WO2014087809A1 - Egr装置の異常診断装置及び異常診断方法 - Google Patents

Egr装置の異常診断装置及び異常診断方法 Download PDF

Info

Publication number
WO2014087809A1
WO2014087809A1 PCT/JP2013/080415 JP2013080415W WO2014087809A1 WO 2014087809 A1 WO2014087809 A1 WO 2014087809A1 JP 2013080415 W JP2013080415 W JP 2013080415W WO 2014087809 A1 WO2014087809 A1 WO 2014087809A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
pressure
egr gas
intake pipe
collector
Prior art date
Application number
PCT/JP2013/080415
Other languages
English (en)
French (fr)
Inventor
松田 健
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014087809A1 publication Critical patent/WO2014087809A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality diagnosis device and abnormality diagnosis method for an EGR device.
  • JP 2006-242080A discloses that the decrease in the cooling capacity of the cooling device is treated as an abnormality, and whether or not the cooling device is abnormal is diagnosed.
  • the amount of EGR gas is indirectly feedback-controlled to a desired amount by feedback-controlling the detected value of the air flow meter to the target value.
  • the cooling capacity of the cooling device When the cooling capacity of the cooling device is reduced, the decrease in the amount of EGR gas caused by this is compensated by the above feedback control, so that the EGR valve opening is operated to the increase side. That is, the EGR valve opening when the cooling capacity is reduced is larger than when the cooling capacity is not reduced. Therefore, the EGR valve opening is learned for each operating condition before EGR is performed, and when the cooling capacity decreases after learning the EGR valve opening, the detected value of the EGR valve opening is larger than the learned value. Become. Therefore, when the difference between the detected value and the learned value exceeds the threshold value, it is diagnosed that the cooling capacity of the cooling device has decreased.
  • an object of the present invention is to provide a device capable of improving the accuracy of abnormality diagnosis of a cooling device without performing feedback control of a detected value of an air flow meter to a target value.
  • an abnormality diagnosis device for an EGR device includes an EGR passage that recirculates a part of exhaust gas to an intake pipe, an EGR valve that can adjust an amount of EGR gas flowing through the EGR passage, and the EGR And a cooling device for cooling the EGR gas flowing through the passage.
  • the abnormality diagnosis device of the EGR device further includes a pressure detection means for detecting an actual pressure of the intake pipe, an intake pipe pressure estimation means for estimating the pressure of the intake pipe, and the estimated intake pipe pressure and the detected pressure.
  • Difference / ratio calculation means for calculating a difference or ratio with the actual pressure, and determination means for determining whether or not there is an abnormality in the cooling device based on the difference or ratio.
  • the accuracy of the abnormality diagnosis can be improved over the device that performs the abnormality diagnosis using the air flow meter.
  • FIG. 1 is a schematic configuration diagram of an abnormality diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing the relationship between the EGR gas temperature at the outlet of the EGR gas cooler, the EGR rate, and the collector pressure.
  • FIG. 3A is a flowchart showing a main routine for abnormality diagnosis of the EGR gas cooler.
  • FIG. 3B is a flowchart showing a main routine for abnormality diagnosis of the EGR gas cooler.
  • FIG. 4 is a flowchart for explaining learning of the air flow meter intake air amount.
  • FIG. 5 is a characteristic diagram of the basic intake air amount.
  • FIG. 6 is a flowchart for explaining learning of the sensor collector pressure.
  • FIG. 7 is a characteristic diagram of the basic collector pressure.
  • FIG. 1 is a schematic configuration diagram of an abnormality diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a characteristic diagram showing the relationship between the EGR gas temperature at the outlet of the EGR gas cooler, the EGR
  • FIG. 8 is a flowchart for explaining the calculation of the EGR gas temperature at the EGR gas cooler outlet.
  • FIG. 9 is a characteristic diagram of the water temperature correction value.
  • FIG. 10 is a characteristic diagram of the exhaust gas temperature correction value.
  • FIG. 11 is a characteristic diagram of the cooling efficiency of the EGR gas cooler.
  • FIG. 12 is a flowchart for explaining calculation of the EGR gas mass in the collector section.
  • FIG. 13 is a characteristic diagram of the basic exhaust pipe pressure.
  • FIG. 14 is a characteristic diagram of the atmospheric pressure correction coefficient.
  • FIG. 15 is a characteristic diagram of the specific heat ratio.
  • FIG. 16 is a characteristic diagram of cylinder volume.
  • FIG. 17 is a flowchart for explaining calculation of fresh air mass.
  • FIG. 18 is a flowchart for explaining calculation of the collector pressure.
  • FIG. 19 is a characteristic diagram of the target EGR rate.
  • FIG. 20 is a model diagram of an EGR gas cooler.
  • FIG. 1 is a schematic configuration diagram of an abnormality diagnosis apparatus according to an embodiment of the present invention for diagnosing an abnormality of an EGR apparatus.
  • the intake pipe 2 is provided with a throttle valve 11.
  • the throttle valve 11 is driven by a motor 12 (throttle valve actuator) that receives a signal from the engine controller 41.
  • the air is metered by the throttle valve 11, stored in an intake collector (hereinafter simply referred to as “collector”) 3 of the intake pipe 2, and then introduced into the combustion chamber 5 of each cylinder via the intake manifold 4.
  • collector intake collector
  • the fuel is injected and supplied from a fuel injector 21 arranged directly facing the combustion chamber 5 of each cylinder.
  • the fuel injected into the combustion chamber 5 is vaporized and mixed with air to form a gas (air mixture). This air-fuel mixture is confined in the combustion chamber 5 when the intake valve 15 is closed, and is compressed by the rise of the piston 6.
  • an ignition device 22 of an electronic power distribution system in which an ignition coil with a built-in power transistor is arranged in each cylinder. That is, the ignition device 22 includes an ignition coil, a power transistor (not shown), and an ignition plug 24.
  • the ignition coil 23 stores electrical energy from the battery, and the power transistor supplies and shuts off the primary side of the ignition coil 23.
  • the spark plug 24 provided on the ceiling of the combustion chamber 5 receives a high voltage generated on the secondary side of the ignition coil 23 when the primary current of the ignition coil 23 is interrupted, and performs spark discharge.
  • the exhaust pipe 8 is provided with three-way catalysts 9 and 10.
  • the three-way catalysts 9, 10 can efficiently remove harmful three components such as HC, CO, and NOx contained in the exhaust simultaneously.
  • the air / fuel ratio is the ratio of the intake air amount to the fuel amount.
  • the fuel injection pulse width Ti [ms] is set so that the ratio of the intake air amount introduced into the combustion chamber 5 per cycle of the engine and the fuel injection amount from the fuel injector 21 becomes the stoichiometric air-fuel ratio. Is calculated.
  • the fuel injector 21 is opened and fuel is directly injected into the combustion chamber 5 during the fuel injection pulse width Ti.
  • the basic injection pulse width Tp [ms] is calculated based on the intake air amount signal from the air flow meter 42 and the signals from the crank angle sensors (43, 44).
  • the fuel injection pulse width Ti is determined by correcting the basic injection pulse width Tp with, for example, a signal from the water temperature sensor 51.
  • the intake valve 15 and the exhaust valve 16 are driven to open and close by operation of cams provided on the intake side camshaft 25 and the exhaust side camshaft 26, respectively, with the crankshaft 7 as a power source.
  • VTC mechanism valve timing mechanism 27
  • a cam angle sensor 44 for detecting the rotational position of the intake side camshaft 25 is also provided at the other end of the intake side camshaft 25.
  • the rotational phase difference between the crankshaft 7 and the exhaust camshaft 26 is continuously variably controlled to advance or retard the opening / closing timing (opening timing and closing timing) of the exhaust valve 16.
  • a variable valve timing mechanism (VTC mechanism) 29 is provided.
  • a cam angle sensor 45 for detecting the rotational position of the exhaust side camshaft 26 is provided at the other end of the exhaust side camshaft 26.
  • an EGR passage 31 for returning a part of the exhaust gas to the intake pipe 2 is opened to the intake collector 3.
  • An EGR valve 32 capable of metering EGR gas is provided on the upstream side of the opening end of the EGR passage 31 to the intake collector 3.
  • the EGR valve 32 is driven by a motor 33 (EGR valve actuator) that receives a signal from the engine controller 41.
  • the actuator is not limited to the motor 33, and may be an actuator using negative pressure (pressure lower than atmospheric pressure).
  • the engine controller 41 calculates a target EGR rate by searching a predetermined map from the operating conditions in the EGR region when the operating conditions determined from the engine load and the rotational speed are in the EGR region.
  • the EGR valve opening area A is calculated based on the target EGR rate, the EGR valve opening area A is converted into a control amount to be given to the motor 33, and the control amount is given to the motor 33 to control the EGR valve opening degree. is doing.
  • EGR gas cooler 34 cooling device for cooling the EGR gas is provided in the EGR passage 31 upstream of the EGR valve 32 to cool the EGR gas.
  • the medium that causes the EGR gas cooler 34 to exchange heat with the EGR gas is engine cooling water. That is, the EGR gas is cooled in proportion to the temperature difference between the EGR gas temperature that flows into the inlet of the EGR gas cooler 34 and the engine coolant temperature that flows into the inlet of the EGR gas cooler 34.
  • the amount of EGR gas is indirectly feedback-controlled to a desired amount by feedback-controlling the detected value of the air flow meter to the target value.
  • the cooling capacity of the cooling device is reduced, the decrease in the amount of EGR gas caused by this is compensated by the above feedback control, so that the EGR valve opening is operated to the increase side. That is, the EGR valve opening when the cooling capacity is reduced is larger than when the cooling capacity is not reduced. Therefore, the EGR valve opening is learned for each operating condition before EGR is performed, and when the cooling capacity decreases after learning the EGR valve opening, the detected value of the EGR valve opening is larger than the learned value. Become.
  • a pressure sensor 46 pressure detection means for detecting the actual collector pressure of the intake collector 3 (intake pipe) is provided, and the collector pressure (intake pipe pressure) is estimated and estimated.
  • the differential pressure (difference) between the collector pressure to be detected and the detected actual collector pressure is calculated, and it is determined whether or not there is an abnormality in the EGR gas cooler 34 based on this differential pressure.
  • the abnormality diagnosis of the EGR gas cooler 34 is performed using the collector pressure sensor 46 that has a higher detection accuracy than the air flow meter.
  • not only a decrease in the cooling capacity of the EGR gas cooler 34 but also an increase in the cooling capacity of the EGR gas cooler 34 is treated as an abnormality.
  • FIG. 2 is a characteristic diagram showing the relationship between the EGR gas temperature at the outlet of the EGR gas cooler, the EGR rate, and the collector pressure. Assuming that the engine is operated at the target idle speed following the cold start, if the cooling capacity of the EGR gas cooler 34 is normal, the EGR gas temperature at the outlet of the EGR gas cooler is within a predetermined range centered on A. It will fit. The actual collector pressure at this time (hereinafter also referred to as “actual collector pressure”) falls within a range of a predetermined width centered on C.
  • the cooling capacity of the EGR gas cooler 34 is decreased, the EGR gas temperature at the outlet of the EGR gas cooler 34 is increased or decreased as compared with the case where the cooling capacity of the EGR gas cooler 34 is normal under the same operating conditions.
  • the EGR gas temperature rises to B due to a decrease in the cooling capacity of the EGR gas cooler 34 then the EGR rate is increased by a temperature difference (BA) from when the cooling capacity of the EGR gas cooler 34 is normal.
  • the actual collector pressure increases to the atmospheric pressure side. That is, since the decrease in the cooling capacity of the EGR gas cooler 34 appears in the actual collector pressure, the cooling capacity of the EGR gas cooler 34 decreases when the actual collector pressure drops below C and becomes D.
  • the absolute value of the differential pressure ⁇ P is
  • a collector pressure sensor (absolute pressure sensor) 46 for detecting the actual collector pressure (rPcol) is provided in the intake collector 3.
