JP2009134915A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP2009134915A
JP2009134915A JP2007308471A JP2007308471A JP2009134915A JP 2009134915 A JP2009134915 A JP 2009134915A JP 2007308471 A JP2007308471 A JP 2007308471A JP 2007308471 A JP2007308471 A JP 2007308471A JP 2009134915 A JP2009134915 A JP 2009134915A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
negative electrode
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007308471A
Other languages
Japanese (ja)
Inventor
Mayumi Kaneda
真由美 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007308471A priority Critical patent/JP2009134915A/en
Publication of JP2009134915A publication Critical patent/JP2009134915A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery which can maintain a high capacity and good life characteristics by suppressing cutting of an electrode plate at the time of winding while suppressing internal short circuit of the non-aqueous secondary battery, since as a factor of internal short circuit, four short circuit modes are considered consisting of an exposed part of a positive electrode current collector of a positive electrode plate and the surface of a negative electrode mixture layer of a negative electrode plate, the exposed part of the positive electrode current collector and the exposed part of the negative electrode current collector, the surface of the positive electrode mixture layer of the positive electrode plate and the surface of the negative electrode mixture of the negative electrode plate, and the surface of the positive electrode mixture layer of the positive electrode plate and the exposed part of the negative electrode current collector. <P>SOLUTION: The positive electrode plate 5 and the negative electrode plate 9 have portions on which an electrode mixture paint is not coated on the electrode current collector. An insulator layer 4 having flexibility is formed at a boundary portion of an exposed part of the positive electrode current collector 1 and a coated part of the positive electrode mixture layer 2 opposed to the negative electrode mixture layer 7, and thereby, internal short circuit is restrained and cutting at the time of winding is suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion secondary battery.

従来、携帯用電子機器の電源として利用が広がっているリチウムイオン二次電池は、負極板にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極板にコバルト酸リチウム(LiCoO)等の金属とリチウムイオンの複合酸化物を活物質として用いており、これによって高電位で高放電容量のあるリチウムイオン二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴って、ますます高容量化が進む中でリチウムイオン二次電池の安全性に対する要望も高くなっている。 2. Description of the Related Art Conventionally, lithium ion secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material or the like capable of occluding and releasing lithium for a negative electrode plate, and lithium cobalt oxide (LiCoO 2 ) for a positive electrode plate. As the active material, a lithium-ion secondary battery with a high potential and a high discharge capacity has been realized. However, in recent years, electronic devices and communication devices have become multifunctional. Along with this, the demand for safety of lithium ion secondary batteries is increasing as the capacity increases.

充放電可能な二次電池が何らかの原因で誤って外部からの物理的衝撃が加えられたり過大な電流により充電されたりすると、リチウムイオン二次電池の内部のセパレータが損傷するなどして正極板と負極板とが接触し内部短絡が起こる場合がある。   If the chargeable / dischargeable secondary battery is accidentally subjected to an external physical shock or is charged by an excessive current, the separator inside the lithium ion secondary battery may be damaged, etc. An internal short circuit may occur due to contact with the negative electrode plate.

内部短絡が生じるとその部分に集中して電流が流れて発熱を起こし、発熱が大きい場合は正極板および負極板の材料の分解や電解液の沸騰および分解によるガス発生が起こりうる場合がある。このように内部短絡による電極反応が二次電池の急激な発熱原因の一つとして考えられている。   When an internal short circuit occurs, current concentrates on that part and heat is generated, and when the heat generation is large, gas generation due to decomposition of the material of the positive electrode plate and the negative electrode plate or boiling and decomposition of the electrolyte may occur. Thus, an electrode reaction due to an internal short circuit is considered as one of the causes of rapid heat generation of the secondary battery.

まず、内部短絡を防止でき安全性の高いリチウムイオン二次電池として、図7に示すように、正極板もしくは負極板の活物質合剤層32の端部近傍から集電体31の露出部に亘って所定幅の端部の厚みが薄くなるように成形した絶縁テープ33を貼着し、内部短絡の発生率が大きい部分で対向電極との接触を防止する方法が提案されている。(例えば、特許文献1参照)。   First, as a highly safe lithium ion secondary battery that can prevent an internal short circuit, as shown in FIG. 7, from the vicinity of the end of the active material mixture layer 32 of the positive electrode plate or the negative electrode plate to the exposed portion of the current collector 31. A method has been proposed in which an insulating tape 33 formed so that the thickness of the end portion having a predetermined width is reduced is adhered, and the contact with the counter electrode is prevented at a portion where the occurrence rate of the internal short circuit is large. (For example, refer to Patent Document 1).

また、図8に示すように、正極板もしくは負極板の活物質合剤層35と集電体34の境界部に亘って所定幅の絶縁テープ36を貼着しているが、リチウムイオン二次電池が発熱して高温になった場合や外部から熱を受けてリチウムイオン二次電池が高温に加熱された際に絶縁テープ36が収縮して前述の境界部が露出してしまい、その結果内部短絡を引き起こすのに対し、絶縁テープ36の易収縮方向を正極板もしくは負極板の長さ方向として、熱で収縮しても境界部が露出しない方法が提案されている(例えば、特許文献2参照)。
特開2005−235414号公報 特開2006−19199号公報
In addition, as shown in FIG. 8, an insulating tape 36 having a predetermined width is pasted across the boundary between the active material mixture layer 35 of the positive electrode plate or the negative electrode plate and the current collector 34. When the battery is heated to a high temperature or when the lithium ion secondary battery is heated to a high temperature by receiving heat from the outside, the insulating tape 36 is contracted to expose the boundary portion, and as a result, the inside In contrast to causing a short circuit, a method has been proposed in which the easy contraction direction of the insulating tape 36 is the length direction of the positive electrode plate or the negative electrode plate so that the boundary portion is not exposed even when contracted by heat (for example, see Patent Document 2). ).
JP 2005-235414 A JP 2006-19199 A

しかしながら、特許文献1、特許文献2のいずれの方法も絶縁テープを貼着して内部短絡を回避する方法であるが、合剤塗工部にも貼着するため電極群の巻回時に合剤塗料の移動を妨げるために巻きの内周にかかる圧縮応力を分散できずに、正極板または負極板が切れる原因になったり、絶縁テープの端部と正極板または負極板との急峻な段差により巻回の際の曲率が小さくなって鋭角に折れ曲がり、正極板または負極板にストレスが発生して巻回時に正極板または負極板が切れる原因となっている。   However, both methods of Patent Document 1 and Patent Document 2 are methods for sticking an insulating tape to avoid an internal short circuit. Compressive stress applied to the inner circumference of the winding to prevent the movement of the paint cannot be dispersed, causing the positive plate or negative plate to break, or due to a steep step between the edge of the insulating tape and the positive plate or negative plate The curvature at the time of winding becomes small and it bends at an acute angle, and stress is generated on the positive electrode plate or the negative electrode plate, causing the positive electrode plate or the negative electrode plate to be cut at the time of winding.

またこのような絶縁テープを貼着する方法では、貼着時に絶縁テープのズレが起こり、正極板と負極板が短絡する恐れがある。さらに巻回時に絶縁テープがシートに沿わないた
め渦巻状に巻けず、盛り上がりが発生し、その盛り上がりにより正極板および負極板またはセパレータがシワになり、内部短絡を生じる恐れがある。
Moreover, in the method of sticking such an insulating tape, there exists a possibility that the insulating tape may be displaced at the time of sticking, and the positive electrode plate and the negative electrode plate are short-circuited. Further, since the insulating tape does not follow the sheet during winding, the insulating tape cannot be wound in a spiral shape and swells occur, and the swells cause wrinkles of the positive electrode plate and the negative electrode plate or the separator, thereby causing an internal short circuit.

また上述した従来技術の特許文献1に開示されているように絶縁テープの端部の厚みを薄くする方法では、正極板または負極板にかかるストレスを低減して、正極板または負極板の切れを抑制できるが、厚みを薄くできる限界があり、全ての正極板または負極板の切れを抑制できるとは言いきれない。   Further, as disclosed in Patent Document 1 of the prior art described above, in the method of reducing the thickness of the end portion of the insulating tape, the stress applied to the positive electrode plate or the negative electrode plate is reduced and the positive electrode plate or the negative electrode plate is cut off. Although it can suppress, there exists a limit which can make thickness thin, and it cannot be said that it can suppress the cutting | disconnection of all the positive electrode plates or negative electrode plates.

本発明は上記従来の課題を鑑みてなされたもので、内部短絡を抑制しながら巻回時の正極板または負極板の切れも抑制することで安全性が高く、品質の安定した電極群を供給し、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and supplies a group of electrodes having high safety and stable quality by suppressing breakage of the positive electrode plate or the negative electrode plate during winding while suppressing internal short circuit. However, it is an object of the present invention to provide a non-aqueous secondary battery that has little battery capacity variation and exhibits good life characteristics.

