JP2008226828A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008226828A
JP2008226828A JP2008023599A JP2008023599A JP2008226828A JP 2008226828 A JP2008226828 A JP 2008226828A JP 2008023599 A JP2008023599 A JP 2008023599A JP 2008023599 A JP2008023599 A JP 2008023599A JP 2008226828 A JP2008226828 A JP 2008226828A
Authority
JP
Japan
Prior art keywords
secondary battery
protection element
safety protection
heat collecting
collecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008023599A
Other languages
Japanese (ja)
Inventor
Shusaku Goto
周作 後藤
Takashi Yokoyama
敬士 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2008023599A priority Critical patent/JP2008226828A/en
Publication of JP2008226828A publication Critical patent/JP2008226828A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of, in a non-aqueous electrolyte battery with a currently further improved high energy density, causing temperature detection to be delayed in rapid temperature rising inside a pole plate group to thereby possibly make the radiation insufficient at the time of over-charge state or the like due to unusual use, malfunction of a protecting circuit, or the like. <P>SOLUTION: The non-aqueous electrolyte battery is provided with a battery case 11 housing therein a pole plate group 27 in which a positive pole plate 14 and a negative pole plate 16, both of which are band-like, are wound through a separator 15, and a sealing member 12 sealing an opening of the battery case 11. A safety protection element 20 operable when sensing the temperature is electrically connected to the non-aqueous electrolyte battery. The safety protection element 20 is configured to contact a heat collection member 21 for heat collection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解液二次電池に関し、特に安全保護素子が効果的に作動する安全性に優れた非水電解液二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in safety in which a safety protection element operates effectively.

近年、携帯型情報機器の小型軽量化、高性能化の急速な進展により、その駆動電源として4V級の高い作動電圧を有し、高エネルギー密度化に適した非水電解液二次電池の開発・実用化が積極的に行われている。   In recent years, due to the rapid progress of miniaturization, weight reduction and high performance of portable information devices, the development of non-aqueous electrolyte secondary batteries that have a high operating voltage of 4V as the driving power source and are suitable for high energy density・ Practical application is being carried out.

非水電解液二次電池の正極活物質としては、層状岩塩構造を有するLiCoO2、LiNiO2、スピネル構造を有するLiMn24等のリチウム含有遷移金属化合物が用いられており、負極活物質には、天然黒鉛、球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が採用されている。 As the positive electrode active material of the non-aqueous electrolyte secondary battery, lithium-containing transition metal compounds such as LiCoO 2 having a layered rock salt structure, LiNiO 2 and LiMn 2 O 4 having a spinel structure are used. Employs carbon materials such as natural graphite, spherical and fibrous artificial graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon).

そして、更なる高エネルギー密度化を実現するため、正極活物質の高密度充填化、正極活物質の受け入れ性に優れた負極活物質の採用、セパレータの薄膜化の他、機構部品の最適化による取り組み等がなされている。   In order to achieve higher energy density, the positive electrode active material is densely packed, the negative electrode active material with excellent acceptability of the positive electrode active material is adopted, the separator is made thinner, and the mechanical parts are optimized. Efforts are being made.

しかし、一方で昨今の更なる高エネルギー密度化は、異常な使用や保護回路の誤作動等により過充電状態等になった場合、その発熱量が大きく安全性の低下を招く場合があり、高エネルギー密度と優れた安全性の両立が難しくなっている。   However, on the other hand, the recent increase in energy density is that if the battery is overcharged due to abnormal use or malfunction of the protection circuit, etc. It is difficult to achieve both energy density and excellent safety.

このような課題を解決するため、非水電解液二次電池の極板群に高熱伝導率シートを捲装して極板群の放熱性を改善し、非水電解液二次電池の高効率放電時の温度上昇を抑制することで放電特性の向上を図る方法が開示されている(例えば、特許文献1参照)。   In order to solve such problems, a high thermal conductivity sheet is installed on the electrode plate group of the non-aqueous electrolyte secondary battery to improve the heat dissipation of the electrode plate group, and the high efficiency of the non-aqueous electrolyte secondary battery is improved. A method of improving discharge characteristics by suppressing a temperature rise during discharge is disclosed (for example, see Patent Document 1).

また、金属リチウムを活物質とする負極板と正極板とをセパレータを介して渦巻状に捲回された極板群と非水電解液とが容器内に封入された円筒型非水電解液二次電池において、極板群の発熱を検出して円筒型非水電解液二次電池内の電流を遮断するような温度ヒューズを捲回された極板群の中心に存在する円筒状の空間部に挿入し、この温度ヒューズを介して充放電電流が流れるようにすることによって、円筒型非水電解液二次電池の内部温度が急上昇しても温度検出の遅れなしに充放電電流が即座に遮断される方法が開示されている(例えば、特許文献2参照)。
特開平10−40959号公報 特開平5−266877号公報
Further, a cylindrical non-aqueous electrolyte solution in which a negative electrode plate and a positive electrode plate made of metallic lithium as an active material are wound in a spiral shape through a separator and a non-aqueous electrolyte solution are enclosed in a container. In the secondary battery, a cylindrical space portion located in the center of the electrode plate group wound with a temperature fuse that detects heat generation in the electrode plate group and interrupts the current in the cylindrical nonaqueous electrolyte secondary battery The charging / discharging current flows immediately through the temperature fuse without any delay in temperature detection even if the internal temperature of the cylindrical non-aqueous electrolyte secondary battery suddenly rises. A method of blocking is disclosed (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 10-40959 Japanese Patent Laid-Open No. 5-266877

しかしながら、特許文献1のような非水電解液二次電池の極板群に高熱伝導率シートを捲装して極板群の放熱性を改善する方法では、昨今の更なる高エネルギー密度化を図った非水電解液二次電池において、異常な使用や保護回路の誤作動等により過充電状態になった場合等、極板群の内部の急激な温度上昇に対して温度検出が遅れ、放熱が不十分となるおそれがあった。   However, in the method of improving the heat dissipation of the electrode plate group by installing a high thermal conductivity sheet on the electrode plate group of the non-aqueous electrolyte secondary battery as in Patent Document 1, the recent further increase in energy density is achieved. If the non-aqueous electrolyte secondary battery is overcharged due to abnormal use or malfunction of the protection circuit, etc., the temperature detection will be delayed due to a sudden rise in temperature inside the electrode plate group, and heat will be dissipated. May become insufficient.

また、特許文献2のような極板群の中心に存在する円筒状の空間部に挿入した温度ヒューズを介して充放電電流が流れるようにする方法では、過充電状態等になった場合の発熱時に発生するガスの排出経路がこの温度ヒューズにより塞がれてしまい、極板群の空間部
が塞がった状態になる可能性が高く、その結果、非水電解液二次電池の内圧が異常に高くなるおそれがあった。
Further, in the method of allowing charge / discharge current to flow through a temperature fuse inserted in a cylindrical space portion existing at the center of the electrode plate group as in Patent Document 2, heat generation in the case of an overcharge state or the like There is a high possibility that the discharge path of the generated gas will be blocked by this thermal fuse, and the space of the electrode plate group will be blocked, and as a result, the internal pressure of the non-aqueous electrolyte secondary battery will be abnormal There was a risk of high.

本発明は上記従来の問題点を解決するものであり、温度を感知して作動する安全保護素子と集熱する集熱部材を接触することにより、異常時等に非水電解液二次電池内で発生した熱を効率的に安全保護素子に伝えるようにするものである。この構成により、安全保護素子が効果的に作動し、高エネルギー密度でかつ安全性に優れた非水電解液二次電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and by contacting a safety protection element that operates by sensing temperature and a heat collecting member that collects heat, the inside of the non-aqueous electrolyte secondary battery is in an abnormal state or the like. The heat generated in is efficiently transmitted to the safety protection element. With this configuration, an object of the present invention is to provide a nonaqueous electrolyte secondary battery in which a safety protection element operates effectively, has a high energy density, and is excellent in safety.

上記課題を解決するために本発明の非水電解液二次電池は、帯状の正極板と負極板とをセパレータを介して捲回してなる極板群と非水電解液を内部に収納した電池ケースと、この電池ケースの開口部を密閉する封口体を備え、温度を感知して作動する安全保護素子を電気的に接続した非水電解液二次電池であって、前記安全保護素子と集熱する集熱部材を接触させたことを特徴とする。   In order to solve the above problems, the non-aqueous electrolyte secondary battery of the present invention is a battery in which a group of electrode plates formed by winding a belt-like positive electrode plate and a negative electrode plate through a separator and a non-aqueous electrolyte solution are contained therein. A non-aqueous electrolyte secondary battery comprising a case and a sealing body that seals the opening of the battery case and electrically connecting a safety protection element that operates by sensing temperature, A heat collecting member to be heated is brought into contact.

この構成により、非水電解液二次電池内の急激な温度上昇を効率的に安全保護素子に伝えるという作用が達成できるため、この急激な温度上昇に対しても安全保護素子が早く効果的に作動し、高エネルギー密度の非水電解液二次電池においても優れた安全性を確保できる。   With this configuration, it is possible to achieve the effect of efficiently transmitting the rapid temperature rise in the non-aqueous electrolyte secondary battery to the safety protection element. Therefore, the safety protection element can quickly and effectively cope with this sudden temperature rise. It operates, and excellent safety can be secured even in a non-aqueous electrolyte secondary battery having a high energy density.

本発明によれば、温度を感知して作動する安全保護素子と集熱する集熱部材を接触することにより、異常な使用や保護回路の誤作動等により過充電状態になった場合等の電池内の急激な温度上昇を効率的に安全保護素子に伝えることが可能となるため、安全保護素子が効果的に作動し、高エネルギー密度の非水電解液二次電池においても優れた安全性を確保する効果が得られる。   According to the present invention, a battery in the case of an overcharged state due to abnormal use or malfunction of a protection circuit by contacting a heat collecting member that collects heat with a safety protection element that operates by sensing temperature It is possible to efficiently transmit the sudden temperature rise to the safety protection element, so that the safety protection element operates effectively, and excellent safety is achieved even in non-aqueous electrolyte secondary batteries with high energy density. The effect to ensure is acquired.

