JP2007141482A - Nonaqueous electrolyte winding type secondary battery - Google Patents

Nonaqueous electrolyte winding type secondary battery Download PDF

Info

Publication number
JP2007141482A
JP2007141482A JP2005329659A JP2005329659A JP2007141482A JP 2007141482 A JP2007141482 A JP 2007141482A JP 2005329659 A JP2005329659 A JP 2005329659A JP 2005329659 A JP2005329659 A JP 2005329659A JP 2007141482 A JP2007141482 A JP 2007141482A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
separator
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005329659A
Other languages
Japanese (ja)
Inventor
Kunihiko Minetani
邦彦 峯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005329659A priority Critical patent/JP2007141482A/en
Publication of JP2007141482A publication Critical patent/JP2007141482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte winding type secondary battery with excellent productivity capable of suppressing material cost and increase of the number of processes through prevention of internal short circuit at the time of trickle charging or the like caused by adhesion of conductive particles such as fallen-off active materials to a site where an active material non-coated part of a cathode and an anode mixture coated part of an anode are opposed in the nonaqueous electrolyte secondary battery. <P>SOLUTION: The cathode has a cathode mixture non-coated part where a cathode mixture is not coated on a metal collector foil. A part of a separator 15 where the separator 15 interposes between the cathode mixture non-coated part and an anode mixture coated part of the anode is to be a non-porous separator part which has become substantially non-porous through thermal treatment 22 above a fusion contraction temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質捲回型二次電池に係り、更に詳しくは、好適な構成を備えたセパレータを用いた非水電解質捲回型二次電池に関する。   The present invention relates to a non-aqueous electrolyte wound secondary battery, and more particularly to a non-aqueous electrolyte wound secondary battery using a separator having a suitable configuration.

捲回型二次電池としては様々な構造が知られているが、近年の電子機器の小型化に伴い、電源用電池としての二次電池にも、高容量、高密度が要望されている。このため、従来の水系電解液二次電池であるニカド電池やニッケル水素電池等から、非水電解質二次電池であるリチウム二次電池に置き換わりつつある。このリチウム二次電池において、リチウムイオン二次電池は一般的に以下のような構造をしている。正極板と負極板との間にセパレータを介して渦巻状に捲回し極板群を構成している。この極板群は電池ケース内に収納し、極板群に非水電解液を含浸させ、電池ケースの開口部を封口板で封止した構造をしている。   Various structures are known as a wound type secondary battery, but with the recent miniaturization of electronic devices, secondary batteries as power source batteries are also required to have high capacity and high density. For this reason, a nickel secondary battery or nickel metal hydride battery, which is a conventional aqueous electrolyte secondary battery, is being replaced by a lithium secondary battery, which is a nonaqueous electrolyte secondary battery. In this lithium secondary battery, the lithium ion secondary battery generally has the following structure. A group of electrode plates is formed by spirally winding a separator between a positive electrode plate and a negative electrode plate. The electrode plate group is housed in a battery case, the electrode plate group is impregnated with a non-aqueous electrolyte, and the opening of the battery case is sealed with a sealing plate.

ところが、このような捲回型極板群の製造に際しては、製造工程における活物質の脱落や製造装置の磨耗により、正極の活物質未塗布部上すなわち集電体露出部上に導電性の粒子が付着し、この導電性粒子が捲回極板群を押しつぶし成形した際や、電池の充放電による極板の膨張によりセパレータを突き破り、この導電性粒子を介して負極と正極とが電気的に導通して短絡回路が形成される。この短絡は、正極の活物質未塗布部と負極の負極合剤塗布部が対向している部分において非常に高率で発生し、この短絡回路により、電池はその使用中に異常な熱を発生し、容量低下を招き、しかも電池寿命を短くする原因にもなっていた。   However, in the production of such a wound electrode group, conductive particles on the active material uncoated portion of the positive electrode, that is, on the current collector exposed portion, due to falling off of the active material or wear of the manufacturing apparatus in the manufacturing process. When the conductive particles crush and mold the wound electrode plate group, or the electrode plate expands due to battery charging / discharging, the negative electrode and the positive electrode are electrically connected through the conductive particles. Conduction forms a short circuit. This short circuit occurs at a very high rate in the part where the active material uncoated part of the positive electrode and the negative electrode mixture coated part of the negative electrode are facing each other. This short circuit causes the battery to generate abnormal heat during its use. In addition, the capacity is reduced and the battery life is shortened.