上記のような目的を達成するために本発明の非水系二次電池は、少なくとも活物質、導電剤および結着剤より構成される正極合剤塗料を正極集電体の上に塗布乾燥して構成される正極板と少なくとも活物質および結着剤より構成される負極合剤塗料を負極集電体の上に塗布乾燥して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒を主成分とする電解液により構成される非水系二次電池であって、正極集電体または負極集電体の一部に正極合剤塗料または負極合剤塗料を塗布しない露出部を設け、正極板または負極板の少なくともいずれか一方の正極集電体または負極集電体の露出部と正極合剤塗料または負極合剤塗料の塗布部との境目部分に少なくとも可曉性を有する絶縁体層を形成したことを特徴とするものである。   In order to achieve the above object, the non-aqueous secondary battery of the present invention is obtained by applying and drying a positive electrode mixture paint composed of at least an active material, a conductive agent and a binder on a positive electrode current collector. A negative electrode plate composed of a positive electrode plate and at least an active material and a binder are coated and dried on a negative electrode current collector, and the negative electrode plate and a separator are wound in a spiral shape. A non-aqueous secondary battery comprising an electrode group and an electrolyte mainly composed of a non-aqueous solvent, and a positive electrode mixture paint or a negative electrode mixture paint is applied to a part of the positive electrode current collector or the negative electrode current collector The exposed portion of the positive electrode current collector or negative electrode current collector of at least one of the positive electrode plate and the negative electrode plate and at least the boundary portion between the application portion of the positive electrode mixture paint or the negative electrode mixture paint. Characterized in that an insulating layer is formed It is.

本発明によれば、正極板または負極板の少なくともいずれか一方の集電体の露出部と電極合剤塗料の塗布部との境目部分に少なくとも可曉性を有する絶縁体層を形成したことにより、内部短絡を抑制しながらも正極板または負極板切れを抑止することで安全性が高く、品質の安定した電極群を供給し、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することが可能となる。   According to the present invention, the insulating layer having at least flexibility is formed at the boundary portion between the exposed portion of the current collector of at least one of the positive electrode plate and the negative electrode plate and the application portion of the electrode mixture paint. In addition, it suppresses the short-circuiting of the positive electrode plate or negative electrode plate while suppressing internal short-circuiting, thereby providing an electrode group with high safety, stable quality, low battery capacity variation, and good life characteristics. A secondary battery can be provided.

本発明の第1の発明においては、少なくとも活物質、導電剤および結着剤より構成される正極合剤塗料を正極集電体の上に塗布乾燥して構成される正極板と少なくとも活物質および結着剤より構成される負極合剤塗料を負極集電体の上に塗布乾燥して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒を主成分とする電解液により構成される非水系二次電池であって、正極集電体または負極集電体の一部に正極合剤塗料または負極合剤塗料を塗布しない露出部を設け、正極板または負極板の少なくともいずれか一方の正極集電体または負極集電体の露出部と正極合剤塗料または負極合剤塗料の塗布部との境目部分に少なくとも可曉性を有する絶縁体層を形成したことにより、短絡しやすい正極板または負極板の集電体の露出部と対向する正極板または負極板の電極合剤層の表面を絶縁体層で保護することができ、高い安全性を有した非水系二次電池を提供することが可能となるとともに、正極板または負極板の巻回時において正極板または負極板の切れを抑制することができ、品質の安定した電極群を供給し、電池容量バラツキが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することが可能となる。   In the first invention of the present invention, a positive electrode plate formed by applying and drying a positive electrode mixture paint comprising at least an active material, a conductive agent and a binder on a positive electrode current collector, and at least the active material and A negative electrode plate made of a binder and a negative electrode plate formed by applying and drying a negative electrode mixture paint on a negative electrode current collector and a separator wound in a spiral shape, and a non-aqueous solvent as a main component A non-aqueous secondary battery composed of an electrolyte solution, wherein a positive electrode current collector or a negative electrode current collector is provided with an exposed portion on which a positive electrode mixture paint or a negative electrode mixture paint is not applied, and a positive electrode plate or a negative electrode An insulating layer having at least flexibility is formed at a boundary portion between the exposed portion of the positive electrode current collector or negative electrode current collector on at least one of the plates and the application portion of the positive electrode mixture paint or negative electrode mixture paint. To collect positive or negative electrode plates that are easily short-circuited. The surface of the electrode mixture layer of the positive electrode plate or the negative electrode plate facing the exposed portion of the body can be protected with an insulator layer, and it is possible to provide a non-aqueous secondary battery having high safety. A non-aqueous system that can suppress breakage of the positive electrode plate or the negative electrode plate during winding of the positive electrode plate or the negative electrode plate, supplies an electrode group with stable quality, has a small battery capacity variation, and exhibits good life characteristics. A secondary battery can be provided.

本発明の第2の発明においては、絶縁体層を正極板に形成することにより、特に短絡しやすい正極集電体の露出部と負極合剤層の表面を絶縁体層で保護することができ、高い安全性を有することができるとともに、正極板または負極板の巻回時において特に切れやすい正極板の切れを抑制することができ、品質の安定した電極群を供給し、電池容量バラツ
キが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することが可能となる。
In the second aspect of the present invention, by forming the insulator layer on the positive electrode plate, it is possible to protect the exposed portion of the positive electrode current collector that is particularly short-circuited and the surface of the negative electrode mixture layer with the insulator layer. In addition to having high safety, it is possible to suppress the breakage of the positive electrode plate, which is particularly easily cut when the positive electrode plate or the negative electrode plate is wound, and to supply a group of electrodes with stable quality, with less battery capacity variation. In addition, it is possible to provide a non-aqueous secondary battery that exhibits good life characteristics.

本発明の第3の発明においては、絶縁体層をゴム状弾性体により構成したことにより、電極群を構成する際に正極板または負極板の切れが起こりやすい正極板と負極板の集電体の露出部と電極合剤塗料の塗布部との境目部分に可曉性を付与することで、正極板または負極板の切れを抑止することができる。
本発明の第4の発明においては、ゴム状弾性体に無機添加物を加えて可曉性を調整することで、正極板および負極板に適合した可曉性を付与することができるため、正極板または負極板の巻回時において正極板または負極板の切れを抑止することができる。
In the third invention of the present invention, since the insulator layer is made of a rubber-like elastic body, the positive electrode plate and the negative electrode plate current collector are likely to break when forming the electrode group. By imparting flexibility to the boundary portion between the exposed portion and the coating portion of the electrode mixture paint, it is possible to prevent the positive electrode plate or the negative electrode plate from being cut.
In the fourth invention of the present invention, by adjusting the flexibility by adding an inorganic additive to the rubber-like elastic body, the flexibility suitable for the positive electrode plate and the negative electrode plate can be imparted. When the plate or the negative electrode plate is wound, cutting of the positive electrode plate or the negative electrode plate can be suppressed.

本発明の第5の発明においては、無機添加剤をシリカ材および/またはアルミナ材としたことにより、集電体の露出部と電極合剤層の表面を絶縁性が高い絶縁体層で保護することができ、安全性に優れた非水系二次電池を提供することができる。
本発明の第6の発明においては、ゴム状弾性体をスチレンーブタジエン共重合体ゴム粒子および/またはアクリレート単位を有するゴム粒子結着材としたことにより、集電体の露出部と電極合剤層の表面を可曉性が高い絶縁体層で保護することができ、信頼性の高い非水系二次電池を提供することができる。
In the fifth aspect of the present invention, the inorganic additive is a silica material and / or an alumina material, so that the exposed portion of the current collector and the surface of the electrode mixture layer are protected by an insulating layer having a high insulating property. Thus, a non-aqueous secondary battery having excellent safety can be provided.
In the sixth aspect of the present invention, the rubber-like elastic body is a styrene-butadiene copolymer rubber particle and / or a rubber particle binder having an acrylate unit, whereby the exposed portion of the current collector and the electrode mixture The surface of the layer can be protected with a highly flexible insulator layer, and a highly reliable non-aqueous secondary battery can be provided.

本発明の第7の発明においては、絶縁体層の厚みを2μm以上25μm以下としたことにより、内部短絡を抑制しながらも安全性に優れた高容量の二次電池にすることができる。   In the seventh aspect of the present invention, by setting the thickness of the insulator layer to 2 μm or more and 25 μm or less, a high-capacity secondary battery excellent in safety can be obtained while suppressing an internal short circuit.

以下、図を参照しながら本発明の一実施の形態について説明する。図1は本発明の非水系二次電池を示している。複合リチウム酸化物を活物質とする正極板5とリチウムを保持しうる材料を活物質とする負極板9とをセパレータ10を介して渦巻状に巻回した電極群14を作製した後、電極群14を有底円筒形の電池ケース11の内部に絶縁板15と共に収容し、電極群14の下部より導出した負極リード8を電池ケース11の底部に溶接し、次いで電極群14の上部より導出した正極リード3を封口板12に溶接し、電池ケース11に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース11の開口部に封口ガスケット13を周縁に取り付けた封口板12を挿入し、電池ケース11の開口部を内方向に折り曲げてかしめ封口している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a non-aqueous secondary battery of the present invention. After preparing the electrode group 14 which wound the positive electrode plate 5 which uses a composite lithium oxide as an active material, and the negative electrode plate 9 which uses the material which can hold | maintain lithium as an active material through the separator 10, it produces electrode group 14 is housed in the bottomed cylindrical battery case 11 together with the insulating plate 15, the negative electrode lead 8 led out from the lower part of the electrode group 14 is welded to the bottom part of the battery case 11, and then led out from the upper part of the electrode group 14. After the positive electrode lead 3 is welded to the sealing plate 12 and a predetermined amount of non-aqueous electrolyte (not shown) is injected into the battery case 11, a sealing gasket 13 is attached to the periphery of the opening of the battery case 11. The sealing plate 12 is inserted, and the opening of the battery case 11 is folded inward to seal it by caulking.

