  • the wide wavelength range may include all or a part or some part of the range from visible light (approximately 380 nm wavelength) to far infrared light (approximately 1 mm wavelength).
  • the wide wavelength range may include a part or all of the visible wavelength range (ie, 380 nm to 810 nm).
  • the wide wavelength range includes an infrared wavelength range (810 nm to 1 mm) in addition to a part or all of the visible wavelength range or instead of part or all of the visible wavelength range.
  • a part may be further included.
  • a part of the infrared wavelength range may include a near-infrared wavelength range (a wavelength range of 0.76 ⁇ m to 2.5 ⁇ m).
  • the light absorbing element 10 includes a spiral structure 3 that is an extremely fine metal structure having an overall size of, for example, several thousand micrometers or less.
  • the spiral structure 3 is made of a metal material.
  • the spiral structure 3 includes a base portion 3a and a linear portion 3b extending from the base portion 3a in a spiral shape.
  • an axis passing through the base point portion 3a is defined as a reference axis C
  • a direction parallel to the reference axis C is defined as an axial direction
  • a direction perpendicular to the reference axis C and radially extending from the reference axis C is defined as a radial direction.
  • the linear portion 3b spirals from the base point portion 3a while rotating around the reference axis C and moving from the base point portion 3a to the outside in the radial direction and the axial direction. It extends in a shape.
  • the entire linear portion 3b may be located on a plane including the base point portion 3a. That is, the linear portion 3b extends spirally from the base point portion 3a while turning around the reference axis C and moving from the base point portion 3a to the outside in the radial direction while being positioned on the plane including the base point portion 3a. Also good.
  • the metal material forming the spiral structure 3 is, for example, Au, Ag, or Cu, but may be other materials (Ni or the like). In addition, although each metal material or each metal mentioned below is also Au, Ag, or Cu, for example, another material may be sufficient.
  • the radial dimension of the base portion 3a is larger than the radial thickness of the linear portion 3b.
  • the radial dimension of the base point portion 3a may be larger than the radial thickness of the linear portion 3b.
  • the radial thickness of the linear portion 3b means the radial dimension of each portion of the linear portion 3b that is spaced apart from each other in the radial direction.
  • the diameter of the linear portion 3b in the radial direction is, for example, 50 nm or more and 150 nm or less (for example, about 100 nm).
  • the radial interval (gap) between the portions adjacent to each other in the radial direction in the linear portion 3b may be the same as the radial thickness of the linear portion 3b. That is, in one example, the radial interval is 50 nm or more and 150 nm or less (for example, about 100 nm).
  • the radial dimension of the spiral structure 3 may be, for example, 500 nm or more and 2000 nm or less, but is not limited to this range.
  • the linear portion 3b extends from the base point portion 3a and goes around the reference axis C at least twice.
  • the present invention is not limited to this, and the linear portion 3b may, for example, rotate around the reference axis C for less than two turns, or may turn around the reference axis C for more than three turns.
  • the linear portion 3b extends in a curved shape as shown in FIG. 1B when viewed from the axial direction.
  • the reference axis C is oriented in a direction perpendicular to a surface 5a of the support 5 described later, as shown in FIG. 1A.
  • the linear portion 3b formed of a metal material continuously extends from the coupling position with the base point portion 3a to the tip.
  • the light absorbing element 10 includes a support 5 that supports the spiral structure 3.
  • the support 5 has a surface 5a that is axially spaced from the linear portion 3b, and a protruding portion 5b that protrudes from the surface 5a and is coupled to the base point portion 3a.
  • the protrusion 5b may be formed of a non-metallic material (for example, a transparent material such as glass).
  • the support 5 includes a substrate 5A having a surface 5a.
  • the entire surface 5a of the support 5 is formed of a non-metallic material (for example, a transparent material such as glass), and a metal layer 7 is formed on a part of the surface 5a.
  • a metal layer 7 is formed on a part of the surface 5a.
  • FIG. 1A only the metal layer 7 is illustrated as a cross section by a plane parallel to the reference axis C, and the plane is a surface in the vicinity of the reference axis C.
  • the metal layer 7 includes a spiral metal layer portion 7a and a peripheral metal surface portion 7b.
  • a broken line indicates a virtual boundary line between the spiral metal layer portion 7a and the peripheral metal surface portion 7b.
  • the spiral metal layer portion 7a When viewed from a direction perpendicular to the surface 5a, the spiral metal layer portion 7a is located between the portions adjacent to each other in the radial direction in the linear portion 3b, and extends spirally along the linear portion 3b. Yes. Light absorption due to the interaction between the metal layer 7 and the spiral structure 3 is expected.
  • the metal layer 7 may be omitted.
  • the light absorbing element 10 includes a protective layer 8 formed so that the spiral structure 3 is embedded therein.
  • the protective layer 8 is bonded to the surface 5a (via the metal layer 7 in FIG. 1A).
  • the protective layer 8 is formed of a transparent material (for example, a polymer). The protective layer 8 protects the spiral structure 3 and prevents its damage.
  • FIG. 2 is a flowchart showing a method for manufacturing the light absorbing element 10 according to the first embodiment of the present invention.
  • 3A to 3J are explanatory views of the manufacturing method according to the first embodiment.
  • step S1 an object 5A is prepared as shown in FIG. 3A.
  • the entire surface 5a of the object to be processed 5A is formed of a nonmetallic material.
  • the target object 5A is a substrate formed of silicon as a non-metallic material. Note that the target object 5A may be formed of a non-metallic material other than silicon.
  • step S2 a spiral metal layer 15 having a spiral pattern (hereinafter also simply referred to as a spiral pattern) is formed on the surface 5a of the object 5A as shown in FIGS. 3E and 3F described later.
  • the spiral metal layer 15 is made of a metal material.
  • step S2 includes steps S21 to S25.
  • the resist layer 11 is formed on the surface 5a of the workpiece 5A.
  • the resist layer 11 is formed of a material that is sensitive to electron beams.
  • the material is, for example, polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • a resist layer 11 made of PMMA is formed on the surface 5a by applying a PMMA film to the surface 5a.
  • step S22 as shown in FIG. 3B, the surface of the resist layer 11 is irradiated with an electron beam in a spiral pattern.
  • step S23 the portion of the spiral pattern irradiated with the electron beam in the resist layer 11 is dissolved by immersing the object to be processed 5A in the developer.
  • the spiral groove 13 is formed by removing the spiral pattern portion in the resist layer 11.
  • the bottom surface of the spiral groove 13 becomes the exposed surface 5a of the workpiece 5A.
  • the spiral groove 13 has a central groove portion 13a corresponding to the base point portion 3a and a linear groove portion 13b corresponding to the linear portion 3b.
  • the linear groove 13b extends spirally from the central groove 13a.
  • the size of the central groove 13a is larger than the thickness of the linear groove 13b.
  • the thickness of the linear groove part 13b means the dimension of each part spaced apart from each other in the direction away from the central groove part 13 in the linear groove part 13b.
  • step S24 a metal material is deposited on the bottom surface 5a of the spiral groove 13 and the surface of the remaining resist layer 11 by a vacuum deposition method or a sputtering method, thereby forming a metal layer on the surface of the resist layer 11 as shown in FIG. 3D. 16 and the spiral metal layer 15 is formed on the bottom surface of the spiral groove 13.
  • step S25 lift-off processing is performed.
  • the resist layer 11 remaining on the object to be processed 5A is completely dissolved in an appropriate solvent (organic solvent), whereby the metal layer 16 is removed from the object to be processed 5A and the surface 5a of the object to be processed 5A is removed.
  • the directly formed spiral metal layer 15 is left.
  • FIGS. 3E and 3F the spiral metal layer 15 is formed on the surface 5a of the workpiece 5A.
  • FIG. 3F is a view taken in the direction of the arrow 3F-3F in FIG. 3E.
  • the spiral metal layer 15 includes a base point layer portion 15a corresponding to the base point portion 3a, and a linear layer portion 15b corresponding to the linear portion 3b and extending spirally from the base point layer portion 15a.
  • a broken line is a virtual boundary line between the base layer portion 15a and the linear layer portion 15b.
  • an etching process for isotropically removing the exposed surface of the surface 5a of the object 5A is performed.
  • This etching process may be, for example, a process by inductively coupled plasma reactive ion etching (ICP-RIE: Inductively Coupled Plasma Reactive Ion Etching).
  • ICP-RIE Inductively Coupled Plasma Reactive Ion Etching
  • an etching gas is turned into plasma by applying a high frequency to the etching gas in a vacuum reaction chamber, and the exposed surface of the surface 5 of the object to be processed 5A is exposed by a chemical reaction caused by the plasmatized gas.
  • Etching isotropically.
  • a bias voltage may not be applied to the object to be processed 5A.
  • step S3 By the etching process in step S3, in the object 5A, as shown in FIG. 3G, a new surface 5a that is axially spaced from the linear layer portion 15b and a base portion 3a that protrudes from the surface 5a and is coupled to the base portion 3a.
  • the protruding portion 5b is formed.
  • the etching process is finished.
  • 5 A of to-be-processed objects after an etching process comprise the above-mentioned support body 5.
  • a metal layer 7 is further formed on the target object 5A and the spiral metal layer 15 as shown in FIG. 3H by vacuum deposition or sputtering.
  • the metal layer 7 on the workpiece 5A has the above-described spiral metal layer portion 7a and the peripheral metal surface portion 7b.
  • the base layer 15a and the metal layer 7 on the base layer 15a constitute the above-described base 3a, and the linear layer 15b and the metal layer 7 on the linear layer 15b are linear.
  • the shape portion 3b is formed.
  • step S4 at the position corresponding to the back of the spiral metal layer 15, the spiral metal layer 15 becomes an obstacle to the deposited metal material, so that the above-described spiral metal layer portion 7a is formed. Moreover, since the metal layer 7 is further formed in the spiral metal layer 15 by step S4, the thickness of the spiral structure 3 can be increased correspondingly.
  • FIG. 3I the linear portion 3b extends spirally while moving downward in the axial direction (downward in this figure) due to gravity or stress.
  • FIG. 3G, and FIG. 3H are cross-sectional views taken along a plane that includes the base layer 15a and is parallel to the paper surface of the drawing.
  • FIG. 3I and FIG. The cross section in the position away from the spiral structure 3 is shown.
  • a protective layer 8 made of a transparent material is formed so as to embed the spiral structure 3 therein.
  • a film of a transparent material solution is formed on the surface 5a of the workpiece 5A (in FIG. 3J, via the metal layer 7 on the surface 5a), and the protective layer 8 is formed by drying the solution.
  • the transparent material is a polymer and the protective layer 8 is a polymer layer.
  • step S4 described above may be omitted.
  • step S5 is performed after step S3. Further, step S4 and step S5 may be omitted.
  • FIG. 4 is an SEM (Scanning Electron Microscope) image of the light absorbing element 10 manufactured in the example of the manufacturing method according to the first embodiment.
  • the dimension in the range indicated by the double arrow is 500 nm.
  • the light absorption element 10 can absorb light in a wide wavelength region by having the spiral structure 3 that is the above-described three-dimensional ultrafine metal structure.
  • the light absorbing element 10 described above can absorb infrared light having a wide wavelength range.
  • the light absorbing element 10 can absorb both light having a wide wavelength range in the visible light range and light having a wide wavelength range of infrared rays (for example, a wide wavelength range of near infrared rays).
  • the light absorbing element 10 can absorb both light having a wide wavelength range in the visible light range and light having a wide wavelength range of infrared rays (for example, a wide wavelength range of near infrared rays).
  • FIG. 5A shows the structure of the light absorption element 10 according to the first embodiment of the present invention.
  • FIG. 5B is a view taken along arrow 5B-5B in FIG. 1A.
  • the light absorbing element 10 according to the second embodiment is the same as the light absorbing element 10 according to the first embodiment in the points not described below.
  • the configuration of the support 5 is different from that of the first embodiment.
  • the whole surface 5a of the support body 5 is formed with the metal material, and the above-mentioned metal layer 7 is formed in this surface 5a.
  • the support 5 has a non-metal layer (substrate) 19 formed of a non-metal material and a metal layer 21 formed on the non-metal layer 19.
  • FIG. 5A only the metal layer 7 is shown as a cross section by a plane parallel to the reference axis C, and the plane is a plane in the vicinity of the reference axis C.
  • FIG. 6 is a flowchart showing a method for manufacturing the light absorbing element 10 according to the second embodiment of the present invention.
  • 7A to 7K are explanatory views of the manufacturing method according to the second embodiment.
  • step S100 the object 5B is prepared.
  • step S100 includes steps S111 to S113.
  • a substrate 19 is prepared as shown in FIG. 7A.
  • the material of the substrate 19 may be a metal or a non-metal, and may be transparent or opaque.
  • the metal layer 21 is formed on the entire surface of the substrate 19 by vacuum deposition or sputtering.
  • the sacrificial tank 23 is formed on the metal layer 21 as shown in FIG. 7C by an appropriate method such as a CVD (Chemical Vapor Deposition) method.
  • the sacrificial tank 23 may be a layer formed of, for example, silicon nitride.
  • the object 5B is obtained by sequentially stacking the metal layer 21 and the sacrificial layer 23 on the substrate 19 in this manner, and the sacrificial layer 23 forms the surface 5a of the object 5B.
  • step S200 the spiral metal layer 15 having a spiral pattern as shown in FIG. 7G described later is formed on the surface 5a of the workpiece 5B.
  • the spiral metal layer 15 is made of a metal material.
  • step S200 includes, for example, steps S211 to S215.
  • the resist layer 11 is formed on the surface of the sacrificial tank 23 as shown in FIG. 7D.
  • the resist layer 11 is formed of a material that is sensitive to electron beams.
  • the material is, for example, polymethyl methacrylate (PMMA).
  • step S212 the surface of the resist layer 11 is irradiated with an electron beam in a spiral pattern.
  • step S213 the object 5B is immersed in the developer to dissolve the spiral pattern portion irradiated with the electron beam in the resist layer 11.
  • the spiral groove 13 is formed in the resist layer 11 by removing the spiral pattern portion.
  • the bottom surface of the spiral groove 13 becomes the exposed surface 5 a of the sacrificial layer 23.
  • the structure of the spiral groove 13 is the same as that in the first embodiment.
  • step S214 a metal material is deposited on the bottom surface 5a of the spiral groove 13 and the surface of the remaining resist layer 11 by a vacuum deposition method or a sputtering method, so that a metal layer is formed on the surface of the resist layer 11 as shown in FIG. 7F. 16 and the spiral metal layer 15 is formed on the bottom surface of the spiral groove 13.
  • step S215 lift-off processing is performed.
  • the metal layer 16 is removed from the target object 5B by dissolving the resist layer 11 remaining on the substrate with an appropriate solvent, and the spiral metal layer 15 formed directly on the surface 5a of the sacrificial layer 23. Leave. Thereby, as shown in FIG. 7G, the spiral metal layer 15 is formed on the surface 5a of the object to be processed 5B (sacrificial layer 23).
  • the structure of the spiral metal layer 15 is the same as that in the first embodiment.
  • step S300 an etching process for isotropically removing the exposed surface of the surface of the sacrificial layer 23 as the surface 5a of the object 5B is performed. This etching process is the same as that in the first embodiment.
  • the to-be-processed object 5B after an etching process comprises the above-mentioned support body 5.
  • FIG. 7H a new surface 5a that is axially spaced from the linear layer portion 15b and a base portion 3a that protrudes from the surface 5a and is coupled to the base point portion 3a.
