JP2008219295A - オフセット補正回路 - Google Patents

オフセット補正回路 Download PDF

Info

Publication number
JP2008219295A
JP2008219295A JP2007051966A JP2007051966A JP2008219295A JP 2008219295 A JP2008219295 A JP 2008219295A JP 2007051966 A JP2007051966 A JP 2007051966A JP 2007051966 A JP2007051966 A JP 2007051966A JP 2008219295 A JP2008219295 A JP 2008219295A
Authority
JP
Japan
Prior art keywords
offset
correction
circuit
signal
instruction signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007051966A
Other languages
English (en)
Other versions
JP4859710B2 (ja
Inventor
Takashi Kakiuchi
隆 柿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007051966A priority Critical patent/JP4859710B2/ja
Publication of JP2008219295A publication Critical patent/JP2008219295A/ja
Application granted granted Critical
Publication of JP4859710B2 publication Critical patent/JP4859710B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】本発明は、追加の容量素子を設けることなくオフセット補正時間を短縮できるオフセット補正回路を提供することを目的とする。
【解決手段】オフセット補正回路は、第1の周波数のクロック信号に同期して変化する第1の補正指示信号を生成する第1の補正指示信号発生回路と、第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を生成する第2の補正指示信号発生回路と、通常モード時に第1の補正指示信号の変化に応答して容量素子への充放電を行うことにより、容量素子の電荷量の変化により補正対象回路へのオフセット補正入力電圧を変化させるとともに、高速モード時に少なくとも第2の補正指示信号の変化に応答して容量素子への充放電を行うことにより、容量素子の電荷量の変化により補正対象回路へのオフセット補正入力電圧を変化させるオフセット補正信号発生回路を含む。
【選択図】図4

Description

本発明は、一般に増幅器に関し、詳しくは増幅器のオフセットを補正するオフセット補正回路に関する。
演算増幅器を用いた増幅器においては、オフセット電圧が入力信号に重畳される。従って、増幅器に利得がある場合には、入力信号に重畳されたオフセット電圧も利得分増幅される。
増幅器の出力が圧伸則を有する符号化器に接続される場合には、小信号入力時にオフセットの影響が顕著に現れる。従ってこのような場合、オフセットを検出し、検出結果に応じてオフセットをキャンセルする入力を増幅器に与え、オフセットの影響を低減することが必要となる。このようにフィードバック制御する構成とすれば、温度変化や電圧変動等によって増幅器のオフセットが変動しても、出力にオフセットが現れないようにすることができる。
電源投入時等における増幅器の動作開始直後では、オフセット補正機能がまだ働いていないために、大きなオフセットが発生している場合が多い。このように大きなオフセットが存在すると、オフセット補正機能のフィードバック制御によりオフセットをキャンセルするまでに、長い時間がかかる。従って増幅器の動作開始時の暫くの間、正しい動作が期待できなくなってしまう。
この問題を解消するために、1回の補正動作によるオフセット補正量を動作開始時において増大させる等の措置をとることにより、オフセットがキャンセルされるまでの時間を短縮する技術がある(特許文献1参照)。
図1は、従来のオフセット補正回路の構成を示すブロック図である。図1に示すオフセット補正回路は、補正対象回路である被オフセット補正回路11、被オフセット補正回路11の出力のオフセットを検出してオフセット検出信号を出力するオフセット検出回路12、オフセット検出回路12が出力するオフセット検出信号に応じて補正指示信号を生成する補正指示信号発生回路13、及び補正指示信号に応じて被オフセット補正回路11へのオフセット補正入力電圧を変化させるオフセット補正信号発生回路14を含む。
