JP4861257B2 - Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source - Google Patents

Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source Download PDF

Info

Publication number
JP4861257B2
JP4861257B2 JP2007159673A JP2007159673A JP4861257B2 JP 4861257 B2 JP4861257 B2 JP 4861257B2 JP 2007159673 A JP2007159673 A JP 2007159673A JP 2007159673 A JP2007159673 A JP 2007159673A JP 4861257 B2 JP4861257 B2 JP 4861257B2
Authority
JP
Japan
Prior art keywords
insulating substrate
fine particle
producing
electrode
particle film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007159673A
Other languages
Japanese (ja)
Other versions
JP2008308750A (en
Inventor
阿川  義昭
山口  広一
尚希 塚原
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007159673A priority Critical patent/JP4861257B2/en
Publication of JP2008308750A publication Critical patent/JP2008308750A/en
Application granted granted Critical
Publication of JP4861257B2 publication Critical patent/JP4861257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、カーボンナノチューブの下地膜(触媒層)や、燃料電池や車の排ガス触媒金属の微粒子膜の製造に使用される。   The present invention is used for the production of a carbon nanotube substrate film (catalyst layer) and a fine particle film of an exhaust gas catalyst metal for fuel cells and vehicles.

従来のポリマフィルム上への微粒子膜の製造方法には、スパッタ法や電子ビーム蒸着法がある。   Conventional methods for producing a fine particle film on a polymer film include a sputtering method and an electron beam evaporation method.

まず、スパッタ法よる場合を説明する。
スパッタ法は、被蒸着物である基板と蒸着材料であるターゲットを対向させておき、数Pa〜数10Pa程度のArガス雰囲気中でターゲットに数KVの負の高電圧を印加し、放電させるとArガスは正イオンとなってターゲットに衝突し、ターゲットの原子を叩き出す。原子は基板上に堆積し薄膜を形成する。
First, the case using the sputtering method will be described.
In the sputtering method, when a substrate as a deposition target and a target as a deposition material are opposed to each other and a negative high voltage of several KV is applied to the target in an Ar gas atmosphere of about several Pa to several tens Pa, and then discharged. Ar gas becomes positive ions and collides with the target to knock out atoms of the target. The atoms are deposited on the substrate to form a thin film.

ここで、スパッタ法では基板とターゲットの距離が50〜150mm程度であり、ターゲットへ投入する電力にもよるが、堆積によって伝わった熱により、基板の温度は約80℃〜150℃程度上昇してしまう。これは基板ステージが熱伝導性の良いものの場合であり、基板がポリマ等の高分子フィルムでは、熱伝導性が悪く、さらに表面温度が200℃以上になる場合があり、そうなれば特殊な耐熱フィルム(例えば、ポリイミド、ポリテトラフルオロエチレン(PTFE))以外(例えば、ポリエチレンテレフタレート(PET)、ナイロン)には蒸着できない。   Here, in the sputtering method, the distance between the substrate and the target is about 50 to 150 mm, and depending on the electric power supplied to the target, the temperature of the substrate is increased by about 80 to 150 ° C. due to the heat transferred by the deposition. End up. This is the case where the substrate stage has a good thermal conductivity. When the substrate is a polymer film such as a polymer, the thermal conductivity is poor and the surface temperature may be 200 ° C. or higher. Vapor deposition cannot be performed on films other than films (for example, polyimide, polytetrafluoroethylene (PTFE)) (for example, polyethylene terephthalate (PET), nylon).

また、スパッタ法で蒸着した白金ナノ粒子は10nm程度の棒状に分散してしまう。
さらに、基板の温度を下げるために、スパッタの投入パワーを落として室温近傍で成膜するとさらに大きな(30nm程度)粒子が存在するようになる。
In addition, platinum nanoparticles deposited by sputtering are dispersed in a rod shape of about 10 nm.
Further, when the film is formed near the room temperature by lowering the sputtering input power in order to lower the temperature of the substrate, larger particles (about 30 nm) are present.

次に、電子ビーム蒸着法による場合を説明する。
電子ビーム蒸着源は蒸着材料を入れるルツボと電子ビーム発生機構及び電子ビームの偏向磁極などから構成されている。フィラメントで発生した熱電子は数10KVの負の高電圧で加速され磁場により偏向された後、ルツボ内の蒸着材料に当てられ、蒸着材料を加熱して蒸発させる。
Next, the case of the electron beam evaporation method will be described.
The electron beam evaporation source is composed of a crucible for depositing an evaporation material, an electron beam generating mechanism, an electron beam deflection magnetic pole, and the like. The thermoelectrons generated in the filament are accelerated by a negative high voltage of several tens of KV and deflected by a magnetic field, and then applied to the vapor deposition material in the crucible, and the vapor deposition material is heated and evaporated.