次に本発明における電極板の作製方法の一例を示す。本発明に適用される正極板または負極板は巻回して電極群を構成する際に、活物質層の割れや脱落が発生しない強靭性を備える必要が有る。前記強靱性を発揮することができれば正極板または負極板の処方は以下の方法に限られるものではない。   Next, an example of a method for producing an electrode plate according to the present invention will be described. When the positive electrode plate or the negative electrode plate applied to the present invention is wound to form an electrode group, it is necessary to have toughness that does not cause the active material layer to crack or fall off. The prescription of the positive electrode plate or the negative electrode plate is not limited to the following method as long as the toughness can be exhibited.

まず、正極板5については特に限定されないが、アルミニウムやアルミニウム合金製の箔やラス加工もしくはエッチング処理された厚み10μm〜60μmの正極集電体1の片面または両面に、正極活物質、導電剤、結着剤とを分散媒に混練分散させた正極合剤塗料を塗着し、乾燥し、圧延して正極活物質の層を形成することにより作製される。   First, the positive electrode plate 5 is not particularly limited, but a positive electrode active material, a conductive agent, a foil or a foil made of aluminum or an aluminum alloy, a positive electrode current collector 1 having a thickness of 10 μm to 60 μm that has been processed or etched, It is produced by applying a positive electrode mixture paint in which a binder is kneaded and dispersed in a dispersion medium, drying, and rolling to form a positive electrode active material layer.

正極用活物質としては、リチウム含有複合酸化物、例えば、コバルト酸リチウムおよびその変性体(アルミニウムやマグネシウムを共晶させたもの)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたもの)、マンガン酸リチウムおよびその変性体などを挙げることができる。   Examples of the positive electrode active material include lithium-containing composite oxides such as lithium cobaltate and modified products thereof (eutectic crystals of aluminum and magnesium), lithium nickelate and modified products thereof (partially nickel was substituted with cobalt) ), Lithium manganate and modified products thereof.

導電剤としては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive agent, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

正極用結着剤としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレンーブタジエン(SBR)共重合体ゴム粒子、アクリレート(AN)単位を有するゴム粒子結着剤等を挙げることができる。   Examples of the binder for the positive electrode include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene (SBR) copolymer rubber particles, and a rubber particle binder having an acrylate (AN) unit. be able to.

次に、負極板9については特に限定されないが、圧延銅箔、電解銅箔、ラス加工もしくはエッチング処理された銅箔からなる厚み10μm〜50μmの負極集電体6の片面または両面に負極活物質、結着剤、必要に応じて導電剤、増粘剤とを分散媒に混練分散させた負極合剤塗料を塗着し、乾燥し、圧延して負極活物質の層を形成することにより作製される。   Next, the negative electrode plate 9 is not particularly limited, but the negative electrode active material is formed on one or both sides of a negative electrode current collector 6 having a thickness of 10 μm to 50 μm made of rolled copper foil, electrolytic copper foil, lath processed or etched copper foil. It is prepared by applying a negative electrode mixture paint in which a binder and, if necessary, a conductive agent and a thickener are kneaded and dispersed in a dispersion medium, drying and rolling to form a layer of the negative electrode active material Is done.

負極用活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料および各種合金組成材料を用いることができる。   As the negative electrode active material, various natural graphites, artificial graphite, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

負極用結着剤としては、PVdFおよびその変性体をはじめ各種結着剤を用いることができるが、リチウムイオン受入れ性向上の観点から、SBRおよびその変性体等を挙げることもできる。   As the binder for the negative electrode, various binders such as PVdF and modified products thereof can be used, and SBR and modified products thereof can also be mentioned from the viewpoint of improving the lithium ion acceptability.

増粘剤としては、ポリエチレンオキシド(PEO)やポリビニルアルコール(PVA)などの水溶液として粘性を有する材料であれば特に限定されないが、メチルセルロースおよびその変性体が合剤の増粘性、合剤の分散性の観点から好ましい。   The thickener is not particularly limited as long as it is a material having viscosity as an aqueous solution such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA), but methylcellulose and its modified product are thickened by the mixture, and dispersible by the mixture. From the viewpoint of

さらに、セパレータとしては、ポリエチレン、ポリプロピレン、PVdF、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、PTFE、ポリサルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエーテル(PEOやポリプロピレンオキシド)、セルロース(カルボキシメチルセルロースやヒドロキシプロピルセルロース)、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等の高分子からなる微多孔フィルムが好ましく用いられる。   Furthermore, as separators, polyethylene, polypropylene, PVdF, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, PTFE, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyether (PEO and polypropylene oxide), cellulose (carboxymethylcellulose, A microporous film made of a polymer such as hydroxypropylcellulose), poly (meth) acrylic acid, poly (meth) acrylic acid ester or the like is preferably used.

また、これらの微多孔フィルムを重ね合わせた多層フィルムも用いることができる。中でもポリエチレン、ポリプロピレン、PVdF等からなる微多孔フィルムが好適であり、厚みは10μm〜25μmが好ましい。   A multilayer film in which these microporous films are superposed can also be used. Among these, a microporous film made of polyethylene, polypropylene, PVdF, or the like is suitable, and the thickness is preferably 10 μm to 25 μm.

電池ケース11としては、上部が開口している有底円筒形や角形の電池ケースを用いることができる。その材質としては、鋼板にニッケルメッキを施したものやアルミニウム合金からなるものを用いることができる。   As the battery case 11, a bottomed cylindrical or rectangular battery case having an open top can be used. As the material, a steel plate with nickel plating or an aluminum alloy can be used.

非水電解液としては、非水溶媒と溶質からなり、非水溶媒としては、主成分として環状カーボネートおよび鎖状カーボネートが含有される。環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、およびブチレンカーボネート(BC)から選ばれる少なくとも一種であることが好ましい。また、鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、およびエチルメチルカーボネート(EMC)等から選ばれる少なくとも一種であることが好ましい。   The non-aqueous electrolyte is composed of a non-aqueous solvent and a solute, and the non-aqueous solvent contains a cyclic carbonate and a chain carbonate as main components. The cyclic carbonate is preferably at least one selected from ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC). The chain carbonate is preferably at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like.

溶質としては、電子吸引性の強いリチウム塩を使用し、例えばLiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(SOCF、LiN(SO、LiC(SOCF等が挙げられる。これらの電解質は、一種類で使用しても良く二種類以上組み合わせて使用しても良い。これらの溶質は、非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。 As the solute, a lithium salt having a strong electron-withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These solutes are preferably dissolved at a concentration of 0.5 to 1.5 M in the non-aqueous solvent.

また、正極合剤層2および負極合剤層7に良好な皮膜を形成させ、過充電時の安定性を確保するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を添加することも可能である。   In addition, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof are added to form a good film on the positive electrode mixture layer 2 and the negative electrode mixture layer 7 and to ensure stability during overcharge. It is also possible to do.

次に、図2に示されるように本発明の非水系二次電池の正極板または負極板では、対向する正極板5の正極集電体1と負極板9の負極合剤層7との内部短絡を抑制するために、正極集電体1と正極合剤層2の境目部分に絶縁体層4を設ける方法として、可曉性を有するゴム状弾性体の塗料を塗布乾燥したゴム状弾性体層4を形成した。   Next, as shown in FIG. 2, in the positive electrode plate or the negative electrode plate of the nonaqueous secondary battery of the present invention, the inside of the positive electrode current collector 1 of the positive electrode plate 5 and the negative electrode mixture layer 7 of the negative electrode plate 9. In order to suppress a short circuit, as a method of providing the insulator layer 4 at the boundary between the positive electrode current collector 1 and the positive electrode mixture layer 2, a rubber-like elastic body obtained by applying and drying a paint of a flexible rubber-like elastic body Layer 4 was formed.

一般的に、絶縁体層4を形成させるには、絶縁テープを貼着する方法があるが、絶縁テープの縁と正極板5または負極板9との急峻な段差のより巻回する際の曲率が小さくなって鋭角に曲がるようになり、正極板5または負極板9へのストレスとなったり、絶縁テープがその下にある電極合剤層の移動を阻害するために、正極板5と負極板9との間にセパレータ10を介在させて電極群14を形成するときの巻回時の圧縮応力が緩和できず正極板5または負極板9の切れの原因となっている。   In general, in order to form the insulator layer 4, there is a method of sticking an insulating tape, but the curvature at the time of winding due to a steep step between the edge of the insulating tape and the positive electrode plate 5 or the negative electrode plate 9. The positive electrode plate 5 and the negative electrode plate are bent in a sharp angle, causing stress on the positive electrode plate 5 or the negative electrode plate 9 and inhibiting the movement of the electrode mixture layer under the insulating tape. The compression stress at the time of winding when the electrode group 14 is formed with the separator 10 interposed between the positive electrode plate 9 and the positive electrode plate 5 or the negative electrode plate 9 is cut off.

本発明による絶縁体層4は本来の絶縁性の機能を確保しつつ、巻回時のストレスとなるような段差を形成することなく、巻回時の圧縮応力を緩和し、正極板5または負極板9の切れを抑制するものである。   The insulator layer 4 according to the present invention relieves the compressive stress at the time of winding without forming a step that becomes a stress at the time of winding while ensuring the original insulating function, and the positive electrode plate 5 or the negative electrode This suppresses the breakage of the plate 9.

次に、図3を用いて、実際に正極板および負極板およびセパレータを巻回し電極群を構成する際に発生する正極板または負極板切れの状態を説明する。図3は正極板5と負極板9とセパレータ10を巻回して電極群14を構成する巻回装置の模式図である。   Next, a state where the positive electrode plate or the negative electrode plate is cut when the positive electrode plate, the negative electrode plate, and the separator are actually wound to form the electrode group will be described with reference to FIG. FIG. 3 is a schematic diagram of a winding device that forms the electrode group 14 by winding the positive electrode plate 5, the negative electrode plate 9, and the separator 10.