  • the collector pressure sensor is not limited to this.
  • a differential pressure sensor that detects the differential pressure across the EGR valve 32 may be provided.
  • the differential pressure sensor includes an upstream pressure sensor (absolute pressure sensor) provided upstream of the EGR valve 32 and a downstream pressure sensor (absolute pressure sensor) provided downstream of the EGR valve 32.
  • a downstream pressure sensor may be used as a collector pressure sensor.
  • 3A and 3B show the main routine for abnormality diagnosis of the EGR gas cooler 34. This routine is executed at regular intervals (for example, every 10 ms).
  • step S1 of FIG. 3A it is determined by the learned flag whether or not the intake air amount detected by the air flow meter 42 and the collector pressure detected by the pressure sensor 46 have been learned.
  • Steps S2 and S3 in FIG. 3A are processes executed before introduction of EGR gas into the intake collector 3 (before completion of engine warm-up).
  • the reason why EGR gas is not introduced before the completion of warming up of the engine is to avoid this because the engine becomes unstable if EGR gas is introduced before completion of warming up of the engine.
  • the collector fresh air mass Qair is used when calculating the collector pressure Pcol.
  • the fresh air mass Qair in the collector is based on the intake air amount detected by the air flow meter 42. (See FIG. 17).
  • the intake air amount detected by the air flow meter 42 fresh air mass detection means
  • the learning of the air flow meter intake air amount rQafm will be described with reference to the flowchart of FIG.
  • the flow of FIG. 4 (subroutine of step S2 of FIG. 3A) is for learning the air flow meter intake air amount rQafm, and is executed at regular intervals (for example, every 10 ms).
  • step S21 the air flow meter intake air amount rQafm and the throttle valve opening TVO detected by the throttle sensor 53 (throttle valve opening detecting means) are read.
  • a basic intake air amount bQafm is calculated by searching a table having the contents shown in FIG. 5 from the throttle valve opening TVO.
  • FIG. 5 shows characteristics obtained in advance as to what happens to the intake air amount detected by the air flow meter 42 having a normal flow characteristic when the throttle valve opening TVO is varied under the condition of the target idle speed after the engine is cold started. It is.
  • step S23 the difference air amount ⁇ Qafm obtained by subtracting the basic intake air amount bQafm from the air flow meter intake air amount rQafm, that is, the difference air amount ⁇ Qafm is calculated by the following equation.
  • step S24 the absolute value of the difference air amount ⁇ Qafm is compared with the threshold value TH1.
  • the threshold value TH1 is a value for determining whether or not a measurement error has occurred in the air flow meter 42, and is determined in advance. If the absolute value of the difference air amount ⁇ Qafm is less than the threshold value TH1, it is determined that no measurement error has occurred in the air flow meter 42, the process proceeds from step S24 to step S25, and the air flow meter intake air amount rQafm is directly used as the intake air amount Qafm. Put in.
  • step S24 When it is determined in step S24 that the absolute value of the difference air amount ⁇ Qafm is equal to or greater than the threshold value TH1, it is determined that a measurement error has occurred in the air flow meter 42. At this time, the process proceeds from step S24 to step S26, and the difference air amount ⁇ Qafm is compared with zero. If the difference air amount ⁇ Qafm exceeds zero, it is determined that there is a measurement error on the side where the air flow meter intake air amount rQafm is larger than the basic intake air amount bQafm, and the process proceeds to step S27.
  • step S27 a value obtained by subtracting the difference air amount ⁇ Qafm from the air flow meter intake air amount rQafm is set as the intake air amount Qafm, that is, the intake air amount Qafm is calculated by the following equation.
  • step S26 when the difference air amount ⁇ Qafm does not exceed zero in step S26, it is determined that there is a measurement error on the side where the air flow meter intake air amount rQafm is smaller than the basic intake air amount bQafm, and the process proceeds to step S28.
  • step S28 the value obtained by adding the absolute value of the difference air amount ⁇ Qafm to the air flow meter intake air amount rQafm is set as the intake air amount Qafm, that is, the intake air amount Qafm is calculated by the following equation.
  • the intake air amount Qafm obtained in steps S25, 27, and 28 is stored in the nonvolatile memory as a learning value. This completes the learning of the air flow meter intake air amount rQafm and returns to step S3 in FIG. 3A.
  • Step S3 in FIG. 3A is a part for learning the collector pressure (referred to as “sensor collector pressure”) sPcol detected by the collector pressure sensor 46 in order to ensure the detection accuracy of the actual collector pressure rPcol.
  • the learning of the sensor collector pressure sPcol will be described with reference to the flowchart of FIG.
  • the flow of FIG. 6 (subroutine of step S3 of FIG. 3A) is for learning the sensor collector pressure sPcol, and is executed at regular intervals (for example, every 10 ms).
  • step S31 the sensor collector pressure sPcol and the throttle valve opening TVO detected by the throttle sensor 53 are read.
  • step S32 the basic collector pressure bPcol is calculated by searching a table having the contents shown in FIG. 7 from the throttle valve opening TVO.
  • FIG. 7 shows characteristics obtained in advance as to what happens to the collector pressure detected by the collector pressure sensor 46 whose pressure characteristics are normal when the throttle valve opening TVO is varied under the condition of the target idle speed after the engine is cold started. It is.
  • step S33 the differential pressure ⁇ Pcol1 obtained by subtracting the basic collector pressure bPcol from the sensor collector pressure sPcol, that is, the differential pressure ⁇ Pcol1 is calculated by the following equation.
  • ⁇ Pcol1 sPcol-bPcol (4)
  • step S34 the absolute value of the differential pressure ⁇ Pcol1 is compared with the threshold value TH2.
  • the threshold value TH2 is a value for determining whether or not a measurement error has occurred in the collector pressure sensor 46, and is determined in advance. If the absolute value of the differential pressure ⁇ Pcol is less than the threshold value TH2, it is determined that no measurement error has occurred in the collector pressure sensor 46, the process proceeds from step S34 to step S35, and the sensor collector pressure rPcol is directly input to the collector pressure Pcol.
  • step S34 when the absolute value of the differential pressure ⁇ Pcol1 is greater than or equal to the threshold value TH2, it is determined that a measurement error has occurred in the collector pressure sensor 46. At this time, the process proceeds from step S34 to step S36, and the differential pressure ⁇ Pcol1 is compared with zero. If the differential pressure ⁇ Pcol1 exceeds zero, it is determined that a measurement error has occurred on the side where the sensor collector pressure sPcol becomes larger than the basic collector pressure bPcol, and the process proceeds to step S37. In step S37, the value obtained by subtracting the differential pressure ⁇ Pcol1 from the sensor collector pressure sPcol is used as the actual collector pressure rPcol, that is, the actual collector pressure rPcol is calculated by the following equation.
  • step S38 the value obtained by adding the absolute value of the differential pressure ⁇ Pcol to the sensor collector pressure sPcol is used as the actual collector pressure rPcol, that is, the actual collector pressure rPcol is calculated by the following equation.
  • the actual collector pressure rPcol obtained in steps S35, 37, and 38 in this way is stored in the nonvolatile memory as a learning value. This completes the learning of the sensor collector pressure sPcol and returns to step S4 in FIG. 3A.
  • step S4 of FIG. 3A after the learned flag is set to 1, the process proceeds to step S5 of FIG. 3B. Since the learned flag is set to 1 in step S4 in FIG. 3A, steps S2 to S4 are skipped from step S1 in FIG. 3A and the process proceeds to step S5 in FIG. 3B. In other words, learning is done only once here.
  • the present invention is not limited to this, and the learned flag may be set to 1 after learning is performed a plurality of times.
  • step S5 in FIG. 3B it is checked whether or not the engine has been warmed up. For example, the cooling water temperature Tw detected by the water temperature sensor 51 is compared with a predetermined warm-up completion water temperature. If the cooling water temperature Tw is lower than the warm-up completion water temperature, the engine warm-up is not yet completed. It is determined that the current process is terminated.
  • step S2 to step 4 are skipped from step S1 in FIG. 3A, and the process proceeds to step S5 in FIG. 3B.
  • the cooling water temperature Tw is lower than the warm-up completion water temperature
  • the current process is terminated.
  • the EGR valve 32 is fully closed by a flow (not shown).
  • step S5 If the cooling water temperature Tw becomes equal to or higher than the warming-up completion water temperature, it is determined that the engine has been warmed up, and the process proceeds from step S5 in FIG.
  • the EGR valve 32 is opened by a flow (not shown) at the timing when the cooling water temperature Tw becomes equal to or higher than the warm-up completion water temperature. As a result, EGR gas is introduced into the intake collector 3.
  • step S6 whether or not there is an experience of abnormality diagnosis of the EGR gas cooler 34 is determined based on a diagnosis experienced flag.
  • step S7 of FIG. 3B the EGR gas temperature Tegr at the outlet of the EGR gas cooler 34 is calculated. This will be described with reference to the flowchart of FIG.
  • the flow in FIG. 8 (subroutine in step S7 in FIG. 3B) is for calculating the EGR gas temperature Tegr at the outlet of the EGR gas cooler, and is executed at regular intervals (for example, every 10 ms).
  • step S41 the cooling water temperature Tw detected by the water temperature sensor 51 and the exhaust temperature Texh detected by the exhaust temperature sensor 54 are read.
  • the values of the cooling water temperature Tw and the exhaust temperature Texh at the positions where the sensors 51 and 54 read in step S41 are provided may be different from the values of the cooling water temperature and the exhaust temperature at the EGR gas cooler 34 inlet. It is a part to deal with when there is sex.
  • the exhaust temperature sensor 54 is provided near the outlet of the engine body and the EGR passage 31 is branched from the downstream of the three-way catalyst 9, it is between the sensor position and the EGR gas cooler inlet. Heat may be taken away from the exhaust. At this time, the exhaust temperature at the EGR gas cooler inlet is lower than the exhaust temperature Texh at the sensor position.
  • the water temperature sensor 51 is provided in the engine body and the cooling water is guided to the EGR gas cooler 34, heat may be taken from the cooling water between the engine body and the EGR gas cooler 34. At this time, the cooling water temperature at the EGR gas cooler inlet is lower than the cooling water temperature Tw at the sensor position.
  • the difference between the cooling water temperature Tw at the position where the water temperature sensor 51 is provided and the cooling water temperature at the inlet of the EGR gas cooler 34 is set as a water temperature correction value ⁇ (positive value), and the EGR gas cooler inlet
  • the cooling water temperature Tw1 is calculated.
  • the difference between the exhaust gas temperature Texh at the position where the exhaust gas temperature sensor 54 is provided and the exhaust gas temperature at the inlet of the EGR gas cooler 34 is defined as an exhaust gas temperature correction value ⁇ (positive value).
  • An exhaust temperature Texh1 at the gas cooler inlet is calculated.
  • the above deviations vary depending on the engine operating conditions.
  • the engine operating conditions are determined by the engine speed Ne and the engine load. Therefore, the water temperature correction value ⁇ in the equation (7) is calculated by searching a map having the contents shown in FIG. 9 from the engine speed Ne and the engine load.
  • the exhaust gas temperature correction value ⁇ is calculated by searching a map having the contents shown in FIG. 10 from the engine speed Ne and the engine load.
  • the correction values ⁇ and ⁇ are the values of the cooling water temperature Tw and the exhaust gas temperature Texh at the position where the sensors 51 and 54 read in step S41 are provided, and the cooling water temperature and the exhaust gas temperature at the EGR gas cooler 34 inlet. It asks beforehand so that it may correspond.
  • step S44 the cooling efficiency ⁇ cooler of the EGR gas cooler 34 is calculated by searching a map having the contents shown in FIG. 11 from the engine speed Ne and the engine load.
  • step S45 the EGR gas temperature Tegr at the EGR gas cooler 34 outlet is calculated from the cooling water temperature Tw1 at the EGR gas cooler inlet, the exhaust temperature Texh1 at the EGR gas cooler inlet, and the cooling efficiency ⁇ cooler of the EGR gas cooler 34 by the following formula.