しかしながら、電子ビーム蒸着法によりポリマフィルム上に蒸着した白金の粒子は、ステップ状に集まる傾向があり、分散させて均一に蒸着することが出来ない。
また、電子ビーム蒸着法ではルツボ内で蒸着材料を溶融させるため、その輻射熱を考慮すると、耐熱性に劣るフィルムを基板として使うことはできない。
However, the platinum particles deposited on the polymer film by the electron beam deposition method tend to gather in a step shape and cannot be dispersed and uniformly deposited.
In addition, since the evaporation material is melted in the crucible in the electron beam evaporation method, a film having poor heat resistance cannot be used as the substrate in consideration of the radiant heat.

以上のように、スパッタ法や電子ビーム蒸着法では、蒸着材料を蒸発させるときに使用するエネルギーが大きい傾向にあるため、その影響を受けて基板の温度も高くなり、ポリマ等の高分子フィルムを基板として用いる場合には不向きであった。
そこで、真空中でのアーク放電を用いて、蒸着材料を点乃至狭い領域で蒸発させることにより、スパッタ法や電子ビーム蒸着法よりも加熱に使用するエネルギーを減少させることのできる蒸着方法が注目された。これは、真空中でのアーク放電により薄膜形成用の蒸着材料が殆ど溶融することなく、カソードスポットと呼ばれる領域に放電電流の集中が起こる形態の真空アーク蒸着法である。
As described above, in the sputtering method and the electron beam evaporation method, the energy used for evaporating the evaporation material tends to be large. It was not suitable for use as a substrate.
Therefore, a vapor deposition method that can reduce the energy used for heating more than sputtering or electron beam vapor deposition by evaporating the vapor deposition material in a point or narrow region by using arc discharge in vacuum attracts attention. It was. This is a vacuum arc deposition method in which the discharge current is concentrated in a region called a cathode spot without almost melting a deposition material for forming a thin film by arc discharge in vacuum.

すなわち、図4の概念図に示す同軸型真空アーク蒸着源105による真空中でのアーク放電を用いる方法では、真空アーク放電の蒸着源105は、円柱状のカソード電極112と、これに取り付けた円柱状の蒸着材料111の周囲に円筒状のアノード電極123を設け、蒸着材料111の近傍に配置したトリガ電極113と蒸着材料111との間に高電圧パルスを加えて、トリガ放電させる。このトリガ放電により、蒸着材料111上に電流が集中する点乃至領域(カソードスポット)が発生し、次いで、このカソードスポットとアノード電極123との間で主放電が始まって、カソードスポットの成長と移動が起こり、カソードスポット中で生成したイオンが放出される。これが、被蒸着物である基板104方向に加速移動されて膜を形成するというものである。例えば、高分子材料フィルム上に鉄薄膜を形成させた例がある(特許文献1参照)。   That is, in the method using arc discharge in vacuum by the coaxial vacuum arc deposition source 105 shown in the conceptual diagram of FIG. 4, the vacuum arc discharge deposition source 105 includes a cylindrical cathode electrode 112 and a circle attached to the cathode electrode 112. A cylindrical anode electrode 123 is provided around the columnar vapor deposition material 111, and a high voltage pulse is applied between the trigger electrode 113 disposed in the vicinity of the vapor deposition material 111 and the vapor deposition material 111 to cause trigger discharge. By this trigger discharge, a point or region (cathode spot) where current concentrates on the vapor deposition material 111 is generated, and then a main discharge starts between the cathode spot and the anode electrode 123 to grow and move the cathode spot. And ions generated in the cathode spot are released. This is to be accelerated and moved in the direction of the substrate 104 that is the deposition target to form a film. For example, there is an example in which an iron thin film is formed on a polymer material film (see Patent Document 1).

特開平9−165673号公報JP-A-9-165673

しかしながら、例えば真空中でのアーク放電を用いたポリマフィルム上への白金のナノ粒子膜の形成(ナノ粒子の担時)では、成膜レートが低かった。   However, for example, in the formation of a platinum nanoparticle film on a polymer film using arc discharge in a vacuum (when nanoparticles are carried), the film formation rate is low.

これは、絶縁体であるポリマフィルムに、アーク放電によるイオンが到達し、イオンから移った電荷が滞留することによるものと考えられる。   This is considered to be due to the arrival of ions by arc discharge and the charge transferred from the ions stays on the polymer film which is an insulator.

上記の課題は、トリガ電極と微粒子作成用金属材料で少なくとも先端部が構成されたカソード電極とが、絶縁碍子を挟んで隣接して配置されてなり、前記カソード電極と前記トリガ電極との周りに同軸状に筒状のアノード電極が配置されている同軸型真空アーク蒸着源を用い、前記トリガ電極と前記アノード電極との間にトリガ放電をパルス的に発生させて、前記カソード電極と前記アノード電極との間にアーク放電を断続的に誘起させ、被蒸着物である絶縁基板上に、所定の粒径の微粒子からなる前記金属材料の微粒子を付着せしめる微粒子膜の製造方法において、前記絶縁基板を除電しながら、前記絶縁基板に微粒子を付着させる微粒子膜の製造方法によって解決される。   The above-described problem is that a trigger electrode and a cathode electrode having at least a tip formed of a metal material for creating fine particles are arranged adjacent to each other with an insulator interposed therebetween, and the cathode electrode and the trigger electrode are arranged around the cathode electrode and the trigger electrode. Using a coaxial vacuum arc evaporation source in which a cylindrical anode electrode is coaxially disposed, a trigger discharge is generated in a pulse manner between the trigger electrode and the anode electrode, and the cathode electrode and the anode electrode are generated. In the method for producing a fine particle film in which arc discharge is intermittently induced between the metal material and the metal material fine particles having a predetermined particle diameter are adhered to the insulating substrate as a deposition target, The problem can be solved by a method of manufacturing a fine particle film in which fine particles are adhered to the insulating substrate while removing electricity.