図3において正極板5を搬送する複数のローラ部を備えた正極板の搬送装置25、負極板9を搬送する複数のローラ部を備えた負極板の搬送装置26、正極板5と負極板9とセパレータ10を合わせて巻回する巻回部27を備えている。巻回は、正極板5と負極板9とセパレータ10に撓みが無いように巻回部27を回転させて引っ張りながらテンションをかけて行われる。   In FIG. 3, a positive plate conveying device 25 having a plurality of roller portions for conveying the positive plate 5, a negative plate conveying device 26 having a plurality of roller portions for conveying the negative plate 9, the positive plate 5 and the negative plate 9. And a separator 27 for winding the separator 10 together. Winding is performed by applying tension while rotating and pulling the winding portion 27 so that the positive electrode plate 5, the negative electrode plate 9, and the separator 10 are not bent.

上記の巻回装置を用いて電極群14を構成する際に発生する正極板5または負極板9の切れの要因は大別すると以下の二つである。まず一つ目は正極板5が搬送装置25の複数のローラ部に巻き掛けて搬送される際にローラ部の曲率による曲げ応力を受けることにより発生し、または負極板9が搬送装置26の複数のローラ部に巻き掛けて搬送される際にローラ部の曲率による曲げ応力を受けることにより正極板5または負極板9の切れが発生する。次に二つ目は巻回部27での巻回時の曲率による曲げ応力と正極板5または負極板9に加えられたテンションによる引張応力より正極板5または負極板9の切れが発生する。   The cause of the breakage of the positive electrode plate 5 or the negative electrode plate 9 that occurs when the electrode group 14 is configured using the winding device is roughly divided into the following two. First, the positive electrode plate 5 is generated by receiving bending stress due to the curvature of the roller portion when the positive electrode plate 5 is wound around the plurality of roller portions of the conveying device 25 and conveyed. When being wound around the roller portion and being conveyed, the positive electrode plate 5 or the negative electrode plate 9 is cut by receiving bending stress due to the curvature of the roller portion. Next, the positive electrode plate 5 or the negative electrode plate 9 is cut off due to the bending stress due to the curvature at the time of winding at the winding portion 27 and the tensile stress due to the tension applied to the positive electrode plate 5 or the negative electrode plate 9.

また、図4を用いて、上記の巻回装置の巻回部27で正極板5または負極板9の切れが発生する要因についてさらに詳しく説明する。図4は円筒形の電極群14の断面図を示したもので、正極板5と負極板9およびセパレータ10が巻回されて構成されている。同図において曲率が小さくなる巻回の中心部付近の正極板5aや負極板9aでは、巻回時の引張り応力が集中することで正極板5または負極板9の切れが発生し易くなる。   Further, the cause of the breakage of the positive electrode plate 5 or the negative electrode plate 9 in the winding part 27 of the winding device will be described in more detail with reference to FIG. FIG. 4 shows a cross-sectional view of the cylindrical electrode group 14, in which the positive electrode plate 5, the negative electrode plate 9 and the separator 10 are wound. In the drawing, in the positive electrode plate 5a and the negative electrode plate 9a in the vicinity of the winding center where the curvature is reduced, the tensile stress at the time of winding is concentrated, so that the positive electrode plate 5 or the negative electrode plate 9 is easily cut.

上述のように電極群14を構成する際に発生する正極板5または負極板9の切れを抑止するためには、電極群14の曲率半径が小さくなる巻回箇所において正極板5または負極板9に加わる曲げ応力を緩和することが重要であり、この観点より誠意検討した結果、安全性を確保するための絶縁体層4を可曉性を有するゴム状弾性体で形成することで曲げ応
力を吸収し、正極板5または負極板9の切れを抑止することが可能であることを新たに見出したものである。
In order to suppress the disconnection of the positive electrode plate 5 or the negative electrode plate 9 that occurs when the electrode group 14 is configured as described above, the positive electrode plate 5 or the negative electrode plate 9 is disposed at a winding position where the radius of curvature of the electrode group 14 is reduced. It is important to alleviate the bending stress applied to the material. As a result of sincere consideration from this viewpoint, the bending stress is reduced by forming the insulator layer 4 for ensuring safety with a rubber-like elastic body having flexibility. It has been newly found that it is possible to absorb and prevent the positive electrode plate 5 or the negative electrode plate 9 from being cut.

以下、具体的な実施例について図を参照しながらさらに詳しく説明するが、これらは本発明を何ら限定するものではない。   Hereinafter, specific examples will be described in more detail with reference to the drawings, but these do not limit the present invention.

まず、正極合剤塗料においては、正極活物質として、コバルト酸リチウムを100重量部および活物質100重量部に対して、導電剤としてアセチレンブラック3重量部、結着剤としてPVdFを3重量部とを適量のN−メチル−2−ピロリドンとともに双腕式練合機にて攪拌し混練することで、正極合剤塗料とした。次に、この正極合剤塗料を15μm厚みのアルミニウム箔の正極集電体1上に一部分が塗布されていない部分を設ける間欠式に連続塗布して乾燥し、総厚みが150〜180μmとなるようにプレスして正極合剤層2を形成したものを正極板5とした。   First, in the positive electrode mixture coating material, as a positive electrode active material, 3 parts by weight of acetylene black as a conductive agent and 3 parts by weight of PVdF as a binder with respect to 100 parts by weight of lithium cobaltate and 100 parts by weight of the active material. Was mixed with an appropriate amount of N-methyl-2-pyrrolidone with a double-arm kneader to obtain a positive electrode mixture paint. Next, this positive electrode mixture paint is continuously applied in an intermittent manner in which a portion of the aluminum foil having a thickness of 15 μm is not applied on the positive electrode current collector 1 and dried, so that the total thickness becomes 150 to 180 μm. The positive electrode mixture layer 2 was pressed to form a positive electrode plate 5.

負極合剤塗料においては、活物質として人造黒鉛を100重量部および活物質100重量部に対して、結着剤としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを1重量部および適量の水とともに双腕式練合機にて攪拌し混練することで、負極合剤塗料とした。次に、この負極合剤塗料を10μm厚みの銅箔の負極集電体6上に一部分が塗布されていない部分を設ける間欠式に連続塗布して乾燥し、総厚みが180〜220μmとなるようにプレスして負極合剤層7を形成したものを負極板9とした。   In the negative electrode mixture paint, 100 parts by weight of artificial graphite as an active material and 100 parts by weight of an active material, and a styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as a binder are used. 5 parts by weight (1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethyl cellulose as a thickener and an appropriate amount of water are stirred and kneaded in a double-arm kneader, whereby a negative electrode mixture Paint was used. Next, this negative electrode mixture paint is continuously applied in an intermittent manner in which a part of the copper foil negative electrode current collector 6 having a thickness of 10 μm is not applied, and dried, so that the total thickness becomes 180 to 220 μm. The negative electrode mixture layer 7 was pressed to form a negative electrode plate 9.

絶縁体層4においては、SBR共重合体ゴム粒子スチレン−ブタジエン共重合体ゴム粒子の水分散体(固形分40重量%)を絶縁体塗料とし、上記正極板5の正極合剤層2と正極集電体1の露出部の境目を検出し、図2に示すように負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に上記の絶縁体塗料を塗布乾燥し、絶縁体層4を形成した。   In the insulator layer 4, an aqueous dispersion of SBR copolymer rubber particles styrene-butadiene copolymer rubber particles (solid content 40 wt%) is used as an insulator paint, and the positive electrode mixture layer 2 and the positive electrode of the positive electrode plate 5. The boundary of the exposed portion of the current collector 1 is detected, and the insulator paint is applied to the front and back surfaces of the boundary portion of the exposed portion of the positive electrode current collector 1 facing the negative electrode mixture layer 7 as shown in FIG. The insulating layer 4 was formed by coating and drying.

次に、上記SBR共重合体ゴム粒子スチレン−ブタジエン共重合体ゴム粒子の水分散体(固形分40重量%)で構成しているゴム状弾性体よりなる絶縁体層4を形成した正極板5と負極板9を円筒形18650リチウムイオン二次電池電池において規定されている幅にスリット加工し、20μm厚みのポリエチレン微多孔フィルムをセパレータ10として図2の示される矢印方向に巻いて渦巻状の電極群14を構成し所定の長さで切断して電池ケース11内に挿入し、テスターで内部抵抗を測定し内部短絡が無いことを確認した。   Next, a positive electrode plate 5 on which an insulating layer 4 made of a rubber-like elastic body composed of an aqueous dispersion (solid content 40% by weight) of the SBR copolymer rubber particles styrene-butadiene copolymer rubber particles is formed. And the negative electrode plate 9 are slit to a width defined in a cylindrical 18650 lithium ion secondary battery, and a 20 μm thick polyethylene microporous film is wound as a separator 10 in the direction of the arrow shown in FIG. The group 14 was formed, cut to a predetermined length, inserted into the battery case 11, and the internal resistance was measured with a tester to confirm that there was no internal short circuit.

その後、EC・DMC・MEC混合溶媒にLiPFを1MとVCを3重量部溶解させた電解液を5.5g添加して封口し、公称容量2000mAhの直径18mm、高さ65mmの円筒形18650リチウムイオン二次電池として作製した非水系二次電池を実施例1とした。 Thereafter, 5.5 g of an electrolytic solution in which 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in an EC / DMC / MEC mixed solvent was added and sealed. A non-aqueous secondary battery produced as an ion secondary battery was taken as Example 1.

