JP2008226854A - 非水電解液二次電池および負極材料の製造方法 - Google Patents
非水電解液二次電池および負極材料の製造方法 Download PDFInfo
- Publication number
- JP2008226854A JP2008226854A JP2008121222A JP2008121222A JP2008226854A JP 2008226854 A JP2008226854 A JP 2008226854A JP 2008121222 A JP2008121222 A JP 2008121222A JP 2008121222 A JP2008121222 A JP 2008121222A JP 2008226854 A JP2008226854 A JP 2008226854A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- electrolyte secondary
- graphite
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
【課題】熱履歴にさらされることによって生じる電池内部の劣化を抑制し、高容量で高信頼性のリチウムイオン二次電池を得る。
【解決手段】炭素材料の構造パラメータである、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと、表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)を4.5以上に規定し、これを負極に用いて非水電解液二次電池を構成する。また、アルゴンレーザ光を用いた表面増大ラマン分光スペクトルにおいて、1360cm-1以上の範囲にピークを有する材料を負極に用いて非水電解液二次電池を構成する。
【選択図】図1
【解決手段】炭素材料の構造パラメータである、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと、表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)を4.5以上に規定し、これを負極に用いて非水電解液二次電池を構成する。また、アルゴンレーザ光を用いた表面増大ラマン分光スペクトルにおいて、1360cm-1以上の範囲にピークを有する材料を負極に用いて非水電解液二次電池を構成する。
【選択図】図1
Description
本発明は、非水電解液二次電池と、非水電解液二次電池用負極材料の製造方法とに関する。
近年、携帯電話やノート型パソコンに代表されるように、電子機器の小型化、ポータブル化が急激に進み、二次電池の高エネルギー化への要求が高まってきている。
従来の二次電池としては、鉛電池、Ni−Cd電池、Ni−MH電池が挙げられるが、放電電圧が低く、また、エネルギー密度も十分に高くない。一方、金属リチウムやリチウム合金、或いは電気化学的にリチウムイオンを吸蔵し放出できる炭素材料を負極活物質に用い、種々の正極と組み合わせたリチウム二次電池が開発がされ、実用化されている。この種の電池は電池電圧が高く、上述した従来の電池に比べ重量、或いは体積当たりのエネルギー密度が大きい二次電池として期待されている電池である。
この種の二次電池は当初、負極に金属リチウム、或いはリチウム合金を用いた系で検討されていたが、金属リチウム、或いはリチウム合金を用いた負極は、充放電効率、デントライト等に問題があり、一部を除き、実用化に至ってないのが現状である。
そこで現在、リチウムイオンを電気化学的に吸蔵、放出できる炭素材料を負極に用いることが有力視され、且つ、実現されてきた。この種の材料を用いた負極は金属リチウム、或いはリチウム合金を用いた負極と比較し、充放電時に金属リチウムのデンドライト生成や合金の微紛化が起こらず、クーロン効率が高いため、充放電可逆性に優れたリチウム二次電池が構成できる。
また、この種の材料を負極活物質に用いた電池では、その電池内に金属リチウムが析出することがなく、安全性の高いリチウム二次電池が構成でき、現在、リチウム含有複合酸化物からなる正極と組み合わされ、商品化されるに至っている。この電池は、いわゆるリチウムイオン電池と呼ばれ、負極に炭素材料、正極にLiCoO2 、電解液に非水溶媒からなる非水電解液をそれぞれ用いている。
負極となる炭素材料は、次のように大別される。すなわち、鉱石などでも産出され、今日では人工的に作ることが可能になった黒鉛材料、人工的な黒鉛材料の前駆体となる易黒鉛化性炭素材料、黒鉛が人工的に生成するような高温にさらしても黒鉛にならない難黒鉛化性炭素材料である。現在では、負極容量の点から、黒鉛材料と難黒鉛化性炭素材料が用いられている。
