JP2008223516A - エンジンの排気ガス還流装置の故障診断装置 - Google Patents

エンジンの排気ガス還流装置の故障診断装置 Download PDF

Info

Publication number
JP2008223516A
JP2008223516A JP2007059876A JP2007059876A JP2008223516A JP 2008223516 A JP2008223516 A JP 2008223516A JP 2007059876 A JP2007059876 A JP 2007059876A JP 2007059876 A JP2007059876 A JP 2007059876A JP 2008223516 A JP2008223516 A JP 2008223516A
Authority
JP
Japan
Prior art keywords
intake pressure
egr
engine
exhaust gas
egr valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059876A
Other languages
English (en)
Inventor
Koji Miyamoto
浩二 宮本
Koichi Terada
浩市 寺田
Nobuyuki Furuichi
展之 古市
Tomoyuki Kihara
智之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007059876A priority Critical patent/JP2008223516A/ja
Publication of JP2008223516A publication Critical patent/JP2008223516A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】エンジンの排気ガス還流装置の故障を、容易かつ確実に診断することができる手段を提供する。
【解決手段】エンジン1は、排気通路9とサージタンク17とを連通するEGR通路25と、該EGR通路25に介設されたEGR弁26とを有する排気ガス還流装置を備えている。コントロールユニットCは、エアフローセンサ15の検出空気量に基づいて、EGRガスの還流がないものとして吸気圧力を推定する(推定吸気圧力)。そして、推定吸気圧力と、吸気圧力センサ18によって実際に測定された吸気圧力(実吸気圧力)とを比較し、推定吸気圧力と実吸気圧力との差(吸気圧力差)が所定の閾値以上であれば排気ガス還流装置は正常であると判定する。また、コントロールユニットCは、推定吸気圧力と実吸気圧力との差を学習値とし、この学習値を反映して故障判定を行う。
【選択図】図1