  • Tegr (1- ⁇ cooler) ⁇ Texh1 + ⁇ cooler ⁇ Tw1 ... (9)
  • Equation (9) is derived as follows. That is, when the EGR gas cooler 34 is shown as a model in FIG. 20, the EGR gas cooler 34 is constituted by a double pipe constituted by an inner pipe 34a and an outer pipe 34b. The exhaust gas flows through the inner pipe 34a from the right to the left in FIG. 20, and the cooling water flows through the outer pipe 34b from the left to the right in FIG. Heat exchange is performed between the cooling water and the exhaust through a wall that separates the exhaust water, and the exhaust temperature decreases from Texh at the inlet to Tegr at the outlet, and the cooling water temperature increases from Tw1 at the inlet to Texh1 It becomes. Therefore, the cooling efficiency ⁇ cooler of the EGR gas cooler 34 is defined by the following equation.
  • the denominator of the equation (10) is the amount of cooling water temperature drop in the EGR gas cooler, and the numerator is the amount of exhaust gas temperature rise in the EGR gas cooler.
  • the expression (10) defines the ratio of the exhaust gas temperature increase amount and the cooling water temperature decrease amount as the cooling efficiency ⁇ cooler of the GR gas cooler 34. If the equation (10) is solved for Tegr, the above equation (9) is obtained.
  • step S8 the EGR gas mass Qegr in the collector part, the fresh air mass Qair in the collector part, and the collector pressure Pcol are calculated.
  • step S11 a differential pressure ⁇ Pcol2 between the collector pressure Pcol obtained in step S10 and the actual collector pressure rPcol obtained in step S3 of FIG. 3A is calculated.
  • the EGR gas cooler 34 is calculated in steps S12 to S14. Diagnose abnormalities.
  • the intake air introduced from the outside of the engine 1 is referred to as “fresh air” in order to distinguish it from the EGR gas introduced into the intake collector 3.
  • fresh air the intake air introduced from the outside of the engine 1
  • the unit of EGR gas mass and fresh air mass is, for example, a unit [mg].
  • the detected value in the idle state is learned, and the learned value is used for calculating the collector pressure Pcol. Therefore, even if there is a large variation in the detected value of the air flow meter, the collector pressure Pcol is calculated more than when the collector pressure Pcol is calculated using the detected value of the air flow meter without learning the variation error in the detected value of the air flow meter. Calculation accuracy is improved.
  • the detection value of the collector pressure sensor is not as large as the air flow meter in the first place.
  • the detected value of the collector pressure sensor is used directly for abnormality diagnosis of the cooling device. Accordingly, by learning the detection value of the collector pressure sensor at the same timing as the learning timing of the detection value of the air flow meter, the variation error is also reduced for the detection value of the collector pressure sensor. By performing abnormality diagnosis based on the actual collector pressure with reduced variation error in this way, abnormality diagnosis accuracy is improved as compared with the case where the detection value of the collector pressure sensor is not learned.
  • the “collector pressure” does not mean the pressure of the intake collector 3 alone.
  • the upstream side is a wide space up to the installation position of the throttle valve 11 and the EGR valve 32, and the downstream side to the intake port. Is treated as one space, and the pressure of this space shall be said.
  • the collector temperature Tcol described later does not mean the temperature of only the intake collector 3, but in FIG. 1, the upstream side is a wide space to the position of the throttle valve 11 and the EGR valve 32, and the downstream side is a wide space to the intake port. Is treated as one space, and the temperature of this space is said. Even if it is handled as one space, the ratio of the intake collector in the one space is the largest, so this one space is particularly referred to as a “collector portion”.
  • step S8 in FIG. 3B will be described in detail by the subroutine of FIG. 12, the contents of step S9 by the subroutine of FIG. 17, and the contents of step S10 by the subroutine of FIG.
  • the flow of FIG. 12 (subroutine of step S8 of FIG. 3B) is for calculating the EGR gas mass Qegr of the collector part, and is executed at regular intervals (for example, every 10 ms).
  • step S51 the EGR valve opening area A, the engine rotation speed Ne, the engine load, the atmospheric pressure Pair, the EGR gas temperature Tegr at the outlet of the EGR gas cooler, the collect pressure Pcol, the intake valve closing timing IVC, and the fresh air mass previous value Qairz are read.
  • the engine load for example, a basic injection pulse width Tp used for fuel injection amount control may be used.
  • the atmospheric pressure Pair is detected by an atmospheric pressure sensor 47 (see FIG. 1).
  • the EGR gas temperature Tegr at the outlet of the EGR gas cooler is calculated from FIG.
  • the intake valve closing timing IVC can be known from the operating state of the VTC mechanism 27.
  • the collector pressure Pcol is the collector pressure calculated from FIG.
  • the previous value of the fresh air mass Qair calculated according to FIG. 17 is used.
  • Step S8 the values (Qair, Pcol) calculated in steps S9 and S10 that are later in time than step S8 are used for calculating Qegr in step S8, which may cause a sense of incongruity. unknown.
  • Steps S8, 9, and 10 independently calculate Qegr, Qair, and Pcol values, and the values necessary for the calculation are interchanged between the three steps. It is an image that fits. Such calculation is possible because of the high calculation speed. Since this area cannot be clearly shown, it is expressed as shown in FIG. 3B.
  • step S52 the pressure Pexh of the exhaust pipe 8 is calculated by multiplying the basic exhaust pipe pressure Pexh0 by the atmospheric pressure correction coefficient, that is, by the following equation.
  • the basic exhaust pipe pressure Pexh0 is calculated by searching a map having the contents shown in FIG. 13 from the engine load and the rotational speed Ne. As shown in FIG. 13, the basic exhaust pipe pressure Pexh0 increases as the load increases when Ne is constant, and increases as Ne increases when the load is constant.
  • the atmospheric pressure correction coefficient is calculated by searching a table having the contents shown in FIG. 14 from the atmospheric pressure Pair detected by the atmospheric pressure sensor 47. The atmospheric pressure correction coefficient takes into account the exhaust pipe pressure that varies depending on the low altitude and high altitude. In this embodiment, since the exhaust temperature sensor 54 is provided, the exhaust temperature detected by the exhaust temperature sensor 54 may be used in step S52.
  • step S53 the specific heat ratio ⁇ is calculated by searching a table containing FIG. 15 from the EGR gas temperature Tegr (obtained from FIG. 8) at the EGR gas cooler outlet.
  • step S54 using the EGR valve opening area A, the collect pressure Pcol, the exhaust pipe pressure Pexh, the specific heat ratio ⁇ , and the ERG gas density ⁇ , Qegz which is the previous value of the EGR gas mass Qegr in the collector is calculated by the following equation. .
  • (12) is an approximate expression (known) based on fluid dynamics for obtaining the flow rate passing through the passage of the opening area A when there is a pressure difference between Pexh and Pcol before and after the orifice of the opening area A.
  • the EGR gas density ⁇ is obtained in advance by adaptation.
  • step S55 the cylinder volume Vcyl is calculated from the intake valve closing timing IVC.
  • the intake valve closing timing IVC is changed by the operation of the VTC mechanism 27. For example, when the intake valve closing timing IVC is at the intake bottom dead center and after the intake bottom dead center, the intake valve closing timing IVC is greater when the intake valve closing timing IVC is present after the intake bottom dead center. Is smaller than when it is at the bottom dead center.
  • the cylinder volume Vcyl changes depending on the intake valve closing timing IVC. Therefore, the cylinder volume Vcyl is calculated by searching the table having the contents shown in FIG. 16 from the intake valve closing timing IVC. To do. Although an outline is not described in FIG. 16, a table using the intake valve closing timing IVC as a parameter may be created by conformance. Of course, in an engine not equipped with the VTC mechanism 27, the cylinder volume Vcyl becomes a constant value.
  • step S56 the in-cylinder EGR rate Rcylgr is calculated by the following equation using the EGR gas mass previous value Qegz of the collector calculated in step S54 and the fresh air mass previous value Qairz of the collector.
  • step S57 the in-cylinder EGR gas mass Qcycler [mg] is calculated by the following equation using the in-cylinder EGR rate Rcylgr and the cylinder volume Vcyl calculated in step S55.
  • step S58 the EGR gas mass Qcylgr in the cylinder is subtracted from the previous EGR gas mass value Qegrz in the collector calculated in step S54, that is, the EGR gas mass Qegr [mg] in the collector is calculated by the following equation.
  • the mass of EGR gas of Qegrz was previously present, and from this point, the mass of EGR gas of Qcylgr is absorbed by the combustion chamber 5 (cylinder) and disappears from the collector part.
  • the equation (15) is to obtain the mass of EGR gas present in the collector part at this time by subtracting the mass of EGR gas of Qcycler that has disappeared so far from the mass of EGR gas of Qegrz that existed last time.
  • Qcycler is a value newly introduced in the present embodiment. According to the present embodiment, by using the newly introduced Qcycler, the calculation accuracy of Qegr is higher than when Qcycler is not considered. Since the collector pressure Pcol is calculated using this Qegr (see step S73 in FIG. 18), the calculation accuracy of the collector pressure Pcol is improved as much as the calculation accuracy of Qegr increases.
  • FIG. 17 (subroutine of step S9 of FIG. 3B) is for calculating the fresh air mass Qair of the collector section, and is executed at regular intervals (for example, every 10 ms).
  • step S61 the intake valve closing timing IVC and the intake air amount Qafm obtained from FIG. 4 are read.
  • step S62 the cylinder volume Vcyl is calculated in the same manner as in step S55 of FIG.
  • step S63 the fresh air mass previous value Qairz [mg] of the collector part is calculated by directly inserting the intake air amount Qafm read in step S61 into the fresh air mass previous value Qairz of the collector part. Since the air flow meter 42 has a detection delay, the detection value of the air flow meter 42 having the detection delay is used as the previous value of the fresh air mass in the collector section.
  • the unit of the intake air amount Qafm actually has [mg / s] and a unit of time. Therefore, a value obtained by converting the unit into mass [mg] per cylinder using the engine rotational speed Ne [rpm] is collected. Will be included in the previous fresh mass value Qairz.
  • step S64 the in-cylinder EGR rate Rcycler is calculated in the same manner as in step S56 of FIG.
  • step S65 the in-cylinder fresh air mass Qcylar [mg] is calculated by the following equation using the cylinder volume Vcyl calculated in step S62 and the in-cylinder EGR rate Rcylgr calculated in step S64.
  • the in-cylinder fresh air mass Qcylair may be calculated by the following formula.
  • step S66 the fresh air mass Qair [mg] in the collector is calculated by subtracting the fresh air mass Qcylar in the cylinder from the previous fresh air mass value Qairz in the collector, that is, the following equation.
  • the fresh air mass of Qairz exists in the collector part last time, and from this time, the fresh air mass of Qcylair is absorbed by the combustion chamber 5 (cylinder) and disappears from the collector part.
  • the equation (17) is used to obtain the fresh air mass present in the collector part this time by subtracting the fresh air mass of Qcylair that has disappeared up to this time from the fresh air mass of Qairz that was present in the previous time.
  • Qcylair is also a value newly introduced in the present embodiment. According to the present embodiment, by using the newly introduced Qcylair, Qair calculation accuracy is higher than when Qcylar is not considered. Since the collector pressure Pcol is calculated using this Qair (see step S73 in FIG. 18), the calculation accuracy of the collector pressure Pcol is improved as much as the calculation accuracy of Qair increases.
  • the flow in FIG. 18 (subroutine in step S10 in FIG. 3B) is for calculating the collector pressure Pcol, and is executed at regular intervals (for example, every 10 ms).
  • step S71 the atmospheric temperature Tair, the EGR gas temperature Tegr at the outlet of the EGR gas cooler 34, the target EGR rate Megr, the EGR gas mass Qegr in the collector, and the fresh air flow rate Qair in the collector are read.
  • the atmospheric temperature Tair is detected by an atmospheric temperature sensor 52 (see FIG. 1).