電子機器の発達により、前記リチウムイオン電池はその電源として注目され、特に小型軽量、且つ、高容量という特徴を生かしてノート型パソコンへの搭載が急速に進んだ。ノート型パソコンはその携帯性に特徴があり、そのため小型化、高性能化が必要である。ところで高性能化には内蔵するCPUの動作周波数を上げる必要がある。しかしながら、これに伴って消費電力が増大し、動作中に発生する発熱量も増加するものである。また、小型になるほど、パソコン本体内の空間は減少する。これにより、使用中に発生する熱が逃げにくくなり、パソコン本体内の温度が上昇することになる。
上述したように電子機器内部の温度が上昇すると、電池への影響も大きくなる。即ち、電池が充電された状態でこの熱履歴を受けると、電池内で劣化反応が起こり、これによる電池容量の低下は回復できないものである。従って本発明の課題は熱履歴にさらされることによって生じる電池内部の劣化を抑制し、高容量で高信頼性のリチウムイオン二次電池を得ることを目的とし、さらにこのために、非水電解液二次電池用負極材料の製造方法を提供することにある。
上述の課題を達成するために、発明者らが鋭意検討したところ、負極用炭素材料において、その構造パラメータを規定することにより、この材料を負極に用いた電池を高温中で保存された場合でも、容量劣化が小さく、高容量で高信頼性のリチウムイオン二次電池が得られることを見出すに至った。
まず、請求項1に記載の発明は、波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、炭素材料に厚さ10nmの銀を蒸着した場合の表面増大ラマン分光スペクトルにおいて、1365cm-1以上の範囲にピークを有する炭素材料を負極に用いて非水電解液二次電池を構成するものである。
また、請求項2に記載の発明は、請求項1に記載の発明の炭素材料を黒鉛とするものである。
また、請求項3に記載の発明は、請求項1に記載の発明の非水電解液二次電池において、LiMxOy(MはCo,Ni,Mn,Fe,Cr,Al,Tiの中から選ばれた少なくとも一つの元素)で表わされるリチウム複合酸化物を正極材料に用いた非水電解液二次電池を構成する。
また、請求項4に記載の発明は、請求項1に記載の発明の非水電解液二次電池に用いられる負極材料であって、炭素化後に、表面を僅かに酸化し、その後、黒鉛化する工程を有する負極材料の製造方法である。
また、請求項5に記載の発明は、請求項1に記載の発明の非水電解液二次電池に用いられる負極材料であって、光を照射して表面を磨く工程を有する負極材料の製造方法である。
また、請求項6に記載の発明は、請求項1に記載の発明の非水電解液二次電池に用いられる負極材料であって、菱面体構造を有する天然黒鉛を2000℃以上で熱処理して形成する工程を有する負極材料の製造方法である。
つぎに、本発明で用いる構造パラメータの測定する方法を説明する。
本発明で用いる構造パラメータはラマン分光法を応用して測定される。従来、炭素材料のラマンスペクトルは、黒鉛結晶質構造に由来する振動モードとして1580cm-1〜1620cm-1付近(Pba)と、非結晶質の乱層構造に由来する振動モードとして1350cm-1〜1400cm-1付近(Pbb)にピークを有する。黒鉛材料の構造の乱れが進行すると、ラマンスペクトル上では、Pba強度(高さHba)が低下し、Pbb強度(高さHbb)が増加する。Pba, Pbbの2つのピーク高さ比は、黒鉛化度を表わす。
本発明で用いる構造パラメータはラマン分光法を応用して測定される。従来、炭素材料のラマンスペクトルは、黒鉛結晶質構造に由来する振動モードとして1580cm-1〜1620cm-1付近(Pba)と、非結晶質の乱層構造に由来する振動モードとして1350cm-1〜1400cm-1付近(Pbb)にピークを有する。黒鉛材料の構造の乱れが進行すると、ラマンスペクトル上では、Pba強度(高さHba)が低下し、Pbb強度(高さHbb)が増加する。Pba, Pbbの2つのピーク高さ比は、黒鉛化度を表わす。
表面増大ラマン分光法(SERS)は、試料表面に銀、金などの金属薄膜を成膜して測定する方法で、1974年、Fleischmann らにより発明され、数nmオーダーの最表面分析とラマン感度の増大を得ることができることを特徴としている。この方法で得られる黒鉛材料のラマンスペクトルは、分析深さは異なるが、通常のラマン分光と同様の振動モードが得られる。黒鉛結晶質構造に由来する振動モードとして1580cm-1〜1620cm-1(Psa)付近と、非結晶質の乱層構造に由来する振動モードとして1350cm-1〜1400cm-1(Psb)付近にピークが得られ、Psa強度(高さHsa)とPsb強度(高さHsb)との比は粒子最表面層部分の黒鉛化度を表わす。
本発明の非水電解液二次電池は、炭素材料について表面増大ラマン分光スペクトルのピークを有する範囲を規定し、この規定に合致した炭素材料を負極に用いているので高温環境における保存での電池容量の劣化を抑制する。
また、本発明の負極材料の製造方法によれば上記規定に合致した炭素材料を負極材料として得ることができる。
本発明によると、炭素材料表面近傍の構造パラメータを規定することにより、高温保存しても劣化が少なくて信頼性が高く、且つ、容量の大きな非水電解液二次電池を提供することが可能となる。