具体的に、例えば、同軸型真空アーク蒸着源を用いたポリマフィルム上へ微粒子膜を製造する方法において、イオンから移ったポリマフィルム上の電荷を除去することにより成膜レートを向上させる。   Specifically, for example, in a method for producing a fine particle film on a polymer film using a coaxial vacuum arc deposition source, the film formation rate is improved by removing the charge on the polymer film transferred from the ions.

また、上記の課題は、真空槽と、トリガ電極と微粒子作成用金属材料で少なくとも先端部が構成されたカソード電極とが、絶縁碍子を挟んで隣接して配置されてなり、前記カソード電極と前記トリガ電極との周りに同軸状に筒状のアノード電極が配置されている同軸型真空アーク蒸着源と、絶縁基板を載せるための基板ステージと、前記絶縁基板を除電する除電手段とを備えた微粒子膜の製造装置によって解決される。   In addition, the above-described problem is that a vacuum chamber, a trigger electrode, and a cathode electrode having at least a tip formed of a metal material for creating fine particles are disposed adjacent to each other with an insulator interposed therebetween, and the cathode electrode and the cathode electrode Fine particles comprising a coaxial vacuum arc vapor deposition source in which a cylindrical anode electrode is coaxially disposed around a trigger electrode, a substrate stage for placing an insulating substrate, and a charge eliminating means for discharging the insulating substrate Solved by membrane production equipment.

具体的に、例えば、同軸型真空アーク蒸着源を有するポリマフィルム上へ微粒子膜を製造する装置において、イオンから移ったポリマフィルム上の電荷を除去する除電手段である電気配線を設け、ポリマフィルムをアースに接続することによって成膜レートを向上させる。   Specifically, for example, in an apparatus for producing a fine particle film on a polymer film having a coaxial vacuum arc deposition source, an electrical wiring is provided as a charge eliminating means for removing charges on the polymer film transferred from ions, and the polymer film is The film formation rate is improved by connecting to ground.

本発明は、ポリマフィルムの基板上に同軸型真空アーク蒸着源を用いて白金の微粒子膜を形成させるとき、基板上に粒子を均一かつ高レートで付着させることが出来る。   According to the present invention, when a platinum fine particle film is formed on a polymer film substrate using a coaxial vacuum arc deposition source, the particles can be uniformly deposited at a high rate on the substrate.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。
本発明の触媒担持用の同軸型真空アーク蒸着源5を用いた微粒子膜の製造装置1について図1に基いて説明する。真空槽2は、円筒状をしている。基板ステージ3は、真空槽2内に収容されている。ホルダ3aの中心には回転機構3bが接続されている。
Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
An apparatus 1 for producing a fine particle film using a coaxial vacuum arc deposition source 5 for supporting a catalyst according to the present invention will be described with reference to FIG. The vacuum chamber 2 has a cylindrical shape. The substrate stage 3 is accommodated in the vacuum chamber 2. A rotation mechanism 3b is connected to the center of the holder 3a.

除電手段である除電ユニット7は、基板ステージ3の端に金属製の板ばね72が取付けられており、板ばね72には電気配線としての金属配線が接続されている。金属配線は電流導入端子71を介してアースに接続されている。金属配線は板ばね72の中に収納されている。   In the static elimination unit 7 which is a static elimination means, a metal leaf spring 72 is attached to the end of the substrate stage 3, and a metal wiring as an electrical wiring is connected to the leaf spring 72. The metal wiring is connected to the ground via the current introduction terminal 71. The metal wiring is accommodated in the leaf spring 72.

同軸型真空アーク蒸着源5のカソードである蒸着材料11及びカソード電極12は円柱状をしている。蒸着材料11の材質は白金である。カソード電極12の材質は銅である。
絶縁碍子14は、ハット型碍子と呼称される。絶縁碍子14の材質はアルミナである。
トリガ電極13は、円筒状をしており、材質はステンレスである。
カソード電極12、絶縁碍子14、トリガ電極13のこれら3つの部品は特に詳細に図示しないが、同心円状に密着させて取付けられている。
The vapor deposition material 11 and the cathode electrode 12 which are the cathodes of the coaxial vacuum arc vapor deposition source 5 have a cylindrical shape. The material of the vapor deposition material 11 is platinum. The material of the cathode electrode 12 is copper.
The insulator 14 is referred to as a hat-type insulator. The material of the insulator 14 is alumina.
The trigger electrode 13 has a cylindrical shape and is made of stainless steel.
Although not shown in detail in detail, these three components, the cathode electrode 12, the insulator 14, and the trigger electrode 13, are attached in close contact with each other concentrically.