  • the target EGR rate Megr may be obtained by searching a map having the contents shown in FIG. 19 from the engine load and the rotational speed Ne.
  • the EGR gas mass Qegr of the collector part is calculated from FIG.
  • the fresh air flow rate Qair of the collector is calculated from FIG.
  • the collector temperature Tcol is calculated by the following equation using the atmospheric temperature Tair, the EGR gas temperature Tegr at the outlet of the EGR gas cooler 34, and the target EGR rate Megr.
  • the collector pressure Pcol is calculated by the following equation using the collector fresh air mass Qair, the collector EGR gas mass Qegr, the collector temperature Tcol, and the collector volume Vcol.
  • the coefficient Kegr in the equation (19) is the contribution ratio of Qegr
  • the coefficient Kair is the contribution ratio of Qair
  • these two coefficients Kair and Kegr are obtained in advance by adaptation.
  • the collector volume Vcol in the equation (19) is obtained in advance not by the volume of the intake collector 3 alone but by the volume (constant value) of the collector portion.
  • step S11 of FIG. 3B the differential pressure ⁇ Pcol2 obtained by subtracting the actual collector pressure rPcol obtained in FIG. 6 from the collector pressure Pcol, that is, the differential pressure ⁇ Pcol2 is calculated by the following equation.
  • step S12 the absolute value of the differential pressure ⁇ Pcol2 is compared with the threshold value TH3.
  • the threshold value TH3 is a value for determining whether or not the cooling capacity of the EGR gas cooler 34 has decreased or increased compared to when the cooling capacity of the EGR gas cooler is normal.
  • the threshold value TH3 is determined in advance in consideration of component variations of the EGR gas cooler 34. If the absolute value of the differential pressure ⁇ Pcol2 is less than the threshold value TH3, it is determined that the cooling capacity of the EGR gas cooler 34 has not decreased or increased. At this time, the process proceeds from step S12 to step S14, where an abnormality diagnosis flag (initially set to zero when the engine is started) is set to zero.
  • the value of the abnormality diagnosis flag in steps S13 and S14 is stored in a nonvolatile memory.
  • the EGR gas cooler abnormality diagnosis is performed only once and the diagnosis result is stored in the memory.
  • An abnormality diagnosis of the EGR gas cooler may be performed at regular intervals during engine operation.
  • an EGR passage 31 that recirculates part of the exhaust gas to the collector (intake pipe), an EGR valve 32 that can adjust the amount of EGR gas that flows through the EGR passage 31, and EGR gas that flows through the EGR passage 31
  • a cooling EGR gas cooler 34 cooling device
  • a collector pressure sensor 46 pressure detection means for detecting a collector pressure (actual pressure in the intake pipe)
  • an intake pipe pressure estimation for estimating the collector pressure (intake pipe pressure) Means (see step S10 in FIG. 3B, steps S71 to 73 in FIG. 18), the estimated collector pressure Pcol (intake pipe pressure) and the detected actual collector pressure rPcol (intake pipe actual pressure)
  • Differential pressure calculating means see step S11 in FIG.
  • the abnormality diagnosis of the EGR gas cooler 34 is performed using the collector pressure sensor 46 (pressure detection means) whose detection accuracy is originally higher than that of the air flow meter, the accuracy of the abnormality diagnosis can be improved over the conventional apparatus. it can.
  • an air flow meter 42 fresh air mass detection means that detects a fresh air mass Qair introduced into the collector (intake pipe), and an EGR that calculates an EGR gas mass Qegr in the collector (intake pipe).
  • a gas mass calculation means see steps S51 to 58 in FIG. 12
  • the collector pressure calculation means detects the fresh air mass Qair of the collector part to be detected and the EGR gas of the collector part to be calculated.
  • a throttle pressure for calculating (estimating) the collector pressure Pcol (intake pipe pressure) based on the mass Qegr see step S73 in FIG.
  • step S2 the detection value (Qafm) in which the variation error generated in the detection values of the air flow meter 42 (fresh air mass detection unit) and the collector pressure sensor 46 (pressure detection unit) is reduced by learning and the variation error is reduced.
  • RPcol is used to calculate (estimate) the collector pressure (pressure of the intake pipe), so that the collector pressure is calculated based on the detection values of the air flow meter 42 and the collector pressure sensor 46 with a variation error.
  • the calculation accuracy (estimation accuracy) of the collector pressure can be improved.
  • the EGR gas cooler 34 (cooling device) performs heat exchange between the EGR gas introduced into the EGR gas cooler 34 and the engine cooling water, and the engine cooling water temperature Tw is set.
  • a water temperature sensor 51 cooling water temperature detecting means for detecting and an exhaust temperature sensor 54 (exhaust temperature detecting means) for detecting the exhaust temperature Texh are provided, and the EGR gas mass calculating means determines the EGR gas temperature Tegr at the outlet of the EGR gas cooler 34. Based on this, the mass Qegr of the EGR gas in the collector (intake pipe) is calculated (see steps S51, 53, 54, and 58 in FIG.
  • the difference between the estimated intake pipe pressure and the detected actual pressure is calculated, and the case where it is determined whether there is an abnormality in the cooling device based on the difference has been described.
  • a ratio between the estimated intake pipe pressure and the detected actual pressure may be calculated, and it may be determined whether there is an abnormality in the cooling device based on the ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 EGR装置の異常診断装置は、排気の一部を吸気管に還流するEGR通路と、EGR通路を流れるEGRガスの量を調整し得るEGR弁と、EGR通路を流れるEGRガスを冷却する冷却装置とを備える。さらに、EGR装置の異常診断装置は、吸気管の実際の圧力を検出する圧力検出手段と、吸気管の圧力を推定する吸気管圧力推定手段と、推定される吸気管圧力と検出される実際の圧力との差または比を算出する差・比算出手段と、前記差または比に基づいて冷却装置に異常があるか否かを判定する判定手段とを備える。

Description

EGR装置の異常診断装置及び異常診断方法
 この発明はEGR装置の異常診断装置及び異常診断方法に関する。