つぎに、発明の実施の形態について説明する。
本発明に使用する炭素材料は、上述した構造パラメータを満足すればいずれの材料も使用可能であるが、その中でも特に黒鉛材料が好ましい。黒鉛材料には鉱石などから産出される天然黒鉛と、有機物を原料とし、2000℃以上の高温で熱処理して得られる人造黒鉛とがある。
本発明に使用する炭素材料は、上述した構造パラメータを満足すればいずれの材料も使用可能であるが、その中でも特に黒鉛材料が好ましい。黒鉛材料には鉱石などから産出される天然黒鉛と、有機物を原料とし、2000℃以上の高温で熱処理して得られる人造黒鉛とがある。
上記人造黒鉛を生成するに際して出発原料となる有機材料としては、石炭やピッチが代表的なものである。ピッチとしては、コールタール、エチレンボトム油、原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(真空蒸留、常圧蒸留、スチーム蒸留)、熱重縮合、抽出、化学重縮合等の操作によって得られるものや、その他木材乾留時に生成するピッチ等もある。さらにピッチとなる出発原料としてはポリ塩化ビニル樹脂、ポリビニルアセテート、ポリビニルブチラート、3,5−ジメチルフェノール樹脂等がある。これら石炭、ピッチは、炭素化の途中最高400℃程度で液状で存在し、その温度で保持することで芳香環同士が縮合、多環化して積層配向した状態となり、その後500℃程度以上の温度になると固体の炭素前駆体則ちセミコークスを形成する。このような過程を液相炭素化過程と呼び、易黒鉛化炭素の典型的な生成過程である。
その他、ナフタレン、フェナントレン、アントラセン、トリフェニレン、ピレン、ペリレン、ペンタフェン、ペンタセン等の縮合多環炭化水素化合物、その他誘導体(例えばこれらのカルボン酸、カルボン酸無水物、カルボン酸イミド等)、あるいは混合物、アセナフチレン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン、フタラジン、カルバゾール、アクリジン、フェナジン、フェナントリジン等の縮合複素環化合物、さらにはその誘導体も原料として使用可能である。
以上の有機材料を出発原料として所望の人造黒鉛を生成するには、例えば、上記有機材料を窒素等の不活性ガス気流中、300〜700℃で炭化した後、不活性ガス気流中、昇温速度毎分1〜100℃、到達温度900〜1500℃、到達温度での保持時間0〜30時間程度の条件で仮焼し、さらに2000℃以上、好ましくは2500℃以上で熱処理されることによって得られる。勿論、場合によっては炭化や仮焼操作を省略しても良い。高温で熱処理された炭素材料、あるいは黒鉛材料は粉砕、分級して負極材料に供されるが、この粉砕は炭化、仮焼、高温熱処理の前に行うことが好ましい。
さらに、より実用的な性能を有する材料としては真密度2.1g/cm3 以上であり、且つ嵩比重が0.4g/cm3 以上の黒鉛材料を用いることが好ましい。黒鉛材料は真密度が高いので、これで負極を構成すると、電極充填性が高められ、電池のエネルギー密度が向上する。また、黒鉛材料のうち特に嵩比重が0.4g/cm3 以上の黒鉛材料を用いると、電極構造が良好なものとなって、サイクル特性が改善される。これは嵩比重が大きい黒鉛材料は負極合剤層中に比較的均一に分散されることができる等のためである。さらに、嵩比重が0.4g/cm3 以上であって、且つ平均形状パラメータxave が125以下である偏平度の低い材料を用いると、さらに電極構造が良好なものとなり、さらにサイクル特性が改善される。
上述した黒鉛材料を得るには、炭素が成型体とされた状態で黒鉛化のための熱処理を行う方法が好ましく、この黒鉛化成型体を粉砕することによって、より嵩比重が高く、平均形状パラメータxave の小さい黒鉛材料が可能となる。また、黒鉛材料として嵩比重、平均形状パラメータxave が前記の範囲であって、比表面積が9m2 /g以下の黒鉛粉末を用いた場合、黒鉛粒子に付着したサブミクロンの微粒子が少なく、嵩比重が高くなり、電極構造が良好なものとなって、さらにサイクル特性が改善される。
また、レーザ回折法により求められる粒度分布において、累積10%粒径が3μm以上であり、且つ累積50%粒径が10μm以上であり、且つ累積90%粒径が70μm以下である黒鉛粉末を用いることにより安全性、信頼性の高い非水電解液二次電池が得られる。
粒度の小さい粒子は比表面積が大きくなるが、この含有率を制限することにより、比表面積の大きい粒子による過充電時などの異常発熱を抑制するとともに、粒度の大きい粒子の含有率を制限することにより、初充電時における粒子の膨張に伴う内部ショートを抑制することができ、高い安全性、信頼性を有する実用的な非水電解液二次電池が可能となる。
また、粒子の破壊強度の平均値が6.0kgf/mm2 以上である黒鉛粉末を用いることにより、電極中に電解液を含有させるための空孔を多く存在させることができ、負荷特性の良好な非水電解液二次電池が可能となる。