図2は、図1のオフセット補正回路の回路構成の一例を示す。被オフセット補正回路11は、アンプ21及び抵抗素子22乃至24を含む。オフセット検出回路12は、コンパレータ25を含む。補正指示信号発生回路13は、カウンタ26とAND回路27を含む。オフセット補正信号発生回路14は、アンプ28、容量値C1の容量素子29、容量値C21の容量素子30、容量値C22の容量素子31、フリップフロップ(FF)32、及びスイッチSW1乃至SW3を含む。
被オフセット補正回路11において、アンプ21と、アンプ21の反転入力と入力端子INとの間に接続される抵抗素子22と、アンプ21の反転入力と出力端子OUTとの間に接続される抵抗素子23とで、反転増幅器を構成する。またオフセット補正信号発生回路14のアンプ28の出力OFが、抵抗素子24を介してアンプ21の反転入力に結合される。この結合により、オフセット補正信号発生回路14の出力OFが、オフセット補正入力電圧として被オフセット補正回路11に供給される。反転増幅器は、入力電圧とOFとの和を反転増幅して出力する。
オフセット検出回路12のコンパレータ25は、被オフセット補正回路11の出力電圧とシグナルグランドSGとを比較して、比較結果であるオフセット検出信号Pを出力する。オフセット検出信号Pは、出力電圧がシグナルグランドSGより高いときにHIGHになり、出力電圧がシグナルグランドSGより低いときにLOWになる。
補正指示信号発生回路13のカウンタ26は、オフセット検出信号PがHIGHの時にクロック信号CK8Kに同期したカウントアップ動作を行い、オフセット検出信号PがLOWの時にクロック信号CK8Kに同期したカウントダウン動作を行う。カウントアップによりカウント値が最大値に到達するか又はカウントダウンによりカウント値が最小値に到達すると、リップルキャリー出力RCがLOWからHIGHに変化する。このリップルキャリー出力RCはカウンタ26のリセット入力RSTに入力されており、リップルキャリー出力RCのHIGH状態によりカウンタ26はリセットされて計数可能範囲の中間値に設定される。
またリップルキャリー出力RCがHIGH状態になると、AND回路27はクロック信号CK8KのLOWパルス期間において補正指示信号CORをHIGHにする。補正指示信号発生回路13から出力されるこの補正指示信号CORは、オフセット補正信号発生回路14のスイッチSW1に供給され、スイッチSW1の接続状態を制御する。また補正指示信号発生回路13は、カウンタ26のリップルキャリー出力RCを、オフセット補正信号発生回路14のフリップフロップ32に取り込みトリガ信号として供給する。
オフセット補正信号発生回路14のフリップフロップ32は、補正指示信号発生回路13から供給されるリップルキャリー出力RCのHIGHへの変化に応答して、オフセット検出回路12から供給されるオフセット検出信号Pを取り込む。フリップフロップ32の出力はスイッチ制御信号SとしてスイッチSW2に供給され、スイッチSW2の接続状態を制御する。スイッチSW2は、スイッチ制御信号SがHIGHのとき(プラスのオフセット状態のとき)に電源電圧VD側に接続され、スイッチ制御信号SがLOWのとき(マイナスのオフセット状態のとき)にグランド電圧VS側に接続される。
モード指示信号MODEが通常モードを示すときには、オフセット補正信号発生回路14のスイッチSW3は容量素子30側に接続される。モード指示信号MODEが高速モードを示すときには、オフセット補正信号発生回路14のスイッチSW3は容量素子31側に接続される。
例えば通常モード時において、補正指示信号CORがLOWの状態でスイッチSW1がスイッチSW2側に接続され、その時のオフセット状態(プラスのオフセット状態かマイナスのオフセット状態)に応じた極性で、容量素子30に電荷が充電される。即ち、プラスのオフセット状態の時には容量素子30のスイッチSW3側の端子がシグナルグランドSGよりも高い電圧となるように電荷が蓄積される。またマイナスのオフセット状態の時には容量素子30のスイッチSW3側の端子がシグナルグランドSGよりも低い電圧となるように電荷が蓄積される。シグナルグランドSGが電源電圧VDとグランド電圧VSとの丁度中間にあるとすると、容量素子30に蓄積される電荷量Q1は、
Q1=±C21×SG
となる。
補正指示信号CORがクロック信号CK8KのLOWパルスの期間だけHIGHになると、スイッチSW1はその期間だけアンプ28の入力側に接続される。これにより、容量素子30に蓄積された電荷が放電されて容量素子29に移動する。これによるアンプ28の出力電圧OFの変化、即ち一度のオフセット補正動作(容量素子30の一回の充放電)によるオフセット補正電圧の変化量ΔOFは、
ΔOF=±C21×SG/C1
となる。
