JP2006302509A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2006302509A
JP2006302509A JP2005117764A JP2005117764A JP2006302509A JP 2006302509 A JP2006302509 A JP 2006302509A JP 2005117764 A JP2005117764 A JP 2005117764A JP 2005117764 A JP2005117764 A JP 2005117764A JP 2006302509 A JP2006302509 A JP 2006302509A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
battery
negative electrode
insulating tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005117764A
Other languages
Japanese (ja)
Other versions
JP2006302509A5 (en
Inventor
Hiroyuki Suzuki
浩之 鈴木
Masamune Oki
雅統 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005117764A priority Critical patent/JP2006302509A/en
Publication of JP2006302509A publication Critical patent/JP2006302509A/en
Publication of JP2006302509A5 publication Critical patent/JP2006302509A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent winding displacement in formation of an electrode group for improving yield of a battery and providing a battery with improved reliability even when an insulation tape is stuck to a welding position in a positive/negative electrode current collection tab. <P>SOLUTION: In a spiral electrode group mounted inside an armor casing, a positive electrode plate 10, in which an active material 12 is applied to both faces of long metal foil 11, and a negative electrode plate 20, in which an active material 22 is applied to both faces of long metal foil 21, are wounded up face to face via a separator 40. An uncoated part 13, on which the active material 12 is not applied, is formed in the longitudinal intermediate part in the positive electrode plate 10, and the current collection tab 14 is connected to the uncoated part 13, while an insulting tape 15 is stuck to cover the uncoated part 13 and the current collection tab 14. A ratio of the surface roughness Ra1 of the insulation tape 15 to the surface roughness Ra2 of the positive electrode plate 10 ranges from 0.5 to 1.5 (0.5Ra2≤Ra1≤1.5Ra2). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、長尺状の金属箔の両面に活物質が塗布された正極板と負極板がセパレータを介して相対向するようにして巻回された渦巻状極板群を外装缶内に備えた電池に関する。   The present invention is provided with a spiral electrode plate group, in which a positive electrode plate and a negative electrode plate coated with an active material on both sides of a long metal foil are wound so as to face each other via a separator, in an outer can. Battery.

一般に、リチウムイオン電池などの非水電解質二次電池は以下のようにして作製されている。即ち、LiCoO2,LiNiO2,LiMnO2,LiMn24などからなる正極活物質と炭素系導電剤と有機溶剤等を混合してスラリーあるいはペーストを作製し、これをアルミニウム箔などからなる長尺状の金属箔に塗布して帯状正極板を作製する。一方、天然黒鉛よりなる負極活物質と結着剤等を有機溶剤に溶解してスラリーあるいはペーストを作製し、これを銅箔などからなる長尺状の金属箔に塗布して帯状負極板を作製する。 In general, a non-aqueous electrolyte secondary battery such as a lithium ion battery is manufactured as follows. That is, a positive electrode active material made of LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4, etc. is mixed with a carbon-based conductive agent and an organic solvent to produce a slurry or paste, which is made of a long foil made of aluminum foil or the like. A strip-like positive electrode plate is prepared by applying to a metal foil. On the other hand, a negative electrode active material made of natural graphite and a binder are dissolved in an organic solvent to prepare a slurry or paste, which is applied to a long metal foil made of copper foil or the like to produce a strip-shaped negative electrode plate. To do.

これらの帯状正極板と帯状負極板とをポリエチレン製微多孔膜などからなるセパレータを間にして重ね合わせ、巻き取り機により卷回した後、最外周をテープ止めして渦巻状極板群とする。ついで、これを外装缶内に挿入した後、帯状負極板に接続された負極リード(負極集電タブ)と外装缶の底部とを接続するとともに、帯状正極板に接続された正極リード(正極集電タブ)と正極端子とを接続する。ついで、外装缶内に有機溶媒(例えば、ECとDECよりなる混合溶媒)に電解質塩を添加した非水電解質を注入した後、外装缶の開口部を気密に封口することによりリチウムイオン電池が作製される。   These belt-like positive electrode plate and belt-like negative electrode plate are overlapped with a separator made of a polyethylene microporous film in between, wound by a winder, and then taped to the outermost periphery to form a spiral electrode plate group. . Then, after inserting this into the outer can, the negative electrode lead (negative electrode current collecting tab) connected to the strip-shaped negative electrode plate and the bottom of the outer can can be connected, and the positive electrode lead (positive electrode collector) connected to the strip-shaped positive electrode plate. Electrical tab) and the positive terminal. Next, after injecting a non-aqueous electrolyte in which an electrolyte salt is added to an organic solvent (for example, a mixed solvent composed of EC and DEC) into the outer can, the lithium ion battery is manufactured by sealing the opening of the outer can in an airtight manner. Is done.

ところで、上述した渦巻状極板群においては、例えば特許文献1に示されるように、正極活物質あるいは負極活物質の塗布領域と未塗布領域との境界部、正極リード(正極集電タブ)あるいは負極リード(負極集電タブ)の溶接位置などのように、渦巻状に巻回された際に局所的に加圧力が大きくなる部分での短絡の発生率が大きくなるため、このような部位に絶縁テープを貼着して、当該部位での対向電極との接触による短絡を未然に防止するようになされている。
特開2002−42881号公報
By the way, in the spiral electrode group described above, for example, as shown in Patent Document 1, a boundary portion between a positive electrode active material or a negative electrode active material applied region and an uncoated region, a positive electrode lead (positive electrode current collecting tab) or The occurrence rate of short circuit increases at the part where the applied pressure increases locally when wound in a spiral shape, such as the welding position of the negative electrode lead (negative electrode current collecting tab). An insulating tape is attached to prevent a short circuit due to contact with the counter electrode at the site.
JP 2002-42881 A