つぎに、本発明で規定される炭素材料の製造方法を説明する。まず、人造黒鉛について説明する。前述したように、人造黒鉛の前駆体としては、石油や石炭から得られるピッチ類が原料として用いることができる。これを400〜500℃で熱処理し、得られた炭素前駆体を、不活性雰囲気中800〜1000℃で熱処理して得られる。この時点で、粉砕し粒度調整した後、反応性ガスを用いて適当な温度を選択し、粒子表面を僅かに酸化する。その後、さらに不活性雰囲気中で高温処理し黒鉛化することにより、本発明に規定される材料を得ることができる。
反応性ガスは炭素と反応するものであればいずれの化合物も使用可能であるが、その中でも酸素、オゾン、二酸化炭素、一酸化炭素、塩素、塩酸、二酸化硫黄、NOx 等が好ましい。反応温度は、使用するガスによって適宜選択可能であるが、室温〜500℃が好ましい。また、一度黒鉛化された粒子に対して、レーザ等の強力な光を照射し、その粒子表面の凹凸を取り去り、磨くことで本発明に規定される材料を得ることができる。
つぎに、天然黒鉛について述べる。天然黒鉛を適当な条件で粉砕すると、結晶構造中に菱面体構造が出現する。これを2000℃以上で熱処理することで本発明に規定される材料を得ることができる。菱面体構造の含有率はX線回折によって求めることができるが、その含有率は、1%以上、40%以下が好ましく、5%以上、30%以下がより好ましい。
一方、前記の負極材料からなる負極と組み合わせて用いられる正極材料は特に限定されないが、十分な量のLiを含んでいることが好ましく、例えば一般式LiMO2 (ただしMはCo、Ni、Mn、Fe、Al、V、Tiの中の少なくとも1種を表す。)で表されるリチウムと遷移金属からなる複合金属酸化物やLiを含んだ層間化合物等が好適である。
本発明の非水電解液二次電池に用いる非水電解液は電解質が非水溶媒に溶解されてなる非水電解液が用いられる。電解質を溶解する非水溶媒としては、エチレンカーボネート(EC)等の比較的誘電率の高いものを主溶媒に用いることが前提となるが、本発明を完成させるにはさらに複数成分の低粘度溶媒を添加する必要がある。
高誘電率溶媒としては、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート、スルホラン類、ブチロラクトン類、バレロラクトン類等が好適である。
低粘度溶媒としては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等の対称、あるいは非対称の鎖状炭酸エステルが好適であり、さらに2種以上の低粘度溶媒を混合して用いても良好な結果が得られる。
特に負極に黒鉛材料を用いる場合、非水溶媒の主溶媒として好適なのはECがまず挙げられるが、ECの水素原子をハロゲン元素で置換した構造の化合物も好適である。また、PCのように黒鉛材料と反応性があるものの、主溶媒としてのECやECの水素原子をハロゲン元素で置換した構造の化合物等に対して、その一部を第2成分溶媒で置換することにより、良好な特性が得られる。
その第2成分溶媒としては、PC、ブチレンカーボネート, 1,2−ジメトキシエタン、1,2−ジエトキシメタン、γ−ブチロラクトン、バレロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、スルホラン、メチルスルホラン等が使用可能であり、その添加量としては10Vol %未満が好ましい。
さらに本発明を完成させるには主溶媒に対して、あるいは主溶媒と第2成分溶媒の混合溶媒に対して、第3の溶媒を添加し導電率の向上、ECの分解抑制、低温特性の改善を図るとともにリチウム金属との反応性を低め、安全性を改善するようにしても良い。第3成分の溶媒としては、まずDEC(ジエチルカーボネート)やDMC(ジメチルカーボネート)等の鎖状炭酸エステルが好適である。また、MEC(メチルエチルカーボネート)やMPC(メチルプロピルカーボネート)等の非対称鎖状炭酸エステルが好適である。
主溶媒あるいは主溶媒と第2成分溶媒の混合溶媒に対する第3成分となる鎖状炭酸エステルの混合比(主溶媒または、主溶媒と第2成分溶媒の混合溶媒:第3成分溶媒)は、容量比で15:85から40:60が好ましく、18:82から35:65がさらに好ましい。さらに、第3成分の溶媒としてはMECとDMCとの混合溶媒であってもよい。MEC−DMC混合比率は、MEC容量をm、DMC容量をdとしたときに、1/9≦d/m≦8/2 で示される範囲とすることが好ましい。
また、主溶媒あるいは主溶媒と第2成分溶媒の混合溶媒と第3成分の溶媒となるMEC−DMCの混合比率は、MEC容量をm、DMC容量をd、溶媒全量をTとしたときに、3/10≦(m+d)/T≦9/10 で示される範囲とすることが好ましく、5/10≦(m+d)/T≦8/10 で示される範囲とすることがさらに好ましい。