高速モード時には、スイッチSW3が容量素子31側に接続され、容量素子31がオフセット補正動作に使用される。従って、高速モード時に、一度のオフセット補正動作(容量素子31の一回の充放電)によるオフセット補正電圧の変化量ΔOFは、
ΔOF=±C22×SG/C1
となる。容量素子31の容量C22を容量素子30の容量C21よりも十分に大きくしておくことで、十分に高速なオフセット補正動作を実現することが可能となる。
図3は、上記説明した図2のオフセット補正回路の動作における各信号の変化の一例を示す図である。
この例ではカウンタ26として、リセット時にカウント値CNTが10000(10h)となる5ビットのアップ/ダウンカウンタを使用している。例えば8kHzのクロック信号CK8Kにより、125μs毎にカウント値CNTのアップ/ダウンが行われる。オフセット検出信号PがHIGHの場合にはカウント値CNTを増加させ、オフセット検出信号PがLOWの場合はカウント値CNTを減少させる。オフセット検出信号PがHIGHの状態でカウント値CNTが11110(1Eh)のとき、又はオフセット検出信号PがLOWの状態でカウント値CNTが00001(01h)のとき、クロック信号CK8Kの次の立ち上りでカウンタ26のリップルキャリーRCがHIGHとなる。それに続くクロックのLOW期間において、補正指示信号CORがHIGHとなる。この補正指示信号CORのHIGH状態により、スイッチSW1がアンプ28の入力側に接続され、オフセット補正動作が実行される。更に次のクロックにおいてカウント値CNTはリセットされ初期値の10000(10h)に戻り、補正指示信号CORはLOWとなり、スイッチSW1がスイッチSW2側に接続される。
オフセット検出信号PをリップルキャリーRCの立ち上がりでフリップフロップ32に取り込むことにより、スイッチ制御信号SがHIGH又はLOWに設定される。このスイッチ制御信号SのHIGH又はLOWに応じて、スイッチSW2がVD側に接続されるかVS側に接続されるかが制御される。図3はモード指示信号MODEが通常モードを示す場合の動作を示してあり、スイッチSW3は容量C21の容量素子30を選択している。容量C21の容量素子30には、図示されるように、スイッチSW2の状態に応じた極性の電荷が蓄積される。
図1乃至図3で説明した従来のオフセット補正回路では、オフセット補正時間を短縮するために、大きな容量値を有する電荷充電用容量31を設ける必要がある。容量素子は比較的大きな回路面積を必要とするので、近年の超微細化テクノロジー時代においてはコストへの影響が大きい。従って、容量素子はできるだけ使用しないことが望ましい。
特開平5−183437号公報 特開昭62−290216号公報 特開昭59−191930号公報
以上を鑑みて、本発明は、追加の容量素子を設けることなくオフセット補正時間を短縮できるオフセット補正回路を提供することを目的とする。
オフセット補正回路は、補正対象回路の出力のオフセットを検出してオフセット検出信号を出力するオフセット検出回路と、該オフセット検出信号に応じて第1の周波数のクロック信号に同期して変化する第1の補正指示信号を生成する第1の補正指示信号発生回路と、高速動作モード時に該オフセット検出信号に応じて該第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を生成する第2の補正指示信号発生回路と、該高速動作モードでない場合に該第1の補正指示信号の変化に応答して容量素子への充放電を行うことにより、該充放電動作に伴う該容量素子の電荷量の変化により該補正対象回路へのオフセット補正入力電圧を変化させるとともに、該高速動作モードの場合に少なくとも該第2の補正指示信号の変化に応答して該容量素子への充放電を行うことにより、該充放電動作に伴う該容量素子の電荷量の変化により該補正対象回路へのオフセット補正入力電圧を変化させるオフセット補正信号発生回路を含むことを特徴とする。
本発明の少なくとも一つの実施例によれば、高速動作モード時には第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を用いることにより、容量素子の充放電動作を通常動作時よりも高い周波数でより頻繁に実行する。従って、高速動作モード時と通常動作モード時とで同一の容量素子を用いながらも、高速動作モード時には高速にオフセット補正入力電圧を変化させることができる。これにより追加の容量素子を不用として、集積回路のコストを削減することができる。
以下に、本発明の実施例を添付の図面を用いて詳細に説明する。
図4は、本発明によるオフセット補正回路の実施例の構成を示すブロック図である。図4に示すオフセット補正回路は、補正対象回路である被オフセット補正回路51、被オフセット補正回路51の出力のオフセットを検出してオフセット検出信号を出力するオフセット検出回路52、第1の補正指示信号発生回路53、第2の補正指示信号発生回路54、及びオフセット補正信号発生回路55を含む。