Description

本発明は、エンジンの吸気系と排気系とを接続するEGR通路と、該EGR通路に配設されたEGR弁とを有するエンジンの排気ガス還流装置の故障診断装置に関するものである。
一般に、自動車用のエンジンから排出された排気ガスには、NOx(窒素酸化物)、CO(一酸化炭素)、HC(炭化水素)等の大気汚染物質が含まれている。これらの大気汚染物質中、NOxは、燃焼室内での燃焼ガス温度が高くなると発生量が増加する。そこで、エンジンには、通常、エンジンの運転状態に応じて、排気系の排気ガスの一部をEGRガスとして吸気系に還流させ、燃焼ガス温度を低下させることによりNOx発生量を低減する排気ガス還流装置が設けられる。
このような排気ガス還流装置は、一般に、排気通路と吸気通路とを連通させるEGR通路と、該EGR通路に介設されEGR通路内を流れるEGRガスの流量を制御するEGR弁とを備えている(特許文献1参照)。なお、特許文献1に記載されたエンジン(内燃機関)では、EGR制御中にEGRガスの還流量を監視するようにしている。
特開平10−115259号公報(段落[0008]、図2)
ところで、固体粒子等の異物を含む流体と接触する可動部を備えた機械部品は、比較的故障することが多いが、排気ガス還流装置のEGR弁も、その弁体が、煤等の異物を含む可能性があるEGRガス(排気ガス)と接触するので、故障することがある。そして、EGR弁が故障したときには、排気ガス還流装置は正常に機能を果たすことができず、エンジンのNOx発生量が増加するといった問題がある。
本発明は、上記従来の問題を解決するためになされたものであって、エンジンのEGR弁ないしは排気ガス還流装置の故障を、容易かつ確実に診断することができる手段を提供することを解決すべき課題とする。
上記課題を解決するためになされた本発明は、(a)エンジンの吸気系と排気系とを接続するEGR通路と、該EGR通路に配設されたEGR弁とを有するEGR供給手段と、(b)エンジンに吸入される空気量を検出するエアフローセンサと、(c)吸気圧力を検出する吸気圧力センサと、(d)エアフローセンサによって検出された空気量に基づいて吸気圧力を推定する吸気圧力推定手段と、(e)減速時にEGR弁を開弁するとともに、吸気圧力推定手段によって推定された吸気圧力(以下「推定吸気圧力」という。)と吸気圧力センサによって検出された吸気圧力(以下「実吸気圧力」という。)との関係に基づいて、EGR供給手段の故障判定を行うEGR故障判定手段と、(f)アイドル時に、推定吸気圧力と実吸気圧力との間のずれ(すなわち、エアフローセンサと吸気圧力センサとのずれ)を補正する学習手段とを備えていて、(g)EGR故障判定手段は、学習手段によって補正された学習値を反映して故障判定を行うことを特徴とするエンジンの排気ガス還流装置の故障診断装置を提供する。
本発明に係る上記故障診断装置においては、学習手段は、アイドル時に、EGR弁が閉じられた状態で、推定吸気圧力と実吸気圧力との差を学習値として設定するようになっているのが好ましい。
また、本発明に係る上記故障診断装置においては、吸気圧力推定手段は、EGR弁が閉じられた状態で吸気圧力を推定するように構成され、EGR故障判定手段は、EGR弁が閉じられた状態で推定される推定吸気圧力と、EGR弁が開かれたときに実際に検出される実吸気圧力との差に基づいて故障判定を行うようになっているのが好ましい。
本発明に係る排気ガス還流装置の故障診断装置によれば、本来はEGR弁が閉じられるべき運転状態においてEGR弁を開弁することを必要とするEGR供給手段の故障判定(故障診断)を減速時に行うようにしているので、故障判定時におけるEGR弁の開弁に伴うトルクの変動ないしはサージングを有効に抑制することができる。また、エアフローセンサ及び/又は吸気圧力センサには部品ばらつきがあり、このようなばらつきがある場合、推定吸気圧力と実吸気圧力との間にずれが生じ、誤った故障判定(誤判定)につながるおそれがある。そこで、このような推定吸気圧力と実吸気圧力との間のずれを補正する必要がある。
しかしながら、減速時にこのようなずれの補正を行い、この後に故障判定(故障診断)を行うと、1回の減速動作中に故障判定(故障診断)を終了することができなくなるおそれがある。そこで、本発明では、推定吸気圧力と実吸気圧力との間のずれの補正を、減速時と運転状態がほぼ類似する(スロットル全閉)アイドル時に事前に学習しておくようにしている。これにより、学習精度を維持しつつ、減速時の故障診断を速やかに実行することができる。かくして、本発明によれば、エンジンのEGR弁ないしは排気ガス還流装置の故障を、容易かつ確実に診断することができる。
本発明に係る排気ガス還流装置の故障診断装置において、学習手段が、アイドル時に、EGR弁が閉じられた状態で、推定吸気圧力と実吸気圧力との差を学習値として設定するようになっている場合は、燃焼安定性が悪いアイドル時にEGR弁を開く必要がないので、燃焼安定性を確保することができる。
また、本発明に係る排気ガス還流装置の故障診断装置において、EGR故障判定手段が、EGR弁が閉じられた状態で推定される推定吸気圧力と、EGR弁が開かれたときに実際に検出される実吸気圧力との差に基づいて故障判定を行うようになっている場合は、EGR供給手段の故障判定を、より容易かつ迅速に行うことができる。