  • the protruding portion 5b is formed.
  • the surface 5a is the surface of the metal layer 21 in FIG. 7H, but may be the surface of the remaining portion of the sacrificial layer 23, unlike FIG. 7H.
  • the protruding portion 5 b is a remaining portion of the sacrificial layer 23.
  • the to-be-processed object 5B after an etching process comprises the above-mentioned support body 5.
  • FIG. 7H a new surface 5a that is axially spaced from the linear layer portion 15b and a base portion 3a that protrudes from the surface 5a and is coupled to the base point portion 3a.
  • step S400 the metal layer 7 is further formed on the target object 5B and the spiral metal layer 15 as shown in FIG. 7I by vacuum deposition or sputtering.
  • the metal layer 7 on the workpiece 5A has the above-described spiral metal layer portion 7a and the peripheral metal surface portion 7b.
  • the base layer 15a and the metal layer 7 on the base layer 15a form the above-described base 3a, and the linear layer 15b and the metal layer 7 on the linear layer 15b are described above.
  • the linear portion 3b is formed.
  • the linear portion 3b may extend spirally while moving downward in the axial direction (downward in this figure) due to gravity or stress.
  • the light absorption element 10 described above is formed.
  • 7G to 7I are cross-sectional views taken along a plane including the base layer 15a and parallel to the paper surface of the drawing.
  • FIG. 7J and FIG. 7K to be described later show the spiral structure 3 in a direction perpendicular to the paper surface of the drawing. The cross section in the position away from is shown.
  • step S500 as shown in FIG. 7K, a transparent material protective layer 8 is formed so as to embed the spiral structure 3 in the same manner as in the first embodiment.
  • step S400 described above may be omitted.
  • step S500 is performed after step S300. Further, step S400 and step S500 may be omitted.
  • FIG. 8 is an SEM image of the light absorbing element 10 manufactured in the example of the manufacturing method based on the second embodiment.
  • the dimension in the range indicated by the double arrow is 500 nm.
  • the light absorbing element 10 according to the second embodiment can obtain the same effects as the light absorbing element 10 according to the first embodiment.
  • FIG. 9A shows a configuration of the light absorber 20 according to the embodiment of the present invention.
  • FIG. 9B is a view taken along arrow 9B-9B in FIG. 9A.
  • the light absorber 20 has a large number of light absorption elements 10 and an element support surface 5 a that supports these light absorption elements 10.
  • the element support surface 5 a is the surface of the support 5 of each light absorbing element 10. That is, the surface 5a of the support body 5 in many light absorption elements 10 constitutes one element support surface 5a. Therefore, the support 5 is shared by many light absorption elements 10.
  • Such a support 5 includes an element support surface 5a, a number of protrusions 5b protruding from the element support surface 5a, and a base portion 5c having the element support surface 5a.
  • the protective layer 8 is shared by many light absorbing elements 10. That is, one protective layer 8 is formed on the element support surface 5a (for example, through the metal layer 7 which is not shown), and a large number of light absorbing elements 10 are embedded in the protective layer 8. .
  • a large number of light absorbing elements 10 are arranged on the element support surface 5a.
  • a large number of light absorbing elements 10 may be regularly arranged densely on the element support surface 5a.
  • the multiple light absorbing elements 10 may be densely arranged on the element support surface 5a at random.
  • the light absorption rate by the light absorber 20 increases as the density of the many light absorption elements 10 increases.
  • the interval between adjacent light absorption elements 10 on the element support surface 5a (that is, the dimension of the gap between the light absorption elements 10) is P
  • P When the radial dimension of the spiral structure 3 of the light absorbing element 10 is Q, P may be smaller than Q (for example, P is less than half of Q).
  • the relationship between P and Q is a relationship in the first direction (the left-right direction in FIG. 9B) along the element support surface 5a, but is perpendicular to the first direction and in the second direction along the element support surface 5a ( The same applies to the vertical direction in FIG. 9B.
  • R is smaller than S.
  • Good for example, R is less than half of S.
  • Q and S may be 500 nm or more and 1500 nm or less
  • P and R may be 500 nm or less (for example, 500 nm).
  • the light absorber 20 absorbs light in a continuous wide wavelength range (for example, with an absorption rate of 80% or more).
  • the width of the wide wavelength region is A or more and B or less.
  • A is 100 nm, 200 nm, 500 nm, 1000 nm, 1500 nm, 2000 nm, or 2500 nm, and for each value of A, B may be 6000 nm, 5000 nm, 4000 nm, or 3000 nm.
  • A can be 100 nm, 200 nm, or 500 nm, and for each value of A, B can be 2000 nm or 1000 nm.
  • the width of the wide wavelength range is not limited to the above examples.
  • the light absorber 20 a large number of light absorbing elements 10 absorb light in a wide wavelength range. Since each light absorption element 10 has an ultrafine structure, the light absorption elements 10 can be arranged densely. Therefore, the element support surface 5a of the light absorber 20 can be made black that is close to true black.
  • Such a light absorber 20 may form a black surface for suppressing reflection of light or stray light in an optical apparatus.
  • the light absorber 20 is provided on the target surface 30 a for suppressing reflection or stray light in the optical device 30.
  • the optical apparatus is, for example, a camera, an astronomical telescope, or an optical measurement device (for example, a spectrophotometer), but is not limited thereto.
  • the target surface 30a is, for example, the inner surface of a camera barrel and the back surface of a reflection surface (for example, the back surface of the reflection mirror) in the optical apparatus, but is not limited thereto.
  • the base portion 5c is formed in a sheet shape.
  • the light absorber 20 is also formed in a sheet shape as a whole. Therefore, after manufacturing the sheet-like light absorber 20, the light absorber 20 can be attached to the target surface 30 a of the optical device 30.
  • the light absorber 20 can be manufactured as follows. A large number of spiral structures 3 are simultaneously formed on the common base portion 5c by the manufacturing method according to the first embodiment or the second embodiment described above.
  • the base portion 5c is prepared as the object to be processed 5A, and the above-described steps for each of the multiple spiral structures 3 with respect to the object to be processed 5A. S2 to S5 are performed.
  • the base portion 5c is prepared as the target object 5B, and a large number of spiral structures 3 are formed on the target object 5B. The above-described steps S200 to S500 are performed for each.
  • FIG. 10A shows the experimental results regarding the optical characteristics of the light absorber 20 manufactured according to the manufacturing method of the first embodiment.
  • FIG. 10B is an experimental result regarding the optical characteristics of the light absorber 20 manufactured according to the manufacturing method of the second embodiment.
  • the horizontal axis indicates the wavelength ( ⁇ m)
  • the vertical axis indicates the reflectance of the light incident on the light absorber 20.
  • a wavelength range where the reflectance is low indicates that the light absorptance is high.
  • FIG. 10A and FIG. 10B show the case where a large number of spiral structures 3 are arranged at equal intervals with the interval between adjacent spiral structures 3 (intervals P and R in FIG. 9B) being 500 nm.
  • a light absorption rate of about 80% or more is obtained in the wavelength range of 1.5 ⁇ m to 4 ⁇ m.
  • an optical absorptance of about 80% or more is obtained in the wavelength range of 1.5 ⁇ m to 2 ⁇ m and the wavelength range of 3.2 ⁇ m to 4.3 ⁇ m.
  • the present invention is not limited to the above-described embodiments, and various changes can be made within the scope of the technical idea of the present invention.
  • the effects described above do not necessarily limit the present invention.
  • the present invention may exhibit any of the effects shown in the present specification or other effects that can be grasped from the present specification.
  • any one of the following modification examples 1 to 9 may be adopted alone, or two or more of the modification examples 1 to 9 may be arbitrarily combined and employed. In this case, the points not described below are the same as described above.
  • 11A and 11B are schematic views showing other forms of the spiral structure 3.
  • 11A and 11B are views of the light absorbing element 10 as viewed from the direction of the reference axis C.
  • the linear portion 3b when viewed from the direction of the reference axis C, the linear portion 3b may extend from the base point portion 3a so as to form a substantially N-gonal shape every time the reference axis C is rotated once.
  • N is an integer of 3 or more, 3 in the case of FIG. 11A and 4 in the case of FIG. 11B, but may be 5 or more.
  • the linear portion 3b in the process of extending from the base point portion 3a, the linear portion 3b may be bent so as to be bent N times each time the reference axis C is rotated once, and may extend linearly except at the bent portion. In this case, the first turn may be bent (N + 1) as shown in FIG. 11B.
  • FIG. 11C is a schematic diagram showing another form of the spiral structure 3.
  • FIG. 11C is a diagram of the light absorption element 10 as viewed from the direction of the reference axis C.
  • the linear portion 3b may not be continuous from the coupling position with the base point portion 3a to the tip, and as shown in FIG. 11C, the linear portion 3b is discontinuously from the coupling position with the base point portion 3a to the tip. It may extend. That is, the discontinuous part 41 may exist in the linear part 3b.
  • the discontinuous linear portion 3b may be formed as follows in accordance with the manufacturing method of the first embodiment.
  • a spiral transparent layer made of a transparent material having the same shape and dimensions as the spiral metal layer 15 is formed on the surface of the object 5A.
  • a resist layer is formed on the surface of the object to be processed 5A and the spiral transparent layer, and only the resist layer on the spiral transparent layer is irradiated with an electron beam in a discontinuous spiral pattern.
  • a resist layer having a spiral pattern is melted and removed.
  • a metal layer is formed and a lift-off process is performed, so that a spiral metal layer extending discontinuously on the spiral transparent layer is formed.
  • step S3 described above the spiral transparent layer and the spiral metal layer thereon are separated from the new surface 5a of the workpiece 5A.
  • step S4 described above is not performed, but step S5 described above may be performed.
  • discontinuous linear portion 3b can be formed following the manufacturing method of the second embodiment.
  • the incident angle of the linearly polarized light on the element support surface 5a (the surface 5a of the support 5) is changed, and the light absorber 20 is changed while changing the polarization direction of the linearly polarized light.
  • the light absorption rate of was measured. According to the measurement results, the light absorptance was constant at each wavelength of the incident light regardless of the incident angle and polarization direction of the light.
  • the direction of the protrusion 5b (reference axis C) of each light absorbing element 10 of the light absorber 20 does not affect the light absorption characteristics. Therefore, the protrusion 5b of each light absorbing element 10 may extend from the surface 5a of the support 5 in a direction perpendicular to the surface 5a, or in an oblique direction with respect to the perpendicular direction. Also good.
  • the reference axis C of the spiral structure 3 is oriented in a direction perpendicular to the surface 5a of the support 5, but may be oriented in a direction inclined from the direction perpendicular to the surface 5a.
  • FIG. 12 is a diagram showing another form of the light absorber 20.
  • the support body 5 and a large number of light absorption elements 10 arranged on the element support surface 5a of the support body 5 have a set of light absorption configurations.
  • the light absorber 20 may be formed by stacking a plurality of sets of light absorption structures as shown in FIG.
  • the base portion 5c may be made of a transparent material.
  • the light absorption rate of the light absorber 20 can be further increased by laminating a plurality of sets (for example, many sets).
  • Such a light absorber 20 can be manufactured as follows, for example.
  • a base portion 5c having a second light absorption structure is formed on the protective layer 8 having the first light absorption structure, and the second light absorption structure is laminated on the first light absorption structure.
  • the third and subsequent sets of light absorption structures may be laminated in the same manner.
  • the peripheral metal layer portion 7a may not extend over the entire surface 5a, and may exist only in the vicinity of the spiral structure 3.
  • the metal layer 21 may not extend over the entire surface of the substrate 19, and may exist only in the vicinity of the spiral structure 3.
  • the linear portion 3b gradually approaches the surface 5a of the support 5 while rotating around the reference axis C in the process of extending from the base point portion 3a.
  • the present invention is not limited to this.
  • the linear portion 3b may gradually move away from the surface 5a of the support 5 while rotating around the reference axis C in the process of extending from the base point portion 3a.
  • step S3 or S300 by performing step S3 or S300 in a state where the surface 5a of the object 5A or 5B is directed vertically downward, the linear portion 3b is moved in the process of extending from the base point portion 3a due to gravity. While turning, it gradually moves away from the surface 5a.
  • the spiral structure 3 of each light absorbing element 10 has the same radial dimension. However, there may be a plurality of types of radial dimensions of the multiple spiral structures 3 arranged on the element support surface 5a. With this configuration, it is expected that light in a wider wavelength range can be absorbed.
  • the base point portion 3a and the linear portion 3b of the light absorbing element 10 may be in a state of being coupled to the object to be processed 5A (support 5).
  • steps S3 to S5 may be omitted, and the structure shown in FIGS. 3E and 3F may be the light absorbing element according to the present invention.
  • the spiral metal layer 15 forms a spiral structure of the light absorption element according to the present invention. That is, the base layer portion 15a of the spiral metal layer 15 forms a base portion of the spiral structure, and the linear layer portion 15b of the spiral metal layer 15 forms a linear portion of the spiral structure.
  • the light absorber of the present invention may be formed by forming a large number of the spiral metal layers 15 of FIGS. 3E and 3F on the surface 5a of the single support 5.
  • the light absorption rate of this light absorber was measured.
  • the measurement results are shown in the graph of FIG. In FIG. 13, the horizontal axis indicates the wavelength ( ⁇ m) of incident light to the light absorber, and the vertical axis indicates the light absorption rate of the light absorber.
  • the solid line in FIG. 13 shows the case of the light absorber using the spiral metal layer 15 in FIGS. 3E and 3F obtained by omitting steps S3 to S5.
  • the broken line in FIG. 13 indicates the case of the above-described light absorber 20 obtained by performing the above-described steps S1 to S5.
  • the interval between adjacent spiral structures (intervals corresponding to the intervals P and R in FIG. 9B). was set to about several hundred nanometers.
  • the light absorptivity of the light absorber by the spiral metal layer 15 is the light absorptivity of the light absorber 20 obtained by performing steps S1 to S5 (FIG. 13). Is about 60% or more in the wavelength range of 1.5 ⁇ m to 4 ⁇ m.
  • the processes of steps S300 to S500 may be omitted.
  • the structure shown in FIG. 7G may be a light absorption element according to the present invention.
  • the spiral metal layer 15 forms a spiral structure of the light absorption element according to the present invention. That is, the base layer portion 15a of the spiral metal layer 15 forms a base portion of the spiral structure, and the linear layer portion 15b of the spiral metal layer 15 forms a linear portion of the spiral structure.
  • step S113 for forming the sacrificial layer 23 may be omitted, and the spiral metal layer 15 may be formed on the metal layer 21 in step S200.
  • the light absorber of the present invention may be formed by forming a large number of spiral metal layers 15 shown in FIG. 7G on the surface 5a of one support 5. Also in this case, the sacrificial layer 23 may be omitted as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