アノード電極23は、円筒状をしており、材質はステンレスで出来ている。このアノード電極23は、カソード電極12及び蒸着材料11と同心円状に取付けられている。   The anode electrode 23 has a cylindrical shape and is made of stainless steel. The anode electrode 23 is attached concentrically with the cathode electrode 12 and the vapor deposition material 11.

また、図中には簡易な電気配線図を記載している。
電源装置6は、トリガ電源31、アーク電源32、コンデンサユニット33で構成されている。
コンデンサユニット33は、容量が2200μF(耐圧:100V)のコンデンサを4つ並列に接続している。
In addition, a simple electrical wiring diagram is shown in the figure.
The power supply device 6 includes a trigger power supply 31, an arc power supply 32, and a capacitor unit 33.
The capacitor unit 33 has four capacitors having a capacitance of 2200 μF (withstand voltage: 100 V) connected in parallel.

トリガ電源31は、パルストランスからなり、入力200Vのμs単位のパルス電圧を約17倍に変圧して3.4KV(数μA)の正極性の高電圧パルスを出力する。   The trigger power supply 31 is composed of a pulse transformer, and transforms a pulse voltage in units of μs with an input of 200 V to about 17 times and outputs a positive high voltage pulse of 3.4 KV (several μA).

アーク電源32は、100V 数Aの容量の直流電源であり、コンデンサユニット33を充電するようになっている。
このコンデンサユニット33の充電には、約1秒を要するので、本システムでは、放電を繰り返し行う場合の周期は1Hzで行っている。
The arc power supply 32 is a DC power supply with a capacity of 100V and several A, and charges the capacitor unit 33.
Since charging of the capacitor unit 33 takes about 1 second, in this system, the cycle when discharging is repeated is 1 Hz.

トリガ電源31の出力のプラス端子は、トリガ電極13に接続され、トリガ電源31の出力のマイナス端子は、アーク電源32の出力のマイナス端子とともにカソード電極12に接続されている。   The positive terminal of the output of the trigger power supply 31 is connected to the trigger electrode 13, and the negative terminal of the output of the trigger power supply 31 is connected to the cathode electrode 12 together with the negative terminal of the output of the arc power supply 32.

アーク電源32のプラス端子は、グランド電位に接地されている。コンデンサユニット33の両端子はそれぞれ、アーク電源32のプラスおよびマイナス端子に接続されている。   The plus terminal of the arc power supply 32 is grounded to the ground potential. Both terminals of the capacitor unit 33 are connected to the plus and minus terminals of the arc power supply 32, respectively.

ターボ分子ポンプ51、仕切りバルブ52、ロータリポンプ53までは金属製の真空配管で接続されており、真空槽2内の真空排気を行っている。真空排気を行うことで真空槽2内は10-5Paの真空に保たれている。 The turbo molecular pump 51, the partition valve 52, and the rotary pump 53 are connected by a metal vacuum pipe, and the vacuum chamber 2 is evacuated. The inside of the vacuum chamber 2 is kept at a vacuum of 10 −5 Pa by performing evacuation.

次に、本発明の微粒子膜の製造装置1の動作につき図に基いて説明する。まず、本発明の同軸型真空アーク蒸着源5の動作につき図1を参照して説明する。   Next, the operation of the fine particle film manufacturing apparatus 1 of the present invention will be described with reference to the drawings. First, the operation of the coaxial vacuum arc deposition source 5 of the present invention will be described with reference to FIG.

はじめに、アーク電源32により、コンデンサユニット33に100Vで電荷を充電する。なお、コンデサユニット33は8800μFの容量を持っている。   First, the capacitor unit 33 is charged with 100V by the arc power source 32. The capacitor unit 33 has a capacity of 8800 μF.

次に、トリガ電極13にトリガ電源31から3.4KVのパルスを出力し、蒸着材料11とトリガ電極との間に絶縁碍子14を介して印加することで、絶縁碍子14の表面で沿面放電が発生し、蒸着材料11と絶縁碍子14のつなぎ目から電子が発生する。   Next, a pulse of 3.4 KV is output from the trigger power supply 31 to the trigger electrode 13 and applied between the vapor deposition material 11 and the trigger electrode via the insulator 14, thereby causing creeping discharge on the surface of the insulator 14. And electrons are generated from the joint between the vapor deposition material 11 and the insulator 14.

ここで、蒸着材料11と、アノード電極23の内面との間にコンデンサユニット33に充電された電荷が放電され、蒸着材料11に多量の電流が流入し、カソード電極12に取付けられた蒸着材料11である白金が液層から気相、さらにはプラズマが形成される。   Here, the electric charge charged in the capacitor unit 33 is discharged between the vapor deposition material 11 and the inner surface of the anode electrode 23, a large amount of current flows into the vapor deposition material 11, and the vapor deposition material 11 attached to the cathode electrode 12. Is formed from the liquid layer into the gas phase and further plasma.