本発明においては、帯状の正極板と負極板とをセパレータを介して捲回してなる極板群と非水電解液を内部に収納した電池ケースと、この電池ケースの開口部を密閉する封口体を備え、温度を感知して作動する安全保護素子を電気的に接続した非水電解液二次電池であって、前記安全保護素子と集熱する集熱部材を接触させた構成を有する。   In the present invention, an electrode plate group formed by winding a belt-like positive electrode plate and a negative electrode plate through a separator, a battery case containing a non-aqueous electrolyte therein, and a sealing body that seals the opening of the battery case A non-aqueous electrolyte secondary battery electrically connected to a safety protection element that operates by sensing temperature, and has a configuration in which a heat collecting member that collects heat is in contact with the safety protection element.

これにより、非水電解液二次電池の極板群の発熱を集熱する集熱部材が電池の急激な温度上昇を効率的に安全保護素子に伝える作用を果たし、高エネルギー密度の非水電解液二次電池においても優れた安全性を確保できる効果が得られる。   As a result, the heat collecting member that collects the heat generated by the electrode plate group of the non-aqueous electrolyte secondary battery effectively transmits the rapid temperature rise of the battery to the safety protection element, thereby achieving high energy density non-aqueous electrolysis. The effect which can ensure the outstanding safety | security also in a liquid secondary battery is acquired.

また、前記安全保護素子を電池ケースの外側面に配置し、その上面から前記安全保護素子を覆うように集熱部材を設けた構成とすることができる。   The safety protection element may be disposed on the outer surface of the battery case, and a heat collecting member may be provided so as to cover the safety protection element from the upper surface.

これにより、非水電解液二次電池の組立て後に安全保護素子と集熱部材を接触して構成できるため、非水電解液二次電池の組立て工程を大きく変更する必要がなく比較的容易に構成できる効果が得られる。   As a result, the safety protection element and the heat collecting member can be configured in contact with each other after the non-aqueous electrolyte secondary battery is assembled, so that the configuration of the non-aqueous electrolyte secondary battery does not need to be greatly changed and the configuration is relatively easy. The effect that can be obtained.

また、前記集熱部材を電池ケースの外側面に接合し、その上面から前記安全保護素子を配置することができる。   Moreover, the said heat collection member can be joined to the outer surface of a battery case, and the said safety protection element can be arrange | positioned from the upper surface.

これにより、さらに容易に構成できる効果が得られる。   Thereby, the effect which can be comprised further easily is acquired.

また、前記安全保護素子を電池ケースの内側面に配置し、その安全保護素子の表面を覆うように集熱部材を設けた構成とすることができる。   The safety protection element may be disposed on the inner surface of the battery case, and a heat collecting member may be provided so as to cover the surface of the safety protection element.

これにより、非水電解液二次電池の急激な温度上昇をより効率的に安全保護素子に伝える効果が得られる。   Thereby, the effect of transmitting the rapid temperature rise of a non-aqueous-electrolyte secondary battery to a safeguard element more efficiently is acquired.

また、前記安全保護素子および集熱部材をセパレータと正極板または負極板との間に挟持して設けることができる。   Further, the safety protection element and the heat collecting member can be provided by being sandwiched between the separator and the positive electrode plate or the negative electrode plate.

これにより、正極板と負極板を有する極板群の急激な発熱を直接伝えることができるため、安全保護素子の作動精度をさらに高める効果が得られる。   Thereby, since the rapid heat_generation | fever of the electrode group which has a positive electrode plate and a negative electrode plate can be directly transmitted, the effect which further raises the operating precision of a safety protection element is acquired.

また、前記極板群の捲き始め部の空間部に金属製の筒状の集熱部材を挿入し、この筒状の集熱部材の内側面に安全保護素子を設けることができる。   Further, a metal cylindrical heat collecting member can be inserted into the space at the beginning of the electrode plate group, and a safety protection element can be provided on the inner surface of the cylindrical heat collecting member.

これにより、電池ケース内の空間を有効に利用できるため、活物質の充填量を増すことが可能となり、非水電解液二次電池の高容量に繋がる効果が得られる。さらに、非水電解液二次電池の極板群が発熱した際に発生するガスをこの金属製の筒状の集熱部材を通して極板群の下方から上方へ排出できる効果が得られる。   Thereby, since the space in the battery case can be used effectively, it is possible to increase the filling amount of the active material, and an effect that leads to a high capacity of the non-aqueous electrolyte secondary battery can be obtained. Furthermore, the gas generated when the electrode plate group of the non-aqueous electrolyte secondary battery generates heat can be discharged from the lower side to the upper side of the electrode plate group through the metallic cylindrical heat collecting member.

また、前記筒状の集熱部材にスリットを設けることができる。   Moreover, a slit can be provided in the cylindrical heat collecting member.

このスリットにより、金属製の筒状の集熱部材の中に安全保護素子を配置してもガスの通気性を確保できる効果が得られる。   This slit provides an effect of ensuring gas permeability even when a safety protection element is arranged in a metal cylindrical heat collecting member.

また、前記スリットを設けた筒状の集熱部材の下部に安全保護素子を設けることができる。   Moreover, a safety protection element can be provided in the lower part of the cylindrical heat collecting member provided with the slit.

このように筒状の集熱部材の下部に安全保護素子を設ければ、極板群のほぼ中央より上方で発生したガスは安全保護素子に塞がれることがないため、極板群の下方から上方へのガスの排出がスムーズになる効果が得られる。   If the safety protection element is provided at the lower part of the cylindrical heat collecting member in this way, the gas generated above substantially the center of the electrode plate group is not blocked by the safety protection element. As a result, the effect of smooth gas discharge from the top to the bottom can be obtained.

また、前記安全保護素子を電池ケースの上面または底面に配置し、この安全保護素子を電池ケースから突出する集熱部材により保持させることができる。   Moreover, the said safety protection element can be arrange | positioned on the upper surface or bottom face of a battery case, and this safety protection element can be hold | maintained by the heat collecting member which protrudes from a battery case.

これによれば、比較的容易に安全保護素子を保持できる効果が得られる。   According to this, the effect which can hold | maintain a safety protection element comparatively easily is acquired.

また、前記集熱部材が、前記負極板と前記電池ケースとを電気的に接続する負極リードであり、この負極リードの熱伝導率を、前記正極板と前記封口体とを電気的に接続する正極リードの熱伝導率よりも小さくすることが望ましい。   Further, the heat collecting member is a negative electrode lead that electrically connects the negative electrode plate and the battery case, and electrically connects the positive electrode plate and the sealing body with the thermal conductivity of the negative electrode lead. It is desirable to make it smaller than the thermal conductivity of the positive electrode lead.

このように負極リードを集熱部材とし、正極リードの熱伝導率よりも小さくすれば、異常な使用や保護回路の誤作動等により過充電状態になった場合や、非水電解液二次電池が内部短絡するようなことがあっても、電池内の電流によって負極リードを最初に発熱させることができ、それを安全保護素子が直接感知できるため、効果的に安全保護素子を作動させることができる。   In this way, if the negative electrode lead is used as a heat collecting member and is made smaller than the thermal conductivity of the positive electrode lead, it may become overcharged due to abnormal use or malfunction of the protective circuit, or non-aqueous electrolyte secondary battery Even if an internal short circuit occurs, the negative electrode lead can be heated first by the current in the battery, and it can be sensed directly by the safety protection element, effectively operating the safety protection element. it can.

また、前記負極リードの熱伝導率が、15〜113W/(m・K)であれば、非水電解液二次電池が内部短絡した場合等、電池内に大電流が瞬時に流れた場合に負極リードが発熱し易くなる。通常使用時においても問題はない。   In addition, when the thermal conductivity of the negative electrode lead is 15 to 113 W / (m · K), when a large current instantaneously flows in the battery, such as when the non-aqueous electrolyte secondary battery is internally short-circuited. The negative electrode lead tends to generate heat. There is no problem even during normal use.

また、前記負極リードの物質がニッケルであれば、前記の熱伝導率を有する集熱部材として好適に用いることができる。また、薄い平板状のリード線として用いる場合に電池内に構成し易い。   Further, if the material of the negative electrode lead is nickel, it can be suitably used as a heat collecting member having the thermal conductivity. Moreover, when using as a thin flat lead wire, it is easy to comprise in a battery.

また、前記負極リードの物質が、鉄−ニッケル合金であっても、前記の熱伝導率を有する集熱部材として好適に用いることができる。耐食性についても問題がない。また、ニッケルの含有量をコントロールすることによって、機械的な強度、柔軟性をコントロールできるため、電池の大きさや形状に適宜あわせることができる。また、鉄、ニッケルの他に銅、クロムを加えても良い。   Moreover, even if the material of the negative electrode lead is an iron-nickel alloy, it can be suitably used as a heat collecting member having the thermal conductivity. There is no problem with corrosion resistance. Further, since the mechanical strength and flexibility can be controlled by controlling the nickel content, it can be appropriately adjusted to the size and shape of the battery. In addition to iron and nickel, copper and chromium may be added.

また、前記負極リードの物質が、鉄にニッケルめっきした金属であっても良い。このように鉄にニッケルめっきした金属であれば、コスト効果が得られる。鉄にニッケルめっきした金属を焼鈍して用いても良い。このように焼鈍して用いれば、鉄とニッケルの界面に鉄−ニッケルの合金層を形成することができるため耐食性を向上できる。   Further, the material of the negative electrode lead may be a metal obtained by nickel plating on iron. Thus, if it is the metal which plated iron to nickel, a cost effect will be acquired. You may anneal and use the metal which plated nickel with iron. Thus, if it anneals and uses it, since an iron-nickel alloy layer can be formed in the interface of iron and nickel, corrosion resistance can be improved.