This light-absorbing element 10 for absorbing light is provided with a spiral structure 3 formed of a metallic material. The spiral structure 3 includes a base part 3a and a linear part 3b extending from the base part 3a. An axis passing through the base part 3a is defined as a reference axis C, and a direction extending radially from the reference axis C is defined as a radial direction. The linear part 3b extends spirally from the base part 3a while turning around the reference axis C and moving gradually from the base part 3a to the outside in the radial direction.

Description

光吸収素子、光吸収体、及び光吸収素子の製造方法Light absorbing element, light absorbing body, and method of manufacturing light absorbing element
 本発明は、広波長域の光を吸収する光吸収素子に関する。より詳しくは、本発明は、広い波長域(例えば可視光域の波長域と近赤外線の波長域)の光を吸収する極微細金属構造を備える光吸収素子に関する。 The present invention relates to a light absorbing element that absorbs light in a wide wavelength range. More specifically, the present invention relates to a light absorbing element having an ultrafine metal structure that absorbs light in a wide wavelength range (for example, a visible wavelength range and a near infrared wavelength range).
 広波長域の光を吸収する黒色塗装は、例えば、光の反射や迷光の発生を抑制する目的で光学技術に欠かせないものである。しかし、実際に真に黒いものを作ることは極めて困難である。特に平坦な表面で黒色を実現することは、不可能に近かった。実際、表面に凹凸構造や毛羽立ったような構造を形成し、この構造内部に光を補足することで、黒色を実現している。そのため、黒色を得るために必要な層の厚みが厚くなる。 Black coating that absorbs light in a wide wavelength range is indispensable for optical technology for the purpose of suppressing light reflection and stray light, for example. However, it is extremely difficult to actually make a truly black one. In particular, it was almost impossible to achieve black color on a flat surface. Actually, a black and white structure is realized by forming a concavo-convex structure or a fuzzy structure on the surface and capturing light inside the structure. Therefore, the thickness of the layer necessary for obtaining black is increased.
 近年、ナノメートルスケールの極微細金属構造と光との共鳴相互作用を利用して、光の反射を抑制し光を吸収する技術が開発されている。このような技術は、例えば下記の特許文献1に開示されている。 In recent years, technology has been developed to suppress light reflection and absorb light by utilizing the resonance interaction between light and a nanometer-scale ultrafine metal structure. Such a technique is disclosed in Patent Document 1 below, for example.
国際公開公報WO2016/132979International Publication No. WO2016 / 132979
 しかし、特許文献1には、広波長域の光を吸収する極微細金属構造は開示されていない。そのため、広波長域の光を吸収する極微細金属構造が望まれる。例えば、このような極微細金属構造を利用して光学機器の黒色面を実現することが望まれる。 However, Patent Document 1 does not disclose an ultrafine metal structure that absorbs light in a wide wavelength range. Therefore, an ultrafine metal structure that absorbs light in a wide wavelength range is desired. For example, it is desired to realize a black surface of an optical device using such an ultrafine metal structure.
 そこで、本発明の目的は、広波長域の光を吸収できる極微細金属構造の技術を提供することにある。 Therefore, an object of the present invention is to provide a technique for an ultrafine metal structure capable of absorbing light in a wide wavelength range.
 上述の目的を達成するため、本発明による光吸収素子は金属材料により形成された渦巻構造を備え、
 前記渦巻構造は、基点部と、該基点部から延びている線状部とを含み、
 前記基点部を通る軸を基準軸とし、該基準軸から放射状に延びる方向を径方向として、
 前記線状部は、前記基準軸を回りながら、且つ、前記基点部から前記径方向の外側へ移行しながら、前記基点部から渦巻き状に延びている。
In order to achieve the above-mentioned object, the light absorption element according to the present invention comprises a spiral structure formed of a metal material,
The spiral structure includes a base portion and a linear portion extending from the base portion,
An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction,
The linear portion extends spirally from the base point while rotating around the reference axis and moving from the base point to the outside in the radial direction.
 また、本発明による光吸収体は、上述の光吸収素子と、前記光吸収素子を支持する素子支持面と有し、前記素子支持面には、多数の前記光吸収素子が配置されている。 Further, a light absorber according to the present invention has the above-described light absorption element and an element support surface that supports the light absorption element, and a large number of the light absorption elements are arranged on the element support surface.
 また、本発明による製造方法は、光吸収素子の製造方法であって
 前記光吸収素子は、金属材料により形成された渦巻構造を備え、
 前記渦巻構造は、基点部と、該基点部から延びている線状部とを含み、
 前記基点部を通る軸を基準軸とし、該基準軸から放射状に延びる方向を径方向として、
 前記線状部は、前記基準軸を回りながら、且つ、前記基点部から前記径方向の外側へ移行しながら、前記基点部から渦巻き状に延びており、
 被処理体の表面に、金属材料で形成され渦巻き状のパターンを有する渦巻き金属層を形成し、該渦巻き金属層は、前記基点部に相当する基点層部と、前記線状部に相当する線状層部を含む。
The manufacturing method according to the present invention is a manufacturing method of a light absorbing element, wherein the light absorbing element includes a spiral structure formed of a metal material,
The spiral structure includes a base portion and a linear portion extending from the base portion,
An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction,
The linear part extends spirally from the base point part while turning around the reference axis and moving from the base part to the outside in the radial direction,
A spiral metal layer formed of a metal material and having a spiral pattern is formed on the surface of the object to be processed. The spiral metal layer includes a base point layer portion corresponding to the base point portion and a line corresponding to the linear portion. Including a layered portion.
 本発明によると、広波長域の光を吸収できる極微細金属構造を実現できる。 According to the present invention, a very fine metal structure capable of absorbing light in a wide wavelength range can be realized.
本発明の第1実施形態による光吸収素子の構造を示す。The structure of the light absorption element by 1st Embodiment of this invention is shown. 図1Aの1B-1B矢視図である。It is a 1B-1B arrow line view of FIG. 1A. 第1実施形態による製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method by 1st Embodiment. 第1実施形態による製造方法の説明図である。It is explanatory drawing of the manufacturing method by 1st Embodiment. 第1実施形態による製造方法で製造された光吸収素子のSEM画像を示す。The SEM image of the light absorption element manufactured with the manufacturing method by 1st Embodiment is shown. 本発明の第2実施形態による光吸収素子の構造を示す。3 shows a structure of a light absorption element according to a second embodiment of the present invention. 図5Aの5B-5B矢視図である。It is a 5B-5B arrow line view of FIG. 5A. 第2実施形態による製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method by 2nd Embodiment. 第2実施形態による製造方法の説明図である。It is explanatory drawing of the manufacturing method by 2nd Embodiment. 第2実施形態による製造方法で製造された光吸収素子のSEM画像を示す。The SEM image of the light absorption element manufactured with the manufacturing method by 2nd Embodiment is shown. 本発明の実施形態による光吸収体の構成を示す。The structure of the light absorber by embodiment of this invention is shown. 図9Aの9B-9B矢視図である。It is a 9B-9B arrow line view of FIG. 9A. 第1実施形態の製造方法に従って製造した光吸収体の光学特性に関する実験結果である。It is an experimental result regarding the optical characteristic of the light absorber manufactured according to the manufacturing method of 1st Embodiment. 第2実施形態の製造方法に従って製造した光吸収体の光学特性に関する実験結果である。It is an experimental result regarding the optical characteristic of the light absorber manufactured according to the manufacturing method of 2nd Embodiment. 渦巻構造の他の形態を示す模式図である。It is a schematic diagram which shows the other form of a spiral structure. 光吸収体の他の形態を示す模式図である。It is a schematic diagram which shows the other form of a light absorber. 渦巻構造が支持体の表面から離間していない構成を有する光吸収体の光学特性に関する実験結果である。It is an experimental result regarding the optical characteristic of the light absorber which has the structure where the spiral structure is not separated from the surface of the support.
 本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。また、以下の説明は、特許請求の範囲に記載された発明を限定するものではない。例えば、本発明は、以下で述べる構成要素の全てを備えるものに限定されない。 Embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted. Further, the following description does not limit the invention described in the claims. For example, the present invention is not limited to one provided with all of the components described below.
[第1実施形態]
(光吸収素子の構成)
 図1Aは、本発明の第1実施形態による光吸収素子10の構造を示す。図1Bは、図1Aの1B-1B矢視図である。光吸収素子10は、広波長域の光を吸収する。当該広波長域は、可視光(およそ波長380nm)から遠赤外光(波長およそ1mm)までの範囲の全部もしくは一部もしくはいくつかの部分を含んでよい。例えば、当該広波長域は、可視光域の波長域(すなわち、380nm~810nm)の一部または全部を含んでよい。また、当該広波長域は、可視光域の波長域の一部または全部に加えて、又は、可視光域の波長域の一部または全部の代わりに、赤外線の波長域(810nm~1mm)の一部を更に含んでよい。ここで、赤外線の波長域の一部は、近赤外線の波長域(0.76μm~2.5μmの波長域)を含んでよい。
[First Embodiment]
(Configuration of light absorbing element)
FIG. 1A shows a structure of a light absorption element 10 according to the first embodiment of the present invention. 1B is a view taken in the direction of arrows 1B-1B in FIG. 1A. The light absorbing element 10 absorbs light in a wide wavelength range. The wide wavelength range may include all or a part or some part of the range from visible light (approximately 380 nm wavelength) to far infrared light (approximately 1 mm wavelength). For example, the wide wavelength range may include a part or all of the visible wavelength range (ie, 380 nm to 810 nm). Further, the wide wavelength range includes an infrared wavelength range (810 nm to 1 mm) in addition to a part or all of the visible wavelength range or instead of part or all of the visible wavelength range. A part may be further included. Here, a part of the infrared wavelength range may include a near-infrared wavelength range (a wavelength range of 0.76 μm to 2.5 μm).
 光吸収素子10は、全体の寸法が例えば数千マイクロメートル以下の極微細金属構造である渦巻構造3を備える。渦巻構造3は、金属材料により形成されている。渦巻構造3は、基点部3aと、基点部3aから渦巻き状に延びている線状部3bとを有する。以下において、基点部3aを通る軸を基準軸Cとし、基準軸Cと平行な方向を軸方向とし、基準軸Cと直交して基準軸Cから放射状に延びる方向を径方向とする。本実施形態では、図1Aと図1Bのように、線状部3bは、基準軸Cを回りながら、且つ、基点部3aから径方向の外側および軸方向へ移行しながら、基点部3aから渦巻き状に延びている。ただし、本発明によると、線状部3bの全体が、基点部3aを含む平面に位置していてもよい。すなわち、線状部3bは、基準軸Cを回りながら、且つ、基点部3aを含む平面に位置しつつ基点部3aから径方向の外側へ移行しながら、基点部3aから渦巻き状に延びていてもよい。 The light absorbing element 10 includes a spiral structure 3 that is an extremely fine metal structure having an overall size of, for example, several thousand micrometers or less. The spiral structure 3 is made of a metal material. The spiral structure 3 includes a base portion 3a and a linear portion 3b extending from the base portion 3a in a spiral shape. Hereinafter, an axis passing through the base point portion 3a is defined as a reference axis C, a direction parallel to the reference axis C is defined as an axial direction, and a direction perpendicular to the reference axis C and radially extending from the reference axis C is defined as a radial direction. In the present embodiment, as shown in FIGS. 1A and 1B, the linear portion 3b spirals from the base point portion 3a while rotating around the reference axis C and moving from the base point portion 3a to the outside in the radial direction and the axial direction. It extends in a shape. However, according to the present invention, the entire linear portion 3b may be located on a plane including the base point portion 3a. That is, the linear portion 3b extends spirally from the base point portion 3a while turning around the reference axis C and moving from the base point portion 3a to the outside in the radial direction while being positioned on the plane including the base point portion 3a. Also good.
 渦巻構造3を形成する金属材料は、例えばAu、Ag又はCuであるが、他の材料(Niなど)であってもよい。なお、以下で言及する各金属材料又は各金属も、例えばAu、Ag又はCuであるが、他の材料であってもよい。 The metal material forming the spiral structure 3 is, for example, Au, Ag, or Cu, but may be other materials (Ni or the like). In addition, although each metal material or each metal mentioned below is also Au, Ag, or Cu, for example, another material may be sufficient.
 本実施形態では、基点部3aの径方向寸法は、線状部3bの径方向の太さよりも大きい。例えば、各径方向について、基点部3aの径方向寸法は、線状部3bの径方向の太さよりも大きくてよい。ここで、線状部3bの径方向の太さとは、線状部3bにおいて径方向に互いに離間している各部分の径方向寸法を意味する。線状部3bの径方向の太さは、一例では、50nm以上150nm以下(例えば100nm程度)である。 In the present embodiment, the radial dimension of the base portion 3a is larger than the radial thickness of the linear portion 3b. For example, for each radial direction, the radial dimension of the base point portion 3a may be larger than the radial thickness of the linear portion 3b. Here, the radial thickness of the linear portion 3b means the radial dimension of each portion of the linear portion 3b that is spaced apart from each other in the radial direction. The diameter of the linear portion 3b in the radial direction is, for example, 50 nm or more and 150 nm or less (for example, about 100 nm).
 本実施形態では、線状部3bにおいて径方向に互いに隣接する部分同士の径方向間隔(隙間)は、線状部3bの径方向の太さと同程度あってよい。すなわち、一例では、当該径方向間隔は、50nm以上150nm以下(例えば100nm程度)である。 In the present embodiment, the radial interval (gap) between the portions adjacent to each other in the radial direction in the linear portion 3b may be the same as the radial thickness of the linear portion 3b. That is, in one example, the radial interval is 50 nm or more and 150 nm or less (for example, about 100 nm).
 また、渦巻構造3の径方向寸法は、例えば500nm以上2000nm以下であってよいが、この範囲に限定されない。 The radial dimension of the spiral structure 3 may be, for example, 500 nm or more and 2000 nm or less, but is not limited to this range.
 線状部3bは、一例では、基点部3aから延びて基準軸Cを少なくとも2周回っている。ただし、本発明は、これに限定されず、線状部3bは、例えば、2周よりも少なく基準軸Cを回っていてもよいし、3周より多く基準軸Cを回っていてもよい。また、一例では、線状部3bは、軸方向から見た場合に、図1Bのように曲線状に延びている。また、一例では、基準軸Cは、図1Aのように、後述する支持体5の表面5aと垂直な方向を向いている。また、一例では、金属材料で形成されている線状部3bは、基点部3aとの結合位置から先端まで連続的に延びている。 In one example, the linear portion 3b extends from the base point portion 3a and goes around the reference axis C at least twice. However, the present invention is not limited to this, and the linear portion 3b may, for example, rotate around the reference axis C for less than two turns, or may turn around the reference axis C for more than three turns. In one example, the linear portion 3b extends in a curved shape as shown in FIG. 1B when viewed from the axial direction. In one example, the reference axis C is oriented in a direction perpendicular to a surface 5a of the support 5 described later, as shown in FIG. 1A. In one example, the linear portion 3b formed of a metal material continuously extends from the coupling position with the base point portion 3a to the tip.
 また、光吸収素子10は、渦巻構造3を支持する支持体5を備える。支持体5は、線状部3bから軸方向に離間している表面5aと、該表面5aから突出して基点部3aに結合している突出部5bとを有する。突出部5bは、非金属材料(例えばガラスなどの透明な材料)で形成されていてもよい。図1Aでは、支持体5は、表面5aを有する基板5Aを備える。 Further, the light absorbing element 10 includes a support 5 that supports the spiral structure 3. The support 5 has a surface 5a that is axially spaced from the linear portion 3b, and a protruding portion 5b that protrudes from the surface 5a and is coupled to the base point portion 3a. The protrusion 5b may be formed of a non-metallic material (for example, a transparent material such as glass). In FIG. 1A, the support 5 includes a substrate 5A having a surface 5a.
 第1実施形態では、支持体5の表面5aの全体は、非金属材料(例えばガラスなどの透明な材料)で形成されており、この表面5aの一部には、金属層7が形成されている。なお、図1Aにおいて、金属層7のみを、基準軸Cと平行な平面による断面として図示しており、当該平面は基準軸Cの近傍の面である。金属層7は、渦巻き金属層部7aと周辺金属表面部7bを含む。図1Bにおいて、破線は、渦巻き金属層部7aと周辺金属表面部7bとの仮想的な境界線を示す。渦巻き金属層部7aは、表面5aと垂直な方向から見た場合に、線状部3bにおいて径方向に互いに隣接する部分同士の間に位置し、線状部3bに沿って渦巻き状に延びている。このような金属層7と渦巻構造3との相互作用による光吸収が期待される。なお、金属層7は無くてもよい。 In the first embodiment, the entire surface 5a of the support 5 is formed of a non-metallic material (for example, a transparent material such as glass), and a metal layer 7 is formed on a part of the surface 5a. Yes. In FIG. 1A, only the metal layer 7 is illustrated as a cross section by a plane parallel to the reference axis C, and the plane is a surface in the vicinity of the reference axis C. The metal layer 7 includes a spiral metal layer portion 7a and a peripheral metal surface portion 7b. In FIG. 1B, a broken line indicates a virtual boundary line between the spiral metal layer portion 7a and the peripheral metal surface portion 7b. When viewed from a direction perpendicular to the surface 5a, the spiral metal layer portion 7a is located between the portions adjacent to each other in the radial direction in the linear portion 3b, and extends spirally along the linear portion 3b. Yes. Light absorption due to the interaction between the metal layer 7 and the spiral structure 3 is expected. The metal layer 7 may be omitted.