さらに、蒸着材料11と絶縁碍子14のつなぎ目から発生した電子は、円筒状のアノード電極23の内面に向かって飛行する。この時、蒸着材料11に比較的多量の電流(2000A〜5000A)が、200μs〜550μの間流れるので、カソード電極12に磁場が形成される。プラズマ中の電子が、カソード電極12の形成した磁場によるローレンツ力を受けて、同軸型真空アーク蒸着源5の前方へ飛行するようになる。   Further, electrons generated from the joint between the vapor deposition material 11 and the insulator 14 fly toward the inner surface of the cylindrical anode electrode 23. At this time, since a relatively large amount of current (2000 A to 5000 A) flows through the deposition material 11 for 200 μs to 550 μ, a magnetic field is formed on the cathode electrode 12. Electrons in the plasma fly under the coaxial vacuum arc deposition source 5 under the Lorentz force generated by the magnetic field formed by the cathode electrode 12.

一方、プラズマ中の蒸着材料である白金のイオンは、分極することでクーロン力により、同軸型真空アーク蒸着源5の前方へ飛行する電子に引き付けられるようにして同軸型真空アーク蒸着源5の前方へ飛行する。その結果、白金のイオンは、ポリマフィルムである絶縁基板4上で凝集し、ナノメートル単位の白金粒子が形成される。   On the other hand, platinum ions, which are vapor deposition materials in the plasma, are polarized so that they are attracted to electrons flying in front of the coaxial vacuum arc deposition source 5 by Coulomb force. Fly to. As a result, platinum ions aggregate on the insulating substrate 4 which is a polymer film, and platinum particles in nanometer units are formed.

このとき、絶縁基板4に到達した白金イオンの電荷は絶縁基板4に移ることとなる。この電荷が絶縁基板4に滞留すると、後から到達した白金イオンとの間に反発力が生じる。この反発力は、後から到達した白金イオンを絶縁基板4から遠ざける方向に働くので、その結果、絶縁基板4上への成膜レートが下がるという問題が生じることになる。   At this time, the charge of platinum ions reaching the insulating substrate 4 moves to the insulating substrate 4. When this electric charge stays in the insulating substrate 4, a repulsive force is generated between the platinum ions that have arrived later. This repulsive force works in a direction to move away platinum ions that have arrived later from the insulating substrate 4, and as a result, a problem arises in that the film formation rate on the insulating substrate 4 decreases.

そこで、先に絶縁基板4に到達したイオンの電荷を基板上から除去するために、除電ユニット7によってアースに電荷を逃がすように構成したところ、成膜レートが増加した。   Therefore, in order to remove the charge of ions that have reached the insulating substrate 4 from the substrate, the charge removal unit 7 allows the charge to escape to the ground, and the film formation rate increased.

すなわち、図1の除電ユニット7は、基板ステージ3の端に金属製の板ばね72が取付けられており、板ばね72には金属配線が接続されている。金属配線は電流導入端子71を介してアースに接続されている。配線は板ばね72の中に収納されている。   That is, in the static elimination unit 7 of FIG. 1, a metal leaf spring 72 is attached to the end of the substrate stage 3, and a metal wiring is connected to the leaf spring 72. The metal wiring is connected to the ground via the current introduction terminal 71. The wiring is housed in the leaf spring 72.

絶縁基板4の上面から電荷を除去するために、板ばね72の一端が絶縁基板4の絶縁基板4の上面に接触されている。また、絶縁基板4は、金属製の基板ステージ3は上に載せられている。板ばね72は、基板ステージにねじ72で止められている。板ばね72と、基板ステージは、ねじ72で止められている部分で、電気的な接続を確保されている。板ばね72の他端は、真空槽2の壁面を貫通する電流導入端子71を用いて真空槽2の外部に配線し、アースに接続させている。   In order to remove charges from the upper surface of the insulating substrate 4, one end of the leaf spring 72 is in contact with the upper surface of the insulating substrate 4 of the insulating substrate 4. The insulating substrate 4 is placed on the metal substrate stage 3. The leaf spring 72 is fixed to the substrate stage with a screw 72. The plate spring 72 and the substrate stage are secured by screws 72, and electrical connection is ensured. The other end of the leaf spring 72 is wired to the outside of the vacuum chamber 2 using a current introduction terminal 71 penetrating the wall surface of the vacuum chamber 2 and connected to the ground.

以上のように、本発明の微粒子膜の製造方法では、除電手段7によって、成膜レートが増加した。また、絶縁基板4の上面に白金粒子を極めて均一に付着させることができた。   As described above, in the method of manufacturing the fine particle film of the present invention, the film forming rate is increased by the charge eliminating means 7. Further, the platinum particles could be adhered extremely uniformly on the upper surface of the insulating substrate 4.