ところが、上述した特許文献1に示されるように、正極リード(正極集電タブ)あるいは負極リード(負極集電タブ)の溶接位置に絶縁テープが貼着された極板を用いると、渦巻状に巻回する際に絶縁テープを境にして巻きずれが発生するという問題を生じた。これは、正極リード(正極集電タブ)部あるいは負極リード(負極集電タブ)部で凹凸が形成されるために、巻回時にこの部分でねじれが生じることに起因して、巻きずれが発生したと考えられる。また、絶縁テープ部の表面と極板表面とで摩擦係数が異なることに起因して、絶縁テープ部上でセパレータに滑りが生じるようになって、巻きずれが発生したと考えられる。ここで、極板群に巻ずれが発生すると正・負極板が接触し、内部短絡の問題を生じるようになる。また、極板群に巻ずれが発生すると極板群を外装缶内の所定の位置に挿入できなくなるという問題も生じるようになる。   However, as shown in Patent Document 1 described above, when an electrode plate having an insulating tape attached to a welding position of a positive electrode lead (positive electrode current collecting tab) or a negative electrode lead (negative electrode current collecting tab) is used, the electrode plate has a spiral shape. When winding, there arises a problem that winding deviation occurs at the boundary of the insulating tape. This is because unevenness is formed in the positive electrode lead (positive electrode current collecting tab) part or negative electrode lead (negative electrode current collecting tab) part, and twisting occurs in this part during winding. It is thought that. In addition, it is considered that slippage occurred in the separator on the insulating tape portion due to the friction coefficient being different between the surface of the insulating tape portion and the surface of the electrode plate, and the winding deviation occurred. Here, when a winding deviation occurs in the electrode plate group, the positive and negative electrode plates come into contact with each other, causing an internal short circuit problem. In addition, when the winding deviation occurs in the electrode plate group, there arises a problem that the electrode plate group cannot be inserted into a predetermined position in the outer can.

そこで、本発明は上記のような問題点に鑑みてなされたものであり、正極リード(正極集電タブ)あるいは負極リード(負極集電タブ)の溶接位置に絶縁テープを貼着しても、極板群の形成時に巻ずれが生じにくくして、電池の歩留まりを向上させ、信頼性が向上した電池を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and even if an insulating tape is attached to the welding position of the positive electrode lead (positive electrode current collecting tab) or the negative electrode lead (negative electrode current collecting tab), An object of the present invention is to provide a battery in which winding deviation is less likely to occur during formation of the electrode plate group, the yield of the battery is improved, and the reliability is improved.

上記目的を達成するため、本発明の電池は、長尺状の金属箔の両面に活物質が塗布された正極板と負極板がセパレータを介して相対向するようにして巻回された渦巻状極板群を外装缶内に備えている。そして、正極板と負極板の一方の極板は長手方向の中間部に活物質が未塗布の未塗布部が形成されていて、当該未塗布部に集電タブが接続されており、かつ未塗布部と集電タブの上を覆うように絶縁テープが貼着されているとともに、絶縁テープの表面粗さRa1が当該絶縁テープが貼着された極板の表面粗さRa2に対して0.5以上で1.5以下(0.5Ra2≦Ra1≦1.5Ra2)であることを特徴とする。   In order to achieve the above object, the battery of the present invention has a spiral shape in which a positive electrode plate coated with an active material on both sides of a long metal foil and a negative electrode plate are wound so as to face each other through a separator. The electrode plate group is provided in the outer can. One electrode plate of the positive electrode plate and the negative electrode plate has an uncoated portion to which an active material is not applied formed in an intermediate portion in the longitudinal direction, and a current collecting tab is connected to the uncoated portion. Insulating tape is stuck so as to cover the coating portion and the current collecting tab, and the surface roughness Ra1 of the insulating tape is 0. 0 relative to the surface roughness Ra2 of the electrode plate to which the insulating tape is stuck. 5 or more and 1.5 or less (0.5Ra2 ≦ Ra1 ≦ 1.5Ra2).

このように、絶縁テープの表面粗さRa1が当該絶縁テープが貼着された極板の表面粗さRa2に対して0.5以上で1.5以下になるようになされていると、絶縁テープ部の表面と極板表面での摩擦係数が近似することにより、絶縁テープ部上でのセパレータの滑りが抑制されるようになって、巻きずれの発生を防止できるようになる。   As described above, when the surface roughness Ra1 of the insulating tape is 0.5 to 1.5 with respect to the surface roughness Ra2 of the electrode plate to which the insulating tape is attached, the insulating tape By approximating the coefficient of friction between the surface of the part and the surface of the electrode plate, slippage of the separator on the insulating tape part is suppressed, and occurrence of winding deviation can be prevented.

この場合、長手方向の中間部に活物質が未塗布の未塗布部が形成された極板は正極板で、負極板は巻回された際の巻き終わり部となる長手方向の一方の端部に活物質が未塗布の未塗布部が形成されていて、当該未塗布部に集電タブが接続されていると、集電タブ同士が重なることが防止できるので、望ましい。なお、絶縁テープはポリプロピレン製、ポリフェニレンサルファイド製またはポリイミド製であり、かつ表面粗さがRa1になるように、例えば、グラビアロールなどにより表面加工されたものであるのが望ましい。   In this case, the electrode plate in which the uncoated portion where the active material is not applied is formed in the middle portion in the longitudinal direction is the positive electrode plate, and the negative electrode plate is one end portion in the longitudinal direction which becomes the winding end portion when wound. It is desirable that an uncoated portion where the active material is not coated is formed and a current collecting tab is connected to the uncoated portion, because the current collecting tabs can be prevented from overlapping each other. The insulating tape is preferably made of polypropylene, polyphenylene sulfide, or polyimide, and has been surface processed by, for example, a gravure roll so that the surface roughness is Ra1.