実施例2の非水系二次電池においては、絶縁体層4において、2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体を適量のN−メチル−2−ピロリドンで分散したものを絶縁体塗料とし、実施例1で作製した正極板5の正極合剤層2と正極集電体1の露出部の境目を検出し、図2に示すように負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に上記の絶縁体塗料を塗布乾燥し、絶縁体層4を形成した。   In the non-aqueous secondary battery of Example 2, in the insulator layer 4, a dispersion of 2-ethylhexyl acrylate, acrylic acid, and acrylonitrile copolymer with an appropriate amount of N-methyl-2-pyrrolidone is used as the insulator coating. The boundary between the positive electrode mixture layer 2 of the positive electrode plate 5 produced in Example 1 and the exposed portion of the positive electrode current collector 1 is detected, and the positive electrode current collector facing the negative electrode mixture layer 7 as shown in FIG. The insulator paint was applied to the front and back surfaces of the boundary portion of the exposed portion 1 and dried to form the insulator layer 4.

次に、上記2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合
体を適量のN−メチル−2−ピロリドンで分散したものを絶縁体層4とする正極板5と実施例1で作製した負極板9と実施例1と同じポリエチレン微多孔フィルムをセパレータ10として用いて、実施例1と同じ製造方法で作製した非水系二次電池を実施例2とした。
Next, the positive electrode plate 5 and the negative electrode plate prepared in Example 1 were prepared by dispersing the copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile with an appropriate amount of N-methyl-2-pyrrolidone as an insulator layer 4. A non-aqueous secondary battery produced by the same production method as in Example 1 using the same polyethylene microporous film as in Example 9 and Example 1 as separator 10 was designated as Example 2.

実施例3の非水系二次電池においては、絶縁体層4において、平均粒径1.0μmのアルミナ(Al)粉末を100重量部、スチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を2.5重量部を適量の水とともに分散したものを絶縁体塗料とした。さらに、実施例1で作製した正極板5の正極合剤層2と正極集電体1の境目を検出し、図2に示されるように負極合剤層7と対向する正極集電体1の露出部の表面および裏面に絶縁体塗料を塗布乾燥し、ゴム状弾性体よりなる絶縁体層4を形成した。 In the non-aqueous secondary battery of Example 3, in the insulator layer 4, 100 parts by weight of alumina (Al 2 O 3 ) powder having an average particle size of 1.0 μm, styrene-butadiene copolymer rubber particle dispersion (solid Insulating paint was obtained by dispersing 2.5 parts by weight of 40% by weight) together with an appropriate amount of water. Further, the boundary between the positive electrode mixture layer 2 and the positive electrode current collector 1 of the positive electrode plate 5 produced in Example 1 was detected, and the positive electrode current collector 1 facing the negative electrode mixture layer 7 as shown in FIG. An insulating coating was applied to the front and back surfaces of the exposed portion and dried to form an insulating layer 4 made of a rubber-like elastic body.

次に、上記アルミナ材とスチレン−ブタジエン共重合体ゴム粒子分散体とで構成している絶縁体層4を形成した正極板5と実施例1で作製した負極板9と実施例1と同じポリエチレン微多孔フィルムをセパレータ10として用いて、実施例1と同じ製造方法で作製した非水系二次電池を実施例3とした。   Next, the positive electrode plate 5 on which the insulator layer 4 composed of the alumina material and the styrene-butadiene copolymer rubber particle dispersion is formed, the negative electrode plate 9 produced in Example 1, and the same polyethylene as in Example 1. A non-aqueous secondary battery produced by the same production method as in Example 1 using the microporous film as the separator 10 was taken as Example 3.

実施例4の非水系二次電池においては、絶縁体層4において、平均粒径1.0μmのアルミナ(Al)粉末を100重量部、2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体をAl粉末100重量部に対し10重量部を適量のN−メチル−2−ピロリドンをディスパー攪拌機で混合したものを絶縁体塗料とした。 In the non-aqueous secondary battery of Example 4, in the insulator layer 4, 100 parts by weight of alumina (Al 2 O 3 ) powder having an average particle diameter of 1.0 μm, the co-weight of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile 10 parts by weight of the coalescence with 100 parts by weight of Al 2 O 3 powder was mixed with an appropriate amount of N-methyl-2-pyrrolidone using a disper stirrer to make an insulating coating.

さらに、実施例1で作製した正極板5の正極合剤層2と正極集電体1の境目を検出し、図2に示されるように負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に絶縁体塗料を塗布乾燥し、絶縁体層4を形成した。この無機添加剤としてアルミナ材と、2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体とで構成している絶縁体層4を形成した正極板5と実施例1で作製した負極板9と実施例1と同じポリエチレン微多孔フィルムをセパレータ10として用いて、実施例1と同じ製造方法で作製した非水系二次電池を実施例4とした。   Further, the boundary between the positive electrode mixture layer 2 and the positive electrode current collector 1 of the positive electrode plate 5 produced in Example 1 is detected, and the positive electrode current collector 1 facing the negative electrode mixture layer 7 as shown in FIG. The insulating layer 4 was formed by applying and drying an insulating paint on the front and back surfaces of the boundary portion of the exposed portion. As the inorganic additive, the positive electrode plate 5 on which the insulator layer 4 composed of an alumina material, a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile was formed, and the negative electrode plate 9 produced in Example 1 and the implementation. A non-aqueous secondary battery produced by the same production method as in Example 1 using the same polyethylene microporous film as in Example 1 as separator 10 was designated as Example 4.

実施例5の非水系二次電池においては、絶縁体層4において、平均粒径1.0μmのシリカ粉末を100重量部、スチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を2.5重量部を適量の水とともに分散し絶縁体塗料とした。さらに、実施例1で作製した正極板5の正極合剤層2と正極集電体1の露出部の境目を検出し、図2に示すように負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に絶縁体塗料を塗布乾燥し、ゴム状弾性体よりなる絶縁体層4を形成した。   In the non-aqueous secondary battery of Example 5, 100 parts by weight of silica powder having an average particle size of 1.0 μm and a styrene-butadiene copolymer rubber particle dispersion (solid content: 40% by weight) in the insulator layer 4 were used. 2.5 parts by weight were dispersed together with an appropriate amount of water to obtain an insulating paint. Further, the boundary between the positive electrode mixture layer 2 of the positive electrode plate 5 produced in Example 1 and the exposed portion of the positive electrode current collector 1 is detected, and the positive electrode current collector facing the negative electrode mixture layer 7 as shown in FIG. An insulating paint was applied and dried on the front and back surfaces of the boundary portion of the exposed portion of the body 1 to form an insulating layer 4 made of a rubber-like elastic body.

この無機添加剤としてシリカ材と、スチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)とで構成している絶縁体層4を形成した正極板5と実施例1で作製した負極板9と実施例1と同じポリエチレン微多孔フィルムをセパレータ10として用いて、実施例1と同じ製造方法で作製した非水系二次電池を実施例5とした。   The negative electrode produced in Example 1 and the positive electrode plate 5 on which the insulator layer 4 composed of a silica material and a styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) was formed as the inorganic additive. A non-aqueous secondary battery produced by the same production method as in Example 1 was used as Example 5 using the same microporous polyethylene film as that in Example 9 as the separator 9.

実施例6の非水系二次電池においては、絶縁体層4において、平均粒径1.0μmのシリカ粉末を100重量部、2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体をシリカ粉末に対し10重量部を適量のN−メチル−2−ピロリドンをディスパー攪拌機で混合し絶縁体層4の塗料とした。   In the non-aqueous secondary battery of Example 6, in the insulator layer 4, 100 parts by weight of silica powder having an average particle size of 1.0 μm, and a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile with respect to the silica powder. An appropriate amount of N-methyl-2-pyrrolidone was mixed with 10 parts by weight with a disper stirrer to obtain a coating material for the insulator layer 4.

さらに、実施例1で作製した正極板5の正極合剤層2と正極集電体1の露出部の境目を検出し、図2に示すように負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に絶縁体塗料を塗布して乾燥し、絶縁体層4を形成した。この無機添加剤としてシリカ材と、2−エチルヘキシルアクリレートとアクリル酸とアクリロニトリルの共重合体とで構成している絶縁体層4を形成した正極板5と実施例1で作製した負極板9と実施例1と同じポリエチレン微多孔フィルムをセパレータ10として用いて、実施例1と同じ製造方法で作製した非水系二次電池を実施例6とした。   Further, the boundary between the positive electrode mixture layer 2 of the positive electrode plate 5 produced in Example 1 and the exposed portion of the positive electrode current collector 1 is detected, and the positive electrode current collector facing the negative electrode mixture layer 7 as shown in FIG. An insulator paint was applied to the front and back surfaces of the boundary portion of the exposed portion of the body 1 and dried to form the insulator layer 4. As the inorganic additive, a positive electrode plate 5 formed with an insulating layer 4 composed of a silica material, a copolymer of 2-ethylhexyl acrylate, acrylic acid and acrylonitrile, and a negative electrode plate 9 produced in Example 1 and an implementation A non-aqueous secondary battery produced by the same manufacturing method as in Example 1 using the same polyethylene microporous film as in Example 1 as separator 10 was designated as Example 6.