本発明の実施の形態の微粒子膜の製造方法及び製造装置により、実際に成膜した例を図2に示す。これは、本発明の微粒子膜の製造装置1を用いて、同軸型真空アーク蒸着源5によるアーク放電を10発行って、コロジオンフィルム上に付着させた白金粒子のTEM写真である。図から明らかなようにコロジオンフィルム上に白金が担持されている。なお、本発明の効果を調べるために、絶縁基板4としてはTEM(Transmission Electron Microscope)観察用支援膜として用いられるコロジオンフィルムを使用した。これは、ポリマフィルムにコロジオンが付けられたものである。
FIG. 2 shows an example of actual film formation by the fine particle film manufacturing method and manufacturing apparatus according to the embodiment of the present invention. This is a TEM photograph of platinum particles deposited on a collodion film by issuing 10 arc discharges by a coaxial vacuum arc deposition source 5 using the fine particle film production apparatus 1 of the present invention. As is apparent from the figure, platinum is supported on the collodion film. In order to investigate the effect of the present invention, a collodion film used as a support film for TEM (Transmission Electron Microscope) observation was used as the insulating substrate 4. This is a polymer film with collodion attached.

以上のように、本発明の微粒子膜の製造装置1によれば、ポリマフィルム上にナノメートル単位(1〜10nm)の白金を均一に担持することができる。   As described above, according to the fine particle film manufacturing apparatus 1 of the present invention, platinum in nanometer units (1 to 10 nm) can be uniformly supported on a polymer film.

以上のように、本発明の実施の形態について説明したが、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば、実施例では、除電手段としての除電ユニット7として、電流導入端子71、板ばね72、ねじ73を用いてホルダ3aと絶縁基板4とを電気的に接続し、一緒にアース電位に接地したが、ホルダ3aと絶縁基板4を個々にアース電位に接地するようにしても良い(図3A参照)。   For example, in the embodiment, as the static elimination unit 7 as the static elimination means, the holder 3a and the insulating substrate 4 are electrically connected using the current introduction terminal 71, the leaf spring 72, and the screw 73, and grounded to the ground potential together. However, the holder 3a and the insulating substrate 4 may be individually grounded to the ground potential (see FIG. 3A).

また、負電荷の供給は、配線によりアースに接続するようにしたが、真空槽2の壁面に電子銃76を設け、金属材料のイオンの発生量に応じて、電子を供給することにより行っても良い(図3B参照)。   The negative charge is supplied to the ground by wiring. However, an electron gun 76 is provided on the wall surface of the vacuum chamber 2, and electrons are supplied according to the amount of ions generated from the metal material. (See FIG. 3B).

また、実施例では、アーク放電電圧は、100Vに設定したが、この場合はポリマフィルム上にへこみが形成される。このへこみは、2nm以下であるが、均一な成膜を行う上では好ましくない。そこで、放電電圧を60V程度とすることで、へこみを0.5nm以下にすることが可能である。   In the embodiment, the arc discharge voltage is set to 100 V. In this case, a dent is formed on the polymer film. Although this dent is 2 nm or less, it is not preferable for uniform film formation. Therefore, the dent can be reduced to 0.5 nm or less by setting the discharge voltage to about 60V.

本発明の蒸着装置の断面図である。It is sectional drawing of the vapor deposition apparatus of this invention. 本発明の成膜結果の写真である。It is a photograph of the film formation result of the present invention. 本発明の除電手段の変形例である。 Aは、ホルダ3aと絶縁基板4を個々にアース電位に接地させたものである。 Bは、真空槽2の壁面に電子銃を設けて負電荷を供給するものである。It is a modification of the static elimination means of this invention. A shows a case in which the holder 3a and the insulating substrate 4 are individually grounded to the ground potential. B is for supplying a negative charge by providing an electron gun on the wall surface of the vacuum chamber 2. 同軸型真空アーク蒸着源を用いた真空アーク蒸着法の概念図である。It is a conceptual diagram of the vacuum arc vapor deposition method using a coaxial type vacuum arc vapor deposition source.