以下に、本発明をリチウムイオン電池に適用した場合の好ましい実施の形態を図1〜図2に基づいて説明するが、本発明はこの実施の形態に何ら限定されるものでなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1はリチウムイオン電池に用いられる正極板と負極板を重ね合わせた積層体を模式的に示す図でり、図1(a)はその上面図であり、図1(b)は、図1(a)の正極板のA−A断面を拡大して模式的に示すとともに、この上下にセパレータと負極板を配置した状態を拡大して模式的に示す拡大断面図である。また、図2は、図1に示された積層体を渦巻状に巻回して作製した渦巻状極板群を外装缶内に収納して電池に構成した状態を模式的に示す断面図である。   Hereinafter, a preferred embodiment when the present invention is applied to a lithium ion battery will be described with reference to FIGS. 1 to 2, but the present invention is not limited to this embodiment at all. It is possible to carry out by appropriately changing without changing the purpose. FIG. 1 is a diagram schematically showing a laminate in which a positive electrode plate and a negative electrode plate used in a lithium ion battery are overlapped, FIG. 1 (a) is a top view thereof, and FIG. FIG. 2 is an enlarged cross-sectional view schematically showing an enlarged AA cross section of the positive electrode plate in FIG. 1A and a state in which a separator and a negative electrode plate are arranged on the upper and lower sides. FIG. 2 is a cross-sectional view schematically showing a state in which a spiral electrode plate group produced by winding the laminate shown in FIG. 1 in a spiral shape is housed in an outer can and configured in a battery. .

1.正極板
正極活物質としての平均粒径が5μmのLiCoO2粉末と、正極導電済としての人造黒鉛粉末を質量比で9:1となるように混合して正極合剤を調整した。得られた正極合剤と、ポリフッ化ビニリデン(PVdF)からなる結着剤をN−メチル−2−ピロリドン(NMP)からなる有機溶剤に5質量%溶解した結着剤溶液とを固形分の質量比で95:5となるように混合、混練して、正極合剤スラリーを調製した。ついで、正極集電体11としてのアルミニウム箔(箔厚み:15μm)を用意し、このアルミニウム箔からなる正極集電体11の両面に正極合剤スラリーをドクターブレード等を用いて均一に塗布した。
1. Positive Electrode Plate A positive electrode mixture was prepared by mixing LiCoO 2 powder having an average particle diameter of 5 μm as a positive electrode active material and artificial graphite powder as a positive electrode conductive material at a mass ratio of 9: 1. The obtained positive electrode mixture and a binder solution obtained by dissolving 5% by mass of a binder composed of polyvinylidene fluoride (PVdF) in an organic solvent composed of N-methyl-2-pyrrolidone (NMP) A positive electrode mixture slurry was prepared by mixing and kneading so that the ratio was 95: 5. Next, an aluminum foil (foil thickness: 15 μm) as a positive electrode current collector 11 was prepared, and a positive electrode mixture slurry was uniformly applied to both surfaces of the positive electrode current collector 11 made of this aluminum foil using a doctor blade or the like.

ついで、乾燥機内を通過させて正極合剤スラリーを乾燥させた後、ロールプレス機により圧延して、正極集電体11の両面に正極活物質層12を形成した。この場合、正極活物質層12の乾燥後の質量が480g/m2となるように正極合剤スラリーを塗布し、乾燥後の正極活物質層12の充填密度が3.7g/cm3になるように圧延するとともに、正極板10の中間部に幅方向に15mm幅の未塗布部13が形成されるようにした。この後、所定の寸法(幅:55mm、長さ:600mm)になるように切断した後、150°で2時間真空乾燥させて正極板10を作製した。 Next, after passing through the dryer to dry the positive electrode mixture slurry, the positive electrode active material layer 12 was formed on both surfaces of the positive electrode current collector 11 by rolling with a roll press. In this case, the positive electrode mixture slurry is applied so that the mass after drying of the positive electrode active material layer 12 is 480 g / m 2, and the packing density of the positive electrode active material layer 12 after drying becomes 3.7 g / cm 3 . In addition, the uncoated portion 13 having a width of 15 mm in the width direction was formed in the intermediate portion of the positive electrode plate 10. Then, after cutting so that it might become a predetermined dimension (width: 55 mm, length: 600 mm), it was made to vacuum-dry at 150 degrees for 2 hours, and the positive electrode plate 10 was produced.

ついで、この正極板10の中間部に形成された未塗布部13に厚みが0.1mmの金属板(例えば、アルミニウム製で、幅:5mm、長さ:50mm)からなる正極集電タブ14を溶接した。そして、これらの未塗布部13と正極集電タブ14の上に絶縁テープ(例えば、ポリプロピレン製、ポリフェニレンサルファイド製、ポリイミド製で、幅:20mm、長さ:57mm、厚み30μm)15を接着剤(例えば、ゴム系の粘着剤、アクリル系の粘着剤など)で貼着した。この場合、絶縁テープ15は、ポリプロピレンを基材とした厚みが30μmのテープを使用し、基材作製時にグラビアロールを用いて所定の表面粗さ(Ra1)となるように調製したものを用いた。   Next, a positive electrode current collecting tab 14 made of a metal plate having a thickness of 0.1 mm (for example, made of aluminum and having a width of 5 mm and a length of 50 mm) is formed on the uncoated portion 13 formed in the intermediate portion of the positive electrode plate 10. Welded. Then, an insulating tape (for example, made of polypropylene, made of polyphenylene sulfide, made of polyimide, width: 20 mm, length: 57 mm, thickness 30 μm) 15 is bonded on the uncoated portion 13 and the positive electrode current collecting tab 14 with an adhesive ( For example, it was attached with a rubber-based adhesive, an acrylic-based adhesive, or the like. In this case, the insulating tape 15 used was a tape having a thickness of 30 μm made of polypropylene as a base material, and was prepared to have a predetermined surface roughness (Ra1) using a gravure roll at the time of base material preparation. .

ここで、表面粗さ(Ra1)が3μmになるように調製された絶縁テープ15を貼着した正極板10を正極板aとした。同様に、表面粗さ(Ra1)が5μmになるように調製された絶縁テープ15を貼着したものを正極板bとし、表面粗さ(Ra1)が10μmになるように調製された絶縁テープ15を貼着したものを正極板cとし、表面粗さ(Ra1)が15μmになるように調製された絶縁テープ15を貼着したものを正極板dとし、表面粗さ(Ra1)が18μmになるように調製された絶縁テープ15を貼着したものを正極板eとした。   Here, the positive electrode plate 10 to which the insulating tape 15 prepared so that the surface roughness (Ra1) was 3 μm was attached was used as the positive electrode plate a. Similarly, an insulating tape 15 having a surface roughness (Ra1) of 5 μm attached thereto is used as a positive electrode plate b, and an insulating tape 15 having a surface roughness (Ra1) of 10 μm is prepared. Is the positive electrode plate c, and the one with the insulating tape 15 prepared so that the surface roughness (Ra1) is 15 μm is the positive electrode plate d, and the surface roughness (Ra1) is 18 μm. Thus, the thing which stuck the insulating tape 15 prepared in this way was made into the positive electrode plate e.