第1の補正指示信号発生回路53は、オフセット検出信号に応じて第1の周波数のクロック信号に同期して変化する第1の補正指示信号を生成する。第2の補正指示信号発生回路54は、高速動作モード時に動作し、オフセット検出信号に応じて第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を生成する。
オフセット補正信号発生回路55は、高速動作モードでない場合に第1の補正指示信号の変化に応答して容量素子への充放電を行うことにより、充放電動作に伴う容量素子の電荷量の変化により被オフセット補正回路51へのオフセット補正入力電圧を変化させる。オフセット補正信号発生回路55は更に、高速動作モードの場合に、少なくとも第2の補正指示信号の変化に応答して上記容量素子への充放電を行うことにより、充放電動作に伴う容量素子の電荷量の変化により被オフセット補正回路51へのオフセット補正入力電圧を変化させる。
上記構成では、高速動作モード時には第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を用いることにより、容量素子の充放電動作を通常動作時よりも高い周波数でより頻繁に実行する。従って、高速動作モード時と通常動作モード時とで同一の容量素子を用いながらも、高速動作モード時には高速にオフセット補正入力電圧を変化させることができる。
なお第1の補正指示信号発生回路53は、通常動作モード時だけでなく高速動作モード時においても動作させてよい。この場合、高速動作モード時には第1の補正指示信号発生回路53からの第1の補正指示信号と第2の補正指示信号発生回路54からの第2の補正指示信号とが、両方ともオフセット補正動作に使用されることになる。
図5は、図4のオフセット補正回路の回路構成の一例を示す図である。被オフセット補正回路51は、アンプ61及び抵抗素子62乃至64を含む。オフセット検出回路52は、コンパレータ65及び66、XNOR回路67、及び抵抗素子68乃至71を含む。第1の補正指示信号発生回路53は、カウンタ72とAND回路73及び74を含む。第2の補正指示信号発生回路54は、シフトレジスタ(SR)75、AND回路76、NOR回路77、OR回路78、AND回路79、及びフリップフロップ(FF)80を含む。オフセット補正信号発生回路55は、アンプ81、容量値C1の容量素子82、容量値C2の容量素子83、OR回路84、OR回路85、フリップフロップ(FF)86、抵抗値R1の抵抗素子87、抵抗値R2の抵抗素子88、抵抗値R3の抵抗素子89、抵抗値R4の抵抗素子90、及びスイッチSW1及びSW2を含む。
被オフセット補正回路51において、アンプ61と、アンプ61の反転入力と入力端子INとの間に接続される抵抗素子62と、アンプ61の反転入力と出力端子OUTとの間に接続される抵抗素子63とで、反転増幅器を構成する。またオフセット補正信号発生回路55のアンプ81の出力OFが、抵抗素子64を介してアンプ61の反転入力に結合される。この結合により、オフセット補正信号発生回路55の出力OFが、オフセット補正入力電圧として被オフセット補正回路51に供給される。反転増幅器は、入力電圧とOFとの和を反転増幅して出力する。
オフセット検出回路52のコンパレータ65は、被オフセット補正回路51の出力電圧と第1の参照電圧とを比較して、その比較結果を示す出力をXNOR回路67に供給する。比較結果は、出力電圧が第1の参照電圧より高いときにHIGHになり、出力電圧が第1の参照電圧より低いときにLOWになる。ここで第1の参照電圧は、電源電圧VDとシグナルグランドSGとの間を抵抗素子68及び69により所定の割合で分割した電圧である。
同様に、オフセット検出回路52のコンパレータ66は、被オフセット補正回路51の出力電圧と第2の参照電圧とを比較して、その比較結果を示す出力をXNOR回路67に供給する。比較結果は、出力電圧が第2の参照電圧より高いときにHIGHになり、出力電圧が第2の参照電圧より低いときにLOWになる。ここで第2の参照電圧は、シグナルグランドSGとグランド電圧VSとの間を抵抗素子70及び71により所定の割合で分割した電圧である。
XNOR回路67の出力ENは、コンパレータ65からの出力とコンパレータ66からの出力とが両方ともにHIGHの場合又は両方ともにLOWの場合に、HIGHになる。コンパレータ65からの出力とコンパレータ66からの出力とが一致しない場合には、XNOR回路67の出力ENはLOWとなる。この出力ENは、イネーブル信号として第1の補正指示信号発生回路53及び第2の補正指示信号発生回路54に供給される。
上記第1の参照電圧はシグナルグランド電圧SGより僅かに高い電圧SG+ΔVであり、第2の参照電圧はシグナルグランド電圧SGより僅かに低い電圧SG−ΔVである。被オフセット補正回路51の出力信号が第1の参照電圧と第2の参照電圧との間にある場合、オフセット検出回路52は、イネーブル信号ENをLOWにしてオフセット補正制御を実行しない。被オフセット補正回路51の出力信号が第1の参照電圧から第2の参照電圧までの電圧範囲の外にある場合、オフセット検出回路52は、イネーブル信号ENをHIGHにしてオフセット補正制御を実行する。またオフセット検出回路52は、コンパレータ66の出力をオフセット検出信号Pとして出力する。