 また、光吸収素子10は、渦巻構造3が内部に埋め込まれるように形成された保護層8を備える。保護層8は、表面5aに(図1Aでは金属層7を介して)結合している。保護層8は、透明な材料(例えばポリマー)で形成されている。保護層8により、渦巻構造3が保護され、その損傷が防止される。 Further, the light absorbing element 10 includes a protective layer 8 formed so that the spiral structure 3 is embedded therein. The protective layer 8 is bonded to the surface 5a (via the metal layer 7 in FIG. 1A). The protective layer 8 is formed of a transparent material (for example, a polymer). The protective layer 8 protects the spiral structure 3 and prevents its damage.
(光吸収素子の製造方法)
 図2は、本発明の第1実施形態による、光吸収素子10の製造方法を示すフローチャートである。図3A~図3Jは、第1実施形態による製造方法の説明図である。
(Method for manufacturing light absorbing element)
FIG. 2 is a flowchart showing a method for manufacturing the light absorbing element 10 according to the first embodiment of the present invention. 3A to 3J are explanatory views of the manufacturing method according to the first embodiment.
 ステップS1において、図3Aのように、被処理体5Aを用意する。図3Aの例では、被処理体5Aの表面5a全体が非金属材料で形成されている。実施例では、被処理体5Aは、非金属材料としてのシリコンで形成された基板である。なお、被処理体5Aは、シリコン以外の非金属材料で形成されていてよい。 In step S1, an object 5A is prepared as shown in FIG. 3A. In the example of FIG. 3A, the entire surface 5a of the object to be processed 5A is formed of a nonmetallic material. In the embodiment, the target object 5A is a substrate formed of silicon as a non-metallic material. Note that the target object 5A may be formed of a non-metallic material other than silicon.
 ステップS2において、後述する図3Eと図3Fのように、被処理体5Aの表面5aに、渦巻き状のパターン(以下で単に渦巻きパターンともいう)を有する渦巻き金属層15を形成する。渦巻き金属層15は、金属材料で形成されている。実施例では、ステップS2は、ステップS21~S25を有する。 In step S2, a spiral metal layer 15 having a spiral pattern (hereinafter also simply referred to as a spiral pattern) is formed on the surface 5a of the object 5A as shown in FIGS. 3E and 3F described later. The spiral metal layer 15 is made of a metal material. In the embodiment, step S2 includes steps S21 to S25.
 ステップS21では、被処理体5Aの表面5aに、レジスト層11を形成する。レジスト層11は、電子線に感光する材料で形成される。当該材料は、例えば、ポリメチルメタクリレート(PMMA)である。この場合、PMMAの膜を表面5aに塗布することにより、表面5aに、PMMAによるレジスト層11を形成する。 In step S21, the resist layer 11 is formed on the surface 5a of the workpiece 5A. The resist layer 11 is formed of a material that is sensitive to electron beams. The material is, for example, polymethyl methacrylate (PMMA). In this case, a resist layer 11 made of PMMA is formed on the surface 5a by applying a PMMA film to the surface 5a.
 ステップS22では、図3Bのように、レジスト層11の表面に、渦巻きパターンで電子ビームを照射する。 In step S22, as shown in FIG. 3B, the surface of the resist layer 11 is irradiated with an electron beam in a spiral pattern.
 ステップS23では、被処理体5Aを現像液に浸すことにより、レジスト層11において電子ビームが当てられた渦巻きパターンの部分を溶解させる。その結果、図3Cのように、レジスト層11において、渦巻きパターンの部分が除去されることにより、渦巻き溝13が形成される。渦巻き溝13の底面は、露出した被処理体5Aの表面5aとなる。 In step S23, the portion of the spiral pattern irradiated with the electron beam in the resist layer 11 is dissolved by immersing the object to be processed 5A in the developer. As a result, as shown in FIG. 3C, the spiral groove 13 is formed by removing the spiral pattern portion in the resist layer 11. The bottom surface of the spiral groove 13 becomes the exposed surface 5a of the workpiece 5A.
 渦巻き溝13は、基点部3aに相当する中央溝部13aと、線状部3bに相当する線状溝部13bを有する。被処理体5Aの表面5aに直交する方向から見た場合、線状溝部13bは、中央溝部13aから渦巻き状に延びている。表面5aに平行な各方向において、中央溝部13aの寸法は、線状溝部13bの太さよりも大きい。ここで、線状溝部13bの太さとは、線状溝部13bにおいて、中央溝部13から離れる方向に互いに離間している各部分の寸法を意味する。このような中央溝部13aと線状溝部13bの寸法関係により、中央溝部13に相当する後述の基点層部15aと、線状溝部13bに相当する後述の線状層部15bのうち、線状層部15bは、後述のエッチング処理により被処理体5A(表面5a)から離間するが、基点層部15aは、後述のエッチング処理後でも被処理体5Aに結合したままになる。 The spiral groove 13 has a central groove portion 13a corresponding to the base point portion 3a and a linear groove portion 13b corresponding to the linear portion 3b. When viewed from a direction orthogonal to the surface 5a of the workpiece 5A, the linear groove 13b extends spirally from the central groove 13a. In each direction parallel to the surface 5a, the size of the central groove 13a is larger than the thickness of the linear groove 13b. Here, the thickness of the linear groove part 13b means the dimension of each part spaced apart from each other in the direction away from the central groove part 13 in the linear groove part 13b. Due to the dimensional relationship between the central groove portion 13a and the linear groove portion 13b, a linear layer among a later-described base layer portion 15a corresponding to the central groove portion 13 and a later-described linear layer portion 15b corresponding to the linear groove portion 13b. The portion 15b is separated from the object to be processed 5A (surface 5a) by the etching process described later, but the base layer 15a remains bonded to the object to be processed 5A even after the etching process described later.
 ステップS24では、渦巻き溝13の底面5aと残存するレジスト層11の表面に、真空蒸着法又はスパッタリング法により、金属材料を蒸着させることにより、図3Dのように、レジスト層11の表面に金属層16を形成し、渦巻き溝13の底面に渦巻き金属層15を形成する。 In step S24, a metal material is deposited on the bottom surface 5a of the spiral groove 13 and the surface of the remaining resist layer 11 by a vacuum deposition method or a sputtering method, thereby forming a metal layer on the surface of the resist layer 11 as shown in FIG. 3D. 16 and the spiral metal layer 15 is formed on the bottom surface of the spiral groove 13.
 ステップS25では、リフトオフ処理を行う。リフトオフ処理では、被処理体5Aに残っているレジスト層11を全て適宜の溶媒(有機溶媒)で溶かすことにより、被処理体5Aにおいて、金属層16を除去し、被処理体5Aの表面5aに直接形成された渦巻き金属層15を残す。これにより、図3Eと図3Fのように、渦巻き金属層15が被処理体5Aの表面5aに形成された状態になる。図3Fは、図3Eの3F-3F矢視図である。渦巻き金属層15は、基点部3aに相当する基点層部15aと、線状部3bに相当し基点層部15aから渦巻き状に延びている線状層部15bとを有する。図3Fにおいて、破線は、基点層部15aと線状層部15bとの仮想的な境界線である。 In step S25, lift-off processing is performed. In the lift-off process, the resist layer 11 remaining on the object to be processed 5A is completely dissolved in an appropriate solvent (organic solvent), whereby the metal layer 16 is removed from the object to be processed 5A and the surface 5a of the object to be processed 5A is removed. The directly formed spiral metal layer 15 is left. Thereby, as shown in FIGS. 3E and 3F, the spiral metal layer 15 is formed on the surface 5a of the workpiece 5A. FIG. 3F is a view taken in the direction of the arrow 3F-3F in FIG. 3E. The spiral metal layer 15 includes a base point layer portion 15a corresponding to the base point portion 3a, and a linear layer portion 15b corresponding to the linear portion 3b and extending spirally from the base point layer portion 15a. In FIG. 3F, a broken line is a virtual boundary line between the base layer portion 15a and the linear layer portion 15b.
 ステップS3において、被処理体5Aの表面5aのうち露出面を等方的に除去していくエッチング処理を行う。このエッチング処理は、例えば、誘導結合プラズマ反応性イオンエッチング(ICP-RIE: Inductively Coupled Plasma Reactive Ion Etching)による処理であってよい。このICP-RIEでは、真空の反応室において、エッチングガスに高周波を印加することによって、エッチングガスをプラズマ化し、プラズマ化したガスによる化学的反応で、被処理体5Aの表面5のうち露出面を等方的にエッチングしていく。なお、当該露出面5aを等方的にエッチングするために、被処理体5Aにはバイアス電圧を印加しないようにしてよい。 In step S3, an etching process for isotropically removing the exposed surface of the surface 5a of the object 5A is performed. This etching process may be, for example, a process by inductively coupled plasma reactive ion etching (ICP-RIE: Inductively Coupled Plasma Reactive Ion Etching). In this ICP-RIE, an etching gas is turned into plasma by applying a high frequency to the etching gas in a vacuum reaction chamber, and the exposed surface of the surface 5 of the object to be processed 5A is exposed by a chemical reaction caused by the plasmatized gas. Etching isotropically. In order to etch the exposed surface 5a isotropically, a bias voltage may not be applied to the object to be processed 5A.
 ステップS3のエッチング処理により、被処理体5Aにおいて、図3Gのように、線状層部15bから軸方向に離間している新たな表面5aと、当該表面5aから突出して基点部3aに結合された突出部5bを形成する。このような状態である時点で、エッチング処理を終了する。なお、エッチング処理後の被処理体5Aが上述の支持体5を成す。 By the etching process in step S3, in the object 5A, as shown in FIG. 3G, a new surface 5a that is axially spaced from the linear layer portion 15b and a base portion 3a that protrudes from the surface 5a and is coupled to the base portion 3a. The protruding portion 5b is formed. At this point, the etching process is finished. In addition, 5 A of to-be-processed objects after an etching process comprise the above-mentioned support body 5. FIG.
 ステップS4において、真空蒸着法又はスパッタリング法により、図3Hのように、被処理体5A及び渦巻き金属層15上に更に金属層7を形成する。この場合、被処理体5A上の金属層7は、上述の渦巻き金属層部7aと周辺金属表面部7bを有する。また、基点層部15aと、基点層部15a上の金属層7とが、上述の基点部3aを成し、線状層部15bと、線状層部15b上の金属層7とが、線状部3bを成す。 In step S4, a metal layer 7 is further formed on the target object 5A and the spiral metal layer 15 as shown in FIG. 3H by vacuum deposition or sputtering. In this case, the metal layer 7 on the workpiece 5A has the above-described spiral metal layer portion 7a and the peripheral metal surface portion 7b. Further, the base layer 15a and the metal layer 7 on the base layer 15a constitute the above-described base 3a, and the linear layer 15b and the metal layer 7 on the linear layer 15b are linear. The shape portion 3b is formed.
 なお、ステップS4において、渦巻き金属層15の背後に相当する位置では、渦巻き金属層15が蒸着金属材料の障害となるので、上述の渦巻き金属層部7aが形成される。また、ステップS4により、渦巻き金属層15に更に金属層7を形成するので、その分、渦巻構造3の厚みを増やすことができる。 In step S4, at the position corresponding to the back of the spiral metal layer 15, the spiral metal layer 15 becomes an obstacle to the deposited metal material, so that the above-described spiral metal layer portion 7a is formed. Moreover, since the metal layer 7 is further formed in the spiral metal layer 15 by step S4, the thickness of the spiral structure 3 can be increased correspondingly.
 また、図3Iのように、線状部3bは、重力又は応力により、軸方向下方(この図の下方)へ移行しながら、渦巻き状に延びるようになる。その結果、上述した光吸収素子10が形成される。なお、図3Eと図3Gと図3Hは、基点層部15aを含み当該図の紙面と平行な平面による断面図であり、図3Iと後述の図3Jは、当該図の紙面と垂直な方向へ渦巻構造3から離れた位置における断面を示す。 Further, as shown in FIG. 3I, the linear portion 3b extends spirally while moving downward in the axial direction (downward in this figure) due to gravity or stress. As a result, the light absorption element 10 described above is formed. 3E, FIG. 3G, and FIG. 3H are cross-sectional views taken along a plane that includes the base layer 15a and is parallel to the paper surface of the drawing. FIG. 3I and FIG. The cross section in the position away from the spiral structure 3 is shown.
 ステップS5において、内部に渦巻構造3を埋め込むように、透明な材料の保護層8を形成する。例えば、透明な材料の溶液の膜を、被処理体5Aの表面5aに(図3Jでは表面5a上の金属層7を介して)形成し、当該溶液を乾燥させた保護層8を形成する。一例では、透明な材料は、ポリマーであり、保護層8はポリマー層である。ステップS5により、保護層8の内部に渦巻構造3が埋め込まれた状態になる。 In step S5, a protective layer 8 made of a transparent material is formed so as to embed the spiral structure 3 therein. For example, a film of a transparent material solution is formed on the surface 5a of the workpiece 5A (in FIG. 3J, via the metal layer 7 on the surface 5a), and the protective layer 8 is formed by drying the solution. In one example, the transparent material is a polymer and the protective layer 8 is a polymer layer. By step S5, the spiral structure 3 is embedded in the protective layer 8.
 なお、金属層15,7などを蒸着により形成する際に被処理体(基板)5Aを加熱若しくは冷却するなどして応力を調整すると、図3Iの場合とは反対に、図3Kのように、表面5aから離れる側に基点部3aから渦巻き状に延びていく螺旋状構造を得ることもできる。この場合、光吸収素子10の製造方法の他の点は、上述と同じであってよい。 When the stress is adjusted by heating or cooling the object to be processed (substrate) 5A when forming the metal layers 15, 7 and the like by vapor deposition, contrary to the case of FIG. 3I, as shown in FIG. 3K, It is also possible to obtain a spiral structure that spirally extends from the base portion 3a on the side away from the surface 5a. In this case, the other points of the manufacturing method of the light absorption element 10 may be the same as described above.
 なお、上述したステップS4を省略してもよい。この場合、ステップS3の後にステップS5が行われる。また、ステップS4とステップS5を省略してもよい。 Note that step S4 described above may be omitted. In this case, step S5 is performed after step S3. Further, step S4 and step S5 may be omitted.
 図4は、第1実施形態における製造方法の実施例で製造した光吸収素子10のSEM(Scanning Electron Microscope)画像である。図4において、両方向矢印が示す範囲の寸法は500nmである。 FIG. 4 is an SEM (Scanning Electron Microscope) image of the light absorbing element 10 manufactured in the example of the manufacturing method according to the first embodiment. In FIG. 4, the dimension in the range indicated by the double arrow is 500 nm.
 第1実施形態によると、光吸収素子10は、上述した立体的な極微細金属構造である渦巻構造3を有することにより、広波長域の光を吸収することができる。例えば、上述した光吸収素子10は、赤外線の広波長域の光を吸収することができる。この場合、光吸収素子10は、可視光域の広波長域の光と赤外線の広波長域(例えば近赤外線の広波長域)の光の両方を吸収することができる。このような効果は、後述する図10Aのように実験で確認された。 According to the first embodiment, the light absorption element 10 can absorb light in a wide wavelength region by having the spiral structure 3 that is the above-described three-dimensional ultrafine metal structure. For example, the light absorbing element 10 described above can absorb infrared light having a wide wavelength range. In this case, the light absorbing element 10 can absorb both light having a wide wavelength range in the visible light range and light having a wide wavelength range of infrared rays (for example, a wide wavelength range of near infrared rays). Such an effect was confirmed by experiments as shown in FIG.
[第2実施形態]
(光吸収素子の構成)
 図5Aは、本発明の第1実施形態による光吸収素子10の構造を示す。図5Bは、図1Aの5B-5B矢視図である。第2実施形態による光吸収素子10において、以下で説明しない点は、第1実施形態による光吸収素子10と同じである。
[Second Embodiment]
(Configuration of light absorbing element)
FIG. 5A shows the structure of the light absorption element 10 according to the first embodiment of the present invention. FIG. 5B is a view taken along arrow 5B-5B in FIG. 1A. The light absorbing element 10 according to the second embodiment is the same as the light absorbing element 10 according to the first embodiment in the points not described below.
 第2実施形態の光吸収素子10では、支持体5の構成が第1実施形態の場合と異なる。第2実施形態では、支持体5の表面5aの全体は、金属材料で形成されており、この表面5aには、上述の金属層7が形成されている。第2実施形態の実施例では、支持体5は、非金属材料で形成された非金属層(基板)19と、非金属層19上に形成された金属層21を有する。なお、図5Aにおいて、金属層7のみを、基準軸Cと平行な平面による断面として図示しており、当該平面は基準軸Cの近傍の面である。 In the light absorbing element 10 of the second embodiment, the configuration of the support 5 is different from that of the first embodiment. In 2nd Embodiment, the whole surface 5a of the support body 5 is formed with the metal material, and the above-mentioned metal layer 7 is formed in this surface 5a. In the example of the second embodiment, the support 5 has a non-metal layer (substrate) 19 formed of a non-metal material and a metal layer 21 formed on the non-metal layer 19. In FIG. 5A, only the metal layer 7 is shown as a cross section by a plane parallel to the reference axis C, and the plane is a plane in the vicinity of the reference axis C.
(光吸収素子の製造方法)
 図6は、本発明の第2実施形態による、光吸収素子10の製造方法を示すフローチャートである。図7A~図7Kは、第2実施形態による製造方法の説明図である。
(Method for manufacturing light absorbing element)
FIG. 6 is a flowchart showing a method for manufacturing the light absorbing element 10 according to the second embodiment of the present invention. 7A to 7K are explanatory views of the manufacturing method according to the second embodiment.
 ステップS100において、被処理体5Bを用意する。実施例では、ステップS100は、ステップS111~S113を有する。ステップS111では、図7Aのように基板19を用意する。ここで、基板19の材料は、金属であっても非金属であってもよく、透明であっても不透明であってもよい。ステップS112では、図7Bのように、真空蒸着法又はスパッタリング法により、基板19の表面全体に、金属層21を形成する。ステップS113では、CVD(Chemical Vapor Deposition)法などの適宜の方法で、図7Cのように金属層21上に犠牲槽23を形成する。犠牲槽23は、例えば窒化ケイ素で形成された層であってよい。このように基板19上に金属層21と犠牲層23を順に積層したものが、被処理体5Bであり、犠牲層23が、被処理体5Bの表面5aを形成する。 In step S100, the object 5B is prepared. In the embodiment, step S100 includes steps S111 to S113. In step S111, a substrate 19 is prepared as shown in FIG. 7A. Here, the material of the substrate 19 may be a metal or a non-metal, and may be transparent or opaque. In step S112, as shown in FIG. 7B, the metal layer 21 is formed on the entire surface of the substrate 19 by vacuum deposition or sputtering. In step S113, the sacrificial tank 23 is formed on the metal layer 21 as shown in FIG. 7C by an appropriate method such as a CVD (Chemical Vapor Deposition) method. The sacrificial tank 23 may be a layer formed of, for example, silicon nitride. The object 5B is obtained by sequentially stacking the metal layer 21 and the sacrificial layer 23 on the substrate 19 in this manner, and the sacrificial layer 23 forms the surface 5a of the object 5B.