2.負極板
一方、鱗片状天然黒鉛(d002:3.356Å,Lc:1000Å,平均粒径:20μm)よりなる負極活物質と、スチレン−ブタジエンゴム(SBR)よりなる結着剤のディスパージョン(固形分:48質量%)を水に分散させた。ついで、これに増粘剤であるカルキシメチルセルロース(CMC)を添加して負極合剤スラリーを調製した。この場合、乾燥後の固形分質量組成比が、黒鉛:SBR:CMC=100:3:2となるように調製した。ついで、負極集電体21としての銅箔(箔厚み:10μm)を用意し、この銅箔からなる負極集電体21の両面に負極合剤スラリーをドクターブレード等を用いて均一に塗布した。
2. Negative electrode plate On the other hand, a dispersion (solid) of a negative electrode active material composed of flaky natural graphite (d 002 : 3.356 mm, Lc: 1000 mm, average particle size: 20 μm) and a styrene-butadiene rubber (SBR) Min: 48% by mass) was dispersed in water. Next, a thickening agent, carboxymethyl cellulose (CMC), was added thereto to prepare a negative electrode mixture slurry. In this case, the solid mass composition ratio after drying was adjusted to be graphite: SBR: CMC = 100: 3: 2. Next, a copper foil (foil thickness: 10 μm) was prepared as the negative electrode current collector 21, and the negative electrode mixture slurry was uniformly applied to both surfaces of the negative electrode current collector 21 made of this copper foil using a doctor blade or the like.

ついで、乾燥機内を通過させて負極合剤スラリーを乾燥させた後、ロールプレス機により圧延して、負極集電体21の両面に負極活物質層22を形成した。この場合、負極活物質層22の乾燥後の質量が200g/m2となるように負極合剤スラリーを塗布し、乾燥後の負極活物質層22の充填密度が1.7g/cm3になるように圧延するとともに、端部に15mm幅の未塗布部23が形成されるようにした。この後、所定の寸法(幅:57mm、長さ:650mm)になるように切断した後、110°で2時間真空乾燥させて負極板20を作製した。なお、端部(後に、渦巻状に巻回された際の巻き終わり部となる部位)の未塗布部23に厚みが0.1mmの金属板(例えば、ニッケル製で、幅:5mm、長さ:50mm)からなる負極集電タブ24を溶接した。 Next, the negative electrode mixture slurry was dried by passing through a dryer, and then rolled with a roll press to form negative electrode active material layers 22 on both surfaces of the negative electrode current collector 21. In this case, the negative electrode mixture slurry is applied so that the mass of the negative electrode active material layer 22 after drying is 200 g / m 2, and the filling density of the negative electrode active material layer 22 after drying is 1.7 g / cm 3 . In addition, the uncoated portion 23 having a width of 15 mm was formed at the end. Then, after cutting so that it might become a predetermined dimension (width: 57mm, length: 650mm), it was made to vacuum-dry at 110 degrees for 2 hours, and the negative electrode plate 20 was produced. A metal plate (for example, made of nickel, having a width of 5 mm and a length of 0.1 mm) is applied to the unapplied portion 23 at the end (the portion that will be the end of the winding when it is wound later in a spiral). : 50 mm) negative electrode current collecting tab 24 was welded.

3.リチウムイオン電池
ついで、上述のようにして作製された正極板10(a,b,c,d,e)と、負極板20とを用いて、これらの間にポリプロピレン製の微多孔膜からなるセパレータ30を介在させて、図1(a)(b)に示すように積層した。この後、これを巻き取り機により渦巻状に巻回して渦巻状極板群を作製した。ついで、渦巻状極板群の上下にそれぞれ絶縁板15,25を配置した後、これらの渦巻状極板群をそれぞれステンレス製の負極端子を兼ねる有底筒状の円筒形外装缶40内に挿入した。ついで、渦巻状極板群の負極板20より延出する負極集電タブ24を外装缶40の内底面に溶接した。一方、渦巻状極板群の正極板10より延出する正極集電タブ14を封口体42の蓋体42bの下面に溶接した。
3. Lithium ion battery Next, a separator made of a microporous film made of polypropylene between the positive electrode plate 10 (a, b, c, d, e) and the negative electrode plate 20 produced as described above. Laminated 30 as shown in FIGS. 1 (a) and 1 (b). Thereafter, this was wound in a spiral shape by a winder to produce a spiral electrode plate group. Next, after the insulating plates 15 and 25 are respectively disposed above and below the spiral electrode plate group, these spiral electrode plate groups are respectively inserted into a bottomed cylindrical cylindrical outer can 40 also serving as a negative electrode terminal made of stainless steel. did. Next, a negative electrode current collecting tab 24 extending from the negative electrode plate 20 of the spiral electrode plate group was welded to the inner bottom surface of the outer can 40. On the other hand, the positive electrode current collecting tab 14 extending from the positive electrode plate 10 of the spiral electrode plate group was welded to the lower surface of the lid body 42 b of the sealing body 42.