(比較例1)
実施例1と同様にして、正極合剤塗料においては活物質としてコバルト酸リチウムを100重量部および活物質100重量部に対して、導電剤としてアセチレンブラック3重量部、結着剤としてPVdFを3重量部とを適量のN−メチル−2−ピロリドンとともに双腕式練合機にて攪拌し混練することで、正極合剤塗料とし、この正極合剤塗料を15μm厚みのアルミニウム箔の正極集電体1上に一部分が塗布されていない部分を設ける間欠式に連続塗布して乾燥し、総厚みが150〜180μmとなるようにプレスして正極合剤層2を形成したものを正極板5とした。
(Comparative Example 1)
In the same manner as in Example 1, in the positive electrode mixture paint, 3 parts by weight of acetylene black as a conductive agent and 3 PVdF as a binder with respect to 100 parts by weight of lithium cobaltate as an active material and 100 parts by weight of the active material. A positive electrode mixture paint is prepared by stirring and kneading a part by weight with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader, and this positive electrode mixture paint is made of a positive electrode current collector made of 15 μm thick aluminum foil. A positive electrode plate 5 is formed by forming a positive electrode mixture layer 2 by continuously applying and drying in an intermittent manner in which a part of the body 1 is not applied on the body 1 and drying, and pressing to a total thickness of 150 to 180 μm. did.

また実施例1と同様にして、負極合剤塗料においては、活物質として人造黒鉛を100重量部および活物質100重量部に対して、結着剤としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを1重量部および適量の水とともに双腕式練合機にて攪拌し混練することで、負極合剤塗料とし、この負極合剤塗料を10μm厚みの銅箔の負極集電体6上に一部分が塗布されていない部分を設ける間欠式に連続塗布して乾燥し、総厚みが180〜220μmとなるようにプレスして負極合剤層7を形成したものを負極板9とした。   Similarly to Example 1, in the negative electrode mixture paint, 100 parts by weight of artificial graphite as an active material and 100 parts by weight of the active material, a styrene-butadiene copolymer rubber particle dispersion (as a binder) Stir in a double-arm kneader with 2.5 parts by weight (solid content 40% by weight) (1 part by weight in terms of solid content of binder) and 1 part by weight of carboxymethylcellulose as a thickener and an appropriate amount of water. And kneading to form a negative electrode mixture paint, and this negative electrode mixture paint is continuously applied and dried in an intermittent manner in which a part of the copper foil negative electrode current collector 6 of 10 μm thickness is not applied, The negative electrode plate 9 was formed by pressing the negative electrode mixture layer 7 so as to have a total thickness of 180 to 220 μm.

次に、実施例1と同様に、これらの正極板5と負極板9を円筒形18650リチウムイオン二次電池において規定されている幅にスリット加工し、20μm厚みのポリエチレン微多孔フィルムをセパレータ10として図5の示される矢印方向に巻いて渦巻状の電極群を構成し、所定の長さで切断して電池ケース11内に挿入し、テスターで内部抵抗を測定し内部短絡が無いことを確認した。   Next, as in Example 1, these positive electrode plate 5 and negative electrode plate 9 were slit to a width defined in a cylindrical 18650 lithium ion secondary battery, and a polyethylene microporous film having a thickness of 20 μm was used as separator 10. A spiral electrode group was formed by winding in the direction of the arrow shown in FIG. 5, cut into a predetermined length, inserted into the battery case 11, and the internal resistance was measured with a tester to confirm that there was no internal short circuit. .

その後、EC・DMC・MEC混合溶媒にLiPFを1MとVCを3重量部溶解させた電解液を5.5g添加して封口し、公称容量2000mAhの直径18mm、高さ65mmの円筒型18650リチウムイオン二次電池として作製した非水系二次電池を比較例1とした。 Then, 5.5 g of an electrolytic solution in which 1 part of LiPF 6 and 3 parts by weight of VC were dissolved in an EC / DMC / MEC mixed solvent was added and sealed. A non-aqueous secondary battery produced as an ion secondary battery was referred to as Comparative Example 1.

(比較例2)
上記比較例1の正極板5に図6で示すように、正極板5の正極合剤層2と正極集電体1の露出部の境目を検出し、負極合剤層7と対向する上記正極集電体1の露出部の境目部分の表面および裏面に幅16mm厚み25μの絶縁テープ(PP製)16を貼着したものを比較例2の正極板とした。このようにして得られた正極板5と比較例1の負極板9と比較例1で用いたセパレータ10を用いて、比較例1と同じ製造方法で作製した非水系二次電池を比較例2とした。
(Comparative Example 2)
As shown in FIG. 6, the positive electrode plate 5 of the comparative example 1 detects the boundary between the positive electrode mixture layer 2 of the positive electrode plate 5 and the exposed portion of the positive electrode current collector 1 and faces the negative electrode mixture layer 7. A positive electrode plate of Comparative Example 2 was prepared by attaching an insulating tape (made of PP) 16 having a width of 16 mm and a thickness of 25 μm to the front and back surfaces of the boundary portion of the exposed portion of the current collector 1. A non-aqueous secondary battery produced by the same manufacturing method as in Comparative Example 1 using the positive electrode plate 5 thus obtained, the negative electrode plate 9 of Comparative Example 1 and the separator 10 used in Comparative Example 1 was compared with Comparative Example 2. It was.

上記実施例と比較例を(表1)に示す。   The said Example and a comparative example are shown in (Table 1).

Figure 2009134915
Figure 2009134915

(表1)の条件で試作された非水系二次電池において、以下の内容で評価を行なった。電極板の切れに関しては、電極群の巻回時に発生した切れ数を計量し、n=30個中の切れ数として、その発生率を(表2)に示す。   In the non-aqueous secondary battery prototyped under the conditions of (Table 1), evaluation was performed with the following contents. Regarding the breakage of the electrode plate, the number of breaks that occurred when the electrode group was wound was measured, and the occurrence rate is shown in Table 2 as the number of breaks in n = 30.

初期容量は室温(25℃)にて、0.2Cでの放電容量とし、n=5個のばらつきを求めた。サイクル寿命は、500サイクル終了時の初期容量に対する残存容量比を容量維持率とし、n=5個の平均値を求めた。これらの結果を(表2)に示す。   The initial capacity was a discharge capacity at 0.2 C at room temperature (25 ° C.), and n = 5 variations were obtained. For the cycle life, the ratio of the remaining capacity to the initial capacity at the end of 500 cycles was taken as the capacity retention rate, and an average value of n = 5 was obtained. These results are shown in (Table 2).

安全性について評価する非水系二次電池においては、より信頼性を高めるために全ての非水系二次電池に対し、封口後の完成電池について、正極端子と負極端子間に250Vの印加電圧を加えて内部抵抗をテスターにて測定を行い100MΩ以下の非水系二次電池を絶縁不良電池として省いた。   For non-aqueous secondary batteries to be evaluated for safety, an applied voltage of 250 V is applied between the positive electrode terminal and the negative electrode terminal for all the non-aqueous secondary batteries in order to improve reliability. The internal resistance was measured with a tester, and a non-aqueous secondary battery of 100 MΩ or less was omitted as a poorly insulated battery.

落下試験については、前記絶縁抵抗試験を行った非水系二次電池を上限電圧4.2V、電流2Aの条件で2時間充電を行った後、1.5mの高さからコンクリート面上に、非水系二次電池の3面に対し各10回落下試験を行い、室温(25℃)にて、n=3個の非水系二次電池の発熱温度を測定し、n=3の平均値を求めた結果を(表2)に示す。
落下試験後の非水系二次電池n=100個について、内部短絡の有無を確認した結果を(表2)に示す。
For the drop test, the non-aqueous secondary battery subjected to the insulation resistance test was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A. A drop test is performed 10 times on three surfaces of the water-based secondary battery, and the exothermic temperatures of n = 3 non-aqueous secondary batteries are measured at room temperature (25 ° C.), and the average value of n = 3 is obtained. The results are shown in (Table 2).
Table 2 shows the results of confirming the presence or absence of an internal short circuit for n = 100 nonaqueous secondary batteries after the drop test.

丸棒圧壊試験については、前記絶縁抵抗試験を行った非水系二次電池を、上限電圧4.2V、電流2Aの条件で2時間充電を行った後、非水系二次電池の長手方向に対し垂直方向に、直径10mmの丸棒で圧壊試験を実施し、室温(25℃)にて、n=3個の非水系二次電池の発熱温度を測定し、n=3個の平均値を求めた結果を(表2)に示す。   For the round bar crushing test, the non-aqueous secondary battery subjected to the insulation resistance test was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A, and then the longitudinal direction of the non-aqueous secondary battery was compared. In the vertical direction, a crush test was performed with a round bar having a diameter of 10 mm, and the heat generation temperature of n = 3 non-aqueous secondary batteries was measured at room temperature (25 ° C.), and the average value of n = 3 was obtained. The results are shown in (Table 2).

150℃加熱試験については、前記絶縁抵抗試験を行った非水系二次電池を、上限電圧4.2V、電流2Aの条件で2時間充電を行った後、非水系二次電池を恒温層に挿入し、常温から1分間に5℃温度上昇する条件で恒温槽の温度を150℃まで昇温させて、そのときの電池発熱温度を測定し、n=3個の平均値を求めた結果を(表2)に示す。   For the 150 ° C. heating test, the non-aqueous secondary battery subjected to the insulation resistance test was charged for 2 hours under the conditions of an upper limit voltage of 4.2 V and a current of 2 A, and then the non-aqueous secondary battery was inserted into the constant temperature layer. Then, the temperature of the thermostatic chamber was raised to 150 ° C. under the condition that the temperature rose from room temperature to 5 ° C. per minute, the battery heat generation temperature at that time was measured, and the result of obtaining the average value of n = 3 ( Table 2).