 大量のEGRガスの導入のため、ERG通路にEGRガスを冷却する冷却装置を設けていると、排気中の成分である炭素等の固形物が冷却装置の通路に堆積する。この固形物の堆積によって冷却装置におけるEGRガスと冷却水との熱交換が悪くなり冷却装置の冷却能力が低下する。この冷却装置の冷却能力の低下を異常として扱い、冷却装置に異常があるか否かを診断することがJP2006-242080Aに開示されている。上記文献では、エアフローメータの検出値を目標値にフィードバック制御することでEGRガスの量を所望の量に間接的にフィードバック制御する。冷却装置の冷却能力が低下すると、これに起因するEGRガス量の減少が上記のフィードバック制御により補償されるため、EGR弁開度が増大側に操作される。つまり、冷却能力が低下しているときのEGR弁開度は、冷却能力が低下していないときより大きくなる。従って、EGRを行う前に運転条件毎にEGR弁開度を学習しておき、EGR弁開度の学習後に冷却能力が低下したときには、EGR弁開度の検出値が学習値と比較して大きくなる。そこで、検出値と学習値の差が閾値を超える場合に冷却装置の冷却能力が低下したと診断する。
 ところで、上記文献の技術では、エアフローメータの検出値にもともと大きなバラツキがあるため、エアフローメータの検出値を目標値にフィードバック制御しながらEGR弁開度を学習しても、学習値に大きな誤差が生じてしまう。大きな誤差の生じた学習値を用いて冷却装置の異常診断を行っても、異常診断精度がよくならない。
 そこで本発明は、エアフローメータの検出値を目標値にフィードバック制御することなく、冷却装置の異常診断の精度を向上させ得る装置を提供することを目的とする。
 本発明のある態様によれば、EGR装置の異常診断装置は、排気の一部を吸気管に還流するEGR通路と、前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、前記EGR通路を流れるEGRガスを冷却する冷却装置とを備えている。EGR装置の異常診断装置は、さらに前記吸気管の実際の圧力を検出する圧力検出手段と、前記吸気管の圧力を推定する吸気管圧力推定手段と、前記推定される吸気管圧力と前記検出される実際の圧力との差または比を算出する差・比算出手段と、前記差または比に基づいて前記冷却装置に異常があるか否かを判定する判定手段とを備える。
 上記態様によれば、エアフローメータよりもともと検出精度が高い圧力検出手段を用いて冷却装置の異常診断を行うので、エアフローメータを用いて異常診断する装置より異常診断の精度を向上させることができる。
図1は、本発明の実施形態に係る異常診断装置の概略構成図である。 図2は、EGRガスクーラ出口のEGRガス温度、EGR率、コレクタ圧力の関係を示す特性図である。 図3Aは、EGRガスクーラの異常診断のメインルーチンを表すフローチャートである。 図3Bは、EGRガスクーラの異常診断のメインルーチンを表すフローチャートである。 図4は、エアフローメータ吸入空気量の学習を説明するためのフローチャートである。 図5は、基本吸入空気量の特性図である。 図6は、センサコレクタ圧力の学習を説明するためのフローチャートである。 図7は、基本コレクタ圧力の特性図である。 図8は、EGRガスクーラ出口のEGRガス温度の算出を説明するためのフローチャートである。 図9は、水温補正値の特性図である。 図10は、排気温度補正値の特性図である。 図11は、EGRガスクーラの冷却効率の特性図である。 図12は、コレクタ部のEGRガス質量の算出を説明するためのフローチャートである。 図13は、基本排気管圧力の特性図である。 図14は、大気圧補正係数の特性図である。 図15は、比熱比の特性図である。 図16は、シリンダ容積の特性図である。 図17は、新気質量の算出を説明するためのフローチャートである。 図18は、コレクタ圧力の算出を説明するためのフローチャートである。 図19は、目標EGR率の特性図である。 図20は、EGRガスクーラのモデル図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、EGR装置の異常を診断するための、本発明の実施形態に係る異常診断装置の概略構成図である。図1において吸気管2にはスロットル弁11を備える。スロットル弁11は、エンジンコントローラ41からの信号を受けるモータ12(スロットル弁アクチュエータ)によって駆動される。空気は、スロットル弁11によって調量され、吸気管2の吸気コレクタ(以下、単に「コレクタ」ともいう。)3に蓄えられた後、吸気マニホールド4を介して各気筒の燃焼室5に導入される。燃料は各気筒の燃焼室5に直接臨んで配置された燃料インジェクタ21より噴射供給される。燃焼室5に噴射された燃料は気化しつつ空気と混合してガス(混合気)を作る。この混合気は吸気バルブ15が閉じることで燃焼室5内に閉じこめられ、ピストン6の上昇によって圧縮される。
 この圧縮混合気に対して高圧火花により点火を行うため、パワートランジスタ内蔵の点火コイルを各気筒に配した電子配電システムの点火装置22を備える。すなわち、点火装置22は、点火コイル、パワートランジスタ(図示しない)、点火プラグ24から構成されている。点火コイル23はバッテリからの電気エネルギーを蓄え、パワートランジスタは点火コイル23の一次側への通電、遮断を行う。燃焼室5の天井に設けられる点火プラグ24は点火コイル23の一次電流の遮断によって点火コイル23の二次側に発生する高電圧を受けて、火花放電を行う。
 圧縮上死点より少し手前で点火プラグ24により火花が飛ばされ圧縮混合気に着火されると、火炎が広がりやがて爆発的に燃焼し、この燃焼によるガス圧がピストン6を押し下げる仕事を行う。この仕事はクランクシャフト7の回転力として取り出される。燃焼後のガス(排気)は排気バルブ16が開いたときに排気管8へと排出される。
 排気管8には三元触媒9、10を備える。三元触媒9、10は排気の空燃比が理論空燃比を中心とした狭い範囲にあるとき、排気中に含まれるHC、CO、NOxといった有害三成分を同時に効率よく除去できる。
 空燃比は吸入空気量と燃料量の比である。エンジンの1サイクル当たりに燃焼室5に導入される吸入空気量と、燃料インジェクタ21からの燃料噴射量との比が理論空燃比となるように、エンジンコントローラ41では燃料噴射パルス幅Ti[ms]を算出する。そして、所定の燃料噴射時期になると、この燃料噴射パルス幅Tiの期間、燃料インジェクタ21を開いて燃料を直接、燃焼室5内に噴射供給する。なお、エアフローメータ42からの吸入空気量の信号とクランク角センサ(43、44)からの信号に基づいて基本噴射パルス幅Tp[ms]を算出している。この基本噴射パルス幅Tpを、例えば水温センサ51からの信号によって補正することにより上記の燃料噴射パルス幅Tiが定まる。
 吸気バルブ15、排気バルブ16は、クランクシャフト7を動力源として、各々吸気側カムシャフト25及び排気側カムシャフト26に設けられたカムの動作により開閉駆動される。
 吸気バルブ15の側には、クランクシャフト7と吸気側カムシャフト25との回転位相差を連続的に可変制御して、吸気バルブ15の開閉タイミング(開時期と閉時期)を進遅角する可変バルブタイミング機構(以下「VTC機構」という。)27を備える。また、吸気側カムシャフト25の他端には吸気側カムシャフト25の回転位置を検出するためのカム角度センサ44が併設されている。
 一方、排気バルブ16側にも、クランクシャフト7と排気側カムシャフト26との回転位相差を連続的に可変制御して、排気バルブ16の開閉タイミング(開時期と閉時期)を進遅角する可変バルブタイミング機構(VTC機構)29を備える。排気側カムシャフト26の他端には排気側カムシャフト26の回転位置を検出するためのカム角度センサ45が併設されている。
 EGR制御を行うため、排気の一部を吸気管2に還流するEGR通路31を吸気コレクタ3に開口している。このEGR通路31の吸気コレクタ3への開口端の上流側には、EGRガスを調量し得るEGR弁32を備える。EGR弁32は、エンジンコントローラ41からの信号を受けるモータ33(EGR弁アクチュエータ)によって駆動される。なお、アクチュエータはモータ33に限定されるものでなく、負圧(大気圧より低い圧力)を用いたアクチュエータであってよい。
 エンジンコントローラ41では、エンジンの負荷と回転速度から定まる運転条件がEGR領域になると、そのEGR領域での運転条件下から所定のマップを検索することにより目標EGR率を算出する。この目標EGR率に基づいてEGR弁開口面積Aを算出し、このEGR弁開口面積Aをモータ33に与える制御量に変換し、この制御量をモータ33に与えることで、EGR弁開度を制御している。
 さて、EGRガスを吸気管に導入することで、ピストンによるポンピングロスが減り、その分燃費が向上することから、最近では燃費のさらなる向上のため、シリンダに大量のEGRガスを導入する(EGR率を増大させる)ことが期待されている。このため、EGR弁32上流のEGR通路31にEGRガスを冷却するEGRガスクーラ34(冷却装置)を設けてEGRガスを冷却するようにしている。EGRガスクーラ34においてEGRガスと熱交換を行わせる媒体はエンジンの冷却水である。つまり、EGRガスクーラ34の入口に流入するEGRガス温度と、EGRガスクーラ34の入口に流入するエンジン冷却水温との温度差に比例してEGRガスが冷却される。
 EGRガスを冷却すると、排気中の成分である炭素等の固形物が冷却装置としてのEGRガスクーラ34の通路に堆積する。この固形物の堆積によって冷却装置におけるEGRガスと冷却水との間の熱交換が悪くなりEGRガスクーラ34の冷却能力が低下する。
この冷却装置の冷却能力の低下を異常として扱い、冷却装置に異常があるか否かを診断する従来装置がある。従来装置では、エアフローメータの検出値を目標値にフィードバック制御することでEGRガスの量を所望の量に間接的にフィードバック制御する。冷却装置の冷却能力が低下すると、これに起因するEGRガス量の減少が上記のフィードバック制御により補償されるため、EGR弁開度が増大側に操作される。つまり、冷却能力が低下しているときのEGR弁開度は、冷却能力が低下していないときより大きくなる。従って、EGRを行う前に運転条件毎にEGR弁開度を学習しておき、EGR弁開度の学習後に冷却能力が低下したときには、EGR弁開度の検出値が学習値と比較して大きくなる。
そこで、検出値と学習値の差が閾値を超える場合に冷却装置の冷却能力が低下したと診断する。
 しかしながら、従来装置では、エアフローメータの検出値にもともと大きなバラツキがあるため、エアフローメータの検出値を目標値にフィードバック制御しながらEGR弁開度を学習しても学習値に大きな誤差が生じてしまう。大きな誤差の生じた学習値を用いて冷却装置の異常診断を行っても、異常診断精度がよくならない。
 そこで本発明の第1実施形態では、吸気コレクタ3(吸気管)の実際のコレクタ圧力を検出する圧力センサ46(圧力検出手段)を設けると共に、コレクタ圧力(吸気管の圧力)を推定し、推定されるコレクタ圧力と検出される実際のコクレタ圧力との差圧(差)を算出し、この差圧に基づいてEGRガスクーラ34に異常があるか否かを判定する。言い換えると、エアフローメータよりもともと検出精度が高いコレクタ圧力センサ46を用いて、EGRガスクーラ34の異常診断を行う。本発明ではEGRガスクーラ34の冷却能力の低下だけでなくEGRガスクーラ34の冷却能力の上昇をも異常として扱う。
 EGRガスクーラ34の異常診断方法を、図2を参照して具体的に説明すると、図2はEGRガスクーラ出口のEGRガス温度、EGR率、コレクタ圧力の関係を示す特性図である。冷間始動に続けてエンジンを目標アイドル回転速度で運転しているとして、EGRガスクーラ34の冷却能力が正常であれば、EGRガスクーラ出口のEGRガス温度はAを中心とする所定幅の範囲内に収まる。このときの実際のコレクタ圧力(以下「実コレクタ圧力」ともいう。)はCを中心とする所定幅の範囲内に収まる。
 ところが、EGRガスクーラ34の冷却能力が低下すれば、同じ運転条件でありながら、EGRガスクーラ出口のEGRガス温度はEGRガスクーラ34の冷却能力が正常であるときよりも上昇したり低下したりする。ここではEGRガスクーラ34の冷却能力の低下でEGRガス温度がBまで上昇したとすると、このときにはEGRガスクーラ34の冷却能力が正常であるときとの温度差(B-A)の分だけEGR率が低下し、実コレクタ圧力が大気圧側に上昇する。つまり、EGRガスクーラ34の冷却能力の低下は実コレクタ圧力に現れるので、実コレクタ圧力がCより低下してDとなるときにはEGRガスクーラ34の冷却能力が低下したこととなる。
 ここで、EGRガスクーラ34の冷却能力が正常であるときのコレクタ圧力は算出(予測)可能であるので、この算出可能なコレクタ圧力をPcolとする。従って、このコレクタ圧力Pcolと実コレクタ圧力rPcolとの差圧力ΔP(=Pcol-rPcol)を求め、この差圧力ΔPの絶対値と予め定めた閾値TH3とを比較することにより、EGRガスクーラ34の冷却能力が低下したか否かを診断することができる。算出されるコレクタ圧力PcolがC、実コレクタ圧力rPcolがDの場合には、差圧力ΔPの絶対値は|D-C|となり、この|D-C|の値は閾値TH3を超えることから、EGRガスクーラ34の冷却能力が低下したと診断するのである。
 エンジンコントローラ41で行われるこのEGRガスクーラ34の異常診断を以下のフローチャートを参照して説明する。なお、図1に示したように吸気コレクタ3に実際のコレクタ圧(rPcol)を検出するコレクタ圧力センサ(絶対圧センサ)46を設けておく。コレクタ圧力センサはこれに限られない。例えば、EGR弁32の前後差圧を検出する差圧センサを設ける場合でもかまわない。この場合、差圧センサは、EGR弁32上流側に設ける上流側圧力センサ(絶対圧センサ)と、EGR弁32の下流側に設ける下流側圧力センサ(絶対圧センサ)とで構成されるため、下流側圧力センサをコレクタ圧力センサとして用いればよい。
 図3A、図3BのフローはEGRガスクーラ34の異常診断のメインルーチンを表している。このルーチンは一定時間毎(例えば10ms毎)に実行する。
 図3AのステップS1では、エアフローメータ42により検出される吸入空気量及び圧力センサ46により検出されるコレクタ圧力を学習済みであるか否かを学習済みフラグによって判断する。後述するように、両者の学習を終了したとき図3AのステップS4で学習済みフラグ=1としている。従って、ここでは学習済みフラグ=0であるとして述べると、このとき図3AのステップS2、3に進む。
 図3AのステップS2、3は、EGRガスの吸気コレクタ3への導入前(エンジンの暖機完了前)に実行する処理である。エンジンの暖機完了前にEGRガスを導入しないのは、エンジンの暖機完了前にもEGRガスを導入するとエンジンが不安定になるので、これを避けるためである。