符号の説明Explanation of symbols

1・・・微粒子膜の製造装置、2・・・真空槽、3・・・基板ステージ、3a・・・基板ホルダ、3b・・・回転機構、4・・・絶縁基板、5・・・同軸型真空アーク蒸着源、6・・・電源装置、7・・・除電ユニット、7’・・・除電ユニット、7”・・・除電ユニット、8・・・ガス供給系、9・・・真空排気系、
11・・・蒸着材料、12・・・カソード電極、13・・・トリガ電極、14・・・絶縁碍子、
23・・・アノード電極、
31・・・トリガ電源、32・・・アーク電源、33・・・コンデンサユニット、
41・・・ガス供給源、42・・・仕切りバルブ、
51・・・ターボ分子ポンプ、52・・・仕切りバルブ、53・・・ロータリポンプ、54・・・調整バルブ、
71・・・電流導入端子、72・・・板ばね、73・・・ねじ、74・・・電流導入端子、75・・・ビーム加速用電源、76・・・電子銃、
104・・・基板、105・・・同軸型真空アーク蒸着源、106・・・電源装置、
111・・・蒸着材料、112・・・カソード電極、113・・・トリガ電極、114・・・絶縁碍子、123・・・アノード電極、
131・・・トリガ電源、132・・・アーク電源、133・・・コンデンサユニット、
DESCRIPTION OF SYMBOLS 1 ... Fine particle film manufacturing apparatus, 2 ... Vacuum chamber, 3 ... Substrate stage, 3a ... Substrate holder, 3b ... Rotation mechanism, 4 ... Insulating substrate, 5 ... Coaxial Type vacuum arc evaporation source, 6 ... power supply, 7 ... static elimination unit, 7 '... static elimination unit, 7 "... static elimination unit, 8 ... gas supply system, 9 ... vacuum exhaust system,
DESCRIPTION OF SYMBOLS 11 ... Evaporation material, 12 ... Cathode electrode, 13 ... Trigger electrode, 14 ... Insulator,
23 ... Anode electrode,
31 ... Trigger power supply, 32 ... Arc power supply, 33 ... Capacitor unit,
41 ... Gas supply source, 42 ... Partition valve,
51 ... turbo molecular pump, 52 ... partition valve, 53 ... rotary pump, 54 ... regulating valve,
71 ... current introduction terminal, 72 ... leaf spring, 73 ... screw, 74 ... current introduction terminal, 75 ... power source for beam acceleration, 76 ... electron gun,
104 ... Substrate, 105 ... Coaxial vacuum arc deposition source, 106 ... Power supply device,
111 ... Vapor deposition material, 112 ... Cathode electrode, 113 ... Trigger electrode, 114 ... Insulator, 123 ... Anode electrode,
131 ... Trigger power supply, 132 ... Arc power supply, 133 ... Capacitor unit,

Claims (8)

トリガ電極と微粒子作成用金属材料で少なくとも先端部が構成されたカソード電極とが、絶縁碍子を挟んで隣接して配置されてなり、前記カソード電極と前記トリガ電極との周りに同軸状に筒状のアノード電極が配置されている同軸型真空アーク蒸着源を用い、前記トリガ電極と前記アノード電極との間にトリガ放電をパルス的に発生させて、前記カソード電極と前記アノード電極との間にアーク放電を断続的に誘起させ、前記微粒子作成用金属材料のプラズマを形成し、該プラズマ中の前記微粒子作成用金属材料のイオンを前記同軸型真空アーク蒸着源の前方へ飛行させ、前記微粒子作成用金属材料の所定の粒径からなる微粒子を絶縁基板上に付着せしめる微粒子膜の製造方法において、
前記絶縁基板を除電しながら、前記絶縁基板に前記微粒子を付着させることを特徴とする微粒子膜の製造方法。
A trigger electrode and a cathode electrode having at least a tip formed of a metal material for forming fine particles are arranged adjacent to each other with an insulator interposed therebetween, and are coaxially formed around the cathode electrode and the trigger electrode. Using a coaxial vacuum arc deposition source in which an anode electrode is disposed, and generating a trigger discharge in a pulsed manner between the trigger electrode and the anode electrode, thereby generating an arc between the cathode electrode and the anode electrode. Discharge is intermittently induced to form a plasma of the metal material for producing the fine particles, and ions of the metal material for producing the fine particles in the plasma are caused to fly to the front of the coaxial vacuum arc deposition source. In a method for producing a fine particle film in which fine particles having a predetermined particle size of a metal material are attached on an insulating substrate ,
A method for producing a fine particle film, wherein the fine particles are adhered to the insulating substrate while removing electricity from the insulating substrate.
前記絶縁基板を、アースに接続された基板ステージ上に配置し、かつ、前記絶縁基板の成膜面をアースに接続して、前記絶縁基板を除電しながら、前記絶縁基板に前記微粒子を付着させることを特徴とする請求項1に記載の微粒子膜の製造方法。 The insulating substrate, and disposed on the substrate stage which is connected to ground, and connect the film-forming surface of the insulating substrate to ground, while neutralizing the insulating substrate, depositing the fine particles on the insulating substrate The method for producing a fine particle film according to claim 1. 前記絶縁基板が、ポリマフィルムであることを特徴とする請求項1に記載の微粒子膜の製造方法。   The method for producing a fine particle film according to claim 1, wherein the insulating substrate is a polymer film. 前記微粒子の粒径が、1〜10nmであることを特徴とする請求項1に記載の微粒子膜の製造方法。   The method for producing a fine particle film according to claim 1, wherein the fine particles have a particle size of 1 to 10 nm. 真空槽と、
トリガ電極と微粒子作成用金属材料で少なくとも先端部が構成されたカソード電極とが、絶縁碍子を挟んで隣接して配置されてなり、前記カソード電極と前記トリガ電極との周りに同軸状に筒状のアノード電極が配置されている同軸型真空アーク蒸着源と、
絶縁基板を載せるための基板ステージと、
成膜中の前記絶縁基板を除電する除電手段とを備えた微粒子膜の製造装置。
A vacuum chamber;
A trigger electrode and a cathode electrode having at least a tip formed of a metal material for forming fine particles are arranged adjacent to each other with an insulator interposed therebetween, and are coaxially formed around the cathode electrode and the trigger electrode. A coaxial vacuum arc deposition source in which an anode electrode of
A substrate stage for mounting an insulating substrate;
An apparatus for producing a fine particle film , comprising: a neutralizing unit that neutralizes the insulating substrate during film formation .
前記除電手段が、前記基板ステージをアースに接続する電気配線を備えたことを特徴とする請求項5に記載の微粒子膜の製造装置。   6. The apparatus for producing a fine particle film according to claim 5, wherein the static eliminating means includes an electrical wiring for connecting the substrate stage to ground. 前記除電手段が、前記絶縁基板の成膜面をアースに接続する電気配線を備えたこと特徴とする請求項5に記載の微粒子膜の製造装置。   6. The apparatus for producing a fine particle film according to claim 5, wherein the static elimination means includes an electric wiring for connecting a film formation surface of the insulating substrate to a ground. アースに接続された前記基板ステージと、前記絶縁基板の成膜面をアースに接続する電気配線とを備え、前記電気配線が前記基板ステージに接続されていること特徴とする請求項5に記載の微粒子膜の製造装置。   The said board | substrate stage connected to earth | ground, and the electrical wiring which connects the film-forming surface of the said insulated substrate to an earth | ground, The said electrical wiring is connected to the said substrate stage of Claim 5 characterized by the above-mentioned. Fine particle film production equipment.
JP2007159673A 2007-06-18 2007-06-18 Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source Active JP4861257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159673A JP4861257B2 (en) 2007-06-18 2007-06-18 Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159673A JP4861257B2 (en) 2007-06-18 2007-06-18 Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source