 ステップS200において、被処理体5Bの表面5aに、後述の図7Gのように渦巻きパターンを有する渦巻き金属層15を形成する。渦巻き金属層15は、金属材料で形成されている。実施例では、ステップS200は、例えばステップS211~S215を有する。 In step S200, the spiral metal layer 15 having a spiral pattern as shown in FIG. 7G described later is formed on the surface 5a of the workpiece 5B. The spiral metal layer 15 is made of a metal material. In the embodiment, step S200 includes, for example, steps S211 to S215.
 ステップS211では、図7Dのように、犠牲槽23の表面にレジスト層11を形成する。レジスト層11は、電子線に感光する材料で形成される。当該材料は、例えば、ポリメチルメタクリレート(PMMA)である。 In step S211, the resist layer 11 is formed on the surface of the sacrificial tank 23 as shown in FIG. 7D. The resist layer 11 is formed of a material that is sensitive to electron beams. The material is, for example, polymethyl methacrylate (PMMA).
 ステップS212では、レジスト層11の表面に、渦巻きパターンで電子ビームを照射する。 In step S212, the surface of the resist layer 11 is irradiated with an electron beam in a spiral pattern.
 ステップS213では、被処理体5Bを現像液に浸すことにより、レジスト層11において電子ビームが当てられた渦巻きパターンの部分を溶解させる。その結果、図7Eのように、レジスト層11において、渦巻きパターンの部分が除去されることにより、渦巻き溝13が形成される。渦巻き溝13の底面は、露出した犠牲層23の表面5aとなる。渦巻き溝13の構造は、第1実施形態の場合と同じである。 In step S213, the object 5B is immersed in the developer to dissolve the spiral pattern portion irradiated with the electron beam in the resist layer 11. As a result, as shown in FIG. 7E, the spiral groove 13 is formed in the resist layer 11 by removing the spiral pattern portion. The bottom surface of the spiral groove 13 becomes the exposed surface 5 a of the sacrificial layer 23. The structure of the spiral groove 13 is the same as that in the first embodiment.
 ステップS214では、渦巻き溝13の底面5aと残存するレジスト層11の表面に、真空蒸着法又はスパッタリング法により、金属材料を蒸着させることにより、図7Fのように、レジスト層11の表面に金属層16を形成し、渦巻き溝13の底面に渦巻き金属層15を形成する。 In step S214, a metal material is deposited on the bottom surface 5a of the spiral groove 13 and the surface of the remaining resist layer 11 by a vacuum deposition method or a sputtering method, so that a metal layer is formed on the surface of the resist layer 11 as shown in FIG. 7F. 16 and the spiral metal layer 15 is formed on the bottom surface of the spiral groove 13.
 ステップS215では、リフトオフ処理を行う。リフトオフ処理では、基板に残っているレジスト層11を全て適宜の溶媒で溶かすことにより、被処理体5Bにおいて、金属層16を除去し、犠牲層23の表面5aに直接形成された渦巻き金属層15を残す。これにより、図7Gのように、渦巻き金属層15が被処理体5B(犠牲層23)の表面5aに形成された状態になる。渦巻き金属層15の構造は、第1実施形態の場合と同じである。 In step S215, lift-off processing is performed. In the lift-off process, the metal layer 16 is removed from the target object 5B by dissolving the resist layer 11 remaining on the substrate with an appropriate solvent, and the spiral metal layer 15 formed directly on the surface 5a of the sacrificial layer 23. Leave. Thereby, as shown in FIG. 7G, the spiral metal layer 15 is formed on the surface 5a of the object to be processed 5B (sacrificial layer 23). The structure of the spiral metal layer 15 is the same as that in the first embodiment.
 ステップS300において、被処理体5Bの表面5aとしての犠牲層23の表面のうち露出面を等方的に除去していくエッチング処理を行う。このエッチング処理は、第1実施形態の場合と同様である。 In step S300, an etching process for isotropically removing the exposed surface of the surface of the sacrificial layer 23 as the surface 5a of the object 5B is performed. This etching process is the same as that in the first embodiment.
 ステップS300のエッチング処理により、被処理体5Bにおいて、図7Hのように、線状層部15bから軸方向に離間している新たな表面5aと、当該表面5aから突出して基点部3aに結合された突出部5bを形成する。ここで、表面5aは、図7Hでは金属層21の表面であるが、図7Hと違って犠牲層23の残存部の表面であってもよい。突出部5bは、犠牲層23の残存部である。なお、エッチング処理後の被処理体5Bが上述の支持体5を成す。 As a result of the etching process in step S300, in the object to be processed 5B, as shown in FIG. 7H, a new surface 5a that is axially spaced from the linear layer portion 15b and a base portion 3a that protrudes from the surface 5a and is coupled to the base point portion 3a. The protruding portion 5b is formed. Here, the surface 5a is the surface of the metal layer 21 in FIG. 7H, but may be the surface of the remaining portion of the sacrificial layer 23, unlike FIG. 7H. The protruding portion 5 b is a remaining portion of the sacrificial layer 23. In addition, the to-be-processed object 5B after an etching process comprises the above-mentioned support body 5. FIG.
 ステップS400において、真空蒸着法又はスパッタリング法により、図7Iのように、被処理体5B及び渦巻き金属層15上に更に金属層7を形成する。この場合、被処理体5A上の金属層7は、上述の渦巻き金属層部7aと周辺金属表面部7bを有する。また、基点層部15aと、基点層部15a上の金属層7とが、上述の基点部3aを成し、線状層部15bと、線状層部15b上の金属層7とが、上述の線状部3bを成す。 In step S400, the metal layer 7 is further formed on the target object 5B and the spiral metal layer 15 as shown in FIG. 7I by vacuum deposition or sputtering. In this case, the metal layer 7 on the workpiece 5A has the above-described spiral metal layer portion 7a and the peripheral metal surface portion 7b. Further, the base layer 15a and the metal layer 7 on the base layer 15a form the above-described base 3a, and the linear layer 15b and the metal layer 7 on the linear layer 15b are described above. The linear portion 3b is formed.
 また、図7Jのように、線状部3bは、重力又は応力により、軸方向下方(この図の下方)へ移行しながら、渦巻き状に延びるようになってよい。その結果、上述した光吸収素子10が形成される。なお、図7G~図7Iは、基点層部15aを含み当該図の紙面と平行な平面による断面図であり、図7Jと後述の図7Kは、当該図の紙面と垂直な方向へ渦巻構造3から離れた位置における断面を示す。 Further, as shown in FIG. 7J, the linear portion 3b may extend spirally while moving downward in the axial direction (downward in this figure) due to gravity or stress. As a result, the light absorption element 10 described above is formed. 7G to 7I are cross-sectional views taken along a plane including the base layer 15a and parallel to the paper surface of the drawing. FIG. 7J and FIG. 7K to be described later show the spiral structure 3 in a direction perpendicular to the paper surface of the drawing. The cross section in the position away from is shown.
 ステップS500において、図7Kのように、第1実施形態と同様に、内部に渦巻構造3を埋め込むように、透明な材料の保護層8を形成する形成する。 In step S500, as shown in FIG. 7K, a transparent material protective layer 8 is formed so as to embed the spiral structure 3 in the same manner as in the first embodiment.
 なお、上述したステップS400を省略してもよい。この場合、ステップS300の後にステップS500が行われる。また、ステップS400とステップS500を省略してもよい。 Note that step S400 described above may be omitted. In this case, step S500 is performed after step S300. Further, step S400 and step S500 may be omitted.
 図8は、第2実施形態に基づく製造方法の実施例で製造した光吸収素子10のSEM画像である。図8において、両方向矢印が示す範囲の寸法は500nmである。 FIG. 8 is an SEM image of the light absorbing element 10 manufactured in the example of the manufacturing method based on the second embodiment. In FIG. 8, the dimension in the range indicated by the double arrow is 500 nm.
 第2実施形態による光吸収素子10でも、第1実施形態による光吸収素子10と同様の効果が得られる。 The light absorbing element 10 according to the second embodiment can obtain the same effects as the light absorbing element 10 according to the first embodiment.
[光吸収体]
 図9Aは、本発明の実施形態による光吸収体20の構成を示す。図9Bは、図9Aの9B-9B矢視図である。光吸収体20は、多数の光吸収素子10と、これらの光吸収素子10を支持する素子支持面5aを有する。
[Light absorber]
FIG. 9A shows a configuration of the light absorber 20 according to the embodiment of the present invention. FIG. 9B is a view taken along arrow 9B-9B in FIG. 9A. The light absorber 20 has a large number of light absorption elements 10 and an element support surface 5 a that supports these light absorption elements 10.
 素子支持面5aは、各光吸収素子10の支持体5の表面である。すなわち、多数の光吸収素子10における支持体5の表面5aは、1つの素子支持面5aを構成している。したがって、支持体5は、多数の光吸収素子10に共有されている。このような支持体5は、素子支持面5aと、素子支持面5aから突出した多数の突出部5bと、素子支持面5aを有する基体部5cとを有する。 The element support surface 5 a is the surface of the support 5 of each light absorbing element 10. That is, the surface 5a of the support body 5 in many light absorption elements 10 constitutes one element support surface 5a. Therefore, the support 5 is shared by many light absorption elements 10. Such a support 5 includes an element support surface 5a, a number of protrusions 5b protruding from the element support surface 5a, and a base portion 5c having the element support surface 5a.
 また、保護層8も、多数の光吸収素子10に共有されている。すなわち、1つの保護層8が(例えば、図示を省略するが上述の金属層7を介して)素子支持面5aに形成され、この保護層8内に多数の光吸収素子10が埋め込まれている。 Also, the protective layer 8 is shared by many light absorbing elements 10. That is, one protective layer 8 is formed on the element support surface 5a (for example, through the metal layer 7 which is not shown), and a large number of light absorbing elements 10 are embedded in the protective layer 8. .
 素子支持面5aには、多数の光吸収素子10が配置されている。例えば、図9Bのように、多数の光吸収素子10は、規則的に素子支持面5aに密に配列されていてよい。あるいは、多数の光吸収素子10は、ランダムに素子支持面5aに密に配列されていてよい。なお、光吸収体20による光の吸収率は、多数の光吸収素子10の密度が高い程、高くなる。 A large number of light absorbing elements 10 are arranged on the element support surface 5a. For example, as shown in FIG. 9B, a large number of light absorbing elements 10 may be regularly arranged densely on the element support surface 5a. Alternatively, the multiple light absorbing elements 10 may be densely arranged on the element support surface 5a at random. The light absorption rate by the light absorber 20 increases as the density of the many light absorption elements 10 increases.
 図9Bのように(この例では図の左右方向において)、素子支持面5aにおいて隣接する光吸収素子10同士の間隔(すなわち、当該光吸収素子10同士の間における隙間の寸法)をPとし、光吸収素子10の渦巻構造3の径方向寸法をQとした場合に、PはQより小さくてよい(例えばPはQの半分以下である)。このPとQの関係は、素子支持面5aに沿った第1方向(図9Bの左右方向)での関係であるが、当該第1方向と直交し素子支持面5aに沿った第2方向(図9Bの上下方向)においても同様であってよい。すなわち、第2方向において、素子支持面5aにおいて隣接する光吸収素子10同士の間隔をRとし、光吸収素子10の渦巻構造3の径方向寸法をSとした場合に、RはSより小さくてよい(例えばRはSの半分以下である)。例えば、QとSは、500nm以上1500nm以下であり、PとRは、500nm以下(例えば500nm)であってよい。 As shown in FIG. 9B (in this example, in the horizontal direction of the figure), the interval between adjacent light absorption elements 10 on the element support surface 5a (that is, the dimension of the gap between the light absorption elements 10) is P, When the radial dimension of the spiral structure 3 of the light absorbing element 10 is Q, P may be smaller than Q (for example, P is less than half of Q). The relationship between P and Q is a relationship in the first direction (the left-right direction in FIG. 9B) along the element support surface 5a, but is perpendicular to the first direction and in the second direction along the element support surface 5a ( The same applies to the vertical direction in FIG. 9B. That is, in the second direction, when the distance between the adjacent light absorption elements 10 on the element support surface 5a is R and the radial dimension of the spiral structure 3 of the light absorption element 10 is S, R is smaller than S. Good (for example, R is less than half of S). For example, Q and S may be 500 nm or more and 1500 nm or less, and P and R may be 500 nm or less (for example, 500 nm).
 本実施形態による光吸収体20は、連続する広波長域の光を(例えば80%以上の吸収率で)吸収する。この場合、当該広波長域の幅がA以上B以下であるとする。この場合、一例では、Aは、100nm、200nm、500nm、1000nm、1500nm、2000nm、又は2500nmであり、これらのAの各値について、Bは、6000nm、5000nm、4000nm、又は3000nmであってよい。別の例では、Aは、100nm、200nm、又は500nmであり、これらのAの各値について、Bは、2000nm又は1000nmであってよい。なお、本発明によると、上記広波長域の幅は、上述の各例に限定されない。 The light absorber 20 according to the present embodiment absorbs light in a continuous wide wavelength range (for example, with an absorption rate of 80% or more). In this case, it is assumed that the width of the wide wavelength region is A or more and B or less. In this case, in one example, A is 100 nm, 200 nm, 500 nm, 1000 nm, 1500 nm, 2000 nm, or 2500 nm, and for each value of A, B may be 6000 nm, 5000 nm, 4000 nm, or 3000 nm. In another example, A can be 100 nm, 200 nm, or 500 nm, and for each value of A, B can be 2000 nm or 1000 nm. According to the present invention, the width of the wide wavelength range is not limited to the above examples.
 光吸収体20では、多数の光吸収素子10が広波長域の光を吸収する。各光吸収素子10は、超微細構造であるので、光吸収素子10を密に配置することができる。したがって、光吸収体20の素子支持面5aを、真の黒色に近づけた黒色にすることが可能となる。 In the light absorber 20, a large number of light absorbing elements 10 absorb light in a wide wavelength range. Since each light absorption element 10 has an ultrafine structure, the light absorption elements 10 can be arranged densely. Therefore, the element support surface 5a of the light absorber 20 can be made black that is close to true black.
 このような光吸収体20は、光学機器において光の反射または迷光を抑制するための黒色面を形成してよい。図9Aの例では、光吸収体20は、光学機器30において反射または迷光を抑制するための対象面30aに設けられている。光学機器は、例えば、カメラ、天体望遠鏡、又は光学測定装置(例えば分光光度計)であるが、これらに限定されない。対象面30aは、一例では、カメラの鏡筒の内面、光学機器における反射面の裏面(例えば反射ミラーの裏面)であるが、これらに限定されない。 Such a light absorber 20 may form a black surface for suppressing reflection of light or stray light in an optical apparatus. In the example of FIG. 9A, the light absorber 20 is provided on the target surface 30 a for suppressing reflection or stray light in the optical device 30. The optical apparatus is, for example, a camera, an astronomical telescope, or an optical measurement device (for example, a spectrophotometer), but is not limited thereto. The target surface 30a is, for example, the inner surface of a camera barrel and the back surface of a reflection surface (for example, the back surface of the reflection mirror) in the optical apparatus, but is not limited thereto.
 また、一例では、基体部5cはシート状に形成されている。この場合、光吸収体20も、全体としてシート状に形成される。したがって、シート状の光吸収体20を製造した後に、この光吸収体20を光学機器30の対象面30aへ取り付けることができる。 In one example, the base portion 5c is formed in a sheet shape. In this case, the light absorber 20 is also formed in a sheet shape as a whole. Therefore, after manufacturing the sheet-like light absorber 20, the light absorber 20 can be attached to the target surface 30 a of the optical device 30.
 光吸収体20は、次のように製造することができる。上述した第1実施形態又は第2実施形態に従って製造方法により、共通の基体部5c上に多数の渦巻構造3を同時に形成する。第1実施形態の製造方法で光吸収体20を製造する場合には、被処理体5Aとして基体部5cを用意し、被処理体5Aに対して、多数の渦巻構造3の各々に対する上述のステップS2~S5を行う。同様に、第2実施形態に従った製造方法で光吸収体20を製造する場合には、被処理体5Bとして基体部5cを用意し、被処理体5Bに対して、多数の渦巻構造3の各々に対する上述のステップS200~S500を行う。 The light absorber 20 can be manufactured as follows. A large number of spiral structures 3 are simultaneously formed on the common base portion 5c by the manufacturing method according to the first embodiment or the second embodiment described above. When the light absorber 20 is manufactured by the manufacturing method of the first embodiment, the base portion 5c is prepared as the object to be processed 5A, and the above-described steps for each of the multiple spiral structures 3 with respect to the object to be processed 5A. S2 to S5 are performed. Similarly, when the light absorber 20 is manufactured by the manufacturing method according to the second embodiment, the base portion 5c is prepared as the target object 5B, and a large number of spiral structures 3 are formed on the target object 5B. The above-described steps S200 to S500 are performed for each.
 図10Aは、第1実施形態の製造方法に従って製造した光吸収体20の光学特性に関する実験結果である。図10Bは、第2実施形態の製造方法に従って製造した光吸収体20の光学特性に関する実験結果である。図10Aと図10Bにおいて、横軸は波長(μm)を示し、縦軸は、光吸収体20に入射させた光の反射率を示す。反射率が低い波長範囲は、光の吸収率が高いことを示している。図10Aと図10Bは、隣接する渦巻構造3同士の間隔(図9Bの間隔P,R)を500nmとして多数の渦巻構造3を等間隔で配列した場合を示す。 FIG. 10A shows the experimental results regarding the optical characteristics of the light absorber 20 manufactured according to the manufacturing method of the first embodiment. FIG. 10B is an experimental result regarding the optical characteristics of the light absorber 20 manufactured according to the manufacturing method of the second embodiment. 10A and 10B, the horizontal axis indicates the wavelength (μm), and the vertical axis indicates the reflectance of the light incident on the light absorber 20. A wavelength range where the reflectance is low indicates that the light absorptance is high. FIG. 10A and FIG. 10B show the case where a large number of spiral structures 3 are arranged at equal intervals with the interval between adjacent spiral structures 3 (intervals P and R in FIG. 9B) being 500 nm.
 図10Aの場合には、1.5μm~4μmの波長範囲で約80%以上の光吸収率が得られている。図10Bの場合には、1.5μm~2μmの波長範囲と3.2μm~4.3μmの波長範囲で約80%以上の光吸収率が得られている。 In the case of FIG. 10A, a light absorption rate of about 80% or more is obtained in the wavelength range of 1.5 μm to 4 μm. In the case of FIG. 10B, an optical absorptance of about 80% or more is obtained in the wavelength range of 1.5 μm to 2 μm and the wavelength range of 3.2 μm to 4.3 μm.