正極の正極合剤が金属製集電体箔上に塗布されていない正極合剤未塗布部であって、負極における負極合剤塗布部とセパレータを介して対向している部分に、絶縁テープを貼りつけることにより、正極の正極合剤未塗布部と負極の負極合剤塗布部とが対向している部分を絶縁層で被覆しているので、脱落した活物質や製造装置の磨耗等により生じた導電性の粒子が付着し、セパレータを突き破っても、内部短絡が防止できるようになると提案されている。(例えば、特許文献1参照)
特開平10−241737号公報
An insulating tape is applied to a portion where the positive electrode mixture of the positive electrode is not coated on the metal current collector foil and is opposite to the negative electrode mixture coated portion of the negative electrode through the separator. By sticking, the part where the positive electrode mixture uncoated part of the positive electrode and the negative electrode mixture coated part of the negative electrode are facing each other is covered with an insulating layer. It has been proposed that an internal short circuit can be prevented even if the conductive particles adhere and break through the separator. (For example, see Patent Document 1)
JP-A-10-241737

リチウムイオン二次電池に代表される非水電解質二次電池において、充電時に正極活物質から放出されたリチウムイオンを負極活物質に円滑に吸蔵するために、負極合剤層は必ず正極合剤塗布部とセパレータを介して対向していなければならないため、負極合剤塗布部は必ず正極合剤塗布部よりも面積が大きい構造となり、したがって、非水電解質二次電池には上述の正極の活物質未塗布部と負極の負極合剤塗布部が対向している部分は少なからず存在する。この部分へ脱落した活物質や製造装置の磨耗等により生じた導電性の粒子が付着することが原因となる内部短絡対策は急務である。   In a non-aqueous electrolyte secondary battery typified by a lithium ion secondary battery, the negative electrode mixture layer must be coated with a positive electrode mixture in order to smoothly absorb lithium ions released from the positive electrode active material during charging into the negative electrode active material. Therefore, the negative electrode mixture application part always has a larger area than the positive electrode mixture application part, and therefore the non-aqueous electrolyte secondary battery has the above-described positive electrode active material. There are many portions where the uncoated portion and the negative electrode mixture coated portion of the negative electrode face each other. There is an urgent need to take measures against an internal short circuit that is caused by the adhering of the active material that has fallen into this portion or conductive particles generated by wear of the manufacturing apparatus.

ところが、従来から短絡防止に用いられている絶縁粘着テープは、テープ切断工程や電極へのテープの貼りつけ工程などの電池製造工程において粘着剤が製造装置に付着するので、頻繁に装置停止および清掃する必要があり、生産性が低下するという問題があった。   However, insulating adhesive tapes that have been used to prevent short circuits have been frequently stopped and cleaned because the adhesive adheres to the manufacturing equipment in the battery manufacturing process, such as the tape cutting process and the tape application process to the electrodes. There is a problem that productivity is reduced.

そこで、本発明の目的はこのような従来の課題を解決するものであり、電極間の内部短絡が生じ難く、高い信頼性を有し、また電池製造工程の清掃、停止頻度を減らすことがで
きるので、製造効率が向上した非水電解質捲回型二次電池を提供することである。
Therefore, the object of the present invention is to solve such a conventional problem, it is difficult to cause an internal short circuit between the electrodes, has high reliability, and can reduce the frequency of cleaning and stopping of the battery manufacturing process. Therefore, it is to provide a nonaqueous electrolyte wound secondary battery with improved manufacturing efficiency.

前記従来の課題を解決するために、本発明の請求項1に記載の非水電解質捲回型二次電池は、金属製集電体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤を塗布した正極と、金属製集電体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極との間に、溶融収縮温度を持つ多孔質セパレータを介して渦巻状に捲回した極板群をもつ非水電解質捲回型二次電池において、前記正極には、前記正極合剤が前記金属製集電体箔上に塗布されていない正極合剤未塗布部があり、前記セパレータの、前記正極合剤未途布部と前記負極における負極合剤塗布部とが対向している場所に介在する部分は、前記溶融収縮温度以上で熱処理することにより、実質的に非多孔質となった非多孔質セパレータ部であることを特徴とするものである。   In order to solve the conventional problem, a nonaqueous electrolyte wound secondary battery according to claim 1 of the present invention includes a positive electrode active material that occludes and releases lithium ions on a metal current collector foil. Between a positive electrode coated with a mixture and a negative electrode coated with a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions on a metal current collector foil, through a porous separator having a melting shrinkage temperature In a nonaqueous electrolyte wound secondary battery having a spirally wound electrode plate group, the positive electrode mixture is not applied on the metal current collector foil on the positive electrode. A portion of the separator that is interposed between the positive electrode mixture unapplied portion and the negative electrode mixture application portion in the negative electrode is substantially heat-treated at a temperature equal to or higher than the melt shrinkage temperature. Non-porous separator part that has become non-porous It is an feature.

この非多孔質セパレータは、溶融温度以上で熱処理することにより、非多孔質となり、実質的にイオン導電性を有さない樹脂シートとなる。   This non-porous separator becomes non-porous by being heat-treated at a melting temperature or higher, and becomes a resin sheet having substantially no ionic conductivity.

上記の構成により脱落した活物質や製造装置の磨耗等により生じた導電性の粒子が付着しても、内部短絡が防止できる。   An internal short circuit can be prevented even when conductive particles generated due to the active material dropped due to the above configuration or wear of the manufacturing apparatus adhere.

また、本発明の請求項2に記載の非水電解質捲回型二次電池は、請求項1に記載の非水電解質捲回型二次電池において、前記非多孔質セパレータ部は、非多孔質となったセパレータが一回以上折り返されているものである。   Moreover, the nonaqueous electrolyte wound secondary battery according to claim 2 of the present invention is the nonaqueous electrolyte wound secondary battery according to claim 1, wherein the nonporous separator part is nonporous. The separator that has become is folded once or more.