また、前記正極板と前記封口体とを電気的に接続する正極リードの熱伝導率が、236W/(m・K)以上であることが望ましい。このように正極リードの熱伝導率を規定すれば、負極リードの熱伝導率との差が顕著になり、非水電解液二次電池が内部短絡し、電池内に瞬時に大電流が流れた場合に、負極リードに集中して発熱させることができる。また、正極リードの物質としてアルミニウムを用いれば、前記の熱伝導率を有する部材として好適に用いることができる。   Moreover, it is desirable that the thermal conductivity of the positive electrode lead that electrically connects the positive electrode plate and the sealing body is 236 W / (m · K) or more. If the thermal conductivity of the positive electrode lead is defined in this way, the difference from the thermal conductivity of the negative electrode lead becomes significant, the non-aqueous electrolyte secondary battery is internally short-circuited, and a large current flows instantaneously in the battery. In some cases, heat can be generated concentrated on the negative electrode lead. In addition, if aluminum is used as the material of the positive electrode lead, it can be suitably used as a member having the above thermal conductivity.

以下、本発明の非水電解液二次電池について、図面を参照して説明する。図1は本発明の角型非水電解液二次電池の一部切り欠き斜視図である。   Hereinafter, the nonaqueous electrolyte secondary battery of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view of a prismatic nonaqueous electrolyte secondary battery of the present invention.

図1に示すように、正極板14と負極板16とがセパレータ15を介して楕円状に捲回した扁平形の極板群27が、角型の電池ケース11に収容され、封口体12が内部端子に電気的に接続されている。封口体12と電池ケース11をレーザー溶接した後、封口体12に設けた注液孔から非水電解液を注液し、次いで注液栓をレーザーで封口して密閉している。   As shown in FIG. 1, a flat electrode plate group 27 in which a positive electrode plate 14 and a negative electrode plate 16 are wound elliptically with a separator 15 therebetween is accommodated in a rectangular battery case 11, and a sealing body 12 is formed. It is electrically connected to the internal terminal. After the sealing body 12 and the battery case 11 are laser welded, a non-aqueous electrolyte is injected from a liquid injection hole provided in the sealing body 12, and then the liquid injection stopper is sealed with a laser to be sealed.

集熱部材21は電池ケース11の最大幅広面22と安全保護素子20とを連続的に覆っている。安全保護素子20にはリード23が接続されており、このリード23の一方は外部端子29に電気的に接続されている。外部端子29に接続したリード23には電池ケース11と絶縁するために絶縁テープ25が貼られている。   The heat collecting member 21 continuously covers the widest surface 22 of the battery case 11 and the safety protection element 20. A lead 23 is connected to the safety protection element 20, and one of the leads 23 is electrically connected to an external terminal 29. An insulating tape 25 is attached to the lead 23 connected to the external terminal 29 in order to insulate it from the battery case 11.

正極板14は、アルミニウム製の箔やラス加工やエッチング処理された箔からなる正極集電体13の片側または両面に正極活物質と結着剤及び導電剤を溶剤に混練分散させたペーストを塗着、乾燥、圧延して作製している。正極板14の厚みは100μm〜200μmの厚みで、柔軟性があることが好ましい。   The positive electrode plate 14 is coated with a paste in which a positive electrode active material, a binder and a conductive agent are kneaded and dispersed in a solvent on one side or both sides of a positive electrode current collector 13 made of an aluminum foil, a lathed or etched foil. It is made by wearing, drying and rolling. The thickness of the positive electrode plate 14 is preferably 100 μm to 200 μm and preferably flexible.

正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。 As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron, and vanadium and lithium, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 <x <1), LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、分散媒に混練分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴ
ム(SBR)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体やポリテトラフルオロエチレン樹脂のディスパージョンが好ましい。
The binder is not particularly limited as long as it can be kneaded and dispersed in a dispersion medium. For example, a fluorine binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic A polymer, a vinyl polymer or the like can be used alone or as a mixture or copolymer of two or more kinds. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and a dispersion of polytetrafluoroethylene resin are preferable.

導電剤としてはアセチレンブラック、グラファイト、炭素繊維等を単独、或いは二種類以上の混合物が好ましく、また必要に応じて増粘剤を加えることができ、増粘剤としてはエチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。   As the conductive agent, acetylene black, graphite, carbon fiber or the like is preferably used alone or as a mixture of two or more kinds, and a thickener can be added as necessary. As the thickener, an ethylene-vinyl alcohol copolymer is used. Carboxymethylcellulose, methylcellulose and the like are preferable.

分散媒としては、結着剤が溶解可能な溶剤が適切で、有機系結着剤の場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を単独またはこれらを混合した混合溶剤が好ましく、水系結着剤の場合は水または温水が好ましい。   As the dispersion medium, a solvent in which the binder can be dissolved is suitable. In the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexa An organic solvent such as methylsulfuramide, tetramethylurea, acetone or methyl ethyl ketone is preferably used alone or as a mixed solvent thereof. In the case of an aqueous binder, water or warm water is preferred.

また、上記ペーストの混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。   In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary when the paste is kneaded and dispersed.

塗着、乾燥は、特に限定されるものではなく、上記のように混練分散させたスラリー状合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、容易に塗着することができ、自然乾燥に近い乾燥が好ましいが、生産性を考慮すると70℃〜200℃の温度範囲で10分間〜5時間乾燥させることが好ましい。   Coating and drying are not particularly limited, and the slurry-like mixture kneaded and dispersed as described above, for example, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, It can be applied easily using a dip coater or the like, and drying close to natural drying is preferred, but considering productivity, it is preferably dried at a temperature range of 70 ° C. to 200 ° C. for 10 minutes to 5 hours.

圧延は、ロールプレス機によって所定の厚みになるまで、線圧1000〜2000kg/cmで数回の圧延を行うか、線圧を変えて圧延することが好ましい。   Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until a predetermined thickness is reached by a roll press.

また、負極板16は、負極集電体17の片側または両面に負極活物質と結着剤、必要に応じて導電剤を溶剤に混練分散させたペーストを塗着、乾燥、圧延して作製することができる。負極板16の厚みは110〜210μmの厚みで、正極板14と同様に柔軟性があることが好ましい。   The negative electrode plate 16 is prepared by applying, drying, and rolling a paste obtained by kneading and dispersing a negative electrode active material and a binder, and if necessary, a conductive agent in a solvent, on one side or both sides of the negative electrode current collector 17. be able to. The thickness of the negative electrode plate 16 is 110 to 210 μm, and it is preferable that the negative electrode plate 16 is flexible like the positive electrode plate 14.

この負極集電体17として用いる銅または銅合金は、特に限定されるものではなく、例えば、圧延箔、電解箔などが挙げられ、その形状も箔、孔開き箔、エキスパンド材、ラス材等であっても構わない。   The copper or copper alloy used as the negative electrode current collector 17 is not particularly limited, and examples thereof include rolled foil, electrolytic foil, and the shape thereof is foil, perforated foil, expanded material, lath material, and the like. It does not matter.

負極活物質としては、リチウムイオンを可逆的に吸蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを含む材料、例えば、天然黒鉛や球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が好ましく、特に、格子面(002)の面間隔(d002)が0.3350〜0.3400nmである黒鉛型結晶構造を有する炭素材料を使用することがより好ましい。 As the negative electrode active material, a material containing graphite having a graphite-type crystal structure capable of reversibly inserting and extracting lithium ions, such as natural graphite, spherical and fibrous artificial graphite, non-graphitizable carbon (hard carbon) Carbon materials such as graphitizable carbon (soft carbon) are preferable, and carbon materials having a graphite-type crystal structure in which the lattice spacing ( 002 ) spacing (d 002 ) is 0.3350 to 0.3400 nm are particularly preferable. More preferably it is used.

結着剤、分散媒および必要に応じて加えることができる導電剤、増粘剤は正極板14と同様のものを使用することができる。   As the binder, the dispersion medium, and the conductive agent and thickener that can be added as necessary, the same materials as those for the positive electrode plate 14 can be used.

セパレータ15としては、厚さ15〜30μmのポリエチレン樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフイン系樹脂の単層やポリエチレン樹脂の両側にポリプロピレン樹脂を積層したものが好ましい。   The separator 15 is preferably a single layer of a microporous polyolefin resin such as a polyethylene resin or polypropylene resin having a thickness of 15 to 30 μm or a laminate of polypropylene resin on both sides of the polyethylene resin.

電池ケース11としては、上端が開口している円筒型や角型の有底ケースがあり、その材質は、耐圧強度の観点からマンガン、銅等の金属を微量含有するアルミニウム合金や安価なニッケルメッキを施した鋼鈑が好ましい。   The battery case 11 includes a cylindrical or square bottomed case with an open upper end, and the material thereof is an aluminum alloy containing a trace amount of metal such as manganese or copper or inexpensive nickel plating from the viewpoint of pressure strength. The steel plate which gave is preferable.

このようにして作製した正極板14と負極板16とをセパレータ15を介して絶縁されている状態で扁平状に捲回した極板群27を乾燥した後、電池ケース11に収納するか、極板群27を電池ケース11に収納した後、乾燥する。   After the electrode plate group 27, in which the positive electrode plate 14 and the negative electrode plate 16 thus manufactured are wound in a flat shape in a state of being insulated via the separator 15, is dried, the electrode plate group 27 is stored in the battery case 11 or The plate group 27 is stored in the battery case 11 and then dried.

この乾燥条件としては、低湿度、高温の雰囲気であることが好ましいが、温度が高すぎるとセパレータ15に熱収縮が生じたり、微多孔が潰れたりして電池特性に悪影響を及ぼすので、具体的には露点が−30℃〜−80℃であり、温度が80℃〜120℃であることが好ましい。   The drying condition is preferably an atmosphere of low humidity and high temperature. However, if the temperature is too high, the separator 15 may be thermally contracted or the micropores may be crushed, which adversely affects battery characteristics. The dew point is preferably -30 ° C to -80 ° C, and the temperature is preferably 80 ° C to 120 ° C.

非水電解液としては、非水溶媒に電解質を溶解することにより調整される。前記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、リン酸トリエチル等を用いることができ、これらの非水溶媒は、単独或いは二種類以上の混合溶媒として使用することができる。   The nonaqueous electrolytic solution is prepared by dissolving an electrolyte in a nonaqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3-dimethoxypropane, 4- Methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethylformamide, Trimethyl phosphate, triethyl phosphate, and the like can be used, and these nonaqueous solvents can be used alone or as a mixed solvent of two or more kinds.