Figure 2009134915
Figure 2009134915

(表2)に示されるように実施例1から実施例6においてゴム状弾性体で絶縁体層4を施したときは、巻回時における切れの発生率と初期容量のばらつきが少なく、容量維持率が高く、絶縁体層4がない比較例1と同等であることが分かった。これらは、巻回時の切れが少ないため、集電性能が良いので初期容量のばらつきが小さく、また充放電サイクル時におこる電極板の膨張、収縮があっても、正極板5と負極板9のバランスが局所的に崩れることがないのでサイクル劣化が少ないことがわかった。   As shown in Table 2, when the insulator layer 4 is applied with a rubber-like elastic body in Examples 1 to 6, there is little variation in the occurrence rate of cuts and initial capacity during winding, and the capacity is maintained. The rate was high, and it was found to be equivalent to Comparative Example 1 without the insulator layer 4. Since there are few breaks at the time of winding, the current collection performance is good, so the variation in initial capacity is small, and even if the electrode plate expands or contracts during the charge / discharge cycle, the positive electrode plate 5 and the negative electrode plate 9 It was found that there was little cycle deterioration because the balance was not lost locally.

その一方で、従来の絶縁テープ16を施した従来例2では切れの発生率や初期容量のばらつきが多く、容量維持率も低いことが分かった。これは、巻回時の切れが多いため、集電性能が悪いので初期容量のばらつきが大きく、また充放電サイクル時の起こる電極板の膨張、収縮のために、正極板5と負極板9のバランスが局所的に崩れることがあり、その結果容量維持率が低下することがわかった。   On the other hand, it was found that in the conventional example 2 to which the conventional insulating tape 16 was applied, the occurrence rate of cuts and variations in initial capacity were large, and the capacity maintenance rate was low. This is because there are many cuts at the time of winding, so the current collection performance is poor, so there is a large variation in the initial capacity, and because of the expansion and contraction of the electrode plate that occurs during the charge / discharge cycle, the positive electrode plate 5 and the negative electrode plate 9 It was found that the balance may be locally broken, resulting in a decrease in capacity retention rate.

また、実施例1から実施例6および比較例2で絶縁体層4を形成した非水系二次電池は、外部からの物理的衝撃が与えられても絶縁体層4により正極集電体1が露出していないことから正極板5と負極板9との接触が発生しないため、内部短絡を起こさず安全性が良好であった。   Further, in the non-aqueous secondary battery in which the insulator layer 4 is formed in Examples 1 to 6 and Comparative Example 2, the positive electrode current collector 1 is formed by the insulator layer 4 even when a physical impact is applied from the outside. Since it was not exposed, the contact between the positive electrode plate 5 and the negative electrode plate 9 did not occur, so that the internal short circuit did not occur and the safety was good.

一方、絶縁体層4を形成していない比較例1の非水系二次電池は、落下、丸棒圧壊、150℃加熱いずれの試験においても電池温度が高いことより、正極板と負極板の接触が発生したと考えられ、すなわち正極集電体1と負極合剤層7との接触による発熱があり、正極集電体1と負極合剤層7とが接触しないように絶縁体層4を設けることは、微小短絡や内部短絡の発生を防止する効果が大きい。   On the other hand, the non-aqueous secondary battery of Comparative Example 1 in which the insulator layer 4 is not formed is in contact with the positive electrode plate and the negative electrode plate because the battery temperature is high in any of the tests of dropping, round bar crushing, and heating at 150 ° C. In other words, the insulator layer 4 is provided so that the positive electrode current collector 1 and the negative electrode mixture layer 7 generate heat and the positive electrode current collector 1 and the negative electrode mixture layer 7 do not contact each other. This has a great effect of preventing the occurrence of minute short circuits and internal short circuits.

その上で、安全性に関して、実施例1から実施例6では、ゴム状弾性体の絶縁体層4を形成したものは、従来の絶縁テープ16を貼着した比較例2と比べても遜色なく、十分に安全性が確保できた。   In addition, with respect to safety, in Example 1 to Example 6, the rubber-like elastic insulator layer 4 was formed in comparison with Comparative Example 2 in which the conventional insulating tape 16 was adhered. It was possible to secure enough safety.

つまり、絶縁体層4をゴム状弾性体で形成することで、巻回時の切れは絶縁体層4がな
い場合と同等であり、安全性に関しては従来の絶縁体層である絶縁テープ16と同等機能を満たしていることが分かった。
That is, by forming the insulator layer 4 from a rubber-like elastic body, the breakage at the time of winding is equivalent to the case without the insulator layer 4, and with respect to safety, the insulating tape 16 which is a conventional insulator layer and It turns out that it satisfies the equivalent function.

なお、絶縁体層4の形成は正極板5に限定されず、負極板9に形成してもよく、また、いずれも電極板においても、その全表面に施しても構わないのは言うまでもない。   Note that the formation of the insulator layer 4 is not limited to the positive electrode plate 5, and may be formed on the negative electrode plate 9, and it goes without saying that both may be applied to the entire surface of the electrode plate.

本発明に係る非水系二次電池は、正極集電体の露出部と対向する負極合剤層の表面および負極合剤層と対向する正極集電体の露出部の少なくともいずれか一方の表面に、少なくとも無機添加剤および非水溶性高分子の結着剤より構成される絶縁体塗料を塗布乾燥した絶縁体層を形成して露出部分を被膜することで、従来の非水系二次電池より物理的衝撃などによる正極板および負極板の短絡を抑制できるため、安全性に優れ高容量かつ良好な寿命特性を維持することができ、多機能化に伴い高容量化が望まれている電子機器および通信機器のポータブル用電源等として有用である。   The non-aqueous secondary battery according to the present invention is provided on at least one of the surface of the negative electrode mixture layer facing the exposed portion of the positive electrode current collector and the exposed portion of the positive electrode current collector facing the negative electrode mixture layer. Applying an insulating coating composed of at least an inorganic additive and a water-insoluble polymer binder to form an insulating layer that is dried to coat the exposed portion, thereby making it more physical than a conventional non-aqueous secondary battery. Can suppress the short circuit between the positive electrode plate and the negative electrode plate due to mechanical shock, etc., and can maintain high capacity and good life characteristics with excellent safety. It is useful as a portable power source for communication equipment.

本発明の実施例に係る円筒形の非水系二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical non-aqueous secondary battery according to an embodiment of the present invention. 同実施例に係る正極板および正極合剤層と正極集電体露出部との境界表面の絶縁体層と負極板を示す概略図Schematic which shows the insulator layer and negative electrode plate of the boundary surface of the positive electrode plate which concerns on the Example, positive mix layer, and positive electrode collector exposed part 同実施例に係る電極群の巻回装置の概略を示す断面図Sectional drawing which shows the outline of the winding apparatus of the electrode group which concerns on the Example 同実施例に係る非水系二次電池の断面を示す模式図Schematic diagram showing a cross section of the non-aqueous secondary battery according to the same example 従来例に係る正極板および負極板を示す概略図Schematic showing a positive electrode plate and a negative electrode plate according to a conventional example 別の従来例に係る正極板および正極合剤と正極集電体露出部との境目部分の絶縁体層と負極板を示す概略図Schematic which shows the insulator layer and negative electrode plate of the boundary part of the positive electrode plate which concerns on another prior art example, and positive mix, and a positive electrode collector exposed part 従来例における端部の厚みが薄くなるように成形した絶縁テープを正極板に貼着した断面を示した模式図The schematic diagram which showed the cross section which stuck the insulating tape shape | molded so that the thickness of the edge part in a prior art example might become thin on the positive electrode plate. 従来例における液収縮方向を正極板または負極板の長さ方向にして絶縁テープを貼着したことを示した模式図Schematic diagram showing that the insulating tape was attached with the liquid shrinkage direction in the conventional example set to the length direction of the positive electrode plate or negative electrode plate

符号の説明Explanation of symbols

1 正極集電体
2 正極合剤層
3 正極リード
4 絶縁体層
5 正極板
5a 巻回中心部の正極板
6 負極集電体
7 負極合剤層
8 負極リード
9 負極板
9a 巻回中心部の負極板
10 セパレータ
11 電池ケース
12 封口板
13 封口ガスケット
14 電極群
15 絶縁板
16 絶縁テープ
21 正極板
22 負極板
23,24 セパレータ
25 正極板の搬送装置
26 負極板の搬送装置
27 巻回部
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture layer 3 Positive electrode lead 4 Insulator layer 5 Positive electrode plate 5a Positive electrode plate of winding center part 6 Negative electrode collector 7 Negative electrode mixture layer 8 Negative electrode lead 9 Negative electrode plate 9a of winding center part Negative electrode plate 10 Separator 11 Battery case 12 Sealing plate 13 Sealing gasket 14 Electrode group 15 Insulating plate 16 Insulating tape 21 Positive electrode plate 22 Negative electrode plate 23, 24 Separator 25 Positive electrode plate conveying device 26 Negative electrode plate conveying device 27 Winding part

Claims (7)