このような非水溶媒に溶解する電解質としては、この主の電池に用いられるものであればいずれも1種以上混合し使用可能である。例えばLiPF6 が好適であるが、その他LiClO4 、LiAsF6 、LiBF4 、LiB(C6 H5 )4 、CH3 SO3 Li、CF3 SO3 Li、LiN(CF3 SO2 )2 、LiC(CF3 SO2 )3 、LiCl、LiBr等も使用可能である。
以下に、本発明に係わる非水電解液二次電池について、図1を参照し、その実施例1〜実施例5、および、これと比較するための比較例1〜比較例4について説明する。尚、本発明はこれらの例に限定されるものではない。
<実施例1>
負極1はつぎのようにして作製した。石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体と酸素ガスを密閉し、200℃で20時間処理した。その後、これを不活性雰囲気中2950℃で1時間熱処理し、試料を得た。
負極1はつぎのようにして作製した。石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体と酸素ガスを密閉し、200℃で20時間処理した。その後、これを不活性雰囲気中2950℃で1時間熱処理し、試料を得た。
このようにして得た炭素材料粉末を90重量部、結着剤としてポリフッ化ビニリデン(PVDF)10重量部を混合し、負極合剤を調製した。この負極合剤を、溶剤であるN−メチルピロリドンに分散させてスラリー(ペースト状)にした。負極集電体として厚さ10μmの帯状の銅箔を用い、この集電体の両面に負極合剤スラリーを塗布し、乾燥させた後圧縮成型して帯状の負極1を作製した。
正極2はつぎのようにして作製した。
炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、900℃の空気中で5時間焼成してLiCoO2 を得た。正極活物質としてこのLiCoO2 を91重量部、導電剤としてグラファイト6重量部、結着剤としてポリフッ化ビニリデン3重量部を混合し、正極合剤とした。この正極合剤をN−メチルピロリドンに分散させてスラリー(ペースト状)にした。正極集電体として厚さ20μmの帯状のアルミニウム箔を用い、この集電体の両面に均一に正極合剤スラリーを塗布し、乾燥させた後圧縮成型して帯状の正極2を作製した。
炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、900℃の空気中で5時間焼成してLiCoO2 を得た。正極活物質としてこのLiCoO2 を91重量部、導電剤としてグラファイト6重量部、結着剤としてポリフッ化ビニリデン3重量部を混合し、正極合剤とした。この正極合剤をN−メチルピロリドンに分散させてスラリー(ペースト状)にした。正極集電体として厚さ20μmの帯状のアルミニウム箔を用い、この集電体の両面に均一に正極合剤スラリーを塗布し、乾燥させた後圧縮成型して帯状の正極2を作製した。
上述したようにして作製した負極1および正極2を厚さ25μmの微多孔性ポリプロピレンフィルムからなるセパレータ3を負極1、セパレータ3、正極2、セパレータ3の順に積層し、これをセンターピン14を中心にして多数回巻回し、そのセパレータ3の最終端部をテープで固定して渦巻型の電極素子を作製した。
このようにして作製した電極素子を電池缶5内に収納し、電極素子の上下両面には絶縁板4を配設する。絶縁テープを張った正極リード13を正極集電体11から導出して電池蓋7に導通する安全弁装置8に、また、負極リード12を負極集電体10から導出して電池缶5に溶接した。電池缶5は外径18mm(内径17.38mm、厚さ0.31mm)、高さ65mmの鉄製である。
この電池缶5の中に、エチレンカーボネートとジメチルカーボネートとの等容量混合溶媒中にLiPF6 を1モル/リットルの割合で溶解した電解液を注入した。ついで、封口ガスケット6 を介して電池缶5をかしめることにより、電池蓋7を固定し、電池内の気密性を保持させて非水電解液二次電池を作成した。
<実施例2>
アセナフチレンピッチを原料に用い、400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
アセナフチレンピッチを原料に用い、400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<実施例3>
アセナフチレンピッチに硫酸を少量添加して、これを400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
アセナフチレンピッチに硫酸を少量添加して、これを400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<実施例4>
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級した。これを流動させながら、大気中にてその表面にレーザ光を十分に照射し、その後、不活性雰囲気中2600℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級した。これを流動させながら、大気中にてその表面にレーザ光を十分に照射し、その後、不活性雰囲気中2600℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<実施例5>