 図18で後述するように、コレクタ圧力Pcolを算出する際にコレクタ部の新気質量Qairを用いるが、このコレクタ部の新気質量Qairはエアフローメータ42により検出される吸入空気量に基づいている(図17参照)。図3AのステップS2は、コレクタ圧力Pcolの算出精度の確保のため、エアフローメータ42(新気質量検出手段)により検出される吸入空気量(これを「エアフローメータ吸入空気量」という。)rQafmの学習を行う部分である。
 このエアフローメータ吸入空気量rQafmの学習については図4のフローにより説明する。図4のフロー(図3AのステップS2のサブルーチン)はエアフローメータ吸入空気量rQafmを学習するためのもので、一定時間毎(例えば10ms毎)に実行する。
 図4においてステップS21ではエアフローメータ吸入空気量rQafm、スロットルセンサ53(スロットル弁開度検出手段)により検出されるスロットル弁開度TVOを読み込む。
 ステップS22ではスロットル弁開度TVOから図5を内容とするテーブルを検索することにより、基本吸入空気量bQafmを算出する。図5は、エンジン冷間始動後に目標アイドル回転速度の条件でスロットル弁開度TVOを相違させたときに流量特性が正常なエアフローメータ42により検出される吸入空気量がどうなるかを予め求めた特性である。
 ステップS23では、エアフローメータ吸入空気量rQafmから基本吸入空気量bQafmを差し引いた差空気量ΔQafmを、つまり次式により差空気量ΔQafmを算出する。
  ΔQafm=rQafm-bQafm           …(1)
 ステップS24ではこの差空気量ΔQafmの絶対値と閾値TH1を比較する。閾値TH1はエアフローメータ42に計量誤差が生じているか否かを判定するための値で、予め定めておく。差空気量ΔQafmの絶対値が閾値TH1未満であれば、エアフローメータ42に計量誤差が生じてないと判断し、ステップS24よりステップS25に進んでエアフローメータ吸入空気量rQafmをそのまま吸入空気量Qafmに入れる。
 ステップS24で差空気量ΔQafmの絶対値が閾値TH1以上であるときにはエアフローメータ42に計量誤差が生じていると判断する。このときにはステップS24よりステップS26に進み、差空気量ΔQafmとゼロを比較する。差空気量ΔQafmがゼロを超えていれば、エアフローメータ吸入空気量rQafmが基本吸入空気量bQafmよりも多くなる側の計量誤差が生じていると判断してステップS27に進む。ステップS27では、エアフローメータ吸入空気量rQafmから差空気量ΔQafmを差し引いた値を吸入空気量Qafmとして、つまり次式により吸入空気量Qafmを算出する。
  Qafm=rQafm-ΔQafm            …(2)
 一方、ステップS26で差空気量ΔQafmがゼロを超えていないときには、エアフローメータ吸入空気量rQafmが基本吸入空気量bQafmよりも少なくなる側の計量誤差が生じていると判断してステップS28に進む。ステップS28では、エアフローメータ吸入空気量rQafmに差空気量ΔQafmの絶対値を加算した値を吸入空気量Qafmとして、つまり次式により吸入空気量Qafmを算出する。
  Qafm=rQafm+|ΔQafm|          …(3)
 このようにして、ステップS25、27、28で求めた吸入空気量Qafmは学習値として不揮発性メモリに記憶する。これでエアフローメータ吸入空気量rQafmの学習を終了し、図3AのステップS3に戻る。
 図3AのステップS3は、実コレクタ圧力rPcolの検出精度の確保のためコレクタ圧力センサ46により検出されるコレクタ圧力(これを「センサコレクタ圧力」という。)sPcolの学習を行う部分である。
 このセンサコレクタ圧力sPcolの学習については図6のフローにより説明する。図6のフロー(図3AのステップS3のサブルーチン)はセンサコレクタ圧力sPcolを学習するためのもので、一定時間毎(例えば10ms毎)に実行する。
 図6においてステップS31ではセンサコレクタ圧力sPcol、スロットルセンサ53により検出されるスロットル弁開度TVOを読み込む。
 ステップS32ではスロットル弁開度TVOから図7を内容とするテーブルを検索することにより、基本コレクタ圧力bPcolを算出する。図7は、エンジン冷間始動後に目標アイドル回転速度の条件でスロットル弁開度TVOを相違させたときに圧力特性が正常なコレクタ圧力センサ46により検出されるコレクタ圧力がどうなるかを予め求めた特性である。
 ステップS33では、センサコレクタ圧力sPcolから基本コレクタ圧力bPcolを差し引いた差圧力ΔPcol1を、つまり次式により差圧力ΔPcol1を算出する。
  ΔPcol1=sPcol-bPcol          …(4)
 ステップS34ではこの差圧力ΔPcol1の絶対値と閾値TH2を比較する。閾値TH2はコレクタ圧力センサ46に計量誤差が生じているか否かを判定するための値で、予め定めておく。差圧力ΔPcolの絶対値が閾値TH2未満であれば、コレクタ圧力センサ46に計量誤差が生じてないと判断し、ステップS34よりステップS35に進んでセンサコレクタ圧力rPcolをそのままコレクタ圧力Pcolに入れる。
 ステップS34で差圧力ΔPcol1の絶対値が閾値TH2以上であるときにはコレクタ圧力センサ46に計量誤差が生じていると判断する。このときにはステップS34よりステップS36に進み、差圧力ΔPcol1とゼロを比較する。差圧力ΔPcol1がゼロを超えていれば、センサコレクタ圧力sPcolが基本コレクタ圧力bPcolよりも大きくなる側の計量誤差が生じていると判断してステップS37に進む。ステップS37では、センサコレクタ圧力sPcolから差圧力ΔPcol1を差し引いた値を実コレクタ圧力rPcolとして、つまり次式により実コクレタ圧力rPcolを算出する。
  rPcol=sPcol-ΔPcol1          …(5)
 一方、ステップS36で差圧力ΔPcol1がゼロを超えていないときには、センサコレクタ圧力sPcolが基本コレクタ圧力bPcolよりも小さくなる側の計量誤差が生じていると判断してステップS38に進む。ステップS38では、センサコレクタ圧力sPcolに差圧力ΔPcolの絶対値を加算した値を実コレクタ圧力rPcolとして、つまり次式により実コクレタ圧力rPcolを算出する。
  rPcol=sPcol+|ΔPcol1|        …(6)
 このようにしてステップS35、37、38で求めた実コレクタ圧力rPcolは学習値として不揮発性メモリに記憶する。これでセンサコレクタ圧力sPcolの学習を終了し、図3AのステップS4に戻る。
 図3AのステップS4では学習済みフラグ=1とした後、図3BのステップS5に進む。図3AのステップS4で学習済みフラグ=1としたので、次回以降は図3AのステップS1よりステップS2~4を飛ばして図3BのステップS5に進む。つまり、ここでは学習は一度しか行わないようにしている。これに限られるものでなく、学習を複数回行わせた後に学習済みフラグ=1としてもかまわない。
 図3BのステップS5ではエンジンの暖機が完了したか否かをみる。これは、例えば水温センサ51により検出される冷却水温Twと、予め定めた暖機完了水温とを比較し、冷却水温Twが暖機完了水温未満であればまだエンジンの暖機が完了していないと判断しそのまま今回の処理を終了する。
 次回以降も図3AのステップS1よりステップS2~4を飛ばして図3BのステップS5に進み、冷却水温Twと暖機完了水温を比較する。冷却水温Twが暖機完了水温未満である間はそのまま今回の処理を終了する。なお、冷却水温Twが暖機完了水温未満であるとき、図示しないフローによりEGR弁32は全閉状態にされている。
 やがて冷却水温Twが暖機完了水温以上となればエンジンの暖機が完了したと判断し図3BのステップS5よりステップS6以降に進む。なお、冷却水温Twが暖機完了水温以上となったタイミングで図示しないフローによりEGR弁32が開かれる。これによってEGRガスが吸気コレクタ3に導入される。
 ステップS6では、EGRガスクーラ34の異常診断の経験があるか否かを診断経験済みフラグによって判断する。後述するように、EGRガスクーラ34の異常診断を終了したときステップS15で診断経験済みフラグ=1としている。従って、ここでは診断経験済みフラグ=0であるとして述べると、このとき図3BのステップS7以降に進む。
 図3BのステップS7では、EGRガスクーラ34出口のEGRガス温度Tegrを算出する。これについては図8のフローで説明する。図8のフロー(図3BのステップS7のサブルーチン)は、EGRガスクーラ出口のEGRガス温度Tegrを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
 図8においてステップS41では、水温センサ51により検出される冷却水温Tw、排気温度センサ54により検出される排気温度Texhを読み込む。
 ステップS42、43では、ステップS41で読み込んだ各センサ51、54を設けた位置での冷却水温Tw、排気温度Texhの各値とEGRガスクーラ34入口での冷却水温、排気温度の各値が異なる可能性がある場合に対処する部分である。
 例えば、図1に示したように、排気温度センサ54をエンジン本体の出口近くに設け、EGR通路31を三元触媒9の下流より分岐していると、センサ位置よりEGRガスクーラ入口までの間で排気より熱が奪われることがある。このとき、EGRガスクーラ入口の排気温度はセンサ位置での排気温度Texhより低下する。一方、水温センサ51をエンジン本体に設け、冷却水をEGRガスクーラ34まで導くとなると、エンジン本体とEGRガスクーラ34までの間で冷却水より熱が奪われることがある。このとき、EGRガスクーラ入口の冷却水温はセンサ位置での冷却水温Twより低下する。
 そこで、水温センサ51の設けられている位置の冷却水温Twと、EGRガスクーラ34の入口での冷却水温とのズレ分を水温補正値α(正の値)として、次の式によりEGRガスクーラ入口の冷却水温Tw1を算出する。
  Tw1=Tw-α                     …(7)
 同様に、排気温度センサ54の設けられている位置の排気温度Texhと、EGRガスクーラ34の入口での排気温度とのズレ分を排気温度補正値β(正の値)として、次の式によりEGRガスクーラ入口の排気温度Texh1を算出する。
  Texh1=Texh-β                 …(8)
 ここで、上記の各ズレ分はエンジンの運転条件により変化する。エンジンの運転条件はエンジン回転速度Neとエンジン負荷で定まる。そこで、上記(7)式の水温補正値αは、エンジン回転速度Neとエンジン負荷から図9を内容とするマップを検索することにより算出する。同様に、上記(8)排気温度補正値βは、エンジン回転速度Neとエンジン負荷から図10を内容とするマップを検索することにより算出する。各補正値α、βは、ステップS41で読み込んだセンサ51、54を設けている位置での冷却水温Tw、排気温度Texhの各値とEGRガスクーラ34入口での冷却水温、排気温度の各値が一致するように予め求めておく。
 ステップS44では、エンジン回転速度Neとエンジン負荷から図11を内容とするマップを検索することによりEGRガスクーラ34の冷却効率ηcoolerを算出する。
 ステップS45では、EGRガスクーラ入口の冷却水温Tw1、EGRガスクーラ入口の排気温度Texh1、EGRガスクーラ34の冷却効率ηcoolerから次の式によりEGRガスクーラ34出口のEGRガス温度Tegrを算出する。
  Tegr=(1-ηcooler)×Texh1+ηcooler×Tw1…(9)
 (9)式は次のようにして導いたものである。すなわち、EGRガスクーラ34を図20にモデルで示すと、EGRガスクーラ34は内管34aと外管34bとで構成される2重管で構成される。内管34aを排気が図20で右方より左方へと流れ、外管34bを冷却水が図20で左方より右方へと流れる。冷却水と排気とは間を仕切る壁を通して熱交換を行い、排気温度は入口でTexhであったものが低下して出口でTegrとなり、冷却水温は入口でTw1であったものが上昇してTexh1となる。そこで、EGRガスクーラ34の冷却効率ηcoolerを次の式により定義する。
  ηcooler=(Texh1-Tegr)/(Texh1-Tw1)  …(10)
 (10)式の分母はEGRガスクーラにおける冷却水の温度低下量、分子はEGRガスクーラにおける排気の温度上昇量である。(10)式は、排気の温度上昇量と冷却水の温度低下量の比をGRガスクーラ34の冷却効率ηcoolerとして定義するものである。(10)式をTegrについて解けば、上記(9)式が得られる。
 このようにして、EGRガスクーラ34出口のEGRガス温度Tegrの算出を終了したら図3BのステップS8戻る。
 図3BのステップS8、9、10ではコレクタ部のEGRガス質量Qegr、コレクタ部の新気質量Qair、コレクタ圧力Pcolをそれぞれ算出する。ステップS11では、ステップS10で得ているコレクタ圧力Pcolと図3AのステップS3で得ている実コレクタ圧力rPcolとの差圧力ΔPcol2を算出し、この差圧力ΔPcol2に基づきステップS12~14でEGRガスクーラ34の異常診断を行う。本発明では、吸気コレクタ3に導入されるEGRガスと区別するため、エンジン1の外部から導入される吸入空気を「新気」という。コレクタ部のEGRガス質量、コレクタ部の新気質量としては1回の吸気で燃焼室5(シリンダ)に流入する量を扱う。従って、EGRガス質量、新気質量の単位としては例えば[mg]といった単位となる。
 エンジンの冷間始動を行ってから異常診断が行われるまでを、図3AのステップS1~4、図3BのステップS5~15に照らしてみると、次のようになる。すなわち、エンジンの暖機完了前のアイドル回転速度のフィードバック制御状態でエアフローメータ吸入空気量及びセンサコレクタ圧力が学習される。エンジンの暖機完了直後のアイドル回転速度のフィードバック制御状態で、今度はこれら学習値の一方である吸入空気量Qafmを用いてコレクタ圧力Pcolが算出され、これと学習値の他方である実コレクタ圧力rPcolとの差分に基づいて異常診断が行われる。つまり、エンジンの暖機完了の前か後かの違いがあるにせよ、アイドル状態という同じ運転条件でセンサ検出値の学習及び冷却装置の異常診断が行われる。特にエアフローメータ42についてみれば、アイドル状態での検出値が学習され、その学習値がコレクタ圧力Pcolの算出に用いられるわけである。従って、エアフローメータの検出値にもともと大きなバラツキがあったとしても、エアフローメータの検出値についてバラツキ誤差を学習しないままエアフローメータの検出値を用いてコレクタ圧力Pcolを算出する場合より、コレクタ圧力Pcolの算出精度が向上する。