少なくとも活物質、導電剤および結着剤より構成される正極合剤塗料を正極集電体の上に塗布乾燥して構成される正極板と少なくとも活物質および結着剤より構成される負極合剤塗料を負極集電体の上に塗布乾燥して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒を主成分とする電解液により構成される非水系二次電池であって、前記正極集電体または負極集電体の一部に正極合剤塗料または負極合剤塗料を塗布しない露出部を設け、前記正極板または負極板の少なくともいずれか一方の前記正極集電体または負極集電体の露出部と前記正極合剤塗料または負極合剤塗料の塗布部との境目部分に少なくとも可曉性を有する絶縁体層を形成したことを特徴とする非水系二次電池。   A positive electrode plate constituted by applying and drying a positive electrode mixture paint comprising at least an active material, a conductive agent and a binder on a positive electrode current collector, and a negative electrode mixture comprising at least the active material and the binder A non-aqueous two-layered electrode composed of a negative electrode plate formed by coating and drying a paint on a negative electrode current collector and an electrode group formed by spirally winding a separator and an electrolyte mainly composed of a non-aqueous solvent. In the secondary battery, an exposed portion where no positive electrode mixture paint or negative electrode mixture paint is applied is provided on a part of the positive electrode current collector or the negative electrode current collector, and at least one of the positive electrode plate or the negative electrode plate A non-aqueous system characterized in that an insulating layer having at least flexibility is formed at a boundary portion between an exposed part of a positive electrode current collector or a negative electrode current collector and an application part of the positive electrode mixture paint or the negative electrode mixture paint. Secondary battery. 前記絶縁体層を正極板に形成したことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the insulator layer is formed on a positive electrode plate. 前記絶縁体層をゴム状弾性体により構成したことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the insulator layer is made of a rubber-like elastic body. 前記ゴム状弾性体に無機添加剤を添加したことを特徴とする請求項3に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 3, wherein an inorganic additive is added to the rubber-like elastic body. 前記無機添加剤をシリカ材および/またはアルミナ材としたことを特徴とする請求項4に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 4, wherein the inorganic additive is a silica material and / or an alumina material. 前記ゴム状弾性体をスチレンーブタジエン共重合体ゴム粒子および/またはアクリレート単位を有するゴム粒子結着材としたことを特徴とする請求項3に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 3, wherein the rubber-like elastic body is a rubber particle binder having styrene-butadiene copolymer rubber particles and / or acrylate units. 前記絶縁体層の厚みを2μm以上25μm以下としたことを特徴とする請求項1に記載の非水系二次電池。   The non-aqueous secondary battery according to claim 1, wherein the thickness of the insulator layer is 2 μm or more and 25 μm or less.
JP2007308471A 2007-11-29 2007-11-29 Non-aqueous secondary battery Withdrawn JP2009134915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308471A JP2009134915A (en) 2007-11-29 2007-11-29 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308471A JP2009134915A (en) 2007-11-29 2007-11-29 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2009134915A true JP2009134915A (en) 2009-06-18

Family

ID=40866618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308471A Withdrawn JP2009134915A (en) 2007-11-29 2007-11-29 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2009134915A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837790B2 (en) * 2008-01-28 2011-12-14 エルジー・ケム・リミテッド Batteries with improved insulation characteristics
JP2012113935A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Power storage element, and power storage device
CN102544578A (en) * 2012-03-16 2012-07-04 天津力神电池股份有限公司 Lithium ion battery capable of improving comprehensive performance
JP2013020968A (en) * 2011-07-12 2013-01-31 Samsung Sdi Co Ltd Secondary battery
WO2016067706A1 (en) * 2014-10-27 2016-05-06 Necエナジーデバイス株式会社 Method for producing electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2017004608A (en) * 2015-06-04 2017-01-05 株式会社Gsユアサ Electrode plate, storage battery, method for manufacturing electrode plate, and position measuring method
JP2017135110A (en) * 2017-02-07 2017-08-03 エルジー ケム. エルティーディ. Electrode assembly and electrochemical device including the same
WO2019049886A1 (en) * 2017-09-05 2019-03-14 積水化学工業株式会社 Electrode and lithium ion secondary battery
CN110323484A (en) * 2018-03-30 2019-10-11 三洋电机株式会社 The manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2020162598A1 (en) * 2019-02-07 2020-08-13 積水化学工業株式会社 Lithium-ion secondary battery electrode and lithium-ion secondary battery
JP2020173943A (en) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020173941A (en) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN112331903A (en) * 2019-08-05 2021-02-05 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
KR20210027154A (en) * 2019-09-02 2021-03-10 도요타 지도샤(주) Non-aqueous electrolyte secondary battery
KR20210031394A (en) * 2019-09-11 2021-03-19 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
CN112864546A (en) * 2019-11-26 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
JP2022049396A (en) * 2020-09-16 2022-03-29 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
WO2024077602A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9570774B2 (en) 2008-01-28 2017-02-14 Lg Chem, Ltd. Battery having enhanced electrical insulation capability
JP4837790B2 (en) * 2008-01-28 2011-12-14 エルジー・ケム・リミテッド Batteries with improved insulation characteristics
US8557423B2 (en) 2008-01-28 2013-10-15 Lg Chem, Ltd. Battery having enhanced electrical insulation capability
US8734976B2 (en) 2008-01-28 2014-05-27 Lg Chem, Ltd. Battery having enhanced electrical insulation capability
JP2012113935A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Power storage element, and power storage device
JP2013020968A (en) * 2011-07-12 2013-01-31 Samsung Sdi Co Ltd Secondary battery
CN102544578A (en) * 2012-03-16 2012-07-04 天津力神电池股份有限公司 Lithium ion battery capable of improving comprehensive performance
WO2016067706A1 (en) * 2014-10-27 2016-05-06 Necエナジーデバイス株式会社 Method for producing electrode for secondary battery, electrode for secondary battery, and secondary battery
JPWO2016067706A1 (en) * 2014-10-27 2017-08-31 Necエナジーデバイス株式会社 Secondary battery electrode manufacturing method, secondary battery electrode, and secondary battery
US20170317390A1 (en) * 2014-10-27 2017-11-02 Nec Energy Devices, Ltd. Production method of electrode for secondary battery, electrode for secondary battery, and secondary battery
US10497987B2 (en) 2014-10-27 2019-12-03 Envision Aesc Energy Devices Ltd. Production method of electrode for secondary battery, electrode for secondary battery, and secondary battery
JP2017004608A (en) * 2015-06-04 2017-01-05 株式会社Gsユアサ Electrode plate, storage battery, method for manufacturing electrode plate, and position measuring method
JP2017135110A (en) * 2017-02-07 2017-08-03 エルジー ケム. エルティーディ. Electrode assembly and electrochemical device including the same
WO2019049886A1 (en) * 2017-09-05 2019-03-14 積水化学工業株式会社 Electrode and lithium ion secondary battery
CN110323484A (en) * 2018-03-30 2019-10-11 三洋电机株式会社 The manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN110323484B (en) * 2018-03-30 2024-04-26 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
WO2020162598A1 (en) * 2019-02-07 2020-08-13 積水化学工業株式会社 Lithium-ion secondary battery electrode and lithium-ion secondary battery
JPWO2020162598A1 (en) * 2019-02-07 2021-09-30 積水化学工業株式会社 Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
JP7085149B2 (en) 2019-04-09 2022-06-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020173941A (en) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7085147B2 (en) 2019-04-09 2022-06-16 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020173943A (en) * 2019-04-09 2020-10-22 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN112331903A (en) * 2019-08-05 2021-02-05 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
KR102436382B1 (en) 2019-09-02 2022-08-25 도요타 지도샤(주) Non-aqueous electrolyte secondary battery
KR20210027154A (en) * 2019-09-02 2021-03-10 도요타 지도샤(주) Non-aqueous electrolyte secondary battery
KR20210031394A (en) * 2019-09-11 2021-03-19 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
KR102463329B1 (en) * 2019-09-11 2022-11-04 도요타지도샤가부시키가이샤 Non-aqueous electrolyte secondary battery
US11757084B2 (en) 2019-09-11 2023-09-12 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP2021086681A (en) * 2019-11-26 2021-06-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN112864546A (en) * 2019-11-26 2021-05-28 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
US11777101B2 (en) 2019-11-26 2023-10-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
JP7253147B2 (en) 2019-11-26 2023-04-06 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
CN112864546B (en) * 2019-11-26 2023-04-14 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
JP2022049396A (en) * 2020-09-16 2022-03-29 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP7385816B2 (en) 2020-09-16 2023-11-24 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US11862788B2 (en) 2020-09-16 2024-01-02 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
CN114267837A (en) * 2020-09-16 2022-04-01 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
CN114267837B (en) * 2020-09-16 2024-04-26 丰田自动车株式会社 Nonaqueous electrolyte secondary battery
WO2024077602A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery and electric device

Similar Documents

Publication Publication Date Title
JP2009134915A (en) Non-aqueous secondary battery
WO2017038041A1 (en) Non-aqueous electrolyte secondary battery
JP5095121B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
WO2013021630A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2007103356A (en) Non-aqueous secondary battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
WO2012042830A1 (en) Nonaqueous electrolyte secondary battery
WO2011135613A1 (en) Non-aqueous secondary battery and electrodes for use in same
JP2011181441A (en) Cylinder type nonaqueous electrolyte battery
KR101289974B1 (en) Non-aqueous liquid electrolyte secondary cell
KR102217574B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
JP2002093404A (en) Flat battery
JP6585088B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5213003B2 (en) Nonaqueous electrolyte secondary battery
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2010108679A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2006302509A (en) Battery
JP2007265666A (en) Nonaqueous electrolyte secondary battery
KR101858334B1 (en) Non-aqueous electrolyte secondary battery
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP2014225327A (en) Nonaqueous electrolyte solar batter
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2015029248A1 (en) Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120806