非水電解液に含まれる電解質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの電解質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。 As the electrolyte contained in the non-aqueous electrolyte, for example, a lithium salt having a strong electron-withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved at a concentration of 0.5 to 1.5M in the non-aqueous solvent.

必要に応じて非水電解液に加えられる添加剤としては、非水電解液二次電池が過充電状態になったときに作用するもので、例えば、ターフェニル、シクロヘキシルベンゼン、ジフェニルエーテル等が挙げられる。これらの添加剤は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。またこれらの添加剤は、前記非水溶電解液に対して0.05〜10重量%加えることが好ましい。   The additive that is added to the non-aqueous electrolyte as necessary acts when the non-aqueous electrolyte secondary battery is overcharged, and examples thereof include terphenyl, cyclohexylbenzene, and diphenyl ether. . These additives may be used alone or in combination of two or more. Moreover, it is preferable to add these additives 0.05 to 10weight% with respect to the said non-aqueous electrolyte.

安全保護素子20としては、温度復帰式や非復帰式のものがあり、例えば温度ヒューズ、PTC、サーモスタット等を一種類または二種類以上組み合わせて使用することができる。   As the safety protection element 20, there are a temperature return type and a non-reset type. For example, a temperature fuse, a PTC, a thermostat or the like can be used alone or in combination of two or more.

集熱部材21としては、アルミニウムや銅等の熱伝導の高い金属薄膜等が好ましい。電池ケース11に接合する集熱部材21を用いる場合は、この電池ケース11と同材質の金属板を用いても良い。   The heat collecting member 21 is preferably a metal thin film having high thermal conductivity such as aluminum or copper. When using the heat collecting member 21 joined to the battery case 11, a metal plate made of the same material as the battery case 11 may be used.

次に本発明の構成例を図面を用いて説明する。   Next, a configuration example of the present invention will be described with reference to the drawings.

本発明の非水電解液二次電池は、温度を感知して作動する温度ヒューズやPTC、サーモスタット等の安全保護素子20を電気的に接続した非水電解液二次電池であって、この安全保護素子20とアルミニウムや銅等の熱伝導の高い金属薄膜等の集熱部材21を接触
させることにより構成できる。
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery in which a safety protection element 20 such as a temperature fuse, PTC, or thermostat that operates by sensing temperature is electrically connected. It can be configured by bringing the protective element 20 into contact with a heat collecting member 21 such as a metal thin film having high thermal conductivity such as aluminum or copper.

例えば、図2(a)に示したようにリード23を絶縁テープ25で絶縁した安全保護素子20を電池ケース11の外側面の最大幅広面22に配置させ、その上面から安全保護素子20を覆うように集熱部材21を貼り付けて作製できる。図2(a)に示した集熱部材21は電池ケース11の外側面の最大幅広面22のみに貼り付けた構成例であるが、図2(b)に示したように電池ケース11のほぼ全周を覆うように貼り付けても良い。   For example, as shown in FIG. 2A, the safety protection element 20 in which the lead 23 is insulated with the insulating tape 25 is disposed on the maximum wide surface 22 on the outer side surface of the battery case 11, and the safety protection element 20 is covered from the upper surface. Thus, the heat collecting member 21 can be attached. The heat collecting member 21 shown in FIG. 2A is a configuration example attached only to the maximum wide surface 22 of the outer side surface of the battery case 11, but as shown in FIG. It may be pasted to cover the entire circumference.

また、図3に示したように集熱部材21を電池ケース11の外側面の最大幅広面22に接合し、その上面に安全保護素子20を配置した構成とすることもできる。   Further, as shown in FIG. 3, the heat collecting member 21 may be joined to the maximum wide surface 22 of the outer surface of the battery case 11, and the safety protection element 20 may be disposed on the upper surface.

また、図4に示したように安全保護素子20を電池ケース11の内側面に配置し、その上面に安全保護素子20を覆うように集熱部材21を貼り付けて構成することもできる。   In addition, as shown in FIG. 4, the safety protection element 20 may be disposed on the inner side surface of the battery case 11, and the heat collecting member 21 may be attached to the upper surface so as to cover the safety protection element 20.

また、図5に示したように安全保護素子20および集熱部材21をセパレータ15と正極板14との間に挟持するように構成することもできる。同様にセパレータ15と負極板16との間に挟持しても良い。   Further, as shown in FIG. 5, the safety protection element 20 and the heat collecting member 21 may be sandwiched between the separator 15 and the positive electrode plate 14. Similarly, it may be sandwiched between the separator 15 and the negative electrode plate 16.

また、図6に示したように極板群27の捲き始め部の空間部26にアルミニウムやステンレス鋼等の金属製の筒状の集熱部材21を挿入し、この筒状の集熱部材21の内側面に安全保護素子20を接触させて構成することもできる。   Further, as shown in FIG. 6, a cylindrical heat collecting member 21 made of metal such as aluminum or stainless steel is inserted into the space portion 26 at the beginning of rolling of the electrode plate group 27, and this cylindrical heat collecting member 21. It is also possible to configure the safety protection element 20 in contact with the inner surface.

また、図7(a)〜(d)に示したように筒状の集熱部材21にスリット28を設けることが好ましい。   Moreover, it is preferable to provide the slit 28 in the cylindrical heat collecting member 21 as shown in FIGS.

このように筒状の集熱部材21にスリット28を設ければ、極板群27が発熱した場合の内圧上昇時にスリット28を通じて発生ガスを排出する役目を果たすため、安全保護素子20を極板群27の捲き始め部の空間部26に配置した場合においても発生ガスの排出経路を確保し、異常な内圧上昇を抑制できるという効果が得られる。   If the cylindrical heat collecting member 21 is provided with the slit 28 in this way, the electrode plate group 27 serves to discharge the generated gas through the slit 28 when the internal pressure rises when the electrode plate group 27 generates heat. Even when it is disposed in the space portion 26 at the beginning of the group 27, an effect of securing a discharge path for the generated gas and suppressing an abnormal increase in internal pressure can be obtained.

また、スリット28を設けた筒状の集熱部材21の下部に安全保護素子20を設けることがより好ましい。   It is more preferable to provide the safety protection element 20 at the lower part of the cylindrical heat collecting member 21 provided with the slits 28.

このように安全保護素子20を筒状の集熱部材21の下部に設ければ、極板群27から空間部26の方向へ発生するガスの多くが安全保護素子20より上方で発生するため、よりガスの排出が向上できる。   If the safety protection element 20 is provided in the lower part of the cylindrical heat collecting member 21 in this way, most of the gas generated from the electrode plate group 27 toward the space 26 is generated above the safety protection element 20, Gas emission can be improved.

また、図8(a)〜(c)に示したように、角型の電池ケース11の上端部または下端部に集熱部材21を設けても良い。   Further, as shown in FIGS. 8A to 8C, the heat collecting member 21 may be provided on the upper end portion or the lower end portion of the rectangular battery case 11.

図8(a)は、角型の電池ケース11の上端部の2箇所に集熱部材21を対向して設けた構成例である。封口体12の上部に設けた2箇所の集熱部材21は内方にかしめて、リード23を接続した安全保護素子20を覆うように接触し、安全保護素子20を保持することができるものである。   FIG. 8A is a configuration example in which the heat collecting members 21 are provided opposite to each other at two positions on the upper end portion of the rectangular battery case 11. The two heat collecting members 21 provided on the upper part of the sealing body 12 can be caulked inward to contact and cover the safety protection element 20 to which the lead 23 is connected, and can hold the safety protection element 20. is there.

図8(b)は、角型の電池ケース11の上端部の1箇所に集熱部材21を設けた構成例である。封口体12の上部に設けた集熱部材21は内方へかしめて、リード23を接続した安全保護素子20を覆うように接触し、安全保護素子20を保持することができるものである。   FIG. 8B is a configuration example in which a heat collecting member 21 is provided at one place on the upper end of the rectangular battery case 11. The heat collecting member 21 provided on the upper portion of the sealing body 12 can be caulked inward so as to cover the safety protection element 20 to which the lead 23 is connected so as to hold the safety protection element 20.

図8(c)は、角型の電池ケース11の下端部の2箇所に集熱部材21を対向して設けた構成例である。この2箇所の集熱部材21は内方へかしめて、リード23を接続した安全保護素子20を覆うように接触し、安全保護素子20を保持することができるものである。   FIG. 8C is a configuration example in which the heat collecting members 21 are provided opposite to each other at the two lower end portions of the rectangular battery case 11. The two heat collecting members 21 are caulked inward so as to cover the safety protection element 20 to which the lead 23 is connected so as to hold the safety protection element 20.

図8(a)〜(c)に示した集熱部材21は、電池ケース11に接合しても良く、電池ケース11の一部分を突出させたものであっても良い。   The heat collecting member 21 shown in FIGS. 8A to 8C may be joined to the battery case 11 or a part of the battery case 11 may be protruded.

なお、非水電解液二次電池の外周を覆う樹脂製の外装材を設け、この外装材と電池ケース11の間に安全保護素子20および集熱部材21を挟持させる構成でも良い。外装材の材質は、熱収縮させて電池ケース11の外周を覆う生産性や環境面の観点からPET系樹脂が好ましく、これにナイロン系改質材を含有させると熱収縮性が向上し、安全保護素子20および集熱部材21を挟持させるうえで適している。   In addition, the structure which provides the resin-made exterior material which covers the outer periphery of a nonaqueous electrolyte secondary battery, and clamps the safety protection element 20 and the heat collecting member 21 between this exterior material and the battery case 11 may be sufficient. The material of the exterior material is preferably a PET-based resin from the viewpoint of productivity and environmental protection by heat-shrinking and covering the outer periphery of the battery case 11, and if this contains a nylon-based modifier, the heat-shrinkability is improved and safety is improved. This is suitable for sandwiching the protection element 20 and the heat collecting member 21.