この後、外装缶40の上部外周面に溝入れ加工を施して環状溝部41を形成した。この後、金属製外装缶40内にエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等体積混合溶媒に電解質塩として1MLiPF6を添加した電解液を注入した。ついで、封口体42の外周部に装着された封口ガスケット43を外装缶40の環状溝部41の上に載置するとともに、外装缶40の先端部を封口体42側にカシメて封口して、18650サイズで、容量が1800mAhのリチウムイオン電池A,B,C,D,Eをそれぞれ作製した。ここで、正極板aを用いたものを電池Aとし、正極板bを用いたものを電池Bとし、正極板cを用いたものを電池Cとし、正極板dを用いたものを電池Dとし、正極板eを用いたものを電池Eとした。 Thereafter, the annular groove 41 was formed by grooving the upper outer peripheral surface of the outer can 40. Thereafter, an electrolytic solution obtained by adding 1 M LiPF 6 as an electrolyte salt to an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was injected into the metal outer can 40. Next, the sealing gasket 43 attached to the outer periphery of the sealing body 42 is placed on the annular groove 41 of the outer can 40, and the distal end portion of the outer can 40 is crimped to the sealing body 42 side to seal it. Lithium ion batteries A, B, C, D, and E having a size and a capacity of 1800 mAh were produced. Here, a battery using the positive electrode plate a is referred to as a battery A, a battery using the positive electrode plate b is referred to as a battery B, a battery using the positive electrode plate c is referred to as a battery C, and a battery using the positive electrode plate d is referred to as a battery D. A battery E was prepared using the positive electrode plate e.

なお、封口体42は正極端子となる正極キャップ42aと、外装缶40の開口部を封止する蓋体42bとを備えている。そして、これらの正極キャップ42aと蓋体42bからなる封口体42内に、電池内部のガス圧が上昇して所定の設定圧力に達すると変形する導電性弾性変形板42cと、温度が上昇すると抵抗値が増大するPTC(Positive Temperature Coefficient)素子42dが配設されている。これにより、電池内に過電流が流れて異常な発熱現象を生じると、PTC素子42dは抵抗値が増大して過電流を減少させる。そして、電池内部のガス圧が上昇して所定の設定圧力以上になると導電性弾性変形板42cは変形して、導電性弾性変形板42cと蓋体42bとの接触が遮断され、過電流あるいは短絡電流が遮断されるようになる。   Note that the sealing body 42 includes a positive electrode cap 42 a serving as a positive electrode terminal and a lid body 42 b that seals the opening of the outer can 40. In the sealing body 42 composed of the positive electrode cap 42a and the lid body 42b, a conductive elastic deformation plate 42c that deforms when the gas pressure inside the battery rises and reaches a predetermined set pressure, and resistance when the temperature rises. A PTC (Positive Temperature Coefficient) element 42d whose value increases is provided. Thereby, when an overcurrent flows in the battery and an abnormal heat generation phenomenon occurs, the PTC element 42d increases its resistance value and decreases the overcurrent. Then, when the gas pressure inside the battery rises and exceeds a predetermined set pressure, the conductive elastic deformation plate 42c is deformed, and the contact between the conductive elastic deformation plate 42c and the lid 42b is cut off, and an overcurrent or short circuit occurs. The current is interrupted.

4.測定
(1)表面粗さ(μm)の測定
ついで、上述のようにしてリチウムイオン電池A,B,C,D,Eを作製するに際して、用いられる正極板a〜eの表面粗さRa2(μm)を半導体レーザ顕微鏡を用いて測定すると10μm(Ra2=10μm:算術平均値)であった。なお、正極板aに貼着された絶縁テープ15の表面粗さ(Ra1)を同様に測定すると3μmであった。また、正極板bに貼着された絶縁テープ15の表面粗さ(Ra1)は5μmで、正極板cに貼着された絶縁テープ15の表面粗さ(Ra1)は10μmで、正極板dに貼着された絶縁テープ15の表面粗さ(Ra1)は15μmで、正極板eに貼着された絶縁テープ15の表面粗さ(Ra1)は18μmであった。
4). Measurement (1) Measurement of surface roughness (μm) Next, when manufacturing lithium ion batteries A, B, C, D, E as described above, surface roughness Ra2 (μm) of positive electrode plates a to e used. ) Measured using a semiconductor laser microscope, it was 10 μm (Ra2 = 10 μm: arithmetic average value). In addition, it was 3 micrometers when the surface roughness (Ra1) of the insulating tape 15 stuck on the positive electrode plate a was measured similarly. Further, the surface roughness (Ra1) of the insulating tape 15 attached to the positive electrode plate b is 5 μm, and the surface roughness (Ra1) of the insulating tape 15 attached to the positive electrode plate c is 10 μm. The surface roughness (Ra1) of the adhered insulating tape 15 was 15 μm, and the surface roughness (Ra1) of the insulating tape 15 adhered to the positive electrode plate e was 18 μm.

(2)巻ずれの測定
また、上述のようにしてリチウムイオン電池A,B,C,D,Eを作製するに際して、渦巻状に巻回して渦巻状極板群を形成した後、透過X線を用いて正極板10と負極板20の相対位置を測定した。そして、負極板20の幅よりも正極板10が上方あるいは下方にはみ出ている渦巻状極板群を巻ずれが生じたと判定すると、下記の表1に示すような結果が得られた。

Figure 2006302509
(2) Measurement of winding deviation Further, when the lithium ion batteries A, B, C, D, and E are produced as described above, a spiral electrode plate group is formed by winding in a spiral shape, and then transmitted X-rays Was used to measure the relative positions of the positive electrode plate 10 and the negative electrode plate 20. Then, when it was determined that the spiral electrode plate group in which the positive electrode plate 10 protruded upward or downward from the width of the negative electrode plate 20 was unwinding, the results shown in Table 1 below were obtained.
Figure 2006302509

上記表1の結果から明らかなように、表面粗さRa1が3μm(Ra1=0.3Ra2)の絶縁テープ15が貼着された正極板aを用いた電池Aにおいては、巻ずれの発生率が13%と大きいことが分かる。また、表面粗さRa1が18μm(Ra1=1.8Ra2)の絶縁テープ15が貼着された正極板eを用いた電池Eにおいても、巻ずれの発生率が10%と大きいことが分かる。   As is clear from the results in Table 1 above, in the battery A using the positive electrode plate a to which the insulating tape 15 having the surface roughness Ra1 of 3 μm (Ra1 = 0.3Ra2) is attached, the occurrence rate of winding deviation is high. It turns out that it is as large as 13%. In addition, it can be seen that also in the battery E using the positive electrode plate e to which the insulating tape 15 having a surface roughness Ra1 of 18 μm (Ra1 = 1.8Ra2) is attached, the occurrence rate of winding deviation is as large as 10%.