 本発明は上述した実施の形態に限定されず、本発明の技術的思想の範囲内で種々変更を加え得ることは勿論である。例えば、上述した各効果は必ずしも本発明を限定的するものではない。また、本発明は、本明細書で示された効果のいずれか、又は、本明細書から把握され得る他の効果が奏されるものであってもよい。
 また、以下の変更例1~9のいずれかを単独で採用してもよいし、変更例1~9の2つ以上を任意に組み合わせて採用してもよい。この場合、以下で述べない点は、上述と同じである。
The present invention is not limited to the above-described embodiments, and various changes can be made within the scope of the technical idea of the present invention. For example, the effects described above do not necessarily limit the present invention. In addition, the present invention may exhibit any of the effects shown in the present specification or other effects that can be grasped from the present specification.
Further, any one of the following modification examples 1 to 9 may be adopted alone, or two or more of the modification examples 1 to 9 may be arbitrarily combined and employed. In this case, the points not described below are the same as described above.
[変更例1]
 図11Aと図11Bは、渦巻構造3の他の形態を示す模式図である。図11Aと図11Bは、光吸収素子10を、基準軸Cの方向から見た図である。
[Modification 1]
11A and 11B are schematic views showing other forms of the spiral structure 3. 11A and 11B are views of the light absorbing element 10 as viewed from the direction of the reference axis C.
 図11Aのように、基準軸Cの方向から見た場合に、線状部3bは、基準軸Cを1周する度に略N角形を1回形成するように基点部3aから延びていてもよい。ここで、Nは、3以上の整数であり、図11Aの場合では3であり、図11Bの場合には4であるが、5以上であってもよい。言い換えると、線状部3bは、基点部3aから延びていく過程で、基準軸Cを1周する度にN回折れ曲がるように延び、折れ曲がる箇所以外では直線的に延びていてもよい。この場合、図11Bのように1周目は(N+1)回折れ曲がってもよい。 As shown in FIG. 11A, when viewed from the direction of the reference axis C, the linear portion 3b may extend from the base point portion 3a so as to form a substantially N-gonal shape every time the reference axis C is rotated once. Good. Here, N is an integer of 3 or more, 3 in the case of FIG. 11A and 4 in the case of FIG. 11B, but may be 5 or more. In other words, in the process of extending from the base point portion 3a, the linear portion 3b may be bent so as to be bent N times each time the reference axis C is rotated once, and may extend linearly except at the bent portion. In this case, the first turn may be bent (N + 1) as shown in FIG. 11B.
 なお、線状部3bは、上述のように基準軸Cを1周する度に略N角形を1回形成するように基点部3aから延びていく途中で、基準軸Cを1周する度に折れ曲がる回数が変化してもよい。 Each time the linear portion 3b makes one round of the reference axis C in the course of extending from the base point portion 3a so as to form a substantially N-gonal shape once every round of the reference axis C as described above. The number of times of bending may change.
[変更例2]
 図11Cは、渦巻構造3の他の形態を示す模式図である。図11Cは、光吸収素子10を、基準軸Cの方向から見た図である。
[Modification 2]
FIG. 11C is a schematic diagram showing another form of the spiral structure 3. FIG. 11C is a diagram of the light absorption element 10 as viewed from the direction of the reference axis C.
 線状部3bは、基点部3aとの結合位置から先端まで連続していなくてもよく、図11Cのように、線状部3bは、基点部3aとの結合位置から先端まで不連続的に延びていてもよい。すなわち、線状部3bには、不連続箇所41が存在していてもよい。 The linear portion 3b may not be continuous from the coupling position with the base point portion 3a to the tip, and as shown in FIG. 11C, the linear portion 3b is discontinuously from the coupling position with the base point portion 3a to the tip. It may extend. That is, the discontinuous part 41 may exist in the linear part 3b.
 この場合、第1実施形態の製造方法に倣って次のように不連続的な線状部3bが形成されてよい。被処理体5Aの表面に、渦巻き金属層15の代わりに、渦巻き金属層15と同じ形状と寸法を有するが透明な材質の渦巻き透明層を形成する。その後、被処理体5Aの表面及び渦巻き透明層上にレジスト層を形成し、渦巻き透明層上のレジスト層のみに不連続的な渦巻き状パターンで電子ビームを照射し、現像液により、不連続的な渦巻き状パターンのレジスト層を溶かして除去する。その後、上述のステップS24、S25と同様に、金属層の形成とリフトオフ処理を行うことにより、渦巻き透明層上に不連続的に延びる渦巻き金属層が形成される。その後、上述のステップS3を行うことにより、渦巻き透明層とこれ上の渦巻き金属層が、被処理体5Aの新たな表面5aから離間する。その後、上述のステップS4を行わないが、上述のステップS5を行ってもよい。 In this case, the discontinuous linear portion 3b may be formed as follows in accordance with the manufacturing method of the first embodiment. Instead of the spiral metal layer 15, a spiral transparent layer made of a transparent material having the same shape and dimensions as the spiral metal layer 15 is formed on the surface of the object 5A. Thereafter, a resist layer is formed on the surface of the object to be processed 5A and the spiral transparent layer, and only the resist layer on the spiral transparent layer is irradiated with an electron beam in a discontinuous spiral pattern. A resist layer having a spiral pattern is melted and removed. Thereafter, similarly to the above-described Steps S24 and S25, a metal layer is formed and a lift-off process is performed, so that a spiral metal layer extending discontinuously on the spiral transparent layer is formed. Thereafter, by performing step S3 described above, the spiral transparent layer and the spiral metal layer thereon are separated from the new surface 5a of the workpiece 5A. Thereafter, step S4 described above is not performed, but step S5 described above may be performed.
 同様に、第2実施形態の製造方法に倣って不連続的な線状部3bを形成することもできる。 Similarly, the discontinuous linear portion 3b can be formed following the manufacturing method of the second embodiment.
[変更例3]
 本発明の実施形態による光吸収体20について、その素子支持面5a(支持体5の表面5a)への直線偏光の入射角を変化させ、この直線偏光の偏光方向を変えながら、光吸収体20の光吸収率を測定した。測定結果によると、光の入射角と偏光方向によらず、入射光の各波長において、光の吸収率は一定であった。
[Modification 3]
For the light absorber 20 according to the embodiment of the present invention, the incident angle of the linearly polarized light on the element support surface 5a (the surface 5a of the support 5) is changed, and the light absorber 20 is changed while changing the polarization direction of the linearly polarized light. The light absorption rate of was measured. According to the measurement results, the light absorptance was constant at each wavelength of the incident light regardless of the incident angle and polarization direction of the light.
 したがって、光吸収体20の各光吸収素子10の突出部5b(基準軸C)の向きは、光の吸収特性に影響を与えない。そのため、各光吸収素子10の突出部5bは、支持体5の表面5aから、表面5aに垂直な方向に延びていてもよいし、又は当該垂直な方向に対して斜めの方向に延びていてもよい。言い換えると、上述では、渦巻構造3の基準軸Cは、支持体5の表面5aと垂直な方向を向いていたが、表面5aと垂直な方向から傾いた方向を向いていてもよい。 Therefore, the direction of the protrusion 5b (reference axis C) of each light absorbing element 10 of the light absorber 20 does not affect the light absorption characteristics. Therefore, the protrusion 5b of each light absorbing element 10 may extend from the surface 5a of the support 5 in a direction perpendicular to the surface 5a, or in an oblique direction with respect to the perpendicular direction. Also good. In other words, in the above description, the reference axis C of the spiral structure 3 is oriented in a direction perpendicular to the surface 5a of the support 5, but may be oriented in a direction inclined from the direction perpendicular to the surface 5a.
[変更例4]
 図1Aと図5Aでは、渦巻構造3と、グラウンドとしての金属層7又は金属層21とは、互いに分離しているが、渦巻構造3の線状部3bの一部(例えば基点部3a側と反対側の先端部)が金属層7に接触していてもよい。
[Modification 4]
In FIG. 1A and FIG. 5A, the spiral structure 3 and the metal layer 7 or the metal layer 21 as the ground are separated from each other, but a part of the linear part 3b of the spiral structure 3 (for example, the base part 3a side and The tip portion on the opposite side) may be in contact with the metal layer 7.
[変更例5]
 図12は、光吸収体20の他の形態を示す図である。上述した図9Aにおいて、支持体5と、支持体5の素子支持面5a上に配置された多数の光吸収素子10を1組の光吸収構成とする。この場合に、複数組の光吸収構成を、図12のように積層したものを光吸収体20としてもよい。図12において、基体部5cは透明な材料で形成されていてよい。このように複数組(例えば多数組)の構成を積層することにより、光吸収体20の光吸収率を更に高めることができる。
[Modification 5]
FIG. 12 is a diagram showing another form of the light absorber 20. In FIG. 9A described above, the support body 5 and a large number of light absorption elements 10 arranged on the element support surface 5a of the support body 5 have a set of light absorption configurations. In this case, the light absorber 20 may be formed by stacking a plurality of sets of light absorption structures as shown in FIG. In FIG. 12, the base portion 5c may be made of a transparent material. Thus, the light absorption rate of the light absorber 20 can be further increased by laminating a plurality of sets (for example, many sets).
 このような光吸収体20は、例えば次のように製造できる。1組目の光吸収構成の保護層8上に2組目の光吸収構成の基体部5cを形成して、2組目の光吸収構成を1組目の光吸収構成上に積層する。3組目以降の光吸収構成も同様に積層してよい。
[変更例6]
 図5Aと図9Aにおいて、周辺金属層部7aは、表面5aの全体に広がっていなくてもよく、渦巻構造3の近傍においてのみ存在していてもよい。
 また、図7Hにおいて、金属層21は、基板19の表面全体に広がっていなくてもよく、渦巻構造3の近傍においてのみ存在していてもよい。
Such a light absorber 20 can be manufactured as follows, for example. A base portion 5c having a second light absorption structure is formed on the protective layer 8 having the first light absorption structure, and the second light absorption structure is laminated on the first light absorption structure. The third and subsequent sets of light absorption structures may be laminated in the same manner.
[Modification 6]
5A and 9A, the peripheral metal layer portion 7a may not extend over the entire surface 5a, and may exist only in the vicinity of the spiral structure 3.
In FIG. 7H, the metal layer 21 may not extend over the entire surface of the substrate 19, and may exist only in the vicinity of the spiral structure 3.
[変更例7]
 図1Aや図5Aでは、線状部3bは、基点部3aから延びる過程で、基準軸Cを回りながら、次第に支持体5の表面5aに近づいていったが、本発明は、これに限定されない。例えば、線状部3bは、基点部3aから延びる過程で、基準軸Cを回りながら、次第に支持体5の表面5aから離れていってもよい。例えば、被処理体5A又は5Bの表面5aを鉛直下方に向けた状態で、ステップS3又はS300を行うことにより、線状部3bは、重力で、基点部3aから延びる過程で、基準軸Cを回りながら、次第に表面5aから離れるようになる。
[Modification 7]
In FIG. 1A and FIG. 5A, the linear portion 3b gradually approaches the surface 5a of the support 5 while rotating around the reference axis C in the process of extending from the base point portion 3a. However, the present invention is not limited to this. . For example, the linear portion 3b may gradually move away from the surface 5a of the support 5 while rotating around the reference axis C in the process of extending from the base point portion 3a. For example, by performing step S3 or S300 in a state where the surface 5a of the object 5A or 5B is directed vertically downward, the linear portion 3b is moved in the process of extending from the base point portion 3a due to gravity. While turning, it gradually moves away from the surface 5a.
[変更例8]
 上述の光吸収体20において、各光吸収素子10の渦巻構造3は、互いに同じ径方向寸法を有していた。しかし、素子支持面5a上に配置される多数の渦巻構造3の径方向寸法には、複数種類が存在していてもよい。この構成で、より広範囲の波長域の光を吸収できることが期待される。
[Modification 8]
In the light absorber 20 described above, the spiral structure 3 of each light absorbing element 10 has the same radial dimension. However, there may be a plurality of types of radial dimensions of the multiple spiral structures 3 arranged on the element support surface 5a. With this configuration, it is expected that light in a wider wavelength range can be absorbed.
[変更例9]
 第1実施形態において、光吸収素子10の基点部3aと線状部3bは、被処理体5A(支持体5)に結合された状態にあってもよい。例えば、上述の第1実施形態の製造方法において、ステップS3~S5を省略し、図3Eと図3Fに示す構造が本発明による光吸収素子であってもよい。この場合、図3Eと図3Fにおいて、渦巻き金属層15は、本発明による光吸収素子の渦巻構造を成す。すなわち、渦巻き金属層15の基点層部15aは、当該渦巻構造の基点部を成し、渦巻き金属層15の線状層部15bは、当該渦巻構造の線状部を成す。
[Modification 9]
In the first embodiment, the base point portion 3a and the linear portion 3b of the light absorbing element 10 may be in a state of being coupled to the object to be processed 5A (support 5). For example, in the manufacturing method of the first embodiment described above, steps S3 to S5 may be omitted, and the structure shown in FIGS. 3E and 3F may be the light absorbing element according to the present invention. In this case, in FIGS. 3E and 3F, the spiral metal layer 15 forms a spiral structure of the light absorption element according to the present invention. That is, the base layer portion 15a of the spiral metal layer 15 forms a base portion of the spiral structure, and the linear layer portion 15b of the spiral metal layer 15 forms a linear portion of the spiral structure.
 この場合、図3Eと図3Fの渦巻き金属層15を1つの支持体5の表面5aに多数形成したものが本発明の光吸収体であってもよい。この光吸収体の光吸収率を測定した。この測定結果を図13のグラフに示す。図13において、横軸は、光吸収体への入射光の波長(μm)を示し、縦軸は、光吸収体の光吸収率を示す。図13の実線は、ステップS3~S5を省略して得た図3Eと図3Fの渦巻き金属層15による上記光吸収体の場合を示す。図13の破線は、上述のステップS1~S5を行うことにより得た上述の光吸収体20の場合を示す。渦巻き金属層15(渦巻構造)による上記光吸収体とステップS1~S5で得た光吸収体20のいずれにおいても、隣接する渦巻構造同士の間隔(図9Bの間隔P,Rに相当する間隔)を数百ナノメートル程度にした。 In this case, the light absorber of the present invention may be formed by forming a large number of the spiral metal layers 15 of FIGS. 3E and 3F on the surface 5a of the single support 5. The light absorption rate of this light absorber was measured. The measurement results are shown in the graph of FIG. In FIG. 13, the horizontal axis indicates the wavelength (μm) of incident light to the light absorber, and the vertical axis indicates the light absorption rate of the light absorber. The solid line in FIG. 13 shows the case of the light absorber using the spiral metal layer 15 in FIGS. 3E and 3F obtained by omitting steps S3 to S5. The broken line in FIG. 13 indicates the case of the above-described light absorber 20 obtained by performing the above-described steps S1 to S5. In any of the light absorber formed by the spiral metal layer 15 (spiral structure) and the light absorber 20 obtained in steps S1 to S5, the interval between adjacent spiral structures (intervals corresponding to the intervals P and R in FIG. 9B). Was set to about several hundred nanometers.
 図13から分かるように、渦巻き金属層15による光吸収体の光吸収率(図13の実線)は、ステップS1~S5を行うことにより得た上述の光吸収体20の光吸収率(図13の破線)よりも低いが、1.5μm~4μmの波長範囲で約60%以上となっている。 As can be seen from FIG. 13, the light absorptivity of the light absorber by the spiral metal layer 15 (solid line in FIG. 13) is the light absorptivity of the light absorber 20 obtained by performing steps S1 to S5 (FIG. 13). Is about 60% or more in the wavelength range of 1.5 μm to 4 μm.
 同様に、上述の第2実施形態の製造方法においても、ステップS300~S500の処理を省略してもよい。この場合、図7Gに示す構造が本発明による光吸収素子であってもよい。この場合、図7Gにおいて、渦巻き金属層15は、本発明による光吸収素子の渦巻構造を成す。すなわち、渦巻き金属層15の基点層部15aは、当該渦巻構造の基点部を成し、渦巻き金属層15の線状層部15bは、当該渦巻構造の線状部を成す。この場合に、犠牲層23を形成するステップS113を省略し、ステップS200で、金属層21上に渦巻き金属層15を形成してもよい。 Similarly, in the manufacturing method of the second embodiment described above, the processes of steps S300 to S500 may be omitted. In this case, the structure shown in FIG. 7G may be a light absorption element according to the present invention. In this case, in FIG. 7G, the spiral metal layer 15 forms a spiral structure of the light absorption element according to the present invention. That is, the base layer portion 15a of the spiral metal layer 15 forms a base portion of the spiral structure, and the linear layer portion 15b of the spiral metal layer 15 forms a linear portion of the spiral structure. In this case, step S113 for forming the sacrificial layer 23 may be omitted, and the spiral metal layer 15 may be formed on the metal layer 21 in step S200.
 図7Gに示す渦巻き金属層15を1つの支持体5の表面5aに多数形成したものが本発明の光吸収体であってもよい。この場合においても、上述のように犠牲層23が省略されていてよい。 The light absorber of the present invention may be formed by forming a large number of spiral metal layers 15 shown in FIG. 7G on the surface 5a of one support 5. Also in this case, the sacrificial layer 23 may be omitted as described above.
3 渦巻構造
3a 基点部
3b 線状部
5 支持体
5a 表面(素子支持面)
5b 突出部
5c 基体部
7 金属層
7a 渦巻き金属層部
7b 周辺金属層部
8 保護層
5A,5B 被処理体(基板)
10 光吸収素子
11 レジスト層
13 渦巻き溝
15 渦巻き金属層(第2の金属層)
15a 基点層部
15b 線状層部
16 金属層(第2の金属層)
17 保護層
19 基板(非金属層)
20 光吸収体
21 金属層(第1の金属層)
23 犠牲槽
30 光学機器
30a 対象面
41 不連続箇所
C 基準軸
3 Spiral structure 3a Base part 3b Linear part 5 Support body 5a Surface (element support surface)
5b Protruding part 5c Base part 7 Metal layer 7a Spiral metal layer part 7b Peripheral metal layer part 8 Protective layers 5A, 5B Object to be processed (substrate)
10 light absorption element 11 resist layer 13 spiral groove 15 spiral metal layer (second metal layer)
15a Base point layer portion 15b Linear layer portion 16 Metal layer (second metal layer)
17 Protective layer 19 Substrate (non-metal layer)
20 light absorber 21 metal layer (first metal layer)
23 Sacrificial tank 30 Optical device 30a Target surface 41 Discontinuous portion C Reference axis