例えば図9に示したように、集熱部材21は電池ケース11の最大幅広面22とリード23を接続した安全保護素子20とを連続的に覆い、さらにこの外周を覆うように外装材24を設けると良い。なお、リード23は絶縁箇所に絶縁テープ25を貼り合わせている。   For example, as shown in FIG. 9, the heat collecting member 21 continuously covers the widest surface 22 of the battery case 11 and the safety protection element 20 to which the lead 23 is connected, and further covers the outer covering 24 so as to cover the outer periphery. It is good to provide. The lead 23 has an insulating tape 25 bonded to an insulating portion.

以上のように、金属などの熱伝導体である集熱部材21と安全保護素子20を接触させることにより、非水電解液二次電池内で発生した熱を効率的に安全保護素子20に伝達することができ、集熱部材21を設けない従来の場合と比べて、非水電解液二次電池の温度がまだ低い状態で安全保護素子20を作動させることが可能になる。   As described above, heat generated in the non-aqueous electrolyte secondary battery is efficiently transferred to the safety protection element 20 by bringing the heat collecting member 21 that is a heat conductor such as metal into contact with the safety protection element 20. As compared with the conventional case where the heat collecting member 21 is not provided, the safety protection element 20 can be operated in a state where the temperature of the non-aqueous electrolyte secondary battery is still low.

その結果、過充電時に正極活物質が不安定状態に入る前に過充電反応を止めることが可能になり、高エネルギー密度でかつ安全性に優れた非水電解液二次電池を提供することができる。   As a result, it is possible to stop the overcharge reaction before the positive electrode active material enters an unstable state during overcharge, and to provide a non-aqueous electrolyte secondary battery with high energy density and excellent safety. it can.

さらに、安全性を維持するために非水電解液に加えていた過充電時に作用する添加剤の量を減らすことができるため、高温環境下での電池特性を向上させる効果も得られる。   Furthermore, since the amount of the additive acting at the time of overcharging that has been added to the non-aqueous electrolyte in order to maintain safety can be reduced, the effect of improving the battery characteristics in a high temperature environment can also be obtained.

以下、図面を参照して本発明の好ましい実施例について説明する。なお、ここで示す図は本発明の一例であって、本発明の請求項に表す構成を有していれば同様の効果を得ることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the figure shown here is an example of this invention, and if it has the structure represented to the claim of this invention, the same effect can be acquired.

正極板14は、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを2重量部、結着剤としてポリフッ化ビニリデン樹脂を固形分で3重量部を加え、N−メチル−2−ピロリドンを溶剤として混練分散させてペーストを作製した。このペーストを、厚さ15μmの帯状のアルミニウム箔からなる正極集電体13に連続的に間欠塗着を行い乾燥し、線圧1000Kg/cmで3回圧延を行った。   The positive electrode plate 14 was prepared by adding 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of a polyvinylidene fluoride resin as a binder, and adding N-methyl-2 A paste was prepared by kneading and dispersing pyrrolidone as a solvent. The paste was continuously applied intermittently to a positive electrode current collector 13 made of a strip-shaped aluminum foil having a thickness of 15 μm, dried, and rolled three times at a linear pressure of 1000 kg / cm.

次いで、前記アルミニウム箔の露出部にアルミニウム製の正極リードを超音波溶接し、さらに正極リードの切断バリなどによる微小な短絡を防止するため、正極リードを覆うように短冊状のポリプロピレン樹脂製絶縁テープを貼り付けて、幅寸法42mm、長さ300mm、厚さ0.145mmの正極板14を作製した。   Next, an aluminum positive electrode lead is ultrasonically welded to the exposed portion of the aluminum foil, and a strip-shaped polypropylene resin insulating tape is provided so as to cover the positive electrode lead in order to prevent a minute short circuit due to a cutting burr of the positive electrode lead. Was attached to prepare a positive electrode plate 14 having a width dimension of 42 mm, a length of 300 mm, and a thickness of 0.145 mm.

負極板16は、負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛を100重量部、結着剤としてスチレンブタジエンゴム(SBR)の水溶性ディスパージョンを固形分として1重量部、増粘剤としてカルボキシメチルセルロースを1重量部、溶剤として水を
加え、混練分散させてペースト状合剤を作製した。このペーストを、厚さ10μmの帯状の銅箔からなる負極集電体17に連続的に間欠塗着を行い、110℃で30分間乾燥し、線圧110Kg/cmで3回圧延を行った。
The negative electrode plate 16 is 100 parts by weight of scaly graphite capable of occluding and releasing lithium as a negative electrode active material, 1 part by weight of a water-soluble dispersion of styrene butadiene rubber (SBR) as a binder, and a thickener. 1 part by weight of carboxymethyl cellulose and water as a solvent were added and kneaded and dispersed to prepare a paste-like mixture. This paste was continuously intermittently applied to a negative electrode current collector 17 made of a strip-shaped copper foil having a thickness of 10 μm, dried at 110 ° C. for 30 minutes, and rolled three times at a linear pressure of 110 kg / cm.

次いで、前記銅箔の露出部にニッケル製の負極リードを抵抗溶接し、正極リードと同様に微小な短絡を防止するため、負極リードを覆うように短冊状のポリプロピレン樹脂製絶縁テープを貼り付けて、幅寸法43mm、長さ400mm、厚さ0.142mmの負極板16を作製した。   Next, a nickel negative electrode lead is resistance-welded to the exposed portion of the copper foil, and a strip-shaped polypropylene resin insulating tape is applied so as to cover the negative electrode lead in order to prevent a minute short circuit similarly to the positive electrode lead. A negative electrode plate 16 having a width dimension of 43 mm, a length of 400 mm, and a thickness of 0.142 mm was produced.

このように作製した正極板14と負極板16とを厚さ20μmのポリエチレン樹脂製の微多孔性のセパレータ15を介して絶縁された状態で楕円状に捲回して極板群27を構成した。この極板群27の側面方向から6.5MPaの圧力で5秒間プレスして扁平型の極板群27を得た。   The positive electrode plate 14 and the negative electrode plate 16 produced in this way were wound in an elliptical shape in a state where they were insulated with a microporous separator 15 made of polyethylene resin having a thickness of 20 μm, thereby constituting an electrode plate group 27. The flat electrode plate group 27 was obtained by pressing from the side surface direction of the electrode plate group 27 at a pressure of 6.5 MPa for 5 seconds.

この扁平状の極板群27を、マンガン、銅等の金属を微量含有する3000系のアルミニウム合金製で、厚さ0.25mm、幅寸法6.3mm、長さ寸法34.0mm、総高50.0mmのプレス成型により作製した角型の電池ケース11内に収納した。   The flat electrode plate group 27 is made of a 3000 series aluminum alloy containing a trace amount of metals such as manganese and copper, and has a thickness of 0.25 mm, a width dimension of 6.3 mm, a length dimension of 34.0 mm, and a total height of 50. It was housed in a rectangular battery case 11 produced by press molding of 0.0 mm.

極板群27の含有水分量は、露点−30℃、温度90℃で2時間乾燥させることによって、カールフィシャー式水分計を用いた測定で、500ppmから70ppmに下げた。   The moisture content of the electrode plate group 27 was lowered from 500 ppm to 70 ppm as measured with a Karl Fischer moisture meter by drying at a dew point of −30 ° C. and a temperature of 90 ° C. for 2 hours.

封口体12と電池ケース11とをレーザー溶接した後、封口体12に設けた注液孔より、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を2:1で混合した混合溶媒に、LiPF6を1.0Mの濃度で溶解させ、シクロヘキシルベンゼン0.5重量%添加した非水電解液を注液した後、注液孔をレーザーで封口して密栓し、電池容量が1000mAhを設計値とする角型リチウムイオン二次電池を作製した。 After laser-sealing the sealing body 12 and the battery case 11, LiPF 6 is mixed into a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a ratio of 2: 1 from the injection hole provided in the sealing body 12. Was dissolved at a concentration of 1.0 M, and a nonaqueous electrolyte solution added with 0.5% by weight of cyclohexylbenzene was injected. Then, the injection hole was sealed with a laser and sealed, and the battery capacity was set to 1000 mAh. A square lithium ion secondary battery was produced.

このように作製した角型リチウムイオン二次電池の安全保護素子20として温度ヒューズを用い、図2(a)に示したように角型リチウムイオン二次電池の外側面の最大幅広面22に配置させ、その上面からリード23を接続した温度ヒューズを覆うように集熱部材21として厚さ30μmのアルミニウム箔を接触させて構成した。   A thermal fuse is used as the safety protection element 20 of the prismatic lithium ion secondary battery manufactured as described above, and is arranged on the maximum wide surface 22 on the outer surface of the prismatic lithium ion secondary battery as shown in FIG. Then, an aluminum foil with a thickness of 30 μm was brought into contact as the heat collecting member 21 so as to cover the thermal fuse to which the lead 23 was connected from the upper surface.

このとき温度ヒューズの下方に接続したリード23は電池ケース11の最大幅広面22に接触させ、温度ヒューズの上方に接続したリード23には電池ケース11と絶縁するために絶縁テープ25を貼り合わせた。   At this time, the lead 23 connected below the thermal fuse is brought into contact with the widest surface 22 of the battery case 11, and the insulating tape 25 is bonded to the lead 23 connected above the thermal fuse to insulate the battery case 11. .

なお、温度ヒューズの形状は、幅3.2mm、厚さ0.65mmの薄型タイプを用いた。   As the shape of the thermal fuse, a thin type having a width of 3.2 mm and a thickness of 0.65 mm was used.

そして図9に示したように角型リチウムイオン二次電池、温度ヒューズおよびアルミニウム箔全体を覆うようにナイロン系改質材を含有したPET系樹脂製の外装材24で周囲を覆った角型リチウムイオン二次電池を本発明の電池Aとした。   Then, as shown in FIG. 9, the prismatic lithium ion secondary battery, the thermal fuse, and the prismatic lithium covered with a PET resin exterior material 24 containing a nylon modifier so as to cover the entire aluminum foil. The ion secondary battery was designated as battery A of the present invention.

角型リチウムイオン二次電池および安全保護素子20には集電用のリード23を接続し、電気を流せるようにした。   A current collecting lead 23 was connected to the prismatic lithium ion secondary battery and the safety protection element 20 so that electricity could flow.