この構成は、付着した導電性粒子がセパレータを突き破る内部短絡に対しては、セパレータの熱処理によって作成された非多孔質部分の厚みがより厚い方が、突き刺し強度が向上するため、内部短絡を防止するためには好ましい。   This configuration prevents internal short-circuiting when the non-porous part created by heat treatment of the separator is thicker against internal short-circuits where attached conductive particles break through the separator. This is preferable.

本発明によると、材料費や工程数増加を抑制し、内部短絡が防止できるという生産性に優れた非水電解質捲回型二次電池を提供することができる。   According to the present invention, it is possible to provide a non-aqueous electrolyte wound secondary battery excellent in productivity that suppresses an increase in material cost and the number of processes and can prevent an internal short circuit.

以下に、本発明の実施の形態について図面を参照しながら詳細に説明するが、これらは、本発明を何ら限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, but these do not limit the present invention in any way.

ここでは図1に示す角型リチウムイオン二次電池を例に挙げて、本発明の実施の形態について説明する。   Here, the embodiment of the present invention will be described by taking the prismatic lithium ion secondary battery shown in FIG. 1 as an example.

角型リチウムイオン二次電池は、図1に示すように、正極板14と負極板16とがセパレータ15を介して楕円状に捲回された極板群が、有底角型の電池ケース11に収容されており、封口板12の内部端子に電気的に接続されており、封口板12と電池ケース11とをレーザー溶接した後、封口板12に設けた注液孔(図示せず)から非水電解液を注液した後、注液栓(図示せず)をレーザーで封口した構造をしている。   As shown in FIG. 1, the prismatic lithium ion secondary battery includes a bottomed prismatic battery case 11 in which an electrode plate group in which a positive electrode plate 14 and a negative electrode plate 16 are wound in an elliptical shape with a separator 15 interposed therebetween. And is electrically connected to the internal terminal of the sealing plate 12, and after laser welding the sealing plate 12 and the battery case 11, from a liquid injection hole (not shown) provided in the sealing plate 12. After injecting a non-aqueous electrolyte, an injection stopper (not shown) is sealed with a laser.

正極板14は、例えば、アルミニウム製の箔やラス加工やエッチング処理された箔からなる集電体13の片側または両面に、正極活物質と結着剤及び導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、正極板14は厚みが110μm〜200μmで、柔軟性があることが好ましい。   The positive electrode plate 14 is, for example, a paste in which a positive electrode active material, a binder, and a conductive agent are kneaded and dispersed in one or both sides of a current collector 13 made of an aluminum foil, a lathed or etched foil, or the like. Can be produced by coating, drying and rolling. And it is preferable that the positive electrode plate 14 is 110 micrometers-200 micrometers in thickness, and has a softness | flexibility.

正極活物質としては、例えば、リチウムイオンをゲストとして受け入れることができる
リチウム含有遷移金属化合物が使用されている。例えば、リチウム含有遷移金属化合物として、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、コバルト酸リチウム(以下、LiCoO2と略す)、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、およびLiVO2等が好ましい。
As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, as a lithium-containing transition metal compound, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium and lithium, lithium cobaltate (hereinafter abbreviated as LiCoO 2 ), LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 (0 <x <1), LiCrO 2 , αLiFeO 2 , and LiVO 2 are preferable.

結着剤としては、分散媒に混練分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレン−ブタジエンゴム(以下、SBRと略す)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体、およびポリテトラフルオロエチレン樹脂のディスパージョンが好ましい。   The binder is not particularly limited as long as it can be kneaded and dispersed in a dispersion medium. For example, a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (hereinafter abbreviated as SBR). ), An acrylic polymer, a vinyl polymer or the like can be used alone or as a mixture or copolymer of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and a dispersion of polytetrafluoroethylene resin are preferable.

導電剤としては、アセチレンブラック、グラファイト、炭素繊維等を単独、或いは二種類以上の混合物が好ましい。また、必要に応じて増粘剤を加えることができ、増粘剤としては、エチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、およびメチルセルロースなどが好ましい。   As the conductive agent, acetylene black, graphite, carbon fiber or the like is used alone or a mixture of two or more kinds is preferable. Moreover, a thickener can be added as needed, and as a thickener, ethylene-vinyl alcohol copolymer, carboxymethylcellulose, methylcellulose, etc. are preferable.

分散媒としては、結着剤が溶解可能な溶剤が適切である。有機系結着剤の場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、およびメチルエチルケトン等の有機溶剤を単独またはこれらを混合した混合溶剤が好ましい。水系結着剤の場合は水または温水が好ましい。   As the dispersion medium, a solvent in which the binder can be dissolved is suitable. In the case of organic binders, organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexamethylsulfuramide, tetramethylurea, acetone, and methyl ethyl ketone Are preferably used alone or a mixed solvent in which these are mixed. In the case of an aqueous binder, water or warm water is preferred.