Publications (2)

Publication Number Publication Date
JP2008308750A JP2008308750A (en) 2008-12-25
JP4861257B2 true JP4861257B2 (en) 2012-01-25

Family

ID=40236606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159673A Active JP4861257B2 (en) 2007-06-18 2007-06-18 Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source

Country Status (1)

Country Link
JP (1) JP4861257B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248574A (en) * 2009-04-16 2010-11-04 Ulvac Japan Ltd Vapor deposition apparatus and vapor deposition method
JP5422281B2 (en) * 2009-07-13 2014-02-19 株式会社アルバック Hydrogen gas sensor and method for manufacturing hydrogen gas sensor
JP2011049103A (en) * 2009-08-28 2011-03-10 Nissan Motor Co Ltd Plasma generation method
JP5604234B2 (en) * 2010-09-07 2014-10-08 アルバック理工株式会社 Fine particle forming apparatus and method thereof
KR101209685B1 (en) 2010-11-17 2012-12-10 기아자동차주식회사 Metal separator for fuel cell and method for treatmenting surface of the same
JP6161053B2 (en) * 2012-09-27 2017-07-12 アドバンス理工株式会社 Vapor deposition source and fine particle forming device
JP5923547B2 (en) * 2014-04-21 2016-05-24 アドバンス理工株式会社 Fine particle forming apparatus and method thereof
JP7162336B2 (en) * 2017-10-20 2022-10-28 国立大学法人東北大学 Nanoparticles and methods for producing nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026866A (en) * 1999-07-15 2001-01-30 Kanegafuchi Chem Ind Co Ltd Film forming method by sputtering

Also Published As

Publication number Publication date
JP2008308750A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4861257B2 (en) Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source
JP6491752B2 (en) Virtual cathode deposition (VCD) for thin film production
CN101156505A (en) Apparatus and process for generating, accelerating and propagating beams of electrons and plasma
WO2000068451A2 (en) Magnetron negative ion sputter source
CN102762762B (en) Vacuum processing device
JP4868592B2 (en) Alloy nanoparticle preparation method, alloy thin film preparation method, and coaxial vacuum arc deposition apparatus
JP2008095163A (en) Method of forming nanometal particle and method of forming nanometal thin film, and method of controlling size of nanometal particle
JP4837409B2 (en) Nanoparticle production method
US9453278B2 (en) Deposition device and deposition method
JP2009285644A (en) Manufacturing method of catalyst material and vacuum arc evaporation device
JP2004018899A (en) Evaporation source and film-formation equipment
JP4965373B2 (en) Method for producing carbon nanotube
JP5016976B2 (en) Method for producing fine particle film
JP4647476B2 (en) Deposition equipment
CN114242549B (en) Ion source device for forming plasma by material sputtering
JP2008234973A (en) Electron emission source, its formation method, and manufacturing method of image display device
JP4972514B2 (en) Equipment for forming fine particles on film using vacuum arc evaporation source
JPH09165673A (en) Thin film forming device and thin film forming method
JP2000017429A (en) Vacuum deposition apparatus
JPH11172419A (en) Thin film forming device and thin film formation
JP3247159B2 (en) Electron beam evaporation system
JP5923547B2 (en) Fine particle forming apparatus and method thereof
JPH0372068A (en) Solid ion source
JP2009242825A (en) Method for embedding metallic material using coaxial vacuum arc vapor deposition source
JPH0375360A (en) Thin film forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4861257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250