安全保護素子20としての温度ヒューズを厚さ15μmのアルミニウム箔からなる集熱部材21で覆った以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Bとした。   A prismatic lithium ion secondary battery produced in the same manner as in Example 1 except that the thermal fuse as the safety protection element 20 was covered with a heat collecting member 21 made of aluminum foil having a thickness of 15 μm was designated as battery B of the present invention. .

安全保護素子20としての温度ヒューズを厚さ30μmの銅箔からなる集熱部材21で覆った以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Cとした。   A prismatic lithium ion secondary battery produced in the same manner as in Example 1 except that the thermal fuse serving as the safety protection element 20 was covered with a heat collecting member 21 made of copper foil having a thickness of 30 μm was designated as battery C of the present invention. .

安全保護素子20としての温度ヒューズを厚さ15μmの銅箔からなる集熱部材21で覆った以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Dとした。   A prismatic lithium ion secondary battery produced in the same manner as in Example 1 except that the thermal fuse as the safety protection element 20 was covered with a heat collecting member 21 made of copper foil having a thickness of 15 μm was designated as battery D of the present invention. .

図2(b)に示したように、集熱部材21を電池ケース11のほぼ全周を覆うように設けた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Eとした。   As shown in FIG. 2B, a prismatic lithium ion secondary battery manufactured in the same manner as in Example 1 except that the heat collecting member 21 is provided so as to cover almost the entire circumference of the battery case 11 is provided. Battery E.

図3に示したように、電池ケース11の外側面の最大幅広面22に集熱部材21として厚さ30μmの銅箔を貼り付け、その上面に安全保護素子20としての温度ヒューズを接触させた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Fとした。   As shown in FIG. 3, a copper foil having a thickness of 30 μm was attached as the heat collecting member 21 to the maximum wide surface 22 of the outer side surface of the battery case 11, and a thermal fuse as the safety protection element 20 was brought into contact with the upper surface. Except for the above, a rectangular lithium ion secondary battery produced in the same manner as in Example 1 was designated as Battery F of the present invention.

図4に示したように、安全保護素子20としてのPTCを電池ケース11の内側面に設け、その上面から厚さ30μmのアルミニウム箔からなる集熱部材21で覆った以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Gとした。   As shown in FIG. 4, the same as Example 1 except that the PTC as the safety protection element 20 is provided on the inner side surface of the battery case 11 and covered with the heat collecting member 21 made of aluminum foil having a thickness of 30 μm from the upper surface. The square lithium ion secondary battery produced as described above was designated as battery G of the present invention.

図5に示したように、安全保護素子20としてのPTCを正極板14の露出部に設け、厚さ15μmのアルミニウム箔からなる集熱部材21との間にこのPTCを挟持するように設けた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Hとした。   As shown in FIG. 5, the PTC as the safety protection element 20 is provided on the exposed portion of the positive electrode plate 14 so as to be sandwiched between the heat collecting member 21 made of aluminum foil having a thickness of 15 μm. Except for the above, a rectangular lithium ion secondary battery produced in the same manner as in Example 1 was designated as battery H of the present invention.

図5に示したように、安全保護素子20としてのPTCを負極板16の露出部に設け、厚さ15μmの銅箔からなる集熱部材21との間にこのPTCを挟持するように設けた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Iとした。   As shown in FIG. 5, the PTC as the safety protection element 20 is provided on the exposed portion of the negative electrode plate 16, and the PTC is provided to be sandwiched between the heat collecting member 21 made of a copper foil having a thickness of 15 μm. Except for the above, a prismatic lithium ion secondary battery produced in the same manner as in Example 1 was designated as Battery I of the present invention.

図8(a)に示したように、電池ケース11の上端部に集熱部材21として厚さ0.5mmのアルミニウム製の板材を2箇所に溶接し、この対向するアルミニウム製の板材の間に安全保護素子20としての温度ヒューズを配置後、アルミニウム製の板材を内方にかしめるようにして温度ヒューズと接触させた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Jとした。   As shown in FIG. 8A, an aluminum plate having a thickness of 0.5 mm is welded to the upper end portion of the battery case 11 at two locations as the heat collecting member 21, and between the opposing aluminum plates. A prismatic lithium ion secondary battery produced in the same manner as in Example 1 except that after placing the thermal fuse as the safety protection element 20, the aluminum plate was caulked inward and brought into contact with the thermal fuse. The battery J of the present invention was obtained.

図8(b)に示したように、電池ケース11の上端部に集熱部材21として電池ケース1の一部を突出させて、安全保護素子20としての温度ヒューズをこの突出させた厚さ0.25mmのアルミニウム合金により覆うようにかしめた以外は実施例1と同じように作
製した角型リチウムイオン二次電池を本発明の電池Kとした。
As shown in FIG. 8 (b), a thickness of the battery case 11 having a thickness 0 in which a part of the battery case 1 is projected as the heat collecting member 21 at the upper end of the battery case 11 and the thermal fuse as the safety protection element 20 is projected. A prismatic lithium ion secondary battery produced in the same manner as in Example 1 except that it was caulked so as to be covered with a .25 mm aluminum alloy was designated as battery K of the present invention.

図8(c)に示したように、電池ケース11の下端部に集熱部材21として厚さ0.5mmのアルミニウム製板を2箇所に溶接し、この対向するアルミニウム製板の間に安全保護素子20としての温度ヒューズを配置後、アルミニウム製板を内方にかしめるようにして温度ヒューズと接触させた以外は実施例1と同じように作製した角型リチウムイオン二次電池を本発明の電池Lとした。   As shown in FIG. 8 (c), an aluminum plate having a thickness of 0.5 mm is welded to the lower end of the battery case 11 at two locations as the heat collecting member 21, and the safety protection element 20 is interposed between the opposing aluminum plates. A square lithium ion secondary battery manufactured in the same manner as in Example 1 except that the aluminum fuse was caulked inward and contacted with the thermal fuse after placing the thermal fuse as a battery L of the present invention. It was.

(比較例1)
角型リチウムイオン二次電池の外部端子に安全保護素子としての温度ヒューズを電気的に接続した後、金属箔などの集熱部材を設けなかった以外は、実施例1と同じように作製した角型リチウムイオン二次電池を比較例の電池Rとした。
(Comparative Example 1)
A corner manufactured in the same manner as in Example 1 except that a thermal fuse as a safety protection element was electrically connected to the external terminal of the prismatic lithium ion secondary battery, and no heat collecting member such as a metal foil was provided. Type lithium ion secondary battery was designated as battery R of Comparative Example.

幅寸法57mm、長さ620mm、厚さ0.180mmの正極板14を作製し、幅寸法59mm、長さ645mm、厚さ0.176mmの負極板16を作製して、厚さ20μmのポリエチレン樹脂製の微多孔性のセパレータ15を介して絶縁された状態でほぼ真円状に捲回して極板群27を構成した。この極板群27をニッケルメッキを施した鋼材製で、厚さ0.20mm、外径17.8mm、総高64.8mmの円筒型の電池ケース11内に収納し、封口体12をかしめ封口して密閉した以外は実施例1と同じように作製し、電気容量2100mAhを設計値とする円筒型リチウムイオン二次電池を得た。   A positive electrode plate 14 having a width dimension of 57 mm, a length of 620 mm, and a thickness of 0.180 mm is produced, and a negative electrode board 16 having a width dimension of 59 mm, a length of 645 mm, and a thickness of 0.176 mm is produced, and made of polyethylene resin having a thickness of 20 μm. The electrode group 27 was formed by winding in a substantially circular shape while being insulated via the microporous separator 15. The electrode group 27 is made of nickel-plated steel and is housed in a cylindrical battery case 11 having a thickness of 0.20 mm, an outer diameter of 17.8 mm, and a total height of 64.8 mm, and the sealing body 12 is caulked and sealed. A cylindrical lithium ion secondary battery having a design value of 2100 mAh was obtained in the same manner as in Example 1 except that it was sealed.

図6に示したように、この円筒型リチウムイオン二次電池の極板群27の捲き始め部の空間部26に板厚0.3mmのステンレス製の筒状の集熱部材21を挿入し、この筒状の集熱部材21の内側面に安全保護素子20としての温度ヒューズを設けた円筒型リチウムイオン二次電池を本発明の電池Mとした。   As shown in FIG. 6, a stainless steel cylindrical heat collecting member 21 having a plate thickness of 0.3 mm is inserted into the space 26 at the beginning of the rolling of the electrode plate group 27 of the cylindrical lithium ion secondary battery, A cylindrical lithium ion secondary battery in which a temperature fuse as a safety protection element 20 was provided on the inner side surface of the cylindrical heat collecting member 21 was designated as a battery M of the present invention.

温度ヒューズには、小型のラジアルリードタイプを用いた。   A small radial lead type was used for the thermal fuse.

図7(a)に示したように、筒状の集熱部材21の上下端部にまたがる直線状のスリット28を設けた以外は実施例13と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Nとした。   As shown in FIG. 7 (a), a cylindrical lithium ion secondary battery manufactured in the same manner as in Example 13 except that linear slits 28 extending over the upper and lower ends of the cylindrical heat collecting member 21 were provided. Was the battery N of the present invention.

図7(b)に示したように、筒状の集熱部材21の上下端部にまたがるつづら折れ状のスリット28を設け、筒状の集熱部材21にニッケルメッキを施した鋼材を用いた以外は実施例13と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Oとした。   As shown in FIG. 7 (b), a steel material in which a bent slit 28 is provided between the upper and lower ends of the tubular heat collecting member 21 and nickel plating is applied to the tubular heat collecting member 21 is used. Except for the above, a cylindrical lithium ion secondary battery produced in the same manner as in Example 13 was designated as Battery O of the present invention.

図7(c)に示したようなスリット28を設け、筒状の集熱部材21を板厚0.5mmのアルミニウム合金とした以外は実施例13と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Pとした。   Cylindrical lithium ion secondary produced in the same manner as in Example 13 except that a slit 28 as shown in FIG. 7C is provided and the cylindrical heat collecting member 21 is made of an aluminum alloy having a thickness of 0.5 mm. The battery was designated as battery P of the present invention.