また、上記ペーストの混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。   In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary when the paste is kneaded and dispersed.

塗着乾燥は、特に限定されるものではない。上記ペーストのように混練分散させたスラリー状の合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、およびディップコーター等を用いて、容易に塗着することができる。また、乾燥は自然乾燥が好ましいが、生産性を考慮すると70℃〜200℃の温度で5時間〜10分間乾燥させるのが好ましい。   The coating and drying is not particularly limited. The slurry-like mixture kneaded and dispersed as in the above paste can be easily applied using, for example, a slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip coater, etc. can do. Moreover, although natural drying is preferable for drying, considering productivity, it is preferable to dry for 5 hours-10 minutes at the temperature of 70 to 200 degreeC.

圧延は、ロールプレス機によって所定の厚みになるまで数回圧延を行うか、プレス圧を変えて圧延するのが好ましい。   It is preferable that the rolling is performed several times with a roll press until a predetermined thickness is achieved, or the pressing pressure is changed.

また、負極板16は、集電体17の片側または両面に負極活物質と結着剤、必要に応じて導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、負極板は正極板と同様に厚みが110μm〜210μmで、柔軟性があることが好ましい。   The negative electrode plate 16 may be prepared by applying, drying, and rolling a paste obtained by kneading and dispersing a negative electrode active material, a binder, and, if necessary, a conductive agent in a solvent on one side or both sides of the current collector 17. it can. The negative electrode plate preferably has a thickness of 110 μm to 210 μm and is flexible like the positive electrode plate.

負極集電体17としては、銅製の箔または銅合金製の箔が好ましいが、特に限定されるものではない。それらの箔としては、圧延箔、電解箔などが挙げることができる。その箔の形状は、箔、孔開き箔、エキスパンド材、およびラス材等であっても構わない。   The negative electrode current collector 17 is preferably a copper foil or a copper alloy foil, but is not particularly limited. Examples of those foils include rolled foil and electrolytic foil. The shape of the foil may be foil, perforated foil, expanded material, lath material, or the like.

負極活物質としては、例えば、リチウムイオンを可逆的に吸蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを含む材料が好ましい。黒鉛型結晶構造を有するグラファイトを含む材料としては、例えば、天然黒鉛や球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、および易黒鉛化性炭素(ソフトカーボン)等が好ましい。   As the negative electrode active material, for example, a material containing graphite having a graphite type crystal structure capable of reversibly inserting and extracting lithium ions is preferable. As a material containing graphite having a graphite-type crystal structure, for example, natural graphite, spherical / fibrous artificial graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like are preferable.

結着剤、分散媒、必要に応じて加えることができる導電剤、および増粘剤は、正極と同様のものを使用することができる。   As the binder, the dispersion medium, the conductive agent that can be added as necessary, and the thickener, the same materials as those for the positive electrode can be used.

セパレータ15の材料としては、ポリエチレン樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフイン系樹脂の単層やポリエチレン樹脂の両側にポリプロピレン樹脂を積層したものが好ましい。またセパレータ15の厚みは、10〜30μmが好ましい。   As a material for the separator 15, a single layer of a microporous polyolefin resin such as polyethylene resin or polypropylene resin, or a laminate of polypropylene resin on both sides of the polyethylene resin is preferable. The thickness of the separator 15 is preferably 10 to 30 μm.

電池ケース11としては、上端が開口している有底の角型ケースである。その材質は、耐圧強度の観点から、マンガンや銅等の金属を微量含有するアルミニウム合金、もしくはニッケルメッキを施した鋼鈑が好ましい。   The battery case 11 is a bottomed rectangular case having an open upper end. The material is preferably an aluminum alloy containing a very small amount of metal such as manganese or copper, or a steel plate plated with nickel, from the viewpoint of pressure strength.

電解液としては、非水溶媒に電解質を溶解することにより調整される。非水溶媒としては、例えば、エチレンカーボネート(以下、ECと略す)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、およびリン酸トリエチル等を用いることができる。これらの非水溶媒は、単独或いは二種類以上の混合溶媒として、使用することができる。   The electrolyte is adjusted by dissolving the electrolyte in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3. -Dimethoxypropane, 4-methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, Dimethyl sulfoxide, dimethylformamide, trimethyl phosphate, triethyl phosphate, and the like can be used. These nonaqueous solvents can be used alone or as a mixed solvent of two or more kinds.

電解質としては、例えば、電子吸引性の強いリチウム塩を使用することができる。例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、およびLiC(SO2CF33等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの電解質は、非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。 As the electrolyte, for example, a lithium salt having a strong electron withdrawing property can be used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3, etc. Can be mentioned. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved at a concentration of 0.5 to 1.5M in the nonaqueous solvent.