これらに対して、表面粗さRa1が5μm(Ra1=0.5Ra2)の絶縁テープ15が貼着された正極板bを用いた電池B、および表面粗さRa1が15μm(Ra1=1.5Ra2)の絶縁テープ15が貼着された正極板dを用た電池Dにおいては、巻ずれの発生率が5%と、電池A,Eの半分以下に低下していることが分かる。さらに、表面粗さRa1が10μm(Ra1=Ra2)の絶縁テープ15が貼着された正極板cを用いた電池Cにおいては、巻ずれが発生しないことが分かった。   On the other hand, the battery B using the positive electrode plate b on which the insulating tape 15 having a surface roughness Ra1 of 5 μm (Ra1 = 0.5Ra2) was attached, and the surface roughness Ra1 of 15 μm (Ra1 = 1.5Ra2) It can be seen that in the battery D using the positive electrode plate d to which the insulating tape 15 is attached, the rate of occurrence of winding deviation is 5%, which is less than half of the batteries A and E. Furthermore, it was found that no winding deviation occurred in the battery C using the positive electrode plate c to which the insulating tape 15 having a surface roughness Ra1 of 10 μm (Ra1 = Ra2) was attached.

これは、電池B〜Dにおいては、正極板b〜dに用いられた絶縁テープ15は、表面粗さRa1が5μm〜15μmで、正極板10の表面粗さRa2の10μmに対して±50%以内(0.5Ra2≦Ra1≦1.5Ra2)になっている。このため、絶縁テープ15部の表面と極板10表面での摩擦係数が近似することにより、絶縁テープ部15上でのセパレータ30の滑りが抑制されるようになって、巻きずれの発生が抑制されたと考えられる。   In the batteries B to D, the insulating tape 15 used for the positive plates b to d has a surface roughness Ra1 of 5 μm to 15 μm, and ± 50% with respect to 10 μm of the surface roughness Ra2 of the positive plate 10. (0.5Ra2 ≦ Ra1 ≦ 1.5Ra2). For this reason, when the coefficient of friction between the surface of the insulating tape 15 part and the surface of the electrode plate 10 approximates, the slip of the separator 30 on the insulating tape part 15 is suppressed, and the occurrence of winding deviation is suppressed. It is thought that it was done.

一方、電池Aにおいては、正極板aに用いられた絶縁テープ15は、表面粗さRa1が3μmで、正極板10の表面粗さRa2の10μmに対して−70%(0.3Ra2=Ra1)になっている。このため、絶縁テープ15部の表面と極板10表面での摩擦係数の差が大きくなることにより、絶縁テープ部15上でのセパレータ30に滑りが生じて、巻きずれが発生したと考えられる。   On the other hand, in the battery A, the insulating tape 15 used for the positive electrode plate a has a surface roughness Ra1 of 3 μm and is −70% (0.3Ra2 = Ra1) with respect to 10 μm of the surface roughness Ra2 of the positive electrode plate 10. It has become. For this reason, it is considered that the difference in the friction coefficient between the surface of the insulating tape 15 part and the surface of the electrode plate 10 increases, causing the separator 30 on the insulating tape part 15 to slip and causing the winding deviation.

また、電池Eにおいては、正極板eに用いられた絶縁テープ15は、表面粗さRa1が18μmで、正極板10の表面粗さRa2の10μmに対して+80%(1.8Ra2=Ra1)になっている。このため、絶縁テープ15部の表面と極板10表面での摩擦係数の差が大きくなることにより、絶縁テープ部15上でのセパレータ30に滑りが生じて、巻きずれが発生したと考えられる。   In the battery E, the insulating tape 15 used for the positive electrode plate e has a surface roughness Ra1 of 18 μm, which is + 80% (1.8Ra2 = Ra1) with respect to 10 μm of the surface roughness Ra2 of the positive electrode plate 10. It has become. For this reason, it is considered that the difference in the friction coefficient between the surface of the insulating tape 15 part and the surface of the electrode plate 10 increases, causing the separator 30 on the insulating tape part 15 to slip and causing the winding deviation.

以上のことから、絶縁テープ15の表面粗さRa1をこの絶縁テープ15が貼着された正極板10の表面粗さRa2に対して0.5以上で1.5以下(0.5Ra2≦Ra1≦1.5Ra2)にするのが好ましいということができる。このように、絶縁テープ15の表面粗さRa1を規制すると、絶縁テープ15部の表面と正極板10表面での摩擦係数が近似することにより、絶縁テープ15部上でのセパレータ30の滑りが抑制されるようになって、巻きずれの発生を防止できるようになる。   From the above, the surface roughness Ra1 of the insulating tape 15 is 0.5 or more and 1.5 or less (0.5Ra2 ≦ Ra1 ≦) with respect to the surface roughness Ra2 of the positive electrode plate 10 to which the insulating tape 15 is adhered. It can be said that 1.5Ra2) is preferable. As described above, when the surface roughness Ra1 of the insulating tape 15 is regulated, the friction coefficient between the surface of the insulating tape 15 part and the surface of the positive electrode plate 10 is approximated, thereby suppressing the slip of the separator 30 on the insulating tape 15 part. As a result, the occurrence of winding deviation can be prevented.

なお、上述の実施形態においては、非水電解質電池の負極活物質として天然黒鉛を用いる例について説明したが、天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等が好適である。また、酸化錫、酸化チタン等のリチウムイオンを吸蔵・脱離し得る酸化物または珪素およびその化合物を用いてもよい。   In the above-described embodiment, an example in which natural graphite is used as a negative electrode active material of a nonaqueous electrolyte battery has been described. However, in addition to natural graphite, carbon-based materials that can occlude / desorb lithium ions, such as graphite and carbon, are used. Black, coke, glassy carbon, carbon fiber, or a fired body thereof is preferable. Further, an oxide or silicon that can occlude and desorb lithium ions such as tin oxide and titanium oxide, or a compound thereof may be used.