以下、添付の図面を参照しつつ、本発明の実施の形態(本発明を実施するための最良の形態)を具体的に説明する。
図1に示すように、本発明にかかるガソリンを燃料とする火花点火式の直噴エンジン1(以下、略して「エンジン1」という。)の各気筒においては、それぞれ、吸気弁2が開かれたときに、独立吸気通路3から燃焼室4内に燃料を燃焼させるための空気を吸入するようになっている。なお、独立吸気通路3は気筒毎に設けられている。そして、この燃焼室4内の空気中に、所定のタイミングで燃料噴射弁5から燃料(ガソリン)が直接噴射され、混合気が形成される。なお、燃料噴射弁5には、燃料供給通路(図示せず)を介して、高圧燃料ポンプ(図示せず)から燃料が供給される。
この混合気は、ピストン6によって圧縮され、所定のタイミングで点火プラグ7により点火されて燃焼する。なお、燃料噴射弁5は、おおむね点火プラグ7の火花発生部に向けて燃料を噴射するように配置され、これにより燃料ないし混合気が火花発生部の周囲で層状化され、混合気の着火性が高められるようになっている。このため、低負荷時には、空燃比を大幅にリーンにすることができ、燃費性能が高められる。燃焼ガスすなわち排気ガスは、排気弁8が開かれたときに排気通路9に排出される。なお、エンジン1には、クランク軸10の回転数(又はクランク角)すなわちエンジン回転数を検出するエンジン回転数センサ11と、エンジン水温を検出するエンジン水温センサ12とが設けられている。
エンジン1の吸気系には各気筒に共通の共通吸気通路13が設けられている。この共通吸気通路13には、エンジン1の各気筒の燃焼室4に吸入される空気(以下「燃料燃焼用空気」という。)の流れ方向にみて、上流側から順に、燃料燃焼用空気中のダスト等の異物を除去するエアクリーナ14と、燃料燃焼用空気の流量すなわちエンジン1に吸入される空気量を検出するエアフローセンサ15(例えば、ホットワイヤ式エアフローセンサ)と、燃料燃焼用空気を絞る電動式のスロットルバルブ16とが設けられている。ここで、スロットルバルブ16は、コントロールユニットCから出力される制御信号に応じて作動する電気式のアクチュエータ16aによって駆動され、燃焼室4に流入する燃料燃焼用空気の流量を調節するようになっている。
そして、共通吸気通路13の下流端は、燃料燃焼用空気の脈動を低減してその流れを安定させるサージタンク17に接続されている。このサージタンク17には、該サージタンク17内の燃料燃焼用空気の圧力、すなわち吸気圧力を検出する吸気圧力センサ18が設けられている。そして、このサージタンク17に、各気筒の独立吸気通路3の上流端が接続されている。なお、各独立吸気通路3には、スワールを生成するために燃焼室4への燃料燃焼用空気の流入方向を調整する空気流動制御弁19が設けられている。
エンジン1の排気系を構成する排気通路9には、排気ガスの流れ方向にみて上流側から順に、第1Oセンサ20と、第1触媒コンバータ21と、第2Oセンサ22と、第2触媒コンバータ23とが設けられている。第1、第2Oセンサ20、22は、それぞれ、排気ガス中の酸素濃度ひいては空燃比を検出するリニアOセンサである(なお、一方又は両方が、λ=1近傍で出力が逆転する普通のラムダOセンサであってもよい)。
第1触媒コンバータ21は、詳しくは図示していないが、1ベッドタイプのものであって、その内部にHC、CO及びNOxを浄化する三元触媒が装填されている。また、第2触媒コンバータ23は、詳しくは図示していないが、直列2ベッドタイプのものであって、その上流側のベッドにはNOx吸蔵触媒が装填され、下流側のベッドにはNOx浄化触媒が装填されている。
さらに、エンジン1には、排気系(排気通路9内)の排気ガスの一部をEGRガスとして吸気系に還流させる排気ガス還流装置が設けられている。この排気ガス還流装置には、排気通路9とサージタンク17とを連通させるEGR通路25と、このEGR通路25に介設されEGRガスの流量を制御するEGR弁26とが設けられている。この排気ガス還流装置は、主として、燃焼ガス温度を低下させてNOx発生量を低減するとともに、低負荷時におけるポンピング損失を低減して燃費性能を高めるために設けられている。
このエンジン1では、スロットルバルブ16が全閉されるアイドル時には、燃料ないしは混合気の燃焼が不安定化するのを防止するため、EGR弁26を閉じてEGRガスの還流を停止するようにしている。また、高回転時又は高負荷時には、エンジン出力を高めるために、EGR弁26を閉じてEGRガスの還流を停止するようにしている。さらに、スロットルバルブ16が全閉される減速時にも、EGR弁26を閉じてEGRガスの還流を停止するようにしている。