Claims (12)

  1.  光を吸収するための光吸収素子であって、
     金属材料により形成された渦巻構造を備え、
     前記渦巻構造は、基点部と、該基点部から延びている線状部とを含み、
     前記基点部を通る軸を基準軸とし、該基準軸から放射状に延びる方向を径方向として、
     前記線状部は、前記基準軸を回りながら、且つ、前記基点部から前記径方向の外側へ移行しながら、前記基点部から渦巻き状に延びている、光吸収素子。
    A light absorbing element for absorbing light,
    It has a spiral structure made of metal material,
    The spiral structure includes a base portion and a linear portion extending from the base portion,
    An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction,
    The light absorption element, wherein the linear portion extends in a spiral shape from the base point while turning around the reference axis and moving from the base point to the outside in the radial direction.
  2.  前記基準軸と平行な方向を軸方向として、
     前記線状部は、前記基準軸を回りながら、且つ、前記基点部から前記径方向の外側および前記軸方向へ移行しながら、前記基点部から渦巻き状に延びている、請求項1に記載の光吸収素子。
    A direction parallel to the reference axis as an axial direction,
    2. The linear portion according to claim 1, wherein the linear portion extends spirally from the base point portion while rotating around the reference axis and moving from the base point portion to the outside in the radial direction and the axial direction. Light absorbing element.
  3.  前記基点部の径方向寸法は、前記線状部の前記径方向の太さよりも大きい、請求項1に記載の光吸収素子。 The light absorption element according to claim 1, wherein a radial dimension of the base portion is larger than a thickness of the linear portion in the radial direction.
  4.  前記光吸収素子は、前記渦巻構造を支持する支持体を備え、
     該支持体は、前記線状部から前記軸方向に離間している表面と、該表面から突出して前記基点部に結合している突出部とを有する、請求項2又は3に記載の光吸収素子。
    The light absorbing element includes a support that supports the spiral structure;
    4. The light absorption according to claim 2, wherein the support has a surface that is spaced apart from the linear portion in the axial direction, and a protrusion that protrudes from the surface and is coupled to the base portion. element.
  5.  前記支持体の前記表面の全体が、金属材料で形成されている、請求項4に記載の光吸収素子。 The light absorption element according to claim 4, wherein the entire surface of the support is formed of a metal material.
  6.  請求項1~5のいずれか一項に記載の光吸収素子と、
     前記光吸収素子を支持する素子支持面と、を有し、
     前記素子支持面には、多数の前記光吸収素子が配置されている、光吸収体。
    A light absorbing element according to any one of claims 1 to 5;
    An element support surface for supporting the light absorbing element,
    A light absorber in which a large number of the light absorption elements are arranged on the element support surface.
  7.  前記光吸収体は、光学機器において光の反射または迷光を抑制するための黒色面を形成している、請求項6に記載の光吸収体。 The light absorber according to claim 6, wherein the light absorber forms a black surface for suppressing reflection of light or stray light in an optical device.
  8.  光を吸収するための光吸収素子の製造方法であって、
     前記光吸収素子は、金属材料により形成された渦巻構造を備え、
     前記渦巻構造は、基点部と、該基点部から延びている線状部とを含み、
     前記基点部を通る軸を基準軸とし、該基準軸から放射状に延びる方向を径方向として、
     前記線状部は、前記基準軸を回りながら、且つ、前記基点部から前記径方向の外側へ移行しながら、前記基点部から渦巻き状に延びており、
    (A)被処理体の表面に、金属材料で形成され渦巻き状のパターンを有する渦巻き金属層を形成し、該渦巻き金属層は、前記基点部に相当する基点層部と、前記線状部に相当する線状層部を含む、光吸収素子の製造方法。
    A method of manufacturing a light absorbing element for absorbing light,
    The light absorbing element includes a spiral structure formed of a metal material,
    The spiral structure includes a base portion and a linear portion extending from the base portion,
    An axis passing through the base point is a reference axis, and a direction extending radially from the reference axis is a radial direction,
    The linear part extends spirally from the base point part while turning around the reference axis and moving from the base part to the outside in the radial direction,
    (A) A spiral metal layer formed of a metal material and having a spiral pattern is formed on the surface of the object to be processed. The spiral metal layer includes a base layer corresponding to the base and a linear portion. The manufacturing method of the light absorption element containing the corresponding linear layer part.
  9. (B)前記(A)の後、前記被処理体の前記表面のうち露出面を等方的に除去していくエッチング処理を行うことにより、前記被処理体において、前記線状層部から前記軸方向に離間している新たな表面と、該表面から突出して前記基点層部に結合された突出部を形成する、請求項8に記載の光吸収素子の製造方法。 (B) After (A), by performing an etching process that isotropically removes the exposed surface of the surface of the object to be processed, the object to be processed has the linear layer portion to The manufacturing method of the light absorption element of Claim 8 which forms the new surface which is spaced apart in the axial direction, and the protrusion part which protrudes from this surface and was couple | bonded with the said base point layer part.
  10.  前記(A)では、
    (A1)前記被処理体の表面に、レジスト層を形成し、
    (A2)前記レジスト層の表面に、渦巻きパターンで電子ビームを照射し、
    (A3)現像液により、レジスト層において電子ビームが当てられた渦巻きパターンの部分を溶解させ、これにより、前記渦巻きパターンの溝を形成し、
    (A4)前記溝の底面と残存する前記レジスト層の表面に、金属層を形成し、
    (A5)残っている前記レジスト層を溶かすことにより、前記渦巻きパターンの前記金属層を前記渦巻き金属層として形成する、請求項8又は9に記載の光吸収素子の製造方法。
    In (A) above,
    (A1) forming a resist layer on the surface of the object to be processed;
    (A2) Irradiate the surface of the resist layer with an electron beam in a spiral pattern;
    (A3) With the developer, the portion of the spiral pattern irradiated with the electron beam in the resist layer is dissolved, thereby forming a groove of the spiral pattern,
    (A4) forming a metal layer on the bottom surface of the groove and the surface of the remaining resist layer;
    (A5) The manufacturing method of the light absorption element according to claim 8 or 9, wherein the metal layer of the spiral pattern is formed as the spiral metal layer by melting the remaining resist layer.
  11.  前記被処理体は、第1の金属層と該金属層上に形成された犠牲槽を有し、
     前記(A)では、
    (a1)前記犠牲槽の表面に、レジスト層を形成し、
    (a2)前記レジスト層の表面に、渦巻きパターンで電子ビームを照射し、
    (a3)現像液により、レジスト層において電子ビームが当てられた渦巻きパターンの部分を溶解させ、これにより、前記渦巻きパターンの溝を形成し、
    (a4)前記溝の底面と残存する前記レジスト層の表面に、第2の金属層を形成し、
    (a5)残っている前記レジスト層を溶かすことにより、前記渦巻きパターンの前記第2の金属層を前記渦巻き金属層として形成し、
     前記(B)における前記新たな表面は、前記第1の金属層の表面である、請求項9に記載の光吸収素子の製造方法。
    The object to be processed has a first metal layer and a sacrificial tank formed on the metal layer,
    In (A) above,
    (A1) forming a resist layer on the surface of the sacrificial tank;
    (A2) Irradiating the surface of the resist layer with an electron beam in a spiral pattern;
    (A3) The portion of the spiral pattern irradiated with the electron beam in the resist layer is dissolved by the developer, thereby forming a groove of the spiral pattern,
    (A4) forming a second metal layer on the bottom surface of the groove and the surface of the remaining resist layer;
    (A5) By dissolving the remaining resist layer, the second metal layer of the spiral pattern is formed as the spiral metal layer,
    The method for manufacturing a light-absorbing element according to claim 9, wherein the new surface in (B) is a surface of the first metal layer.
  12.  前記被処理体は、非金属材料で形成された基板である、請求項10に記載の光吸収素子の製造方法。
     