また、上述の実施形態においては、非水電解質電池の正極活物質としてLiCoO2を用いる例について説明したが、LiCoO2以外に、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物、例えば、LiNiO2、LiCoXNi(1-X)2、LiNiXMn(1-X)2、LiCrO2、LiVO2、αLiFeO2、LiTiO2、LiScO2、LiYO2、LiMn24等が好ましいが、特に、LiNiO2、LiCoXNi(1-X)2、LiNiXMn(1-X)2を単独で用いるかあるいはこれらの二種以上を混合して用いるのが好適である。また、ポリアセチレン、ポリアニリン等の導電性ポリマーを用いてもよい。 Further, in the above-described embodiment, an example in which LiCoO 2 is used as the positive electrode active material of the nonaqueous electrolyte battery has been described. However, in addition to LiCoO 2 , a lithium-containing transition metal compound that can accept lithium ions as a guest, for example, LiNiO 2 LiCo X Ni (1-X) O 2 , LiNi X Mn (1-X) O 2 , LiCrO 2 , LiVO 2 , αLiFeO 2 , LiTiO 2 , LiScO 2 , LiYO 2 , LiMn 2 O 4 and the like are preferable, In particular, it is preferable to use LiNiO 2 , LiCo X Ni (1-X) O 2 , LiNi X Mn (1-X) O 2 alone, or a mixture of two or more of these. Further, a conductive polymer such as polyacetylene or polyaniline may be used.

また、電解液としては、有機溶媒に溶質としてリチウム塩を溶解したイオン伝導体であって、イオン伝導率が高く、正・負の各電極に対して化学的、電気化学的に安定で、使用可能温度範囲が広くかつ安全性が高く、安価なものであれば使用することができる。例えば、有機溶媒としては上記エチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒以外に、プロピレンカーボネート(PC)、スルフォラン(SL)、テトラハイドロフラン(THF)、γブチロラクトン(GBL)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2ジメトキシエタン(DME)等あるいはこれらの混合溶媒が好適である。また、溶質としては電子吸引性の強いリチウム塩を使用し、上記LiPF6以外に例えば、LiBF4、LiClO4、LiAsF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3等が好適である。 The electrolyte is an ionic conductor in which a lithium salt is dissolved as a solute in an organic solvent, has high ionic conductivity, and is chemically and electrochemically stable for both positive and negative electrodes. If the possible temperature range is wide, the safety is high, and the cost is low, it can be used. For example, as the organic solvent, in addition to the mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC), propylene carbonate (PC), sulfolane (SL), tetrahydrofuran (THF), γ-butyrolactone (GBL), dimethyl Carbonate (DMC), ethyl methyl carbonate (EMC), 1,2 dimethoxyethane (DME) and the like, or a mixed solvent thereof is preferable. Further, a lithium salt having a strong electron-withdrawing property is used as a solute. In addition to LiPF 6 , for example, LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 and the like are preferable.

さらに、上述の実施形態においては、本発明を円筒形の電池に適用する例について説明したが、円筒形に限らず、渦巻状極板群およびこれを押し潰して扁平にした極板群を用いる電池であれば、角形などの他の形状の電池に適用することが可能である。また、上述の実施形態においては、本発明をリチウムイオン電池に適用する例について説明したが、リチウムイオン電池以外に、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などの各種の電池においても本発明を適用することが可能である。   Furthermore, in the above-described embodiment, an example in which the present invention is applied to a cylindrical battery has been described. However, the present invention is not limited to a cylindrical shape, and a spiral electrode plate group and a flat electrode plate group that is crushed and flattened are used. If it is a battery, it is possible to apply to the battery of other shapes, such as a square. Further, in the above-described embodiment, an example in which the present invention is applied to a lithium ion battery has been described. However, in addition to a lithium ion battery, the present invention is also applied to various batteries such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery. Is possible.

本発明のリチウムイオン電池に用いられる正極板と負極板を重ね合わせた積層体を模式的に示す図でり、図1(a)はその上面図であり、図1(b)は、図1(a)の正極板のA−A断面を拡大して模式的に示すとともに、この上下にセパレータと負極板を配置した状態を拡大して模式的に示す拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the laminated body which piled up the positive electrode plate and negative electrode plate which are used for the lithium ion battery of this invention, Fig.1 (a) is the top view, FIG.1 (b) is FIG. It is an expanded sectional view which expands and shows typically the state which has arrange | positioned the separator and the negative electrode plate to the upper and lower sides while expanding and showing typically the AA cross section of the positive electrode plate of (a). 図1に示された積層体を渦巻状に巻回して作製した渦巻状極板群を外装缶内に収納して電池に構成した状態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a state in which a spiral electrode plate group produced by winding the laminate shown in FIG. 1 in a spiral shape is housed in an outer can and configured in a battery.

符号の説明Explanation of symbols

10…正極板、11…正極集電体、12…正極活物質層、13…未塗布部、14…正極集電タブ、15…絶縁テープ、20…負極板、21…負極集電体、22…負極活物質層、23…未塗布部、24…負極集電タブ、30…セパレータ、40…外装缶、41…環状溝部、42…封口体、42a…正極キャップ、42b…蓋体、42c…導電性弾性変形板、42d…PTC素子、43…封口ガスケット
DESCRIPTION OF SYMBOLS 10 ... Positive electrode plate, 11 ... Positive electrode collector, 12 ... Positive electrode active material layer, 13 ... Uncoated part, 14 ... Positive electrode current collection tab, 15 ... Insulation tape, 20 ... Negative electrode plate, 21 ... Negative electrode current collector, 22 DESCRIPTION OF SYMBOLS ... Negative electrode active material layer, 23 ... Uncoated part, 24 ... Negative electrode current collection tab, 30 ... Separator, 40 ... Exterior can, 41 ... Annular groove part, 42 ... Sealing body, 42a ... Positive electrode cap, 42b ... Lid body, 42c ... Conductive elastic deformation plate, 42d ... PTC element, 43 ... sealing gasket

Claims (3)