 一方、コレクタ圧力センサの検出値にはそもそもエアフローメータほどの大きなバラツキはない。しかしながら、コレクタ圧力センサの検出値は直接、冷却装置の異常診断に用いている。従って、コレクタ圧力センサの検出値に対しても、エアフローメータの検出値の学習タイミングと同じタイミングで学習することで、コレクタ圧力センサの検出値についてもバラツキ誤差を小さくするのである。こうしてバラツキ誤差を小さくした実コレクタ圧力に基づいて異常診断を行わせることで、コレクタ圧力センサの検出値を学習しない場合より異常診断精度が向上する。
 また、「コレクタ圧力」とは、吸気コレクタ3のみの圧力をいうのではなく、図1において上流側はスロットル弁11の取り付け位置及びEGR弁32の位置まで、下流側は吸気ポートまでの広い空間を1つの空間として扱い、この空間の圧力をいうものとする。後述するコレクタ温度Tcolについても同様である。すなわち、「コレクタ温度」とは、吸気コレクタ3のみの温度をいうのではなく、図1において上流側はスロットル弁11の取り付け位置及びEGR弁32の位置まで、下流側は吸気ポートまでの広い空間を1つの空間として扱い、この空間の温度をいうものとする。なお、一つの空間として扱うにしても、この一つの空間に占める吸気コレクタの割合が最大であるので、この一つの空間を、特に「コレクタ部」というものとする。
 図3BのステップS8の内容は図12のサブルーチンにより、ステップS9の内容は図17のサブルーチンにより、ステップS10の内容は図18のサブルーチンにより詳述する。
 図12のフロー(図3BのステップS8のサブルーチン)はコレクタ部のEGRガス質量Qegrを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
 ステップS51では、EGR弁開口面積A、エンジン回転速度Ne、エンジン負荷、大気圧Pair、EGRガスクーラ出口のEGRガス温度Tegr、コクレタ圧力Pcol、吸気バルブ閉時期IVC、新気質量前回値Qairzを読み込む。エンジン負荷としては、例えば燃料噴射量制御に用いる基本噴射パルス幅Tpを用いればよい。
 上記の大気圧Pairは大気圧センサ47(図1参照)により検出する。上記のEGRガスクーラ出口のEGRガス温度Tegrは、図8により算出している。上記の吸気バルブ閉時期IVCはVTC機構27の作動状態から知り得る。上記のコクレタ圧力Pcolは図18により算出するコレクタ圧力を用いる。上記の新気質量前回値Qairzは図17により算出する新気質量Qairの前回値を用いる。
 ここで、図3Bにおいて、ステップS8でのQegrの算出に、このステップS8より時間的に遅いステップS9、10において算出される値(Qair、Pcol)を用いることになっており、違和感を持つかもしれない。しかしながら、実際のイメージとしては、図3Bにおいて、ステップS8、9、10が独立してQegr、Qair、Pcolの各値を算出しつつ、その算出に必要な値を3つのステップの間で融通し合っているようなイメージである。こうした演算は、演算スピードが早いために可能となっている。このあたりを明確には図示することができないため、図3Bに示したような表現としている。
 図12に戻りステップS52では排気管8の圧力Pexhを、基本排気管圧力Pexh0に大気圧補正係数を乗算して、つまり次式により算出する。
  Pexh=Pexh0×大気圧補正係数          …(11)
 ここで、基本排気管圧力Pexh0は、エンジンの負荷と回転速度Neから図13を内容とするマップを検索することにより算出する。図13のように基本排気管圧力Pexh0はNeが一定のとき負荷が大きくなるほど高くなり、負荷が一定のときNeが高くなるほど高くなる値である。大気圧補正係数は大気圧センサ47により検出される大気圧Pairから図14を内容とするテーブルを検索することにより算出する。大気圧補正係数は低地や高地によって排気管圧力が相違してくるので、これを考慮するものである。なお、本実施形態では排気温度センサ54を設けているので、この排気温度センサ54により検出される排気温度をステップS52で用いてもかまわない。
 ステップS53では比熱比κをEGRガスクーラ出口のEGRガス温度Tegr(図8により得ている)から図15を内容とするテーブルを検索することにより算出する。
 ステップS54では、EGR弁開口面積A、コクレタ圧力Pcol、排気管圧力Pexh、比熱比κ、ERGガス密度ρを用いて、コレクタ部のEGRガス質量Qegrの前回値であるQegzを次式により算出する。
Figure JPOXMLDOC01-appb-M000001
 (12)式は開口面積Aのオリフィスの前後にPexhとPcolとの圧力差がある場合にこの開口面積Aの通路を通過する流量を求めるための流体力学に基づく近似式(公知)である。EGRガス密度ρは適合により予め求めておく。
 ステップS55では、吸気バルブ閉時期IVCからシリンダ容積Vcylを算出する。VTC機構27を備えるエンジン1では、VTC機構27の作動によって吸気バルブ閉時期IVCが変化する。例えば、吸気バルブ閉時期IVCが吸気下死点にあるときと、吸気下死点後にあるときとを考えると、吸気下死点後に吸気バルブ閉時期IVCがあるときのほうが、吸気バルブ閉時期IVCが吸気下死点にあるときより小さくなる。このように、VTC機構27を備えるエンジンでは、シリンダ容積Vcylが吸気バルブ閉時期IVCによって変化するので、吸気バルブ閉時期IVCから図16を内容とするテーブルを検索することにより、シリンダ容積Vcylを算出する。図16には概略を記載していないが、適合により吸気バルブ閉時期IVCをパラメータとするテーブルを作成しておけばよい。もちろん、VTC機構27を備えないエンジンではシリンダ容積Vcylは一定値となる。
 ステップS56では、シリンダ内EGR率Rcylegrを、ステップS54で算出したコレクタ部のEGRガス質量前回値Qegrzと、コレクタ部の新気質量前回値Qairzとを用いて次式により算出する。
  Rcylegr=Qegrz/(Qairz+Qegrz) …(13)
 これは、前回にQegrzのEGRガス質量と、Qairzの新気質量とが燃焼室5(シリンダ)に導入されたので、これら合計のガス量の内のEGRガス質量の割合を求めるものである。
 ステップS57ではシリンダ内EGRガス質量Qcylegr[mg]を、シリンダ内EGR率Rcylegrと、ステップS55で算出したシリンダ容積Vcylを用いて次式により算出する。
  Qcylegr=Rcylegr×Vcyl        …(14)
 ステップS58では、ステップS54で算出したコレクタ部のEGRガス質量前回値Qegrzからシリンダ内EGRガス質量Qcylegrを差し引くことにより、つまり次式によりコレクタ部のEGRガス質量Qegr[mg]を算出する。
  Qegr=Qegrz-Qcylegr                 …(15)
 コレクタ部に前回にはQegrzのEGRガス質量が存在しており、このうちから今回までにQcylegrのEGRガス質量が燃焼室5(シリンダ)に吸収されて、コレクタ部から消失する。(15)式は、前回に存在していたQegrzのEGRガス質量から、今回までに消失するQcylegrのEGRガス質量を差し引くことで、今回にコレクタ部に存在するEGRガス質量を求めるものである。Qcylegrは本実施形態において新たに導入した値である。本実施形態によれば、新たに導入したQcylegrを用いることによって、Qcylegrを考慮しない場合よりQegrの算出精度が高くなる。このQegrを用いてコレクタ圧力Pcolを算出するので(図18のステップS73参照)、Qegrの算出精度が高くなると、その分コレクタ圧力Pcolの算出精度が向上する。
 次に、図17のフロー(図3BのステップS9のサブルーチン)は、コレクタ部の新気質量Qairを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
 ステップS61では、吸気バルブ閉時期IVC、図4により得ている吸入空気量Qafmを読み込む。
 ステップS62では図12のステップS55と同様にしてシリンダ容積Vcylを算出する。
 ステップS63ではステップS61で読み込んだ吸入空気量Qafmをそのままコレクタ部の新気質量前回値Qairzに入れることによってコレクタ部の新気質量前回値Qairz[mg]を算出する。これは、エアフローメータ42に検出遅れがあるので、検出遅れがあるエアフローメータ42の検出値をそのままコレクタ部の新気質量の前回値とするものである。吸入空気量Qafmの単位は実際には[mg/s]と時間の単位を有するので、これをエンジン回転速度Ne[rpm]を用いて1シリンダ当たりの質量[mg]に単位変換した値をコレクタ部の新気質量前回値Qairzに入れることとなる。
 ステップS64では図12のステップS56と同様にしてシリンダ内EGR率Rcylegrを算出する。
 ステップS65では、ステップS62で算出したシリンダ容積Vcylと、ステップS64で算出したシリンダ内EGR率Rcylegrを用いて、シリンダ内新気質量Qcylair[mg]を次式により算出する。
  Qcylair=(1-Rcylegr)×Vcyl    …(16a)
 なお、図12ステップS57で求めたシリンダ内EGRガス質量Qcylegrを用い、
  Qcylair=Vcyl-Qcyegr         …(16b)
の式によりシリンダ内新気質量Qcylairを算出してもかまわない。
 ステップS66では、コレクタ部の新気質量前回値Qairzからシリンダ内新気質量Qcylairを差し引くことにより、つまり次式によりコレクタ部の新気質量Qair[mg]を算出する。
  Qair=Qairz-Qcylair          …(17)
 コレクタ部に前回にはQairzの新気質量が存在しており、このうちから今回までにQcylairの新気質量が燃焼室5(シリンダ)に吸収されて、コレクタ部から消失する。(17)式は、前回に存在していたQairzの新気質量から、今回までに消失するQcylairの新気質量を差し引くことで、今回にコレクタ部に存在する新気質量を求めるものである。Qcylairも本実施形態において新たに導入した値である。本実施形態によれば、新たに導入したQcylairを用いることによって、Qcylairを考慮しない場合よりQairの算出精度が高くなる。このQairを用いてコレクタ圧力Pcolを算出するので(図18のステップS73参照)、Qairの算出精度が高くなると、その分コレクタ圧力Pcolの算出精度が向上する。
 次に、図18のフロー(図3BのステップS10のサブルーチン)はコレクタ圧力Pcolを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
 ステップS71では、大気温度Tair、EGRガスクーラ34出口のEGRガス温度Tegr、目標EGR率Megr、コレクタ部のEGRガス質量Qegr、コレクタ部の新気流量Qairを読み込む。上記の大気温度Tairは大気温度センサ52(図1参照)により検出する。上記の目標EGR率Megrは、エンジンの負荷と回転速度Neから図19を内容とするマップを検索することにより求めればよい。上記コレクタ部のEGRガス質量Qegrは図12により算出されている。上記コレクタ部の新気流量Qairは図17により算出されている。
 ステップS72では、大気温度Tair、EGRガスクーラ34出口のEGRガス温度Tegr、目標EGR率Megrを用いて、コレクタ温度Tcolを次式により算出する。
Figure JPOXMLDOC01-appb-M000002
 (18)式はEGRガスの導入によるコレクタ部の温度上昇を考慮したものである。なお、吸排気バルブ15、16のオーバーラップによって、排気が吸気管2に吹き抜けることがあり、この吸気管2への排気の吹き抜けによってコレクタ部の温度が上昇する。(18)式の「内部EGRによる温度分」とは、吸気管2への排気の吹き抜けによってコレクタ部の温度が上昇する分のことである。
 ステップS73では、コレクタ部の新気質量Qair、コレクタ部のEGRガス質量Qegr、コクレタ温度Tcol、コレクタ容積Vcolを用いて、コレクタ圧力Pcolを次式により算出する。
Figure JPOXMLDOC01-appb-M000003
 (19)式はP・V=n・R・Tより得られるP=n・R・T/Vの式に相当するものである。(19)式の係数KegrはQegrの寄与割合、係数KairはQairの寄与割合で、これら2つの係数Kair、Kegrは予め適合により求めておく。(19)式のコレクタ容積Vcolは、吸気コレクタ3のみの容積ではなく、コレクタ部の容積(一定値)で予め求めておく。このようにしてコレクタ圧力Pcolの算出を終了したら図3BのステップS11に戻る。
 図3BのステップS11ではコレクタ圧力Pcolから、図6で得ている実コレクタ圧力rPcolを差し引いた差圧力ΔPcol2を、つまり次式により差圧力ΔPcol2を算出する。
  ΔPcol2=Pcol-rPcol                      …(20)
 ステップS12では、この差圧力ΔPcol2の絶対値と閾値TH3を比較する。閾値TH3はEGRガスクーラ34の冷却能力がEGRガスクーラの冷却能力が正常であるときより低下したり上昇したりしているか否かを判定するための値である。閾値TH3はEGRガスクーラ34の部品バラツキを考慮して予め定めておく。差圧力ΔPcol2の絶対値が閾値TH3未満であれば、EGRガスクーラ34の冷却能力が低下したり上昇したりしていないと判断する。このときにはステップS12よりステップS14に進み、異常診断フラグ(エンジンの始動時にゼロに初期設定)=0とする。
 一方、差圧力ΔPcol2の絶対値が閾値TH3以上であるときには、EGRガスクーラ34の冷却能力が低下したり上昇したりしていると判断する。このときにはステップS12よりステップS15に進み、異常診断フラグ=1とする。
 ステップS15では診断経験済みフラグ=1とする。このステップS15での診断経験済みフラグ=1より次回以降は、図3BのステップS7以降に進むことができない。
 ステップS13、14での異常診断フラグの値は不揮発性メモリに記憶しておく。
 実施形態では、EGRガスクーラの異常診断を1回だけ行い、その診断結果をメモリに記憶させておく場合で説明したが、これに限られるものでない。エンジンの運転中に一定周期でEGRガスクーラの異常診断を行わせるようにしてもかまわない。