図7(d)に示したようなスリット28を設け、筒状の集熱部材21を板厚0.5mmのアルミニウム合金とした以外は実施例13と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Qとした。   Cylindrical lithium ion secondary produced in the same manner as in Example 13 except that a slit 28 as shown in FIG. 7 (d) was provided and the cylindrical heat collecting member 21 was made of an aluminum alloy having a thickness of 0.5 mm. The battery was designated as battery Q of the present invention.

(比較例2)
円筒型リチウムイオン二次電池の外部端子に安全保護素子としての温度ヒューズを電気的に接続した後、集熱部材を設けなかった以外は、実施例13と同じように作製した円筒型リチウムイオン二次電池を比較例の電池Sとした。
(Comparative Example 2)
A cylindrical lithium ion secondary battery manufactured in the same manner as in Example 13 except that a heat collecting member was not provided after electrically connecting a thermal fuse as a safety protection element to an external terminal of the cylindrical lithium ion secondary battery. The secondary battery was designated as Battery S of Comparative Example.

実施例13の電池Mに対して、筒状の集熱部材を用いず、負極板16と電池ケース11とを電気的に接続する負極リードを集熱部材とした。集熱部材としての負極リードには、板厚0.15mm、幅寸法4mm、長さ寸法65mmのニッケル製の板材を用いた。このニッケルの熱伝導率は、室温において93W/(m・K)である。なお、ニッケルの熱伝導率は100℃〜−100℃において、83〜113W/(m・K)である。   For the battery M of Example 13, the negative electrode lead that electrically connects the negative electrode plate 16 and the battery case 11 was used as the heat collection member without using the cylindrical heat collection member. For the negative electrode lead as the heat collecting member, a nickel plate having a plate thickness of 0.15 mm, a width of 4 mm, and a length of 65 mm was used. The thermal conductivity of nickel is 93 W / (m · K) at room temperature. The thermal conductivity of nickel is 83 to 113 W / (m · K) at 100 ° C. to −100 ° C.

一方、正極板と封口体とを電気的に接続する正極リードには、板厚0.15mm、幅寸法4.5mm、長さ寸法68mmのアルミニウム製の板材を用いた。このアルミニウムの熱伝導率は、室温において236W/(m・K)である。なお、アルミニウムの熱伝導率は100℃〜−100℃において、236〜241W/(m・K)である。   On the other hand, an aluminum plate material having a plate thickness of 0.15 mm, a width dimension of 4.5 mm, and a length dimension of 68 mm was used for the positive electrode lead for electrically connecting the positive electrode plate and the sealing body. The thermal conductivity of this aluminum is 236 W / (m · K) at room temperature. In addition, the heat conductivity of aluminum is 236-241 W / (m * K) in 100 to -100 degreeC.

温度ヒューズには、幅2.7mm、厚さ0.64mmの薄型タイプの温度ヒューズを用い、樹脂フィルムを介して負極リードに貼り付けるように取り付けた。   A thin type thermal fuse having a width of 2.7 mm and a thickness of 0.64 mm was used as the thermal fuse, and the thermal fuse was attached so as to be attached to the negative electrode lead via a resin film.

この円筒型リチウムイオン二次電池を本発明の電池Tとした。   This cylindrical lithium ion secondary battery was designated as battery T of the present invention.

集熱部材として、ステンレス製の負極リードを用いた以外は実施例18と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Uとした。   A cylindrical lithium ion secondary battery produced in the same manner as in Example 18 except that a stainless steel negative electrode lead was used as the heat collecting member was designated as a battery U of the present invention.

このステンレスの熱伝導率は、室温において15W/(m・K)である。   The thermal conductivity of this stainless steel is 15 W / (m · K) at room temperature.

集熱部材として、ニッケルの含有量が78%の鉄−ニッケル合金製の負極リードを用いた以外は実施例18と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Vとした。   A cylindrical lithium ion secondary battery produced in the same manner as in Example 18 was used as the battery V of the present invention, except that a negative electrode lead made of an iron-nickel alloy having a nickel content of 78% was used as the heat collecting member. .

この鉄−ニッケル合金の熱伝導率は、室温において87W/(m・K)である。   The thermal conductivity of this iron-nickel alloy is 87 W / (m · K) at room temperature.

集熱部材として、鉄にニッケルめっきを施した金属製の負極リードを用いた以外は実施例18と同じように作製した円筒型リチウムイオン二次電池を本発明の電池Wとした。   A cylindrical lithium ion secondary battery produced in the same manner as in Example 18 was used as the battery W of the present invention, except that a metal negative electrode lead obtained by applying nickel plating to iron was used as the heat collecting member.

この鉄にニッケルめっきを施した金属の熱伝導率は、室温において81W/(m・K)である。   The thermal conductivity of this nickel-plated metal on iron is 81 W / (m · K) at room temperature.

(参考例1)
集熱部材として、銅製の負極リードを用いた以外は実施例18と同じように作製した円筒型リチウムイオン二次電池を参考例の電池Xとした。
(Reference Example 1)
A cylindrical lithium ion secondary battery produced in the same manner as in Example 18 except that a copper negative electrode lead was used as the heat collecting member was designated as Battery X of Reference Example.

この銅の熱伝導率は、室温において398W/(m・K)である。なお、銅の熱伝導率は100℃〜−100℃において、395〜420W/(m・K)である。   The copper has a thermal conductivity of 398 W / (m · K) at room temperature. The thermal conductivity of copper is 395 to 420 W / (m · K) at 100 ° C. to −100 ° C.

以上の角型および円筒型リチウムイオン二次電池A〜Xについて、過充電試験の比較を行った。   Overcharge tests were compared for the above-described prismatic and cylindrical lithium ion secondary batteries A to X.

過充電の評価は、25℃環境下で充電電圧12V、充電電流1000mAの連続充電を行い、温度ヒューズやPTCの安全保護素子が作動するまでの充電電気量と安全保護素子の作動温度で評価した。   The overcharge was evaluated by continuously charging with a charging voltage of 12 V and a charging current of 1000 mA in an environment of 25 ° C., and evaluating the amount of electricity charged until the thermal protection element of the thermal fuse or PTC was activated and the operating temperature of the safety protection element. .

各々の円筒型および角型リチウムイオン二次電池の過充電時の充電電気量と安全保護素子の作動温度およびその時の最高到達温度の結果を(表1)に示す。充電電気量は角型リチウムイオン二次電池については比較例1、円筒型リチウムイオン二次電池については比較例2を100としたときの値を示す。   (Table 1) shows the results of the charged electricity amount, the operating temperature of the safety protection element, and the maximum temperature reached at that time when the cylindrical and prismatic lithium ion secondary batteries were overcharged. The amount of charge is the value when Comparative Example 1 is set to 100 for a prismatic lithium ion secondary battery, and Comparative Example 2 is set to 100 for a cylindrical lithium ion secondary battery.

Figure 2008226828
Figure 2008226828

(表1)からわかるように、集熱部材21を設け、この集熱部材21と安全保護素子20とを接触させた本発明の電池A〜Qおよび電池T〜Wは、集熱部材21を設けなかった比較例の電池R,Sと比べて充電電気量が低く、安全保護素子20も低い温度で作動したことが確認できた。   As can be seen from (Table 1), the batteries A to Q and the batteries T to W of the present invention in which the heat collecting member 21 is provided and the heat collecting member 21 and the safety protection element 20 are in contact with each other include the heat collecting member 21. It was confirmed that the amount of charged electricity was lower than the batteries R and S of the comparative example that were not provided, and the safety protection element 20 was also operated at a lower temperature.

これは、過充電時に電解液の分解や正極活物質の発熱などにより、電池の内部で発生した熱が集熱部材21によって精度高く安全保護素子20としての温度ヒューズやPTCに伝わったためと考えられる。   This is considered to be because heat generated inside the battery is accurately transmitted to the thermal fuse or PTC as the safety protection element 20 by the heat collecting member 21 due to decomposition of the electrolyte solution or heat generation of the positive electrode active material during overcharge. .

本発明の電池A〜Qによれば、集熱部材21が厚いほど、また熱伝導の高い金属箔ほど効果があることがわかった。   According to the batteries A to Q of the present invention, it was found that the thicker the heat collecting member 21 and the higher the heat conductivity of the metal foil, the more effective.

また、集熱部材21は外装材24に包含されても効果があることがわかった。特にナイロン系改質材を含有したPET系樹脂は熱収縮性に優れ、安全保護素子20および集熱部材21を挟持させるうえで適していることがわかった。   Further, it has been found that the heat collecting member 21 is effective even when included in the exterior material 24. In particular, it has been found that a PET-based resin containing a nylon-based modifier has excellent heat shrinkability and is suitable for sandwiching the safety protection element 20 and the heat collecting member 21.

本発明の電池T〜Wによれば、集熱部材を負極リードとし、この負極リードの熱伝導率を正極リードの熱伝導率よりも小さくすれば、温度ヒューズが効果的に作動することがわかった。これは電池内に電流が流れた際に、熱伝導率が小さい、即ち電気抵抗が大きい負極リードが集中して発熱するためと考えられる。この作用効果は、非水電解液二次電池が内部短絡するようなことがあった場合、電池内に瞬時に流れる大電流を感知できるため特に有用である。また、大電流による負極リードの溶断を温度ヒューズによる効果的な電流遮断によって未然に抑制できることがわかった。   According to the batteries T to W of the present invention, it is found that if the heat collecting member is a negative electrode lead and the thermal conductivity of the negative electrode lead is smaller than the thermal conductivity of the positive electrode lead, the thermal fuse operates effectively. It was. This is presumably because when the current flows in the battery, the negative electrode lead having a low thermal conductivity, that is, a high electrical resistance concentrates and generates heat. This effect is particularly useful when a non-aqueous electrolyte secondary battery may be internally short-circuited because a large current that flows instantaneously in the battery can be sensed. Further, it has been found that the fusing of the negative electrode lead due to a large current can be suppressed beforehand by the effective current interruption by the thermal fuse.