長尺状の金属箔の両面に活物質が塗布された正極板と負極板がセパレータを介して相対向するようにして巻回された渦巻状極板群を外装缶内に備えた電池であって、
前記正極板と負極板の一方の極板は長手方向の中間部に活物質が未塗布の未塗布部が形成されていて、当該未塗布部に集電タブが接続されており、かつ前記未塗布部と前記集電タブの上を覆うように絶縁テープが貼着されているとともに、
前記絶縁テープの表面粗さRa1が当該絶縁テープが貼着された極板の表面粗さRa2に対して0.5以上で1.5以下(0.5Ra2≦Ra1≦1.5Ra2)であることを特徴とする電池。
A battery having a spiral electrode plate group in which a positive electrode plate and a negative electrode plate coated with an active material on both sides of a long metal foil are wound so that they face each other through a separator. And
One electrode plate of the positive electrode plate and the negative electrode plate has an uncoated portion with no active material applied at an intermediate portion in the longitudinal direction, a current collecting tab is connected to the uncoated portion, and the uncoated portion Insulating tape is attached so as to cover the application part and the current collecting tab,
The surface roughness Ra1 of the insulating tape is 0.5 or more and 1.5 or less (0.5Ra2 ≦ Ra1 ≦ 1.5Ra2) with respect to the surface roughness Ra2 of the electrode plate to which the insulating tape is attached. A battery characterized by.
前記長手方向の中間部に活物質が未塗布の未塗布部が形成された極板は正極板で、前記負極板は巻回された際の巻き終わり部となる長手方向の一方の端部に活物質が未塗布の未塗布部が形成されていて、当該未塗布部に集電タブが接続されていることを特徴とする請求項1に記載の電池。   An electrode plate in which an uncoated portion with no active material is formed in an intermediate portion in the longitudinal direction is a positive electrode plate, and the negative electrode plate is at one end portion in the longitudinal direction which becomes a winding end portion when wound. The battery according to claim 1, wherein an uncoated portion with no active material is formed, and a current collecting tab is connected to the uncoated portion. 前記絶縁テープはプリプロピレン製、ポリフェニレンサルファイド製またはポリイミド製であり、かつ表面粗さがRa1になるように表面加工されたものであることを特徴とする請求項1または請求項2に記載の電池。
3. The battery according to claim 1, wherein the insulating tape is made of propylene, polyphenylene sulfide, or polyimide, and is surface-treated so that the surface roughness is Ra1. .
JP2005117764A 2005-04-15 2005-04-15 Battery Withdrawn JP2006302509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117764A JP2006302509A (en) 2005-04-15 2005-04-15 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117764A JP2006302509A (en) 2005-04-15 2005-04-15 Battery

Publications (2)

Publication Number Publication Date
JP2006302509A true JP2006302509A (en) 2006-11-02
JP2006302509A5 JP2006302509A5 (en) 2008-05-22

Family

ID=37470585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117764A Withdrawn JP2006302509A (en) 2005-04-15 2005-04-15 Battery

Country Status (1)

Country Link
JP (1) JP2006302509A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108608A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Nonaqueous electrolyte secondary battery
CN103682250A (en) * 2013-11-25 2014-03-26 广东凯德能源科技有限公司 Lithium ion battery pole piece structure resisting to high-strength vibration and soldering method for lithium ion battery pole piece structure
WO2018079291A1 (en) * 2016-10-26 2018-05-03 三洋電機株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20180212230A1 (en) * 2015-07-15 2018-07-26 Nissan Motor Co., Ltd. Roll electrode and method for manufacturing roll electrode
WO2022019684A1 (en) * 2020-07-22 2022-01-27 삼성전자 주식회사 Battery and electronic device comprising same
CN114175366A (en) * 2019-09-26 2022-03-11 三洋电机株式会社 Secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108608A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Nonaqueous electrolyte secondary battery
CN103682250A (en) * 2013-11-25 2014-03-26 广东凯德能源科技有限公司 Lithium ion battery pole piece structure resisting to high-strength vibration and soldering method for lithium ion battery pole piece structure
CN103682250B (en) * 2013-11-25 2015-11-18 广东凯德能源科技有限公司 A kind of electrodes of lithium-ion batteries structure of anti-high-strength vibration and welding method thereof
US20180212230A1 (en) * 2015-07-15 2018-07-26 Nissan Motor Co., Ltd. Roll electrode and method for manufacturing roll electrode
US10529981B2 (en) * 2015-07-15 2020-01-07 Envision Aesc Japan Ltd. Roll electrode and method for manufacturing roll electrode
WO2018079291A1 (en) * 2016-10-26 2018-05-03 三洋電機株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11024927B2 (en) 2016-10-26 2021-06-01 Sanyo Electric Co., Ltd. Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN114175366A (en) * 2019-09-26 2022-03-11 三洋电机株式会社 Secondary battery
WO2022019684A1 (en) * 2020-07-22 2022-01-27 삼성전자 주식회사 Battery and electronic device comprising same

Similar Documents

Publication Publication Date Title
CN106797008B (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP4502616B2 (en) Batteries having a film-like outer package
JP2007103356A (en) Non-aqueous secondary battery
JP2009134915A (en) Non-aqueous secondary battery
JP2005158302A (en) Lithium ion secondary battery
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2006302509A (en) Battery
JP4017376B2 (en) Lithium secondary battery
EP4191697A1 (en) Nonaqueous electrolyte secondary battery
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JP4245429B2 (en) Battery with spiral electrode group
JP2005243336A (en) Battery equipped with spiral electrode group
JP2002270184A (en) Non-aqueous secondary battery
JP7020167B2 (en) Non-aqueous electrolyte secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP6962231B2 (en) Non-aqueous electrolyte secondary battery
JP2014225327A (en) Nonaqueous electrolyte solar batter
JP2005011762A (en) Lithium ion secondary cell
JP5086644B2 (en) Nonaqueous electrolyte secondary battery
JP2007242518A (en) Square battery
JP2008251223A (en) Manufacturing method of lithium ion secondary battery, and lithium ion secondary battery
JP7488770B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2002324542A (en) Thin battery
JP7182108B2 (en) Cylindrical secondary battery
JP4560851B2 (en) Method for producing solid electrolyte battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091119