コントロールユニットCは、コンピュータを備えた、課題を解決するための手段の欄に記載された「吸気圧力推定手段」、「EGR故障判定手段」及び「学習手段」を含むエンジン1の総合的な制御装置であって、各種制御情報に基づいて種々のエンジン制御を行うようになっている。コントロールユニットCには、エンジン回転数センサ11によって検出されるエンジン回転数(クランク角)、エンジン水温センサ12によって検出されるエンジン水温、エアフローセンサ15によって検出される燃料燃焼用空気の流量、吸気圧力センサ18によって検出される吸気圧力、第1、第2Oセンサ20、22によって検出される排気ガスの酸素濃度(空燃比)、スロットルバルブ16の開度等の各種制御情報が入力されるようになっている。
そして、コントロールユニットCは、これらの制御情報に基づいて、燃料噴射弁5の燃料噴射量及び噴射タイミングの制御、点火プラグ7の点火時期の制御、スロットルバルブ16の開度の制御、EGR弁26の開度の制御、空気流動制御弁19の開度の制御、吸気弁2の開閉タイミングの制御等を行うようになっている。しかしながら、コントロールユニットCによるエンジン1の一般的な制御はすでに知られており、またこのような一般的なエンジン制御は本願発明の要旨とするところでもないのでその説明を省略し、以下では本願発明の要旨に係る、コントロールユニットCによる排気ガス還流装置ないしはEGR弁26の故障診断についてのみ説明を行う。
まず、本発明に係る排気ガス還流装置ないしはEGR弁26の故障診断の概要を説明する。この故障診断においては、エンジン1が本来はEGR弁26が閉じられる運転状態にあるときに、EGR弁26を所定の故障判定用開度まで開いてEGRガスを吸気系に還流させる。そして、エアフローセンサ15によって検出された燃料燃焼用の空気の流量(以下「検出空気量」という。)と、エンジン回転数に依存するエンジン1の各気筒の吸気・排気特性(充填効率)とに基づいて、EGRガスの還流がないものとして、吸気圧力を推定する(以下「推定吸気圧力」という。)。そして、推定吸気圧力と、吸気圧力センサ18によって実際に測定された吸気圧力(以下「実吸気圧力」という。)とを比較し、推定吸気圧力と実吸気圧力との差(以下「吸気圧力差」という。)が所定の閾値以上であれば排気ガス還流装置は正常であると判定し、吸気圧力差が閾値未満であれば排気ガス還流装置は異常であると判定するようにしている。
このように吸気圧力差に基づいて排気ガス還流装置ないしはEGR弁26の正常・異常を判断するのは、以下の理由による。すなわち、前記とおり、推定吸気圧力は、EGRガスの還流の有無にかかわらず、EGRガスの還流がないものとして推定される。しかしながら、実際にEGRガスの還流がある場合、実吸気圧力は、推定吸気圧力に比べて、吸気系にEGRガスが供給された分だけ高くなる。したがって、排気ガス還流装置ないしはEGR弁26が正常であれば、EGR弁26が開かれているときには、実吸気圧力と推定吸気圧力との間に、EGRガスの還流量に応じた吸気圧力差が生じることになる。
これに対して、例えばEGRガス中の固体成分ないしは粘着成分等がEGR弁26の可動部に付着するなどして、EGR弁26が閉塞し又は正常に開弁しない場合は、EGRガスの還流量が正常時よりも減少するので、吸気圧力差は小さくなる。このような事実に鑑み、吸気圧力差が閾値以上であるか否かによって、排気ガス還流装置ないしはEGR弁26の正常・異常を判定するようにしている。
また、本来はEGR弁26が閉じられるエンジン1の運転状態としては、前記のとおり、アイドル時、高回転時及び/又は高負荷時、並びに、スロットルバルブ16が全閉される減速時とがありうる。しかしながら、アイドル時にEGRガスを還流させると混合気の燃焼安定性が損なわれ、また高回転時及び/又は高負荷時にEGRガスを還流させるとエンジン1の出力トルクの変動ないしはサージングが発生する。そこで、本実施の形態では、このような不具合を回避するため、減速時に故障診断を行うようにしている。
ところで一方、一般に、エアフローセンサ15及び吸気圧力センサ18の検出特性には、製品毎のばらつき(部品ばらつき)があり、また経時的に変化ないしは劣化する。このため、エアフローセンサ15及び吸気圧力センサ18の検出特性のばらつき又は経時変化に起因して、EGRガスの還流がないのにもかかわらず推定吸気圧力と実吸気圧力との間にずれが生じ、このため誤った故障判定(故障診断)が行われるおそれがある。そこで、本実施の形態では、EGR弁26が閉じられるアイドル時に、推定吸気圧力と実吸気圧力とが一致するように、推定吸気圧力を学習により補正(以下「学習補正」という。)するようにしている。つまり、推定吸気圧力と実吸気圧力との差を学習値とし、この学習値を反映して故障判定(故障診断)を行うようにしている。
なお、EGR弁26が閉じられる高回転時及び/又は高負荷時、あるいはスロットルバルブ16が全閉される減速時にもこのような補正を行うことは可能である。しかしながら、高回転時及び/又は高負荷時は、エアフローセンサ15又は吸気圧力センサ18の検出値のずれないしは誤差が大きくなるので、適切な学習補正を行うことができない。また、減速時は、故障診断が行われるので、その前にさらに学習補正を行うことは時間的に困難である。すなわち、ある減速時に学習補正を行った場合、この減速時にさらに故障判定を行うことができないおそれがある。そこで、本実施の形態では、アイドル時に学習補正を行うようにしている。つまり、本実施の形態では、減速時と運転状態がほぼ類似する(スロットル全閉)アイドル時に事前に学習補正を行うことにより、学習精度を維持しつつ、減速時の異常判定を速やかに実行することができるようにしている。