    The method for manufacturing a light-absorbing element according to claim 10, wherein the object to be processed is a substrate formed of a nonmetallic material.
PCT/JP2019/015644 2018-04-12 2019-04-10 Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element WO2019198760A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513431A JP7325122B2 (en) 2018-04-12 2019-04-10 Light absorbing element, light absorber, and method for manufacturing light absorbing element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-076915 2018-04-12
JP2018076915 2018-04-12

Publications (1)

Publication Number Publication Date
WO2019198760A1 true WO2019198760A1 (en) 2019-10-17

Family

ID=68163214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015644 WO2019198760A1 (en) 2018-04-12 2019-04-10 Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element

Country Status (2)

Country Link
JP (1) JP7325122B2 (en)
WO (1) WO2019198760A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175657A1 (en) * 2022-03-14 2023-09-21 ソニーグループ株式会社 Electromagnetic wave absorber, electromagnetic wave blocking member, shield material, electromagnetic wave absorption sheet, sensor, device that performs reception and/or transmission, and device that performs light reception and/or light emission

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778708A (en) * 2012-07-20 2012-11-14 华中科技大学 Optical-band wave absorber
CN103582402A (en) * 2012-08-03 2014-02-12 深圳光启创新技术有限公司 Wave absorbing material
US20150138009A1 (en) * 2012-07-31 2015-05-21 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial
JP2017532589A (en) * 2014-08-18 2017-11-02 テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien Photo diode
CN107479215A (en) * 2017-07-13 2017-12-15 华中科技大学 A kind of Terahertz Meta Materials modulator approach and products thereof
CN109509986A (en) * 2018-12-20 2019-03-22 厦门大学 Graphene Terahertz multifrequency wave absorbing device based on metal spiral micro-structure
JP2019066633A (en) * 2017-09-29 2019-04-25 出光興産株式会社 Circularly polarized light absorption filter, optical element including the circularly polarized light absorption filter, and organic el element including the circularly polarized light absorption filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778708A (en) * 2012-07-20 2012-11-14 华中科技大学 Optical-band wave absorber
US20150138009A1 (en) * 2012-07-31 2015-05-21 Kuang-Chi Innovative Technology Ltd. Wide-frequency wave-absorbing metamaterial, electronic device and method for obtaining wide-frequency wave-absorbing metamaterial
CN103582402A (en) * 2012-08-03 2014-02-12 深圳光启创新技术有限公司 Wave absorbing material
JP2017532589A (en) * 2014-08-18 2017-11-02 テヒニッシュ・ウニベルズィテート・ウイーンTechnische Universitat Wien Photo diode
CN107479215A (en) * 2017-07-13 2017-12-15 华中科技大学 A kind of Terahertz Meta Materials modulator approach and products thereof
JP2019066633A (en) * 2017-09-29 2019-04-25 出光興産株式会社 Circularly polarized light absorption filter, optical element including the circularly polarized light absorption filter, and organic el element including the circularly polarized light absorption filter
CN109509986A (en) * 2018-12-20 2019-03-22 厦门大学 Graphene Terahertz multifrequency wave absorbing device based on metal spiral micro-structure

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FANYAEU, I. ET AL.: "Realisation of 3D metamaterial perfect absorber structures by direct laser writing", PROCEEDING OF SPIE, vol. 10115, 20 February 2017 (2017-02-20), XP060085705, DOI: 10.1117/12.2250449 *
HUANG, XIAOJUN ET AL.: "Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber", JOURNAL OF APPLIED PHYSICS, vol. 113, 7 June 2013 (2013-06-07), pages 213516-1 - 213516-5, XP012174257 *
KAN, TETSUO ET AL.: "Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals", NATURE COMMUNICATIONS, vol. 6, no. 8422, 1 October 2015 (2015-10-01), pages 1 - 7, XP055642456 *
KAN, TETSUO ET AL.: "Spiral metamaterial for active tuning of optical activity", APPLIED PHYSICS LETTERS, vol. 102, 5 June 2013 (2013-06-05), pages 221906-1 - 221906-4, XP055642460 *
WANG, WENJIE ET AL.: "Ultra-thin quadri-band metamaterial absorber based on spiral structure", APPLIED PHYSICS A MATERIALS SCIENCE & PROCESSING, vol. 118, no. 2, 13 September 2014 (2014-09-13), pages 443 - 447, XP035431872, DOI: 10.1007/s00339-014-8766-8 *
YU , DINGWANG ET AL.: "A sextuple-band ultra-thin metamaterial absorber with perfect absorption", OPTICS COMMUNICATIONS, 16 March 2017 (2017-03-16), pages 28 - 35, XP029976594 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175657A1 (en) * 2022-03-14 2023-09-21 ソニーグループ株式会社 Electromagnetic wave absorber, electromagnetic wave blocking member, shield material, electromagnetic wave absorption sheet, sensor, device that performs reception and/or transmission, and device that performs light reception and/or light emission

Also Published As

Publication number Publication date
JPWO2019198760A1 (en) 2021-04-22
JP7325122B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
Li et al. Parallel laser micro/nano‐processing for functional device fabrication
JP6006718B2 (en) Optical filter, optical device, electronic device, and antireflection composite
US7250620B2 (en) EUV lithography filter
JP2020522009A (en) Broadband achromatic planar optical component with dispersion-designed dielectric metasurface
US20150146180A1 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
JP6677174B2 (en) Manufacturing method of antireflection film
US20080160287A1 (en) Metal Structure and Production Method Therefor
EP2830098A1 (en) Thin film broadband plasmonic absorber
US7825424B2 (en) Methods to manufacture contaminant-gettering materials in the surface of EUV optics
WO2015181818A1 (en) Near-field imaging devices
JP2009204900A (en) Antireflection structure for optical element, optical element including the same, and method of processing the same
WO2019198760A1 (en) Light-absorbing element, light-absorbing body, and method for manufacturing light-absorbing element
JP2006342384A (en) Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module
WO2019203024A1 (en) Transparent member and transparent-member manufacturing method
CN103018808A (en) Photon sieve and manufacturing method thereof
Yuan et al. Large‐Scale Laser Nanopatterning of Multiband Tunable Mid‐Infrared Metasurface Absorber
JP7447074B2 (en) Reducing defects in extreme ultraviolet mask blanks
Tong et al. Realization of desired plasmonic structures via a direct laser writing technique
KR101839903B1 (en) Method for forming mask having metamaterial
JPWO2019198760A5 (en)
Brodehl et al. Fabrication of tailored nanoantennas on large areas for plasmonic devices
CN111180328A (en) Substrate etching method for manufacturing mask
Qu et al. Thermal Radiation From Microsphere Photolithography Patterned Metasurfaces
US20220283343A1 (en) Optical device and method of forming the same
US10969678B2 (en) System and method for producing an optical mask for surface treatment, and surface treatment plant and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785518

Country of ref document: EP

Kind code of ref document: A1