純度99%以上とした天然黒鉛を、ジェットミルにて粉砕しながら風力分級した。X線回折で測定したところ、菱面体構造が20%含有していることが判明した。これを不活性雰囲気中2700℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
純度99%以上とした天然黒鉛を、ジェットミルにて粉砕しながら風力分級した。X線回折で測定したところ、菱面体構造が20%含有していることが判明した。これを不活性雰囲気中2700℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<比較例1>
石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中2950℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中2950℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<比較例2>
アセナフチレンピッチを原料に用いて、400℃にて熱処理し、メソフェース小球体の含有率が50%の時点で、マトリックスと小球体を分離させ、取り出した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中2900℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
アセナフチレンピッチを原料に用いて、400℃にて熱処理し、メソフェース小球体の含有率が50%の時点で、マトリックスと小球体を分離させ、取り出した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中2900℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<比較例3>
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級し、試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
<比較例4>
純度99%以上の天然黒鉛を、ジェットミルにて粉砕しながら風力分級して試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
純度99%以上の天然黒鉛を、ジェットミルにて粉砕しながら風力分級して試料を得た。これを負極材料に用いる以外は、実施例1と同様に非水電解液二次電池を作成した。
上述したようにして作成した実施例1〜実施例5、および、比較例1〜比較例4の電池を、最大電圧4.2V、定電流1A、充電時間3時間の条件で充電し、これを用いて、45℃の雰囲気に1ヶ月間保存した。この45℃とは電子機器の内部温度を想定したものである。その後、放電して保存後の放電容量を測定し、再度前記条件で充電する。その後、1Aで放電してこの時の放電容量を測定し、回復容量を求めた。この回復容量を保存後の放電容量で除した値を容量回復率と定義する。これを表1に示す。
実施例1〜5、比較例1〜4の各試料について、波長514、5nmのアルゴンレーザを利用し、波数分解能4cm-1のラマン分光器で測定したラマンスペクトル、および、同様の測定条件で、銀を10nmの厚さに蒸着した試料のSERSスペクトルからRG、Pbb、Pba、Psb、Psaを求め、これも表1に示した。
これらのデータより、図2に容量回復率とRGの関係を示した。同図よりRGが高いほど容量回復率が高いことがわかる。特に、RG=4.5以上では、容量回復率は、85%以上に達しており、高温環境における保存時の容量劣化が低く抑えられることがわかる。
また、図3に容量回復率とPsbの関係を示した。同図よりPsbが高いほど容量回復率が高いことがわかる。特に、Psb=1365以上では、容量回復率は85%以上に達しており、高温環境における保存時の容量劣化が低く抑えられることがわかる。
以上詳細に説明したように、炭素材料の構造パラメータである、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gb と、表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)を4.5以上に規定することで、これを負極に用いた非水電解液二次電池の高温環境における保存時の容量劣化が抑制される。また、アルゴンレーザ光を用いた表面増大ラマン分光スペクトルにおいて、1365cm-1以上の範囲にピークを有する材料を負極に用いることで、同様に高温環境における保存時の容量劣化が抑制される。
1…負極、2…正極、3…セパレータ、4…絶縁板、5…電池缶、6…封口ガスケット、7…電池蓋、8…安全弁装置、10…負極集電体、11…正極集電体、12…負極リード、13…正極リード。