 ここで、本実施形態の作用効果を説明する。
 本実施形態では、排気の一部をコレクタ部(吸気管)に還流するEGR通路31と、EGR通路31を流れるEGRガスの量を調整し得るEGR弁32と、EGR通路31を流れるEGRガスを冷却するEGRガスクーラ34(冷却装置)と、コレクタ圧力(吸気管の実際の圧力)を検出するコレクタ圧力センサ46(圧力検出手段)と、コレクタ圧力(吸気管の圧力)を推定する吸気管圧力推定手段(図3BのステップS10、図18のステップS71~73参照)と、前記推定されるコレクタ圧力Pcol(吸気管の圧力)と前記検出される実コレクタ圧力rPcol(吸気管の実際の圧力)との差圧力ΔPcol2(差)を算出する差算出手段(図3BのステップS11参照)と、前記差圧力ΔPcol2に基づいてEGRガスクーラ34に異常があるか否かを判定する判定手段(図3BのステップS12~14参照)とを備えている。本実施形態によれば、エアフローメータよりもともと検出精度が高いコレクタ圧力センサ46(圧力検出手段)を用いて、EGRガスクーラ34の異常診断を行うので、従来装置より異常診断の精度を向上させることができる。
 本実施形態では、コレクタ部(吸気管)に導入される新気質量Qairを検出するエアフローメータ42(新気質量検出手段)と、コレクタ部(吸気管)のEGRガスの質量Qegrを算出するEGRガス質量算出手段(図12のステップS51~58参照)とを備え、コレクタ圧力算出手段(吸気管圧力推定手段)は、検出されるコレクタ部の新気質量Qairと算出されるコレクタ部のEGRガス質量Qegrとに基づいてコレクタ圧力Pcol(吸気管の圧力)を算出(推定)するものであり(図18のステップS73参照)、かつ吸気管2に設けたスロットル弁11の開度を検出するスロットルセンサ53(スロットル弁開度検出手段)を備え、検出されるコレクタ部の新気質量Qair及び検出される実コレクタ圧力rPcol(実際の圧力)を、EGR弁32を全閉状態としているエンジンの暖機完了前に、検出されるスロットル弁開度TVOとの相対関係で学習している(図3AのステップS2、3、図4、図6参照)。本実施形態によれば、学習によりエアフローメータ42(新気質量検出手段)及びコレクタ圧力センサ46(圧力検出手段)の検出値に生じるバラツキ誤差を小さくし、そのバラツキ誤差を小さくした検出値(Qafm、rPcol)に基づいてコレクタ圧力(吸気管の圧力)を算出(推定)するので、バラツキ誤差があるままのエアフローメータ42及びコレクタ圧力センサ46の検出値に基づいてコレクタ圧力を算出する場合より、コレクタ圧力の算出精度(推定精度)を向上できる。
 本実施形態によれば、EGRガスクーラ34(冷却装置)は、このEGRガスクーラ34に導入されるEGRガスとエンジンの冷却水との間で熱交換を行わせるものであり、エンジンの冷却水温Twを検出する水温センサ51(冷却水温検出手段)と、排気温度Texhを検出する排気温度センサ54(排気温度検出手段)とを備え、EGRガス質量算出手段は、EGRガスクーラ34出口のEGRガス温度Tegrに基づいてコレクタ部(吸気管)のEGRガスの質量Qegrを算出するものであり(図12のステップS51、53、54、58参照)、EGRガスクーラ34出口のEGRガス温度Tegrを、検出される冷却水温Twと、検出される排気温度Texhとに基づいて算出するので(図8のステップS41~45参照)、EGRガスクーラ34出口のEGRガス温度を検出するセンサを設けることなく、コレクタ部のEGRガスの質量Qegrを算出することができる。
 上述した実施形態では、推定される吸気管圧力と検出される実際の圧力との差を算出し、前記差に基づいて冷却装置に異常があるか否かを判定する場合で説明したが、これに限られない。例えば、推定される吸気管圧力と検出される実際の圧力との比を算出し、前記比に基づいて冷却装置に異常があるか否かを判定するようにしてもかまわない。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2012年12月5日に日本国特許庁に出願された特願2012-266422に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  排気の一部を吸気管に還流するEGR通路と、
     前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、
     前記EGR通路を流れるEGRガスを冷却する冷却装置と、
     前記吸気管の実際の圧力を検出する圧力検出手段と、
     前記吸気管の圧力を推定する吸気管圧力推定手段と、
     前記吸気管圧力推定手段で推定される吸気管圧力と前記圧力検出手段で検出される実際の圧力との差または比を算出する差・比算出手段と、
     前記差または比に基づいて前記冷却装置に異常があるか否かを判定する判定手段と
    を備えるEGR装置の異常診断装置。
  2.  請求項1に記載のEGR装置の異常診断装置において、
     前記吸気管に導入される新気質量を検出する新気質量検出手段と、
     前記吸気管のEGRガスの質量を算出するEGRガス質量算出手段と
     を備え、
     前記吸気管圧力推定手段は、前記検出される新気質量と前記算出される吸気管のEGRガス質量とに基づいて前記吸気管の圧力を推定するものであり、
     かつ前記吸気管に設けたスロットル弁の開度を検出するスロットル弁開度検出手段を備え、
     前記検出される新気質量及び前記検出される実際の圧力を、前記EGR弁を全閉状態としているエンジンの暖機完了前に、前記検出されるスロットル弁開度との相対関係で学習するEGR装置の異常診断装置。
  3.  請求項1または2に記載のEGR装置の異常診断装置において、
     前記冷却装置は、この冷却装置に導入されるEGRガスとエンジンの冷却水との間で熱交換を行わせるものであり、
     エンジンの冷却水温を検出する冷却水温検出手段と、
     排気温度を検出する排気温度検出手段と
    を備え、
     前記EGRガス質量算出手段は、前記冷却装置出口のEGRガス温度に基づいて前記吸気管のEGRガスの質量を算出するものであり、
     前記冷却装置出口のEGRガス温度を、前記検出される冷却水温と、前記検出される排気温度とに基づいて算出するEGR装置の異常診断装置。
  4.  排気の一部を吸気管に還流するEGR通路と、
     前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、
     前記EGR通路を流れるEGRガスを冷却する冷却装置と、
     前記吸気管の実際の圧力を検出する圧力検出手段と
    を備え、
     前記吸気管の圧力を推定する吸気管圧力推定処理手順と、
     前記推定される吸気管圧力と前記検出される実際の圧力との差または比を算出する差・比算出処理手順と、
     前記差または比に基づいて前記冷却装置に異常があるか否かを判定する判定処理手順と、を含むEGR装置の異常診断方法。
PCT/JP2013/080415 2012-12-05 2013-11-11 Egr装置の異常診断装置及び異常診断方法 WO2014087809A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012266422 2012-12-05
JP2012-266422 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014087809A1 true WO2014087809A1 (ja) 2014-06-12

Family

ID=50883234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080415 WO2014087809A1 (ja) 2012-12-05 2013-11-11 Egr装置の異常診断装置及び異常診断方法

Country Status (1)

Country Link
WO (1) WO2014087809A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343530A (zh) * 2017-01-24 2018-07-31 福特环球技术公司 用于排气再循环系统诊断的方法和系统
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US20220372937A1 (en) * 2021-05-18 2022-11-24 Ford Global Technologies, Llc Egr system diagnostics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336549A (ja) * 2002-05-20 2003-11-28 Denso Corp 内燃機関のegr装置
JP2004211560A (ja) * 2002-12-27 2004-07-29 Denso Corp 内燃機関の制御装置
JP2008223516A (ja) * 2007-03-09 2008-09-25 Mazda Motor Corp エンジンの排気ガス還流装置の故障診断装置
JP2009127547A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 内燃機関の制御装置
JP2012087676A (ja) * 2010-10-19 2012-05-10 Mitsubishi Heavy Ind Ltd Egrシステムの故障診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336549A (ja) * 2002-05-20 2003-11-28 Denso Corp 内燃機関のegr装置
JP2004211560A (ja) * 2002-12-27 2004-07-29 Denso Corp 内燃機関の制御装置
JP2008223516A (ja) * 2007-03-09 2008-09-25 Mazda Motor Corp エンジンの排気ガス還流装置の故障診断装置
JP2009127547A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 内燃機関の制御装置
JP2012087676A (ja) * 2010-10-19 2012-05-10 Mitsubishi Heavy Ind Ltd Egrシステムの故障診断装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108343530A (zh) * 2017-01-24 2018-07-31 福特环球技术公司 用于排气再循环系统诊断的方法和系统
US20220298993A1 (en) * 2021-03-16 2022-09-22 Toyota Jidosha Kabushiki Kaisha Egr valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US11473537B2 (en) * 2021-03-16 2022-10-18 Toyota Jidosha Kabushiki Kaisha EGR valve deterioration degree calculation system, control device for internal combustion engine, and vehicle
US20220372937A1 (en) * 2021-05-18 2022-11-24 Ford Global Technologies, Llc Egr system diagnostics
US11603811B2 (en) * 2021-05-18 2023-03-14 Ford Global Technologies, Llc EGR system diagnostics

Similar Documents

Publication Publication Date Title
JP5143170B2 (ja) 内燃機関の制御方法
EP3244055B1 (en) Egr system for internal-combustion engine
JP5668763B2 (ja) 多気筒内燃機関の制御装置
JP4715799B2 (ja) 内燃機関の排気還流装置
US9382856B2 (en) System for fuel injection control in an internal combustion engine
US9297339B2 (en) Control device for internal combustion engine
CN108626038B (zh) 内燃机的控制装置
JP2004156458A (ja) 内燃機関のegrガス流量推定装置
US10550778B2 (en) Control device for internal combustion engine
WO2012108296A1 (ja) ターボ式過給機付き内燃機関の制御装置
JP6299795B2 (ja) 内燃機関
JP2007120392A (ja) 内燃機関の空燃比制御装置
US9957877B2 (en) Control apparatus for internal combustion engine
US20120173126A1 (en) Control device for internal combustion engine
US20180266365A1 (en) Exhaust gas control apparatus of internal combustion engine
JP6125942B2 (ja) 排気系の状態検出装置
WO2014087809A1 (ja) Egr装置の異常診断装置及び異常診断方法
JP6860313B2 (ja) エンジンの制御方法、及び、エンジン
JP2011111918A (ja) 内燃機関の制御装置
JP4348705B2 (ja) 内燃機関の燃料噴射制御装置
JP2011047357A (ja) 内燃機関の制御装置
JP5737196B2 (ja) 内燃機関の制御装置
WO2013175887A1 (ja) Egr制御装置及びegr制御方法
JP5375979B2 (ja) 内燃機関の燃焼制御装置
JP2008157208A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP