JP2008221919A - 駆動制御装置 - Google Patents

駆動制御装置 Download PDF

Info

Publication number
JP2008221919A
JP2008221919A JP2007059920A JP2007059920A JP2008221919A JP 2008221919 A JP2008221919 A JP 2008221919A JP 2007059920 A JP2007059920 A JP 2007059920A JP 2007059920 A JP2007059920 A JP 2007059920A JP 2008221919 A JP2008221919 A JP 2008221919A
Authority
JP
Japan
Prior art keywords
generator
motor
transmission
power
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059920A
Other languages
English (en)
Inventor
Masaki Mitsuyasu
正記 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007059920A priority Critical patent/JP2008221919A/ja
Publication of JP2008221919A publication Critical patent/JP2008221919A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】モータ・ジェネレータの電気回路における電気流通量を低下させ、かつ、エンジンの燃費を向上させることの可能な駆動制御装置を提供する。
【解決手段】エンジンと、第1モータ・ジェネレータと、相互に差動回転可能な入力要素および反力要素および出力要素を有する動力分配装置とを有し、エンジンが入力要素に動力伝達可能に接続され、第1モータ・ジェネレータが反力要素に動力伝達可能に接続されており、出力要素から車輪に至る動力伝達経路に無段階に変更可能な無段変速機が設けられている駆動制御装置において、第1モータ・ジェネレータから反力要素に至る動力伝達経路に、第1モータ・ジェネレータの回転数と反力要素との間の変速比を変更可能な変速機が設けられており、車両の走行中に、エンジントルクの反力を受け持つ第1モータ・ジェネレータを停止させるように、変速機の変速比を制御する変速比制御手段(ステップS6,S7)を有している。
【選択図】図1

Description

この発明は、エンジントルクが動力分配装置の入力要素に伝達され、前記動力分配装置の反力要素にモータ・ジェネレータが接続されており、そのモータ・ジェネレータによりエンジントルクの反力が受け持たれて、前記動力分配装置の出力要素から出力されたトルクが車輪に伝達されるように構成された駆動制御装置に関するものである。
従来、エンジントルクが動力分配装置の入力要素に伝達され、前記動力分配装置の反力要素にモータ・ジェネレータが接続されており、そのモータ・ジェネレータによりエンジントルクの反力が受け持たれて、前記動力分配装置の出力要素から出力されたトルクが車輪に伝達されるように構成された駆動制御装置が知られており、その一例が、特許文献1に記載されている。この特許文献1に記載されたハイブリッド車の駆動装置では、エンジンから車輪に至る動力伝達経路に動力分配機構が設けられている。この動力分配機構は、同軸上に配置されたサンギヤおよびリングギヤと、このサンギヤおよびリングギヤに噛合されたピニオンギヤを保持するキャリヤとを有しており、そのキャリヤが前記エンジンに連結されている。また、前記サンギヤは第1モータ・ジェネレータに接続されている。さらに、前記リングギヤから車輪に至る経路には伝達軸が設けられており、その伝達軸には第2モータ・ジェネレータが接続されている。また、この伝達軸から車輪に至る経路には、変速機が設けられている。
この変速機は、入力回転数と出力回転数との間の変速比を制御する変速段として、第1速または第2速または第3速のいずれかを選択的に切り換え可能に構成されている。具体的には、この変速機は、ラビニョ型遊星歯車機構により構成されている。さらに、前記第1モータ・ジェネレータおよび第2モータ・ジェネレータにはバッテリおよびキャパシタが接続されている。そして、前記第1モータ・ジェネレータによりエンジントルクの反力を受け持ち、第1モータ・ジェネレータの回転数を制御することにより、前記動力分配機構の変速比を無段階に制御可能である。また、前記エンジンから前記伝達軸への同意力伝達効率が最もよくなるように、前記変速機の変速比を選択する制御がおこなわれる。さらに、前記第1モータ・ジェネレータで発生した電力を前記第2モータ・ジェネレータに供給して、その第2モータ・ジェネレータのアシストトルクを前記伝達軸に伝達することも可能である。なお、エンジンが、遊星歯車機構により構成された動力分配装置に接続された駆動制御装置は、特許文献2ないし6にも記載されている。
特開2005−61498号公報 特開2004−42834号公報 特開平11−198668号公報 特開2003−312281号公報 特開2004−345527号公報 特開2005−119573号公報
しかしながら、前記特許文献1に記載されているハイブリッド車の駆動装置においては、各モータ・ジェネレータに接続された電気回路における電気流通量を低下させ、かつ、エンジンの燃費を向上させる余地があった。
この発明は上記事情を背景としてなされたものであり、モータ・ジェネレータに接続された電気回路における電気流通量を低下させ、かつ、エンジンの燃費を向上させることを抑制可能な駆動制御装置を提供することを目的としている。
上記の目的を達成するために、請求項1の発明は、車両の車輪に伝達するトルクを発生するエンジンと、電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な第1モータ・ジェネレータと、相互に差動回転可能な入力要素および反力要素および出力要素を有する動力分配装置とを有し、前記エンジンが前記入力要素に動力伝達可能に接続され、前記第1モータ・ジェネレータが前記反力要素に動力伝達可能に接続されており、前記出力要素から前記車輪に至る動力伝達経路に、入力回転数と出力回転数との間の変速比を無段階に変更可能な無段変速機が設けられており、前記第1モータ・ジェネレータの出力を制御することにより、前記入力要素と前記出力要素との間の変速比を制御可能な駆動制御装置において、前記第1モータ・ジェネレータから前記反力要素に至る動力伝達経路に、前記第1モータ・ジェネレータの回転数と前記反力要素の回転数との間の変速比を変更可能な変速機が設けられており、前記車両の走行中に、前記エンジントルクの反力を受け持つ前記第1モータ・ジェネレータの回転を停止させるように、前記変速機の変速比を制御する変速比制御手段を有していることを特徴とするものである。
請求項2の発明は、請求項1の構成に加えて、前記変速機は、前記第1モータ・ジェネレータの回転数と前記反力要素の回転数との間の変速比が「1」よりも大である構成の減速機であることを特徴とするものである。
請求項3の発明は、請求項1または2の構成に加えて、前記出力要素から前記車輪に至る動力伝達経路に、前記電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な第2モータ・ジェネレータが接続されており、前記第1モータ・ジェネレータと前記第2モータ・ジェネレータとの間で電力の授受をおこなうことの可能な電気回路が設けられており、前記変速比制御手段は、前記車両が惰力走行する場合の運動エネルギを前記第2モータ・ジェネレータに伝達して、その第2モータ・ジェネレータで回生制御をおこなう場合に、前記エンジントルクの反力を受け持つ前記第1モータ・ジェネレータの回転を停止させるように、前記変速機の変速比および前記無段変速機の変速比を制御する手段を含むことを特徴とするものである。
請求項1の発明によれば、エンジントルクが動力分配装置の入力要素に伝達され、第1モータ・ジェネレータで反力が受け持たれる。また、第1モータ・ジェネレータの回転が停止し、かつ、力行制御または回生制御のいずれもおこなわれないため、前記第1モータ・ジェネレータへの電力の出入りが減少し、前記エンジンから前記車輪に至る動力伝達経路における動力伝達効率が向上して、前記エンジンの燃費が向上する。
請求項2の発明によれば、請求項1の発明と同様の効果を得られる他に、エンジントルクの反力を受け持つ第2モータ・ジェネレータのトルクを増幅して反力要素に伝達することができる。したがって、第2モータ・ジェネレータを低出力化することができ、第2モータ・ジェネレータの体格を小型化できる。
請求項3の発明によれば、請求項1または2の発明と同様の効果を得られる他に、車両が惰力走行する場合の運動エネルギを第2モータ・ジェネレータに伝達して、その第2モータ・ジェネレータで回生制御をおこなうことができる。この場合に、エンジン回転数を変えずに、前記エンジントルクの反力を受け持つ前記第1モータ・ジェネレータの回転を停止させるように、前記変速機の変速比および前記無段変速機の変速比を制御すると、第2モータ・ジェネレータの回転数が上昇する。したがって、第2モータ・ジェネレータにおける回生効率が向上する。
つぎに、この発明の実施の形態を説明する。この発明における駆動制御装置において、エンジンは、車輪に伝達するトルクを出力する動力装置であり、このエンジンとしては、熱エネルギを運動エネルギに変換する動力装置である内燃機関を用いることが可能である。さらに、内燃機関としては、ガソリンエンジン、ディーゼルエンジン、LPGエンジン、メタノールエンジンなどを用いることができる。また、モータ・ジェネレータとしては、例えば3相交流型のモータ・ジェネレータを用いることが可能である。また、この発明において、動力分配装置は、相互に差動回転可能な入力要素および反力要素および出力要素を有しており、反力要素の回転数を制御することにより、入力要素の回転数を出力要素の回転数で除した値の変速比を無段階に変更可能な無段変速機としての機能を有する。このような動力分配装置としては、遊星機構を用いることができる。この遊星機構には、遊星歯車機構および遊星ローラ機構が含まれる。ここで、遊星歯車機構は、歯車同士の噛み合い力により動力伝達をおこなう伝動装置であり、サンギヤおよびリングギヤおよびピニオンギヤと、ピニオンギヤを自転かつ公転可能に支持するキャリヤを有している。また、遊星歯車機構としては、シングルピニオン型の遊星歯車機構またはダブルピニオン型の遊星歯車機構のいずれを用いてもよい。遊星ローラ機構は、ローラ同士の間に作動油が介在されており、その作用油のせん断力により動力伝達をおこなうトラクション伝動装置である。この遊星ローラ機構は、サンローラおよびリングローラおよびピニオンローラと、ピニオンローラを自転かつ公転可能に支持するキャリヤを有している。また、遊星ローラ機構としては、シングルピニオン型の遊星ローラ機構またはダブルピニオン型の遊星ローラ機構のいずれを用いてもよい。また、この発明の動力分配装置を構成する要素には、ギヤ、ローラ、キャリヤ、回転メンバ、コネクティングドラム、軸などの要素が含まれる。
また、この発明においては、前記動力分配装置の出力要素から車輪に至る動力伝達経路に無段変速機が設けられている。この無段変速機は、入力回転数と出力回転数との間の変速比を無段階に変更可能な動力伝達装置である。この無段変速機としては、ベルト式無段変速機またはトロイダル式無段変速機を用いることが可能である。さらにこの発明では、第1モータ・ジェネレータから前記反力要素に至る動力伝達経路に変速機が設けられている。この変速機は、前記第1モータ・ジェネレータの回転数と前記反力要素との間の変速比を変更可能な変速機である。この変速機としては、変速比を無段階に(連続的に)変更可能な無段変速機、または変速比を段階的に変更可能な有段変速機を用いることが可能である。さらに、変速機としては、遊星歯車式変速機、選択歯車式変速機などを用いることができる。遊星歯車式変速機は、遊星歯車機構およびクラッチやブレーキなどを有する公知の構造のものである。選択歯車式変速機には、摺動噛み合い式、常時噛み合い式、等速噛み合い式などの変速機が含まれる。
また、変速機として、遊星機構を有する変速機を用いることも可能である。この遊星機構には、遊星歯車機構および遊星ローラ機構が含まれる。ここで、遊星歯車機構は、歯車同士の噛み合い力により動力伝達をおこなう伝動装置であり、サンギヤおよびリングギヤおよびピニオンギヤと、ピニオンギヤを自転かつ公転可能に支持するキャリヤを有している。また、遊星歯車機構としては、シングルピニオン型の遊星歯車機構またはダブルピニオン型の遊星歯車機構のいずれを用いてもよい。遊星ローラ機構は、ローラ同士の間に作動油が介在されており、その作用油のせん断力により動力伝達をおこなうトラクション伝動装置である。この遊星ローラ機構は、サンローラおよびリングローラおよびピニオンローラと、ピニオンローラを自転かつ公転可能に支持するキャリヤを有している。また、遊星ローラ機構としては、シングルピニオン型の遊星ローラ機構またはダブルピニオン型の遊星ローラ機構のいずれを用いてもよい。さらに、前記変速機としては、前記第1モータ・ジェネレータの回転数と前記反力要素との間の変速比が「1」よりも大となる構成の減速機を用いることができる。
さらに、この発明においては、前記動力分配装置の出力要素から前記車輪に至る動力伝達経路に、第2モータ・ジェネレータが動力伝達可能に接続されている。この第2モータ・ジェネレータは、前記電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な回転装置である。すなわち、車両の車輪にトルクを伝達する駆動力源として、前記エンジンおよび第2モータ・ジェネレータを搭載することが可能であり、前記エンジンと第2モータ・ジェネレータとでは動力の発生原理が異なる
つぎに、この発明の駆動制御装置を有する車両のパワートレーン、およびその車両の制御系統の具体例を図2に示す。ここに示す車両1においては、駆動力源としてエンジン2が搭載されている。このエンジン2は燃料を燃焼させて発生した熱エネルギを、出力軸の運動エネルギに変換する動力装置である。このエンジン2としては、ガソリンエンジン、ディーゼルエンジン、LPGエンジンなどを用いることが可能である。また、エンジン2は、吸排気装置、燃料噴射装置、点火時期制御装置などを有しており、吸気管には電子スロットルバルブが設けられている。この電子スロットルバルブは、その開度を電気的に制御することが可能である。このエンジン2の出力軸であるクランクシャフト(図示せず)には、トルク伝達軸3が動力伝達可能に接続されている。なお、クランクシャフトとトルク伝達軸3との間に、ダンパ機構、または流体式動力伝達装置、またはトルクリミッタなどを設けることも可能である。前記ダンパ機構は、トルク変動を減衰する装置であり、前記流体式動力伝達装置は、流体の運動エネルギにより動力伝達をおこなう伝動装置であり、トルクリミッタは、予め定められた値以下のトルクを伝達し、予め定められた値を越えるトルクは伝達しないように構成された伝動装置である。また、この具体例では、前記クランクシャフトおよび前記トルク伝達軸3が同軸上に配置されており、そのクランクシャフトおよびトルク伝達軸3の回転軸線A1は、車両1の幅方向に配置されている。
そして、前記トルク伝達軸3は動力分配装置4に接続されている。この動力分配装置4はケーシング5内に設けられており、この具体例では、シングルピニオン型の遊星歯車機構により構成されている。すなわち、この動力分配装置4は、同軸上に配置されたサンギヤ6およびリングギヤ7と、このサンギヤ6およびリングギヤ7に噛合されたピニオンギヤ8と、このピニオンギヤ8を自転、かつ、公転可能に支持するキャリヤ9とを有している。この動力分配装置4のキャリヤ9が入力要素であり、サンギヤ6が反力要素であり、リングギヤ7が出力要素である。そして、動力分配装置4を構成する要素は、いずれも前記回転軸線A1を中心として回転可能に構成されている。さらに、前記キャリヤ9と前記トルク伝達軸3とが動力伝達可能に、例えば一体回転可能に連結されている。
一方、前記ケーシング5の内部には第1モータ・ジェネレータ(MG1)10が設けられている。この第1モータ・ジェネレータ10は、前記回転軸線A1に沿った方向で、前記エンジン2と前記動力分配装置4との間に配置されている。この第1モータ・ジェネレータ10は、電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な回転装置である。この第1モータ・ジェネレータ10は、前記ケーシング5に固定されたステータ11と、前記回転軸線A1を中心として回転可能なロータ12とを有している。そして、このロータ12と前記サンギヤ6とが動力伝達可能に連結されている。この具体例では、前記ロータ12と前記サンギヤ6との間の動力伝達経路に変速機13が配置されている。この変速機13は前記ケーシング5内に設けられており、前記回転軸線A1に沿った方向で、前記第1モータ・ジェネレータ10と前記動力分配装置4との間に前記変速機が設けられている。この変速機13は、シングルピニオン型の遊星歯車機構により構成されている。すなわち、この変速機13は、同軸上に配置されたサンギヤ14およびリングギヤ15と、このサンギヤ14およびリングギヤ15に噛合されたピニオンギヤ16と、このピニオンギヤ16を自転、かつ、公転可能に支持するキャリヤ17とを有している。そして、前記リングギヤ15は前記ケーシング5に対して回転不可能に固定されている。この変速機13においては、前記サンギヤ14が入力要素であり、前記リングギヤ15が反力要素であり、前記キャリヤ17が出力要素である。そして、前記サンギヤ14と前記モータ・ジェネレータ10のロータ12とが一体回転するように連結されているとともに、前記キャリヤ17が前記動力分配装置4のサンギヤ6と一体回転するように連結されている。
一方、前記動力分配装置4のリングギヤ7にはコネクティングドラム18が連結されており、そのコネクティングドラム18も前記回転軸線A1を中心として回転可能に構成されている。さらに、前記ケーシング5の内部には第2モータ・ジェネレータ(MG2)19が設けられている。そして、前記回転軸線A1に沿った方向で、前記変速機13と前記第2モータ・ジェネレータ19との間に前記動力分配装置4が配置されている。この第2モータ・ジェネレータ19は、電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な回転装置である。この第2モータ・ジェネレータ19は、前記ケーシング5に固定されたステータ20と、前記回転軸線A1を中心として回転可能なロータ21とを有している。そして、このロータ21と前記コネクティングドラム18とが動力伝達可能に、具体的には一体回転するように連結されている。
さらに、このコネクティングドラム18から車輪(前輪)22に至る動力伝達経路には、無段変速機23が設けられている。つまり、前記エンジン2から前記車輪22に至る動力伝達経路に、前記動力分配装置4および前記ベルト式無段変速機23が直列に配置されている。この無段変速機23は、入力回転数と出力回転数との比である変速比を、無段階(連続的)に変更可能な変速機であり、この具体例では、ベルト式無段変速機を用いた場合が示されている。以下、無段変速機23を「ベルト式無段変速機23」と記す。このベルト式無段変速機23は、プライマリプーリ24およびセカンダリプーリ25を有しており、このプライマリプーリ24およびセカンダリプーリ25にはそれぞれ溝が形成されている。そして、前記プライマリプーリ24およびセカンダリプーリ25に無端状のベルト26が巻き掛けられている。また、前記プライマリプーリ24は固定片27と可動片28とを有しており、プライマリ油圧室29の油圧を制御することにより、可動片28に与えられる推力が制御されて、プライマリプーリ24の溝幅が制御されるように構成されている。また、前記セカンダリプーリ25は固定片30と可動片31とを有しており、セカンダリ油圧室32の油圧を制御することにより、可動片31に与えられる推力が制御されて、セカンダリプーリ25の溝幅が制御されるように構成されている。また、前記プライマリ油圧室29および前記セカンダリ油圧室32の油圧を制御する油圧制御装置33が設けられている。この油圧制御装置33は、前記プライマリ油圧室29およびセカンダリ油圧室32に接続された油路、および前記プライマリ油圧室29およびセカンダリ油圧室32に供給・排出されるオイル量および油圧を制御する流量制御弁および圧力制御弁などを有している。これらの流量制御弁および圧力制御弁は、ソレノイドバルブにより構成される。
さらに、前記プライマリプーリ24と前記コネクティングドラム18とが動力伝達可能に接続されている。一方、前記セカンダリプーリ25はアクスルシャフト34を介在させて車輪22に動力伝達可能に接続されている。なお、前記セカンダリプーリ25から前記アクスルシャフト34に至る動力伝達経路には終減速機およびデファレンシャルが設けられているが、図2の具体例では、終減速機およびデファレンシャルの図示を省略している。前記第1モータ・ジェネレータ10および前記第2モータ・ジェネレータ19との間で電力の授受をおこなう電気回路40について説明する。前記第1モータ・ジェネレータ10にはインバータ35を介在させて蓄電装置36が接続されている。また、第2モータ・ジェネレータ19もインバータ37を介在させて蓄電装置38が接続されている。この蓄電装置36,38は、電力の取り出しおよび充電をおこなうことの可能な二次電池であり、蓄電装置36,38としては、バッテリまたはキャパシタを用いることが可能である。なお、特に図示しないが、前記第1モータ・ジェネレータ10と第2モータ・ジェネレータ19との間で、前記インバータ35,37および蓄電装置36,38を経由することなく、直接電力の授受をおこなうことが可能なように電気回路40が接続されている。さらに、前記電気回路40に、前記蓄電装置36,38に加えて、燃料電池(図示せず)を設けることも可能である。この燃料電池は、水素と酸素とを反応させて起電力を発生させる発電機であり、その燃料電池で発生した電力を前記蓄電装置36,38に供給することが可能である。
一方、車両1の全体を制御するコントローラとして電子制御装置39が設けられており、その電子制御装置39には、前記エンジン2の出力を制御するデータ、前記第1モータ・ジェネレータ10および第2モータ・ジェネレータ19を制御するデータ、前記ベルト式無段変速機23の変速比および伝達トルクを制御するデータなどが予め記憶されているとともに、これらの制御をおこなうための制御プログラムおよび演算式などが記憶されている。また、この電子制御装置39には、エンジン回転数、前記第1モータ・ジェネレータ10の回転数、第2モータ・ジェネレータ19の回転数、前記ベルト式無段変速機23のプライマリプーリ24の回転数、セカンダリプーリ25の回転数、車両1に対する加速要求、車両1に対する制動要求などを示す信号が入力される。そして、この電子制御装置39に記憶されているデータ、および入力される信号に基づいて、各種の演算処理がおこなわれて、前記エンジン2の出力を制御する信号、前記第1モータ・ジェネレータ10および第2モータ・ジェネレータ19の回生制御・力行制御を制御する信号、前記第1モータ・ジェネレータ10および第2モータ・ジェネレータ19の回生制御または力行制御する場合の出力を制御する信号、前記ベルト式無段変速機23の変速比および伝達トルクを制御する信号などが出力される。
つぎに、前記車両1の制御例を、図1のフローチャートに基づいて説明する。この図1の制御例は、車両1の走行中、特に、前記エンジン2が運転されている場合におこなわれる制御である。まず、ステップS1においては、目標エンジンパワーPeおよび目標エンジン回転数(Ne)が計算される。前記目標パワーを求める処理を説明すると、前記電子制御装置39には、加速要求(例えばアクセル開度)および車速を関数として、車両1の全体に対する総合要求パワーを求めるとともに、総合要求パワーのうち、前記エンジン2で負担するべき目標エンジンパワーを求めるマップが予め記憶されており、そのマップを用いて目標エンジンパワーPeを求める。
つぎに、前記目標エンジン回転数Neを求める処理を説明する。前記電子制御装置39には最適燃費軌跡マップが記憶されている。この最適燃費軌跡マップは、総合要求パワーに対してエンジン2で負担するべき目標エンジンパワーを最適燃費で達成するための軌跡を、エンジン回転数およびエンジントルクをパラメータとして示すマップである。この最適燃費軌跡マップを用いて、前記目標エンジンパワー(Pe)から、目標エンジン回転数(Ne)を求める。また、目標エンジントルク(Te)は、目標エンジンパワーを目標エンジン回転数で除して求める。このようにして、目標エンジンパワーを求める処理が、図1のステップS1では、
Pe=f(アクセル開度、車速)
として示されている。なお、「f」は関数であることを意味する。また、目標エンジン回転数Neを求める処理が、図1のステップS1では、
Ne=f(Pe)
で示されている。また、目標エンジントルクTeを求める処理が、図1のステップS1では、
Te=f(Pe/Ne)で示されている。
上記のステップS1についで、ステップS2では、トータル目標変速比が算出される。このトータル目標変速比とは、前記キャリヤ9の回転数を前記アクスル軸34の回転数で除した値である。すなわち、トータル目標変速比は、前記動力分配装置4の変速比、前記ベルト式無段変速機23の変速比、前記終減速機の減速比に基づいて求められる。前記のように、アクセル開度および車速に基づいて車速総合要求パワーが求められており、その総合要求パワーに基づいて、トータル目標変速比γtgtを求めるマップが、電子制御装置39に予め記憶されており、そのマップを用いる。このステップS2の処理が図1のフローチャートでは、
γtgt=f(アクセル開度、車速)
で示されている。このステップS2についで、ステップS3では、以下の処理がおこなわれる。まず、前記サンギヤ6の目標回転数Nsを「零」とし、かつ、目標エンジン回転数(Ne)を達成するために、前記リングギヤ7の目標回転数Nrを算出する。ついで、前記ベルト式無段変速機6の目標変速比を、次式により求める。
目標CVT比(γcvt)=目標Nr/出力軸回転Nout
この式において、目標CVT比(γcvt)が、ベルト式無段変速機6の目標変速比であり、目標Nrが、サンギヤ6の目標回転数であり、出力軸回転Noutが、アクスルシャフト34の回転数である。なお、前記終減速機では減速比が一定であり、かつ、その減速比を変更することが不可能であるため、便宜上、サンギヤ6の目標回転数をアクスルシャフト34の回転数を除した値を、ベルト式無段変速機6の目標変速比として用いている。そして、ステップS3で求められたベルト式無段変速機6の目標変速比γcvtに相当する制御信号が、ステップS4で出力される。この制御信号は、前記油圧制御装置33に設けられたソレノイドバルブに供給される電流値、もしくはソレノイドバルブの電流値を制御するデューティ比を信号化したものである。
このステップS4の処理は、図1のフローチャートでは、
γcvt出力
と示されている。
前記目標変速比γcvtに相当する制御信号が、前記電子制御装置39から前記油圧制御装置33に出力されて、前記ベルト式無段変速機23の変速比が制御される。前記ベルト式無段変速機23の変速比とは、前記プライマリプーリ24の回転数を前記セカンダリプーリ25の回転数で除して求められる。具体的には、前記プライマリ油圧室29に供給される圧油量が増加された場合は、前記プライマリプーリ24の溝幅が狭められる。すると、前記プライマリプーリ24におけるベルト26の巻き掛け半径が大きくなる。このようにして、前記ベルト式無段変速機23の変速比が小さくなる変速、つまり、アップシフトがおこなわれる。これに対して、前記プライマリ油圧室29から圧油が排出された場合は、前記プライマリプーリ24の溝幅が拡大される。すると、前記プライマリプーリ24におけるベルト26の巻き掛け半径が小さくなる。
このようにして、前記ベルト式無段変速機23の変速比が大きくなる変速、つまり、ダウンシフトがおこなわれる。なお、前記プライマリ油圧室29のオイル量が略一定に制御された場合は、前記プライマリプーリ24の溝幅が略一定に制御される。すると、前記プライマリプーリ24におけるベルト26の巻き掛け半径が略一定となる。このようにして、前記ベルト式無段変速機23の変速比が略一定に制御される。また、前記ベルト式無段変速機23の変速比の制御に並行して、そのベルト式無段変速機23のトルク容量も制御される。具体的には、前記ベルト式無段変速機23に入力されるトルクに基づいて、ベルト式無段変速機23のトルク容量が制御される。このベルト式無段変速機23に入力されるトルクは、前記エンジントルクおよび前記動力分配装置4の変速比などに基づいて求めることが可能である。
例えば、前記ベルト式無段変速機23で伝達するべきトルクが高められる場合は、前記セカンダリ油圧室32の油圧が高められる。すると、前記セカンダリプーリ25の溝幅が狭められて、前記セカンダリプーリ25から前記ベルト26に加えられる挟圧力が高められ、ベルト式無段変速機23のトルク容量が高められる。これとは逆に、前記ベルト式無段変速機23で伝達するべきトルクが低下する場合は、前記セカンダリ油圧室32の油圧が低下される。すると、前記セカンダリプーリ25の溝幅が拡大されて、前記セカンダリプーリ25から前記ベルト26に加えられる挟圧力が低下し、ベルト式無段変速機23のトルク容量が低下する。なお、前記セカンダリ油圧室32の油圧を一定に制御すると、前記セカンダリプーリ25の溝幅が一定に維持されて、前記セカンダリプーリ25から前記ベルト26に加えられる挟圧力が一定に維持されて、ベルト式無段変速機23のトルク容量が一定となる。
上記のステップS4についで、前記動力分配装置4を構成する要素の回転数を計算する(ステップS5)。この「動力分配装置4を構成する要素の回転数を計算する」処理が、図1のフローチャートでは「THS目標回転数計算」と示されている。このステップS5の処理を具体的に説明すると、まず、前記リングギヤ7の回転数を、車速と目標変速比γcvtとの積から求める。なお、この具体例では、演算を簡略化するため、前記終減速機の減速比は考慮していない。また、前記キャリヤ9の回転数Ncはエンジン回転数Neと同じである。さらに、サンギヤ6の回転数Nsは、
Ns=((1+ρ)*Nc−Nr)/ρ
で求められる。ここで、ρは、
Zs/Zrで求められる。
ここで、Zsは前記サンギヤ6の歯数であり、Zrは前記リングギヤ7の歯数である。
上記のステップS5についで、前記動力分配装置4を構成する要素の目標トルクを計算する(ステップS6)。この「動力分配装置4を構成する要素の目標トルクを計算する」処理が、図1のフローチャートでは「THS目標トルク計算」と示されている。
具体的には、前記キャリヤ9のトルクTcは、前記エンジントルクTeと同じになる。つまり、Tc=Teで表される。また、前記サンギヤ6のトルクTsは、
Ts=−Tc/(1+1/ρ)
で求められる。ここで、「−Tc」は、前記第1モータ・ジェネレータ10のトルクが回生トルクである場合を想定したものであり、前記第1モータ・ジェネレータ10が力行制御される場合は、「Tc」を用いる。また、第1モータ・ジェネレータ10の基本トルクTmbは、前記変速機13のギヤ比qを考慮して、
Tmb=Ts/q
で表される。前記変速機13のギヤ比qとは、前記サンギヤ14の歯数と前記リングギヤ15の歯数との比である。
上記のようにして求められた前記目標エンジン回転数および目標エンジントルクに基づいて、実エンジン回転数および実エンジントルクが制御される。まず、実エンジン回転数の制御について説明する。前記エンジン2から出力されたトルクは前記トルク伝達軸3を経由して、前記動力分配装置4のキャリヤ9に伝達されるように構成されている。したがって、前記動力分配装置4の変速比を制御することにより、前記実エンジン回転数を制御可能である。この実エンジン回転数の制御を、図3の共線図に基づいて説明する。図3の共線図は、前記動力分配装置4および前記変速機13およびベルト式無段変速機23を構成する要素の回転態を示すものであり、図3の共線図では、縦軸に回転要素の回転数が示されている。図3の共線図において、「正」は正回転であり、「逆」は逆回転である。また、正回転とは、前記クランクシャフトの回転方向と同じ回転方向を意味している。逆回転とは、前記クランクシャフトの回転方向とは逆方向を意味している。この図3の共線図に示すように、前記動力分配装置4においては、前記サンギヤ6と前記リングギヤ7との間に、前記エンジン2が連結されたキャリヤ9が配置されている。また、図3の共線図において、前記変速機13のサンギヤ14と前記リングギヤ15との間に、前記キャリヤ17が配置されている。なお、サンギヤ6とキャリヤ17とは一体回転するように連結されているため、横軸上で同じ位置に配置されている。
前記のように、エンジントルクが前記キャリヤ9に伝達されるとともに、前記第1モータ・ジェネレータ10により、エンジントルクの反力が受け持たれて、前記リングギヤ7からトルクが出力される。ここで図3に破線で示すように、前記第1モータ・ジェネレータ10が正回転している場合において、前記リングギヤ7の回転数を上昇させる向きのトルクを生じさせるためには、前記サンギヤ6の回転数を零に近づける向きのトルクを発生させる。この具体例では、前記第1モータ・ジェネレータ10から前記サンギヤ6に至る動力伝達経路に変速機13が設けられている。そこで、前記第1モータ・ジェネレータ10が破線で示すように正回転している場合は、その第1モータ・ジェネレータ10で回生制御をおこなうと、前記変速機13のキャリヤ17の回転数を低下させる向きのトルクが生じる。このトルクが前記サンギヤ6の回転数を低下させる向きのトルクとなる。このようにして、第1モータ・ジェネレータ10が正回転され、かつ、回生制御がおこなわれて、エンジントルクの反力が受け持たれており、その第1モータ・ジェネレータ10の回転数を制御することにより、前記動力分配装置4を構成する要素同士の差動作用により、前記動力分配装置4の変速比、すなわち、エンジン回転数とリングギヤ7の回転数との比を無段階に制御される。このようにして、前記実エンジン回転数が制御される。これに対して、実エンジントルクを制御する場合は、具体的には、前記電子スロットルバルブの開度、燃料噴射量、燃料噴射時期、点火時期などを制御すればよい。
上記のような各種の処理をおこなった後、第1モータ・ジェネレータ(MG1)10のトルクのフィードバック制御量(FB量)が計算され、かつ、第1モータ・ジェネレータ10の最終出力トルクが計算される(ステップS7)。まず、第1モータ・ジェネレータ10のトルクのフィードバック制御量(FB量)の計算について説明する。前記第1モータ・ジェネレータ10の回転数を、目標回転数「零」rpmに積分フィードバック制御するために、積分項(トルク)Tmfbを計算する。ここで、「回転数「零」rpm」とは回転要素の停止を意味している。この処理は、図1のフローチャートでは、
Tmfb=Tmfb−K2*Ns
で示されている。ここで、サンギヤ6の回転数Nsが正回転で「零」rpmを越えている場合は、前記第1モータ・ジェネレータ10が正回転し、かつ、回生制御されていることを意味しており、フィードバック制御により、第1モータ・ジェネレータ10の回生トルクが増加されて、第1モータ・ジェネレータ10の回転数が「零」rpmに近づけられる。これに対して、一点鎖線で示すように前記第1モータ・ジェネレータ10が逆回転しており、前記サンギヤ6の回転数Nsが「零」rpmよりも少ない(逆回転)場合は、前記第1モータ・ジェネレータ10が逆回転し、かつ、力行制御されることを意味しており、フィードバック制御により、第1モータ・ジェネレータ10の力行トルクが低下されて、第1モータ・ジェネレータ10の回転数が「零」rpmに近づけられる。
つぎに、ステップS7でおこなわれる「第1モータ・ジェネレータ(MG1)の最終出力トルクの計算」を説明する。この第1モータ・ジェネレータ10の最終出力トルクTmは、
Tm=Tmb+Tmfb
で求められる。すなわち、前述した基本モータトルクTmbおよび積分項(トルク)Tmfbに基づいて、第1モータ・ジェネレータ10の最終出力トルクTmが計算される。なお、基本モータトルクTmbは、前記エンジン2の運転状態を最適燃費線軌跡に沿って制御する場合に、第1モータ・ジェネレータ10の回転数を制御する場合に用いるトルクである。そして、第1モータ・ジェネレータ10の最終出力トルクTmに相当する制御信号を出力し(ステップS8)、図1の制御ルーチンを終了する。なお、上記のように、前記第1モータ・ジェネレータ10の回転数を「零」rpmとする制御と並行して、エンジン回転数を略一定に維持する制御、または、エンジン回転数を変化させる制御のいずれを選択してもよい。これらの処理は、前記ステップS3でおこなうことができる。また、前記第1モータ・ジェネレータ10の回転数を「零」rpmとする制御と並行して、車速が変化しないように、前記ベルト式無段変速機23の変速比を制御すること、前記ベルト式無段変速機23の変速比を一定に制御して、車速を変化させることなどの制御を実行可能である。このベルト式無段変速機23の変速比の制御も、前記ステップS3で実行可能である。
以上のように、図1の制御例をおこなうことにより、図3の共線図に実線で示すように、第1モータ・ジェネレータ10の回転数が「零」rpm(停止)となる。つまり、第1モータ・ジェネレータ10はトルクを発生しているが、回転数が「零」rpmであるために、第1モータ・ジェネレータ10の出力は零(kw)となり、第1モータ・ジェネレータ10に接続された電気回路を電力が流通することを防止できる。特に、前記第2モータ・ジェネレータ19で回生制御をおこない、発生した電力を前記第1モータ・ジェネレータ10に供給して、その第1モータ・ジェネレータ10が逆回転し、かつ、力行制御されてエンジントルクの反力を受け持つ場合のように、動力循環が発生することもなく、前記エンジン2から前記車輪22に至る動力伝達経路における動力伝達効率が向上するとともに、前記エンジン2の燃費が向上する。すなわち、エンジンパワーが全て機械的な運動エネルギに変換されて車輪に伝達される。
ここで、エンジンパワーPeは、
Pe=Te*Ne(kw)
で表される。また、第1モータ・ジェネレータ10の回転数を「零」rpmに制御すると、第1モータ・ジェネレータ10のパワーPmg1は、
Pmg1=Tmg1*Nmg1=零(kw)
で表される。さらに、第2モータ・ジェネレータ19の回転数を「零」rpmに制御すると、第2モータ・ジェネレータ19のパワーPmg2は、
Pmg2=Pmg1*MG2効率=零(kw)
で表される。さらに、アクスルシャフト34のパワーは、
Pe*メカ効率(kw)
で表される。メカ効率とは、前記エンジン2からアクスルシャフト34に至る動力伝達経路における機械的な動力伝達効率であり、ギヤ同士の噛み合い部分、回転要素の軸受部分における摩擦抵抗などを考慮して求められる。
また、図1の制御例によれば、前記第1モータ・ジェネレータ10が回生制御も力行制御もおこなわないため、その第1モータ・ジェネレータ10の温度上昇を抑制でき、この第1モータ・ジェネレータ10を冷却する冷却装置を簡略化することができる。また、前記第1モータ・ジェネレータ10を低出力化することが可能であり、第1モータ・ジェネレータ10の体格を小型化することができる。さらに、前記変速機13は、前記リングギヤ15が固定されているため、前記第1モータ・ジェネレータ10の回転数よりも、前記変速機13の出力要素であるキャリヤ17の回転数の方が低回転数となる。すなわち、前記変速機13が減速機として機能するため、第1モータ・ジェネレータ10から動力分配装置4に伝達されるトルクが増幅されて、第1モータ・ジェネレータ10を低トルク化することが可能である。
上記の説明では、前記第2モータ・ジェネレータ19の制御について述べられていないが、目標エンジントルクに対して実エンジントルクが不足する場合は、前記第2モータ・ジェネレータ19に電力を供給して力行制御することにより、車両1の駆動力が低下することを抑制できる。この場合、その第2モータ・ジェネレータ19から出力されるトルクを考慮して、前記ベルト式無段変速機23に入力されるトルクが求められ、かつ、ベルト式無段変速機23のトルク容量が制御される。
ところで、図1の制御例は、車両1に対して加速要求が発生している場合、または制動要求が発生している場合のいずれにおいても実行可能である。また、前記ベルト式無段変速機23の変速比が「1」である場合、または変速比が「1」を越えている場合、または変速比が「1」未満である場合のいずれにおいても、実行可能である。さらに、前記ベルト式無段変速機23の変速比が一定である場合、またはアップシフト中である場合、またはダウンシフト中である場合のいずれにおいても実行可能である。また、車速が略一定である場合、または車速が低下中である場合、車速が上昇中である場合のいずれにおいても、図1の制御例を実行可能である。特に、車両1が惰力走行している場合にステップS6およびステップS6の処理を実行すると有効である。すなわち、車両1が惰力走行するとは、アクセルペダルの操作に関わりなく、慣性エネルギにより車両1が走行している状態である。言い換えれば、車輪22の動力が前記ベルト式無段変速機23に伝達されている状態である。そして、前記車両1が惰力走行している場合に、惰力走行する車両1の運動エネルギを前記第2モータ・ジェネレータ19に伝達するとともに、その第2モータ・ジェネレータ19で回生制御をおこない、発生した電力を前記蓄電装置38に充電する制御を実行可能である。この時、エンジン回転数が一定であるとすれば、第1モータ・ジェネレータ10の回転数を「零」rpmに制御すると、前記第2モータ・ジェネレータ19の回転数が上昇し、回生効率が向上する。また、この制御と並行して、ステップS7において、前記ベルト式無段変速機23の変速比を制御することにより、車速が急激に変化(特に上昇)しないようにすれば、ドライバーが違和感を持つことを回避できる。
ここで、図1に示された機能的手段と、この発明の構成との対応関係を説明すると、ステップS3ないしS7が、この発明の変速比制御手段に相当する。また、図2に示された構成と、この発明の構成との対応関係を説明すると、キャリヤ9が、この発明の入力要素に相当し、サンギヤ6が、この発明の反力要素に相当し、リングギヤ7が、この発明の出力要素に相当し、ベルト式無段変速機23が、この発明における無段変速機に相当し、変速機13が、この発明の変速機および減速機に相当する。なお、図2に示されたパワートレーンは、二輪駆動車であるが、この発明は、四輪駆動車にも適用可能である。すなわち、無段変速機の出力側にトランスファーを設け、そのトランスファーから前輪および後輪に動力分配するように構成することが可能である。
この発明の駆動制御装置でおこなわれる制御例を示すフローチャートである。 この発明の駆動制御装置を有する車両の概念図である。 図2に示された車両の動力分配装置および変速機の回転要素の状態を示す共線図である。
符号の説明
1…車両、 2…エンジン、 4…動力分配装置、 6…サンギヤ、 7…リングギヤ、 8…ピニオンギヤ、 9…キャリヤ、 10…第1モータ・ジェネレータ、 13…変速機、 19…第2モータ・ジェネレータ、 22…車輪、 23…ベルト式無段変速機、 39…電子制御装置、 40…電気回路。

Claims (3)

  1. 車両の車輪に伝達するトルクを発生するエンジンと、電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な第1モータ・ジェネレータと、相互に差動回転可能な入力要素および反力要素および出力要素を有する動力分配装置とを有し、前記エンジンが前記入力要素に動力伝達可能に接続され、前記第1モータ・ジェネレータが前記反力要素に動力伝達可能に接続されており、前記出力要素から前記車輪に至る動力伝達経路に、入力回転数と出力回転数との間の変速比を無段階に変更可能な無段変速機が設けられており、前記第1モータ・ジェネレータの出力を制御することにより、前記入力要素と前記出力要素との間の変速比を制御可能な駆動制御装置において、
    前記第1モータ・ジェネレータから前記反力要素に至る動力伝達経路に、前記第1モータ・ジェネレータの回転数と前記反力要素の回転数との間の変速比を変更可能な変速機が設けられており、
    前記車両の走行中に、前記エンジントルクの反力を受け持つ前記第1モータ・ジェネレータの回転を停止させるように、前記変速機の変速比を制御する変速比制御手段を有していることを特徴とする駆動制御装置。
  2. 前記変速機は、前記第1モータ・ジェネレータの回転数と前記反力要素の回転数との間の変速比が「1」よりも大である構成の減速機であることを特徴とする請求項1に記載の駆動制御装置。
  3. 前記出力要素から前記車輪に至る動力伝達経路に、前記電気エネルギを運動エネルギに変換する力行制御および運動エネルギを電気エネルギに変換する回生制御をおこなうことの可能な第2モータ・ジェネレータが接続されており、前記第1モータ・ジェネレータと前記第2モータ・ジェネレータとの間で電力の授受をおこなうことの可能な電気回路が設けられており、
    前記変速比制御手段は、前記車両が惰力走行する場合の運動エネルギを前記第2モータ・ジェネレータに伝達して、その第2モータ・ジェネレータで回生制御をおこなう場合に、前記エンジントルクの反力を受け持つ前記第1モータ・ジェネレータの回転を停止させるように、前記変速機の変速比および前記無段変速機の変速比を制御する手段を含むことを特徴とする請求項1または2に記載の駆動制御装置。
JP2007059920A 2007-03-09 2007-03-09 駆動制御装置 Pending JP2008221919A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059920A JP2008221919A (ja) 2007-03-09 2007-03-09 駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059920A JP2008221919A (ja) 2007-03-09 2007-03-09 駆動制御装置

Publications (1)

Publication Number Publication Date
JP2008221919A true JP2008221919A (ja) 2008-09-25

Family

ID=39841039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059920A Pending JP2008221919A (ja) 2007-03-09 2007-03-09 駆動制御装置

Country Status (1)

Country Link
JP (1) JP2008221919A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016739A (ja) * 2013-07-10 2015-01-29 日野自動車株式会社 ハイブリッド車両の駆動装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016739A (ja) * 2013-07-10 2015-01-29 日野自動車株式会社 ハイブリッド車両の駆動装置

Similar Documents

Publication Publication Date Title
KR100969983B1 (ko) 하이브리드구동장치 및 그 제어방법
JP4069941B2 (ja) 車両用駆動装置の制御装置
JP4169081B1 (ja) 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP4063295B2 (ja) ハイブリッド車用駆動装置の制御装置
JP4501814B2 (ja) ハイブリッド車の制御装置
JP2005329842A (ja) ハイブリッド車のドライブトレーン
CN111434548B (zh) 车辆的变速控制装置
JP2007118721A (ja) 車両用駆動装置の制御装置
JP2018529568A (ja) 連続可変機械式トランスミッションとして使用されるボールバリエータを有するハイブリッド電気パワートレイン構成
JP2007326422A (ja) ハイブリッド駆動装置
JP4961713B2 (ja) ハイブリッド駆動装置の制御装置
JP2015024764A (ja) 動力伝達装置
JP4325608B2 (ja) 駆動装置の制御装置
JP4793278B2 (ja) 車両およびその制御方法
JP4151514B2 (ja) ハイブリッド車の駆動装置
JP4919848B2 (ja) 車両およびその制御方法
JP4877212B2 (ja) ハイブリッド車の制御装置
JP2008221919A (ja) 駆動制御装置
JP2013001201A (ja) 車両用駆動装置の制御装置
JP4978441B2 (ja) ハイブリッド車の制御装置
JP4151722B2 (ja) ハイブリッド車の駆動装置
JP4864744B2 (ja) 動力出力装置およびその制御方法並びに車両および駆動装置
JP2008179290A (ja) 動力出力装置およびその制御方法並びに車両
JP2009132187A (ja) ハイブリッド車の制御装置
JP2009132189A (ja) ハイブリッド車の制御装置