Claims (6)
- 波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、炭素材料に銀を10nmの厚さで蒸着した場合の表面増大ラマン分光スペクトルにおいて、1365cm-1以上の範囲にピークを有する炭素材料を負極に用いた非水電解液二次電池。
- 前記炭素材料は黒鉛である請求項1記載の非水電解液二次電池。
- LiMxOy(MはCo,Ni,Mn,Fe,Cr,Al,Tiの中から選ばれた少なくとも一つの元素)で表わされるリチウム複合酸化物を正極材料に用いた請求項1記載の非水電解液二次電池。
- 請求項1に記載の非水電解液二次電池に用いられる負極材料であって、炭素化後に、表面を僅かに酸化し、その後、黒鉛化する工程を有する負極材料の製造方法。
- 請求項1に記載の非水電解液二次電池に用いられる負極材料であって、光を照射して表面を磨く工程を有する負極材料の製造方法。
- 請求項1に記載の非水電解液二次電池に用いられる負極材料であって、菱面体構造を有する天然黒鉛を2000℃以上で熱処理して形成する工程を有する負極材料の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008121222A JP2008226854A (ja) | 2008-05-07 | 2008-05-07 | 非水電解液二次電池および負極材料の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008121222A JP2008226854A (ja) | 2008-05-07 | 2008-05-07 | 非水電解液二次電池および負極材料の製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05445999A Division JP4147671B2 (ja) | 1999-03-02 | 1999-03-02 | 非水電解液二次電池および負極材料の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012016172A Division JP5445797B2 (ja) | 2012-01-30 | 2012-01-30 | 非水電解液二次電池および非水電解液二次電池用黒鉛材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008226854A true JP2008226854A (ja) | 2008-09-25 |
Family
ID=39845178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008121222A Pending JP2008226854A (ja) | 2008-05-07 | 2008-05-07 | 非水電解液二次電池および負極材料の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008226854A (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01257198A (ja) * | 1988-04-06 | 1989-10-13 | Idemitsu Petrochem Co Ltd | ダイヤモンド状炭素膜のコーディング方法 |
JPH0839872A (ja) * | 1994-07-27 | 1996-02-13 | Mitsubishi Electric Corp | プラテンローラとその製造方法 |
JPH08287910A (ja) * | 1995-04-10 | 1996-11-01 | Hitachi Ltd | 非水系二次電池および黒鉛粉末製造方法 |
JPH103922A (ja) * | 1996-06-14 | 1998-01-06 | Nippon Carbon Co Ltd | リチウム電池負極材料用炭素または黒鉛粉末 の製造方法 |
JPH1067952A (ja) * | 1996-05-10 | 1998-03-10 | Ciba Specialty Chem Holding Inc | 顔料組成物 |
JPH10255792A (ja) * | 1996-02-22 | 1998-09-25 | Sony Corp | 非水電解液二次電池用炭素質負極材料の製造方法 |
JPH10326611A (ja) * | 1997-03-28 | 1998-12-08 | Nippon Steel Corp | リチウム二次電池負極用炭素材料 |
JP2000090423A (ja) * | 1998-09-11 | 2000-03-31 | Nec Corp | 磁気ヘッドスライダの製造方法 |
-
2008