以下、図2に示すフローチャートに従って、本実施の形態に係る排気ガス還流装置ないしはEGR弁26の故障診断の診断手順を具体的に説明する。なお、図2に示すフローチャートにおいて、ステップS1〜S5はアイドル時に学習補正を行うためのルーチンであり、ステップS7〜S13は減速時に故障判定(EGRモニタリング)を行うためのルーチンである。
図2に示すように、この故障診断においては、まずステップS1で、エンジン1がアイドル状態であるか否かが判定される。アイドル状態でないと判定された場合は(NO)、学習補正を行うことができないので、以下のステップS2〜S5をスキップして、ステップS6が実行される。他方、ステップS1でアイドル状態であると判定された場合は(YES)、ステップS2で、エンジン水温、エンジン回転数等に基づいて、学習補正を実行するために必要とされる条件(以下「学習実行条件」という。)が成立しているか否かが判定される。本実施の形態では、アイドル状態であっても、冷間時や、燃料燃焼用空気の増量時には、通常時のアイドル時に比べてエンジン回転数が高く、推定吸気圧力の推定精度が低下するので、学習補正を行わないようにしている。すなわち、エンジン水温が基準値より低い場合、又は、エンジン回転数が基準値(例えばアイドル回転数)より高い場合には、学習実行条件は成立しない。
ステップS2で、学習実行条件が成立していない判定された場合は(NO)、学習補正を行うことができないので、以下のステップS3〜S5をスキップして、ステップS6が実行される。他方、ステップS2で学習実行条件が成立していると判定された場合は(YES)、ステップS3で吸気圧力差の平均値が算出される。前記とおり、吸気圧力差は、推定吸気圧力と実吸気圧力との差である。この学習補正では、吸気圧力差はアイドル状態となるたびに1つずつ算出される。吸気圧力差の平均値は、これらの各アイドル状態における吸気圧力差を平均することにより算出される。
続いて、ステップS4で、吸気圧力差の平均値が学習値としてコントロールユニットCのメモリ(図示せず)内に保存される。なお、この学習補正では、エンジン1が始動するたびに、コントロールユニットCのメモリに保存されている吸気圧力差の平均値をリセット(消去)し、新たに吸気圧力差の平均値を算出するようにしている。つまり、エンジン1を始動するたびに、学習補正をやり直すようにしている。この後、ステップS5で、学習完了フラグ(平均値完了フラグ)がセットされる。
次に、ステップS6で、学習が完了しているか否か、すなわち学習完了フラグがセットされているか否かが判定される。学習が完了していないと判定された場合は(NO)、減速時の故障判定(EGRモニタリング)を行うことができないので、以下のステップS7〜S13をスキップして今回のルーチンを終了し(エンド)、ステップS1に復帰する。
他方、ステップS6で学習が完了していると判定された場合は(YES)、ステップS7で、減速時の故障判定を実行するのに必要とされる条件(以下「故障判定実行条件」という。)が成立しているか否かが判定される。エンジン1が減速状態であり、かつ減速開始時から所定のディレイ時間(待ち時間)を経過したときに、故障判定実行条件が成立するようにしている。本実施の形態では、スロットルバルブ16が全閉されかつエンジン回転数が基準値(例えば、1000rpm)以上であればエンジン1が減速状態にあるものと判定するようにしている。
ステップS7で、故障判定実行条件が成立していないと判定された場合は(NO)、減速時の故障判定を行うことができないので、以下のステップS7〜S13をスキップして今回のルーチンを終了し、ステップS1に復帰する。
他方、ステップS7で故障判定実行条件が成立していると判定された場合(YES)、すなわち減速を開始してから所定のディレイ時間を経過したときには、ステップS8で、減速状態となって閉じられていたEGR弁26が、所定の故障判定用開度まで開かれる。なお、減速を開始したときには、燃費性能を高めるため、燃料噴射弁5の燃料噴射が停止され、燃料カットが行われる。
この故障判定用開度は、エンジン回転数に応じて設定されている。故障判定用開度は、基本的には、エンジン回転数が高いときほどを大きくなるように設定されている。ただし、エンジン回転数が所定の基準値を超える場合は、故障判定用開度を固定するようにしている(すなわち、上限値を設けている)。故障判定用開度を、エンジン回転数が高いときほど大きくするのは、以下の理由による。
すなわち、故障判定時における故障判定用開度を一定にした場合、低回転領域では、吸気圧力差が大きくなり過ぎる。そして、このように吸気圧力差が大きい状態から、アクセルを踏み込んで加速を開始したときには、燃料カットが終了し、燃料噴射が再開される。その際、空燃比のリーン化により失火が発生したり、燃料噴射の再開によるトルクショックが大きくなったりするなどして、運転性(ドラビリ)が悪化する。しかしながら、吸気圧力差を、低回転域に適切となるように設定すると、高回転域では十分な吸気圧力差が得られず、誤った故障判定が行われる可能性がある。そこで、本実施の形態では、故障判定用開度を、基本的には、上限を設けた上で、エンジン回転数が高いときほどを大きくなるように設定している。
ステップS8でこのようにEGR弁26が開かれた後、ステップS9で、コントロールユニットCのメモリに保存されている学習値を反映させた吸気圧力差が算出される。具体的には、実吸気圧力から、推定吸気圧力と学習値とを減算することにより吸気圧力差が算出される(吸気圧力差=実吸気圧力−(推定吸気圧力+学習値))。
次に、ステップS10で、吸気圧力差が所定の閾値以上であるか否かが判定される。ここで、吸気圧力差が所定の閾値以上であると判定された場合は(YES)、ステップS11で排気ガス還流装置ないしはEGR弁26は正常であると判定される。他方、吸気圧力差が所定の閾値未満であると判定された場合は(NO)、ステップS12で排気ガス還流装置ないしはEGR弁26は異常であると判定される。この後、ステップS13で、故障判定完了フラグがセットされ、今回のルーチンは終了する。
図3に、このような故障診断が行われた場合における、エンジン1の運転状態及びコントロールユニットCの制御状態を示す各種信号の経時変化の一例を示す。具体的には、図3中には、燃料カットの実行状態を示す燃料カット信号xzfc、ディレイ時間をカウントするディレイ信号ccutc、EGRモニタリングの実行状態を示すモニタ実行信号xegrex、EGRモニタリングの完了を示すモニタ完了信号xegrcp、EGR弁26の開度を示すバルブ開度信号pt、アイドル状態における学習の実行状態を示す学習実行信号maplrnex、コントロールユニットCのメモリに保存されている学習値の値を示すマップ学習値信号maplrn、実吸気圧力を示す実測マップ値信号(実線)、ce(充填効率)から推定され学習値で補正された推定吸気圧力を示すマップ値信号(破線)、EGR弁26が開かれた時点からの経過時間をカウントする開時間信号cegron、吸気圧力差を算出した回数をカウントするサンプル数信号cegrsn、吸気圧力差の積算値を示す検出積算値信号dltmapsm、及び、吸気圧力差の平均値を示す検出平均値信号dltmapavが示されている。
図3に示す故障診断では、時刻tで学習を開始し、時刻tで学習を終了している。この学習補正では、時刻tで学習を開始した後、実吸気圧力(実線のマップ値)と推定吸気圧力(破線のマップ値)との間のずれは迅速に解消(補正)されている。そして、時刻tで減速が開始され、この時点で燃料カットが開始されている。減速開始時刻tからディレイ時間を経過した時刻tで、故障判定(EGRモニタリング)が開始されている。
そして、故障判定の開始時刻tから、燃料燃焼用空気ないしはEGRガスの流れが安定するのに必要な時間だけ待機した後、時刻tで吸気圧力差の算出が開始されている。図3に示す例では、吸気圧力差の算出は8回行われている。検出平均値信号dltmapav(吸気圧力差の平均値)は、時刻tから上昇し、時刻tで安定し、その後は一定となっている。図3に示す例では、吸気圧力差の平均値は閾値を十分に超えているので、排気ガス還流装置ないしはEGRバルブ26は正常であると判定される。なお、故障判定は、時刻tで終了している。
以上、本実施の形態に係る排気ガス還流装置の故障診断装置によれば、本来はEGR弁26が閉じられるべき運転状態においてEGR弁26を開弁することを必要とする故障判定をエンジン1の減速時に行うようにしているので、故障判定時におけるEGR弁26の開弁に伴うトルクの変動ないしはサージングを有効に抑制することができる。また、エアフローセンサ15及び/又は吸気圧力センサ18の部品ばらつきに起因する推定吸気圧力と実吸気圧力との間のずれを容易にかつ確実に補正することができ、誤判定を有効に防止することができる。また、推定吸気圧力と実吸気圧力との間のずれの補正を、減速時と運転状態がほぼ類似するアイドル時に事前に学習しておくようにしているので、学習精度を維持しつつ、減速時の故障診断を速やかに実行することができる。かくして、エンジン1のEGR弁26ないしは排気ガス還流装置の故障を、容易かつ確実に診断することができる。
本発明に係る排気ガス還流装置の故障診断装置を備えたエンジンの構成を示す模式図である。 図1に示すエンジンにおける排気ガス還流装置の故障診断の手順を示すフローチャートである。 図1に示すエンジンにおける排気ガス還流装置の故障診断を行った場合におけるエンジンないしはコントロールユニットの状態の経時変化を示すタイムチャートである。
符号の説明
C コントロールユニット、1 エンジン、2 吸気弁、3 独立吸気通路、4 燃焼室、5 燃料噴射弁、6 ピストン、7 点火プラグ、8 排気弁、9 排気通路、10 クランク軸、11 エンジン回転数センサ(クランク角センサ)、12 エンジン水温センサ、13 共通吸気通路、14 エアクリーナ、15 エアフローセンサ、16 スロットルバルブ、16a アクチュエータ、17 サージタンク、18 吸気圧力センサ、19 空気流れ制御弁、20 第1Oセンサ、21 第1触媒コンバータ、22 第2Oセンサ、23 第2触媒コンバータ、25 EGR通路、26 EGR弁。

Claims (3)

  1. エンジンの吸気系と排気系とを接続するEGR通路と、該EGR通路に配設されたEGR弁とを有するEGR供給手段と、
    エンジンに吸入される空気量を検出するエアフローセンサと、
    吸気圧力を検出する吸気圧力センサと、
    上記エアフローセンサによって検出された空気量に基づいて吸気圧力を推定する吸気圧力推定手段と、
    減速時に上記EGR弁を開弁するとともに、上記吸気圧力推定手段によって推定された吸気圧力と上記吸気圧力センサによって検出された吸気圧力との関係に基づいて、上記EGR供給手段の故障判定を行うEGR故障判定手段と、
    アイドル時に、上記吸気圧力推定手段によって推定された吸気圧力と上記吸気圧力センサによって検出された吸気圧力との間のずれを補正する学習手段とを備えていて、
    上記EGR故障判定手段は、上記学習手段によって補正された学習値を反映して上記故障判定を行うことを特徴とするエンジンの排気ガス還流装置の故障診断装置。
  2. 上記学習手段は、アイドル時に、上記EGR弁が閉じられた状態で、上記吸気圧力推定手段によって推定された吸気圧力と上記吸気圧力センサによって検出された吸気圧力との差を学習値として設定することを特徴とする、請求項1に記載のエンジンの排気ガス還流装置の故障診断装置。
  3. 上記吸気圧力推定手段は、上記EGR弁が閉じられた状態で吸気圧力を推定するように構成されていて、
    上記EGR故障判定手段は、上記EGR弁が閉じられた状態で推定される吸気圧力と、上記EGR弁が開かれたときに実際に検出される吸気圧力との差に基づいて上記故障判定を行うことを特徴とする、請求項1に記載のエンジンの排気ガス還流装置の故障診断装置。
JP2007059876A 2007-03-09 2007-03-09 エンジンの排気ガス還流装置の故障診断装置 Pending JP2008223516A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059876A JP2008223516A (ja) 2007-03-09 2007-03-09 エンジンの排気ガス還流装置の故障診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059876A JP2008223516A (ja) 2007-03-09 2007-03-09 エンジンの排気ガス還流装置の故障診断装置