金属製集電体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤を塗布した正極14と、金属製集電体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極16との間にセパレータ15を介して渦巻状に捲回した極板群であって、前記正極の正極合剤が前記金属製集電体箔上に塗布されていない正極合剤未塗布部であって、前記負極における負極合剤塗布部対向している部分のセパレータは、溶融収縮温度以上で熱処理することにより、実質的に非多孔質となるように作製する。   A positive electrode 14 coated with a positive electrode mixture containing a positive electrode active material that occludes and releases lithium ions on a metal current collector foil, and a negative electrode composite containing a negative electrode active material that occludes and releases lithium ions on a metal current collector foil A positive electrode mixture in which the positive electrode mixture of the positive electrode is not applied on the metal current collector foil, the electrode plate group being wound in a spiral shape with a separator 15 between the negative electrode 16 coated with the agent. The separator in the portion where the agent is not applied and facing the negative electrode mixture application portion in the negative electrode is manufactured to be substantially non-porous by heat treatment at a temperature equal to or higher than the melt shrinkage temperature.

以下に具体的な実施例について詳細に説明する。   Specific examples will be described in detail below.

本発明の角型リチウムイオン二次電池は、以下のようにして作製する。   The prismatic lithium ion secondary battery of the present invention is produced as follows.

(実施例1)
正極板14は、正極活物質としてLiCoO2を100重量部、導電剤としてアセチレンブラックを2重量部、結着剤としてポリフッ化ビニリデン樹脂を固形分で3重量部を加え、N−メチル−2−ピロリドンを溶剤として混練分散させてペーストを作製した。このペーストを、厚さ15μmの帯状のアルミニウム箔からなる集電体13に連続的に間欠塗着を行い、乾燥し、その後3回圧延を行った。
Example 1
The positive electrode plate 14 was prepared by adding 100 parts by weight of LiCoO 2 as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of a polyvinylidene fluoride resin as a binder, and adding N-methyl-2- A paste was prepared by kneading and dispersing pyrrolidone as a solvent. This paste was continuously intermittently applied to a current collector 13 made of a strip-shaped aluminum foil having a thickness of 15 μm, dried, and then rolled three times.

そして、アルミニウム製の正極リード21をスポット溶接により溶接した。内部短絡を防止するために、正極リード21を挟み込むようにポリプロピレン樹脂製絶縁粘着体を貼
り付けた。このようにして、幅寸法42mm、長さ300mm、厚さ0.14mmの正極板14を作製した。
The positive electrode lead 21 made of aluminum was welded by spot welding. In order to prevent an internal short circuit, an insulating adhesive made of polypropylene resin was attached so as to sandwich the positive electrode lead 21. In this way, a positive electrode plate 14 having a width dimension of 42 mm, a length of 300 mm, and a thickness of 0.14 mm was produced.

負極板16は、負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛を100重量部、結着剤としてSBRの水溶性デイスパージョンを固形分として1重量部、増粘剤としてカルボキシメチルセルロースを1重量部、溶剤として水を加え、混練分散させてペーストを作製した。このペーストを、厚さ10μmの帯状の銅箔からなる集電体17に連続的に間欠塗着を行い、110℃で30分間乾燥し、その後圧延を行った。   The negative electrode plate 16 has 100 parts by weight of scaly graphite capable of occluding and releasing lithium as a negative electrode active material, 1 part by weight of a water-soluble SBR dispersion as a binder, and carboxymethyl cellulose as a thickener. 1 part by weight of water as a solvent was added and kneaded and dispersed to prepare a paste. This paste was continuously and intermittently applied to a current collector 17 made of a strip-shaped copper foil having a thickness of 10 μm, dried at 110 ° C. for 30 minutes, and then rolled.

そして、ニッケル製の負極リード20をスポット溶接により溶接した。内部短絡を防止するために、負極リード20を挟み込むようにポリプロピレン樹脂製絶縁粘着体(図示せず)を貼り付けた。このようにして、幅寸法43mm、長さ400mm、厚さ0.14mmの負極板16を作製した。   Then, the negative electrode lead 20 made of nickel was welded by spot welding. In order to prevent an internal short circuit, an insulating adhesive made of polypropylene resin (not shown) was attached so as to sandwich the negative electrode lead 20. Thus, the negative electrode plate 16 having a width dimension of 43 mm, a length of 400 mm, and a thickness of 0.14 mm was produced.

このようにして作製した正極板14と負極板16とが厚さ20μmのポリエチレン樹脂製の微多孔性セパレータ15を介して楕円状に捲回して極板群を作製する際、図2に示す正極板14の正極合剤が集電体13に塗布されていない正極合剤未塗布部であって、負極板14における負極合剤塗布部対向している部分のみのセパレータ15を、130℃で熱処理し、セパレータの多孔質を喪失させた部分22を形成した後、極板群を作成し、長辺面をプレスすることにより極板群を扁平型にした。   When the positive electrode plate 14 and the negative electrode plate 16 manufactured in this way are wound in an elliptical shape through a microporous separator 15 made of polyethylene resin having a thickness of 20 μm, the electrode plate group shown in FIG. Heat treatment is performed at 130 ° C. on the separator 15 in the portion where the positive electrode mixture of the plate 14 is not applied to the current collector 13 and the portion of the negative electrode plate 14 facing the negative electrode mixture application portion. And after forming the part 22 which lost the porosity of the separator, the electrode plate group was created, and the electrode plate group was made flat by pressing the long side surface.