- 2008-05-07 JP JP2008121222A patent/JP2008226854A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01257198A (ja) * | 1988-04-06 | 1989-10-13 | Idemitsu Petrochem Co Ltd | ダイヤモンド状炭素膜のコーディング方法 |
JPH0839872A (ja) * | 1994-07-27 | 1996-02-13 | Mitsubishi Electric Corp | プラテンローラとその製造方法 |
JPH08287910A (ja) * | 1995-04-10 | 1996-11-01 | Hitachi Ltd | 非水系二次電池および黒鉛粉末製造方法 |
JPH10255792A (ja) * | 1996-02-22 | 1998-09-25 | Sony Corp | 非水電解液二次電池用炭素質負極材料の製造方法 |
JPH1067952A (ja) * | 1996-05-10 | 1998-03-10 | Ciba Specialty Chem Holding Inc | 顔料組成物 |
JPH103922A (ja) * | 1996-06-14 | 1998-01-06 | Nippon Carbon Co Ltd | リチウム電池負極材料用炭素または黒鉛粉末 の製造方法 |
JPH10326611A (ja) * | 1997-03-28 | 1998-12-08 | Nippon Steel Corp | リチウム二次電池負極用炭素材料 |
JP2000090423A (ja) * | 1998-09-11 | 2000-03-31 | Nec Corp | 磁気ヘッドスライダの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5819148B2 (ja) | 二次電池 | |
CA2122092C (en) | Secondary battery having non-aqueous electrolyte | |
JP2001332263A (ja) | 二次電池および炭素系負極材料の製造方法 | |
JP3436033B2 (ja) | 非水電解液二次電池 | |
JP2003346907A (ja) | 非水電解質二次電池 | |
JP3311104B2 (ja) | リチウム二次電池 | |
JP2010251126A (ja) | 非水電解質二次電池用負極材、並びにそれを用いた負極及び非水電解質二次電池 | |
US7658775B2 (en) | Method for making negative electrode component including a carbonaceous material for use in a nonaqueous secondary battery | |
JPH07192724A (ja) | 非水電解液二次電池 | |
JPH11317229A (ja) | リチウム二次電池用負極活物質,リチウム二次電池およびリチウム二次電池の負極用活物質の製造方法 | |
US6656637B2 (en) | Carbon-based active material for rechargeable lithium battery and method of preparing carbon-based active material | |
US5639575A (en) | Non-aqueous liquid electrolyte secondary battery | |
JP2003346804A (ja) | 負極材料、非水電解質電池及び負極材料の製造方法 | |
JP2003272630A (ja) | 負極活物質の製造方法 | |
JP4150087B2 (ja) | 非水電解液二次電池 | |
JP2001006730A (ja) | 非水電解質電池 | |
JP3421877B2 (ja) | 非水電解液二次電池 | |
US6083646A (en) | Non-aqueous electrolyte secondary battery and method for producing cathode material | |
JP2014026991A (ja) | 二次電池および二次電池用黒鉛材料 | |
JPH09199087A (ja) | 二次電池 | |
JPH07335262A (ja) | 非水電解液二次電池 | |
JP2001148241A (ja) | 非水電解質電池 | |
JP5445797B2 (ja) | 非水電解液二次電池および非水電解液二次電池用黒鉛材料 | |
JP3787943B2 (ja) | 非水電解液二次電池 | |
JPH07320785A (ja) | 非水電解液二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120321 |