Publications (1)

Publication Number Publication Date
JP2008223516A true JP2008223516A (ja) 2008-09-25

Family

ID=39842429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059876A Pending JP2008223516A (ja) 2007-03-09 2007-03-09 エンジンの排気ガス還流装置の故障診断装置

Country Status (1)

Country Link
JP (1) JP2008223516A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090865A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp 内燃機関装置および車両並びにバルブ検査の実行方法
WO2014087809A1 (ja) * 2012-12-05 2014-06-12 日産自動車株式会社 Egr装置の異常診断装置及び異常診断方法
CN104929784A (zh) * 2015-06-08 2015-09-23 潍柴动力股份有限公司 Egr阀的自学习方法
JP6486523B1 (ja) * 2018-03-13 2019-03-20 愛三工業株式会社 エンジンシステム
CN111736456A (zh) * 2020-06-24 2020-10-02 中国重汽集团济南动力有限公司 一种egr系统的控制和诊断机构,重型汽车和方法
JP7375625B2 (ja) 2020-03-12 2023-11-08 トヨタ自動車株式会社 エンジンシステム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090865A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp 内燃機関装置および車両並びにバルブ検査の実行方法
WO2014087809A1 (ja) * 2012-12-05 2014-06-12 日産自動車株式会社 Egr装置の異常診断装置及び異常診断方法
CN104929784A (zh) * 2015-06-08 2015-09-23 潍柴动力股份有限公司 Egr阀的自学习方法
CN104929784B (zh) * 2015-06-08 2017-11-10 潍柴动力股份有限公司 Egr阀的自学习方法
JP6486523B1 (ja) * 2018-03-13 2019-03-20 愛三工業株式会社 エンジンシステム
JP2019157770A (ja) * 2018-03-13 2019-09-19 愛三工業株式会社 エンジンシステム
US10975779B2 (en) 2018-03-13 2021-04-13 Aisan Kogyo Kabushiki Kaisha Engine system for determining abnormalities in an exhaust gas recirculation valve
JP7375625B2 (ja) 2020-03-12 2023-11-08 トヨタ自動車株式会社 エンジンシステム
CN111736456A (zh) * 2020-06-24 2020-10-02 中国重汽集团济南动力有限公司 一种egr系统的控制和诊断机构,重型汽车和方法
CN111736456B (zh) * 2020-06-24 2024-01-23 中国重汽集团济南动力有限公司 一种egr系统的控制和诊断机构,重型汽车和方法

Similar Documents

Publication Publication Date Title
US10890092B2 (en) Internal combustion engine and method for controlling internal combustion engine
JP4736058B2 (ja) 内燃機関の空燃比制御装置
JP4497132B2 (ja) 触媒劣化検出装置
JP2010190089A (ja) 多気筒内燃機関の異常診断装置
JP5346989B2 (ja) 空燃比センサの異常判定装置
US10006382B2 (en) Apparatus for detecting inter-cylinder air-fuel ratio imbalance in multi-cylinder internal combustion engine
US10072542B2 (en) Abnormality diagnosis device
US11492952B2 (en) Catalyst degradation detection apparatus
JP2008223516A (ja) エンジンの排気ガス還流装置の故障診断装置
JP4720820B2 (ja) 排気環流装置の異常診断装置
CN108468598B (zh) 用于内燃发动机的异常诊断装置及异常诊断方法
JP4341456B2 (ja) 内燃機関の排気浄化触媒劣化判定方法及び劣化判定装置
JP4259570B2 (ja) バルブの異常判定装置、異常判定方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2008038737A (ja) 触媒劣化検出装置
JP2011226363A (ja) 内燃機関の異常診断装置
JP3988073B2 (ja) 排出ガスセンサの異常診断装置
JP4470661B2 (ja) 排出ガスセンサの異常診断装置
JP5169497B2 (ja) 排気装置の故障診断方法および装置
JP6422899B2 (ja) 内燃機関の制御装置
JP4380354B2 (ja) 内燃機関の添加弁異常診断装置
US10801446B2 (en) Method for monitoring leakage of exhaust gas recirculation system for engine
CN108343525B (zh) 用于内燃机的控制设备和控制方法
JP2010048117A (ja) 空燃比センサの異常診断装置
JP6738248B2 (ja) 吸気酸素濃度センサの診断方法及び内燃機関の制御装置
JP4023327B2 (ja) 吸気系センサの異常診断装置