この極板群を有底角型の電池ケース11内に収納した。有底角型の電池ケース11は、マンガンや銅等の金属を微量含有する3000系のアルミニウム合金で、肉厚0.25mmで、幅寸法6.3mm、長さ寸法34.0mm、総高50.0mmである。   The electrode plate group was housed in a bottomed rectangular battery case 11. The bottomed rectangular battery case 11 is a 3000 series aluminum alloy containing a trace amount of metals such as manganese and copper, has a thickness of 0.25 mm, a width dimension of 6.3 mm, a length dimension of 34.0 mm, and a total height of 50. 0.0 mm.

次に、正極板14に溶接した正極リード21と、負極板16に溶接した負極リード20を封口板12のそれぞれの極性端子に溶接した。このような状態で乾燥し、所定の乾燥を終了した後にカールフィシャー式水分計で、極板群の含有水分量を測定した。極板群の水分量が所定の水分量以下であることを確認した。   Next, the positive electrode lead 21 welded to the positive electrode plate 14 and the negative electrode lead 20 welded to the negative electrode plate 16 were welded to the respective polar terminals of the sealing plate 12. After drying in such a state and finishing the predetermined drying, the moisture content of the electrode plate group was measured with a Karl Fischer moisture meter. It was confirmed that the moisture content of the electrode plate group was not more than a predetermined moisture content.

さらに、封口板12と電池ケース11とをレーザ溶接により溶接した。ECとエチルメチルカーボネートを2:1で混合した混合溶媒に、電解質としてLiPF6を1.0Mの濃度で溶解させた非水電解液を調整した。この非水電解液を封口板12に設けた注液孔(図示せず)より注液した。その後、注液栓(図示せず)をレーザ溶接で溶接により封口した。このようにして作製した角型リチウムイオン二次電池は電池容量の設計値は1000mAhであった。この角形リチウムイオン二次電池を電池Aとした。 Further, the sealing plate 12 and the battery case 11 were welded by laser welding. A nonaqueous electrolytic solution was prepared by dissolving LiPF 6 as an electrolyte at a concentration of 1.0 M in a mixed solvent in which EC and ethyl methyl carbonate were mixed at a ratio of 2: 1. This nonaqueous electrolytic solution was injected from a liquid injection hole (not shown) provided in the sealing plate 12. Thereafter, a liquid injection stopper (not shown) was sealed by laser welding. The prismatic lithium ion secondary battery produced in this way had a battery capacity design value of 1000 mAh. This prismatic lithium ion secondary battery was designated as battery A.

(実施例2)
極板群を作製する際、正極板14の正極合剤が集電体13に塗布されていない正極合剤未塗布部であって、負極板16における負極合剤塗布部対向している部分のみのセパレータ15を、図3に示すように折り返した後130℃で熱処理して極板群を作成した。それ以外は実施例1と同様にして角型リチウムイオン二次電池を作製し、電池Bとした。
(Example 2)
When preparing the electrode plate group, the positive electrode mixture of the positive electrode plate 14 is a portion where the positive electrode mixture is not applied to the current collector 13, and only the portion of the negative electrode plate 16 facing the negative electrode mixture application portion. The separator 15 was folded back as shown in FIG. 3 and then heat-treated at 130 ° C. to prepare an electrode plate group. Otherwise, a rectangular lithium ion secondary battery was produced in the same manner as in Example 1, and a battery B was obtained.

(比較例1)
極板群を作製する際、正極板14の正極合剤が集電体13に塗布されていない正極合剤未塗布部であって、負極板16における負極合剤塗布部対向している部分にポリプロピレン製糊材付き絶縁テープ(厚さ30μm)を貼りつけ極板群を作成した。それ以外は実施例1と同様にして角型リチウムイオン二次電池を作製し、電池Cとした。
(Comparative Example 1)
When preparing the electrode plate group, the positive electrode mixture of the positive electrode plate 14 is a portion where the positive electrode mixture is not applied to the current collector 13 and is opposite to the negative electrode mixture application portion of the negative electrode plate 16. An insulating tape with a paste material made of polypropylene (thickness: 30 μm) was attached to prepare an electrode plate group. Otherwise, a rectangular lithium ion secondary battery was produced in the same manner as in Example 1, and a battery C was obtained.

(比較例2)
極板群を作製する際、正極板14の正極合剤が集電体13に塗布されていない正極合剤未塗布部であって、負極板16における負極合剤塗布部対向している部分のセパレータ15に熱処理を全く加えず、他の部分のセパレータと同様に多孔質であるまま極板群を捲回した以外は実施例1と同様にして角型リチウムイオン二次電池を作製し、電池Dとした。
(Comparative Example 2)
When producing the electrode plate group, the positive electrode mixture of the positive electrode plate 14 is a portion where the positive electrode mixture is not applied to the current collector 13, and the portion of the negative electrode plate 16 facing the negative electrode mixture application portion A prismatic lithium ion secondary battery was fabricated in the same manner as in Example 1 except that no heat treatment was applied to the separator 15 and the electrode plate group was wound in the same manner as the other portions of the separator, and the battery was wound. D.