なお、参考例1の電池Xによれば、負極リードに、正極リードに用いたアルミニウムの熱伝導率よりも大きい熱伝導率を有する銅を用いたため、電池内に電流が流れた際の発熱が分散したため温度ヒューズの作動が遅れたと考えられる。   In addition, according to the battery X of Reference Example 1, since the copper having a thermal conductivity larger than the thermal conductivity of aluminum used for the positive electrode lead was used for the negative electrode lead, heat generation was caused when a current flowed in the battery. It is thought that the operation of the thermal fuse was delayed due to the dispersion.

本発明によれば、高エネルギー密度でかつ優れた安全性の非水電解液二次電池を提供することができるため、ポータブル用電子機器等の電源として有用である。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery with high energy density and excellent safety, which is useful as a power source for portable electronic devices and the like.

本発明の角型非水電解液二次電池の一部切り欠き斜視図Partially cutaway perspective view of a prismatic nonaqueous electrolyte secondary battery of the present invention (a)本発明の構成例を示した角型非水電解液二次電池の概略斜視図、(b)本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図(A) Schematic perspective view of a prismatic non-aqueous electrolyte secondary battery showing a configuration example of the present invention, (b) Schematic perspective view of a prismatic non-aqueous electrolyte secondary battery showing another configuration example of the present invention. Figure 本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図Schematic perspective view of a prismatic nonaqueous electrolyte secondary battery showing another configuration example of the present invention 本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図Schematic perspective view of a prismatic nonaqueous electrolyte secondary battery showing another configuration example of the present invention 本発明のその他の構成例を示した角型非水電解液二次電池の極板群の概略斜視図Schematic perspective view of an electrode plate group of a prismatic nonaqueous electrolyte secondary battery showing another configuration example of the present invention 本発明のその他の構成例を示した円筒型非水電解液二次電池の概略断面図Schematic cross-sectional view of a cylindrical nonaqueous electrolyte secondary battery showing another configuration example of the present invention (a)本発明の円筒型非水電解液二次電池に用いた筒状の集熱部材の概略斜視図、(b)本発明の円筒型非水電解液二次電池に用いたその他の筒状の集熱部材の概略斜視図、(c)本発明の円筒型非水電解液二次電池に用いたその他の筒状の集熱部材の概略斜視図、(d)本発明の円筒型非水電解液二次電池に用いたその他の筒状の集熱部材の概略斜視図(A) Schematic perspective view of a cylindrical heat collecting member used for the cylindrical nonaqueous electrolyte secondary battery of the present invention, (b) Other cylinder used for the cylindrical nonaqueous electrolyte secondary battery of the present invention The schematic perspective view of a cylindrical heat collecting member, (c) The schematic perspective view of the other cylindrical heat collecting member used for the cylindrical nonaqueous electrolyte secondary battery of the present invention, (d) The cylindrical non-collecting member of the present invention Schematic perspective view of other cylindrical heat collecting member used for water electrolyte secondary battery (a)本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図、(b)本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図、(c)本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図(A) A schematic perspective view of a prismatic non-aqueous electrolyte secondary battery showing another configuration example of the present invention, (b) A prismatic non-aqueous electrolyte secondary battery showing another configuration example of the present invention. Schematic perspective view, (c) Schematic perspective view of a prismatic non-aqueous electrolyte secondary battery showing another configuration example of the present invention 本発明のその他の構成例を示した角型非水電解液二次電池の概略斜視図Schematic perspective view of a prismatic nonaqueous electrolyte secondary battery showing another configuration example of the present invention

符号の説明Explanation of symbols

11 電池ケース
12 封口体
13 正極集電体
14 正極板
15 セパレータ
16 負極板
17 負極集電体
20 安全保護素子
21 集熱部材
22 最大幅広面
23 リード
24 外装材
25 絶縁テープ
26 空間部
27 極板群
28 スリット
29 外部端子



DESCRIPTION OF SYMBOLS 11 Battery case 12 Sealing body 13 Positive electrode collector 14 Positive electrode plate 15 Separator 16 Negative electrode plate 17 Negative electrode collector 20 Safety protection element 21 Heat collecting member 22 Largest wide surface 23 Lead 24 Exterior material 25 Insulating tape 26 Space part 27 Electrode plate Group 28 Slit 29 External terminal



Claims (11)

帯状の正極板と負極板とをセパレータを介して捲回してなる極板群と非水電解液を内部に収納した電池ケースと、この電池ケースの開口部を密閉する封口体を備え、温度を感知して作動する安全保護素子を電気的に接続した非水電解液二次電池であって、
前記安全保護素子と集熱する集熱部材を接触させた非水電解液二次電池。
An electrode plate group formed by winding a belt-like positive electrode plate and a negative electrode plate with a separator interposed therebetween, a battery case containing a non-aqueous electrolyte, and a sealing body that seals the opening of the battery case A non-aqueous electrolyte secondary battery in which a safety protection element that senses and operates is electrically connected,
A nonaqueous electrolyte secondary battery in which the safety protection element and a heat collecting member for collecting heat are brought into contact with each other.
前記安全保護素子を電池ケースの外側面に配置し、その上面から前記安全保護素子を覆うように集熱部材を設けた請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the safety protection element is disposed on an outer surface of the battery case, and a heat collecting member is provided so as to cover the safety protection element from the upper surface thereof. 前記集熱部材を電池ケースの外側面に接合し、その上面に前記安全保護素子を配置した請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the heat collecting member is joined to an outer surface of the battery case, and the safety protection element is disposed on an upper surface thereof. 前記安全保護素子を電池ケースの内側面に配置し、その安全保護素子の表面を覆うように集熱部材を設けた請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the safety protection element is disposed on an inner surface of the battery case, and a heat collecting member is provided so as to cover a surface of the safety protection element. 前記安全保護素子および集熱部材をセパレータと正極板または負極板との間に挟持するように設けた請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the safety protection element and the heat collecting member are provided so as to be sandwiched between a separator and a positive electrode plate or a negative electrode plate. 前記極板群の捲き始め部の空間部に金属製の筒状の集熱部材を挿入し、この筒状の集熱部材の内側面に接触するように安全保護素子を設けた請求項1に記載の非水電解液二次電池。   The metal plate-shaped heat collecting member is inserted into the space at the beginning of the electrode plate group, and a safety protection element is provided so as to contact the inner side surface of the tubular heat collecting member. The nonaqueous electrolyte secondary battery as described. 前記筒状の集熱部材にスリットを設けた請求項6に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 6, wherein a slit is provided in the tubular heat collecting member. 前記スリットを設けた筒状の集熱部材の下部に安全保護素子を設けた請求項7に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 7, wherein a safety protection element is provided at a lower portion of the cylindrical heat collecting member provided with the slit. 前記安全保護素子を電池ケースの上面または底面に配置し、この安全保護素子を電池ケースから突出する集熱部材により保持させた請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the safety protection element is disposed on an upper surface or a bottom surface of the battery case, and the safety protection element is held by a heat collecting member protruding from the battery case. 前記集熱部材が、前記負極板と前記電池ケースとを電気的に接続する負極リードであり、この負極リードの熱伝導率を、前記正極板と前記封口体とを電気的に接続する正極リードの熱伝導率よりも小さくした請求項1に記載の非水電解液二次電池。   The heat collecting member is a negative electrode lead that electrically connects the negative electrode plate and the battery case, and the positive electrode lead that electrically connects the positive electrode plate and the sealing body with the thermal conductivity of the negative electrode lead. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is smaller than the thermal conductivity. 前記負極リードの熱伝導率が、室温において15〜93W/(m・K)であり、前記正極板と前記封口板とを電気的に接続する正極リードの熱伝導率が、室温において236W/(m・K)以上である請求項10に記載の非水電解液二次電池。   The negative electrode lead has a thermal conductivity of 15 to 93 W / (m · K) at room temperature, and the positive electrode lead electrically connecting the positive electrode plate and the sealing plate has a thermal conductivity of 236 W / (at room temperature). The nonaqueous electrolyte secondary battery according to claim 10, wherein m · K) or more.
JP2008023599A 2007-02-15 2008-02-04 Non-aqueous electrolyte secondary battery Pending JP2008226828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023599A JP2008226828A (en) 2007-02-15 2008-02-04 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007034804 2007-02-15
JP2008023599A JP2008226828A (en) 2007-02-15 2008-02-04 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008226828A true JP2008226828A (en) 2008-09-25

Family

ID=39845167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023599A Pending JP2008226828A (en) 2007-02-15 2008-02-04 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008226828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058368A (en) * 2011-09-08 2013-03-28 Toyota Motor Corp Secondary battery
EP2772963A1 (en) * 2013-02-28 2014-09-03 Samsung SDI Co., Ltd. Rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058368A (en) * 2011-09-08 2013-03-28 Toyota Motor Corp Secondary battery
EP2772963A1 (en) * 2013-02-28 2014-09-03 Samsung SDI Co., Ltd. Rechargeable battery
CN104022255A (en) * 2013-02-28 2014-09-03 三星Sdi株式会社 Rechargeable battery
JP2014170735A (en) * 2013-02-28 2014-09-18 Samsung Sdi Co Ltd Secondary battery
US9466823B2 (en) 2013-02-28 2016-10-11 Samsung Sdi Co., Ltd. Rechargeable battery

Similar Documents

Publication Publication Date Title
TWI262615B (en) Electrochemical cell comprising electrode lead with protector element
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4236308B2 (en) Lithium ion battery
JP5420888B2 (en) battery
JP6439839B2 (en) Nonaqueous electrolyte secondary battery
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
KR20140085337A (en) Lithium secondary battery
KR101871231B1 (en) Lithium ion secondary battery
JP6346178B2 (en) Nonaqueous electrolyte secondary battery
JP2008027831A (en) Battery
JP4017376B2 (en) Lithium secondary battery
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JP2002100326A (en) Flat-type battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP4304924B2 (en) battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP3579227B2 (en) Thin rechargeable battery
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
KR101520148B1 (en) Secondary battery comprising apparatus for preventing overcharge
JP2008226828A (en) Non-aqueous electrolyte secondary battery
JP2004186117A (en) Sealed type rechargeable battery
JP7182108B2 (en) Cylindrical secondary battery
JP2013201094A (en) Nonaqueous electrolyte secondary battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same