(電池の評価)
本発明の効果を確認するために、このようにして作製した電池A〜電池Dについて、それぞれ100セルずつ60℃の環境下で1ヵ月、2ヶ月、3ヶ月間トリクル連続充電試験を行い、内部短絡の有無を確認した。トリクル連続充電の方法は、電池電圧が4.2Vに達するまでは定電流1000mA(1CmA)で充電した後、電流を減衰させ定電圧(4.2V)充電を行い、トータルの充電期間を1ヵ月となるように設定した。
(Battery evaluation)
In order to confirm the effect of the present invention, the batteries A to D thus produced were subjected to trickle continuous charge tests for 100 months at 60 ° C. for one month, two months, and three months. The presence or absence of a short circuit was confirmed. In the trickle continuous charging method, the battery is charged at a constant current of 1000 mA (1 CmA) until the battery voltage reaches 4.2 V, and then the current is attenuated and the constant voltage (4.2 V) is charged. The total charging period is one month. It set so that it might become.

その結果を表1に示す。   The results are shown in Table 1.

表1の結果から、以下のことが理解できる。電池Dの結果から、正極合剤未塗布部であって、負極板における負極合剤塗布部対向している部分に絶縁処理を施していない場合かなりの確率で内部短絡が発生することが解った。 From the results in Table 1, the following can be understood. From the result of the battery D, it was found that an internal short circuit occurs with a considerable probability when the insulating material is not applied to the portion of the negative electrode plate where the negative electrode mixture is applied, which is not applied to the negative electrode mixture. .

一方、本発明の電池Aおよび電池Bは内部短絡を防止する効果がえられ、特にセパレータをおり返した電池Bの方が3ヶ月においても内部短絡は発生せず、効果が顕著であった。
これは、セパレータを折り返すことにより、非多孔質となったセパレータの実質厚みが電池Aの非多孔質となったセパレータの厚みの3倍あることがより絶縁性を増したことによるものと推測される。
On the other hand, the battery A and the battery B of the present invention had an effect of preventing an internal short circuit, and the battery B with the separator turned back did not cause an internal short circuit even in 3 months, and the effect was remarkable.
This is presumed to be due to the fact that the thickness of the separator made non-porous by folding the separator is three times the thickness of the separator made non-porous in battery A, which further increases the insulation. The

また、電池Cとして示した従来の絶縁テープの貼着法では、内部短絡を有効に防止することができたが、テープ切断工程や電極へのテープの貼りつけ工程などの電池製造工程において粘着剤が製造装置に付着するので、頻繁に装置停止および清掃する必要があったが、本発明の電池AおよびBを作成する際には、極板群を捲回する前にセパレータを連続的に所定の箇所を熱処理するために、電池Cのような、装置停止および清掃する必要はなかった。   Moreover, in the pasting method of the insulation tape shown as the battery C, although an internal short circuit was able to be prevented effectively, it is an adhesive in battery manufacturing processes, such as a tape cutting process and the tape affixing process to an electrode. However, when the batteries A and B of the present invention were prepared, the separator was continuously set before winding the electrode plate group. It was not necessary to stop and clean the apparatus as in the battery C in order to heat-treat this part.

なお、上述した実施例においては、角型リチウムイオン二次電池の場合について説明したが、本発明は角形リチウムイオン二次電池に限らず、ニカド電池およびニッケル水素電池にも適用することができるものである。更に、電池形状についても特に制限はなく、扁平型、円筒型など、他の色々な形状の二次電池についても適用することができるものである。   In the above-described embodiments, the case of a prismatic lithium ion secondary battery has been described. However, the present invention is not limited to a prismatic lithium ion secondary battery, but can be applied to a nickel-cadmium battery and a nickel metal hydride battery. It is. Further, the battery shape is not particularly limited, and can be applied to secondary batteries having various shapes such as a flat type and a cylindrical type.

本発明によれば、内部短絡に対する信頼性に優れた電池を得ることができ、小型電子機器用電源等として有用である。   According to the present invention, a battery having excellent reliability against internal short circuit can be obtained, which is useful as a power source for small electronic devices.

本発明の一実施形態を示すリチウム二次電池の断面図Sectional drawing of the lithium secondary battery which shows one Embodiment of this invention 本発明のセパレータ熱処理部分の拡大概略図Enlarged schematic view of separator heat treatment part of the present invention 本発明のセパレータ折り返し熱処理部分の拡大概略図Enlarged schematic view of the separator folding heat treatment portion of the present invention

符号の説明Explanation of symbols

11 電池ケース
12 封口板
13 正極集電体
14 正極板
15 セパレータ
16 負極板
17 負極集電体
20 負極リード
21 正極リード
22 セパレータの熱処理部分


DESCRIPTION OF SYMBOLS 11 Battery case 12 Sealing plate 13 Positive electrode collector 14 Positive electrode plate 15 Separator 16 Negative electrode plate 17 Negative electrode collector 20 Negative electrode lead 21 Positive electrode lead 22 Separator heat treatment part


Claims (2)

金属製集電体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤を塗布した正極と、金属製集電体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極との間に、溶融収縮温度を持つ多孔質セパレータを介して渦巻状に捲回した極板群をもつ非水電解質捲回型二次電池において、
前記正極には、前記正極合剤が前記金属製集電体箔上に塗布されていない正極合剤未塗布部があり、前記セパレータの、前記正極合剤未塗布部と前記負極における負極合剤塗布部とが対向している場所に介在する部分は、前記溶融収縮温度以上で熱処理することにより実質的に非多孔質となった非多孔質セパレータ部であることを特徴とする非水電解質捲回型二次電池。
A positive electrode in which a positive electrode mixture containing a positive electrode active material that occludes and releases lithium ions is applied on a metal current collector foil, and a negative electrode mixture that contains a negative electrode active material that occludes and releases lithium ions in a metal current collector foil In a non-aqueous electrolyte wound secondary battery having a group of electrodes wound spirally through a porous separator having a melting shrinkage temperature between the negative electrode coated with
The positive electrode has a positive electrode mixture non-applied portion where the positive electrode mixture is not applied on the metal current collector foil, and a negative electrode mixture in the positive electrode mixture non-applied portion and the negative electrode of the separator. The portion intervening in the place where the coating portion is opposed is a non-porous separator portion that has become substantially non-porous by heat treatment at a temperature equal to or higher than the melting shrinkage temperature. Rechargeable secondary battery.
前記非多孔質セパレータ部は、非多孔質となったセパレータが一回以上折り返されている請求項1に記載の非水電解質捲回型二次電池。


2. The non-aqueous electrolyte wound secondary battery according to claim 1, wherein the non-porous separator portion has a non-porous separator folded back once or more.


JP2005329659A 2005-11-15 2005-11-15 Nonaqueous electrolyte winding type secondary battery Pending JP2007141482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005329659A JP2007141482A (en) 2005-11-15 2005-11-15 Nonaqueous electrolyte winding type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329659A JP2007141482A (en) 2005-11-15 2005-11-15 Nonaqueous electrolyte winding type secondary battery

Publications (1)

Publication Number Publication Date
JP2007141482A true JP2007141482A (en) 2007-06-07

Family

ID=38204121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329659A Pending JP2007141482A (en) 2005-11-15 2005-11-15 Nonaqueous electrolyte winding type secondary battery

Country Status (1)

Country Link
JP (1) JP2007141482A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096070A1 (en) * 2010-02-05 2011-08-11 トヨタ自動車株式会社 Electrode body for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20110204884A1 (en) * 2008-07-11 2011-08-25 University Of Cape Town Magnetometer
JP2012069283A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Method for manufacturing stacked cell and stacked cell separator
US20130171497A1 (en) * 2010-09-16 2013-07-04 Nec Energy Devices, Ltd. Stacked secondary battery
JP2016058381A (en) * 2014-09-04 2016-04-21 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2016103364A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Electrode body
JP2016110886A (en) * 2014-12-09 2016-06-20 株式会社Gsユアサ Power storage element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110204884A1 (en) * 2008-07-11 2011-08-25 University Of Cape Town Magnetometer
US8773118B2 (en) * 2008-07-11 2014-07-08 University Of Cape Town Magnetometer
WO2011096070A1 (en) * 2010-02-05 2011-08-11 トヨタ自動車株式会社 Electrode body for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5273159B2 (en) * 2010-02-05 2013-08-28 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery electrode body and non-aqueous electrolyte secondary battery
US10454140B2 (en) 2010-02-05 2019-10-22 Toyota Jidosha Kabushiki Kaisha Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20130171497A1 (en) * 2010-09-16 2013-07-04 Nec Energy Devices, Ltd. Stacked secondary battery
US9472796B2 (en) 2010-09-16 2016-10-18 Nec Energy Devices, Ltd. Stacked secondary battery with separator between electrodes
JP2012069283A (en) * 2010-09-21 2012-04-05 Nissan Motor Co Ltd Method for manufacturing stacked cell and stacked cell separator
JP2016058381A (en) * 2014-09-04 2016-04-21 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2016103364A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Electrode body
JP2016110886A (en) * 2014-12-09 2016-06-20 株式会社Gsユアサ Power storage element

Similar Documents

Publication Publication Date Title
JP4236308B2 (en) Lithium ion battery
JP4992203B2 (en) Lithium ion secondary battery
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JP4867213B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2006302801A (en) Winding type secondary battery
JP2008027831A (en) Battery
JP4017376B2 (en) Lithium secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JPH11204145A (en) Lithium secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP7003775B2 (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2001313037A (en) Anode and nonaqueous electrolyte cell and manufacyuring method of the same
JP2003223899A (en) Manufacturing method of negative electrode plate and lithium secondary battery using the negative electrode plate
JP2006302509A (en) Battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery
JP4561034B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP2007172878A (en) Battery and its manufacturing method
JP4240960B2 (en) Lithium secondary battery and manufacturing method thereof
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP2005310617A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP4560851B2 (en) Method for producing solid electrolyte battery
JP2007172881A (en) Battery and its manufacturing method
JP5888067B2 (en) Porous sheet and secondary battery using the same