上記のように、オフセット検出回路52はオフセットが所定の閾値以上(SG±ΔVの範囲外)であるか以下(SG±ΔVの範囲内)であるかを示すイネーブル信号ENを出力するように構成され、例えば第1の補正指示信号発生回路53はオフセットが所定の閾値以下であることをイネーブル信号ENが示す場合には動作しないよう構成される。これにより無信号時における不必要なオフセット補正制御動作に伴う雑音の発生を抑制することができる。
第1の補正指示信号発生回路53のカウンタ72は、オフセット検出回路52からのイネーブル信号ENがHIGHであり且つモード指示信号MODEが通常動作モードを示すLOWであるときに、カウント動作を実行する。このカウンタ72は、オフセット検出信号PがHIGHの時にクロック信号CK8Kに同期したカウントアップ動作を行い、オフセット検出信号PがLOWの時にクロック信号CK8Kに同期したカウントダウン動作を行う。カウントアップによりカウント値が最大値に到達するか又はカウントダウンによりカウント値が最小値に到達すると、リップルキャリー出力RCがLOWからHIGHに変化する。このリップルキャリー出力RCはカウンタ72のリセット入力RSTに入力されており、リップルキャリー出力RCのHIGH状態によりカウンタ72はリセットされて計数可能範囲の中間値に設定される。
またリップルキャリー出力RCがHIGH状態になると、AND回路74はクロック信号CK8KのLOWパルス期間において第1の補正指示信号COR1をHIGHにする。第1の補正指示信号発生回路53から出力されるこの第1の補正指示信号COR1は、オフセット補正信号発生回路55のOR回路84を介してスイッチSW1に供給され、スイッチSW1の接続状態を制御する。また第1の補正指示信号発生回路53は、カウンタ72のリップルキャリー出力RCを、オフセット補正信号発生回路55のOR回路85を介してフリップフロップ86に取り込みトリガ信号として供給する。
第2の補正指示信号発生回路54のシフトレジスタ75は、オフセット検出回路52からのイネーブル信号ENがHIGHのときにリセット解除されて動作をする。このシフトレジスタ75は、クロック信号CK8Kに同期して動作し、オフセット検出回路52からのオフセット検出信号Pをデータ入力として取り込み、複数の従属接続された内部レジスタ内を順次伝搬させていく。AND回路76は、シフトレジスタ75の全ての内部レジスタの格納値が"1"になると、その出力AL1をHIGHにする。NOR回路77は、シフトレジスタ75の全ての内部レジスタの格納値が"0"になると、その出力AL0をHIGHにする。これにより、所定期間連続してオフセット検出信号PがHIGHである場合又は所定期間連続してオフセット検出信号PがLOWである場合に、OR回路78の出力がHIGHになる。
AND回路79は、OR回路78の出力と、クロック信号CK64Kと、モード指示信号MODEとの論理積をとる。これによりAND回路79の出力は、所定期間連続してオフセット検出信号PがHIGH又はLOWの一方に固定であり且つモード指示信号MODEが高速動作モードを示すHIGHである場合に、クロック信号CK64Kに同期してHIGH/LOWを交互に繰り返す信号となる。このAND回路79の出力は、制御信号S2として第2の補正指示信号発生回路54から出力され、オフセット補正信号発生回路55のOR回路85を介してフリップフロップ86に取り込みトリガ信号として供給される。
またAND回路79の出力は、クロック信号CK64Kの立ち下りに応答して取り込み動作するフリップフロップ80により、クロック信号CK64KのLOW期間においてHIGHとなる信号に変換され、第2の補正指示信号COR2として第2の補正指示信号発生回路54から出力される。第2の補正指示信号発生回路54から出力されるこの第2の補正指示信号COR2は、オフセット補正信号発生回路55のOR回路84を介してスイッチSW1に供給され、スイッチSW1の接続状態を制御する。
ここでクロック信号CK8Kは周波数が例えば8kHzのクロック信号であり、クロック信号CK64Kは周波数が例えば64kHzのクロック信号である。従って、第2の補正指示信号COR2は、第1の補正指示信号COR1よりも高い周波数でHIGH/LOWを交互に繰り返す信号となる。なお図5に示す構成例では、第1の補正指示信号COR1は、カウンタ72が最大値又は最小値に到達したときにのみクロック信号CK8Kに同期して出力されるので、クロック信号CK8Kの周波数よりも更に低い周波数の信号となっている。それに対して第2の補正指示信号COR2は、クロック信号CK64Kに完全に同期してHIGH/LOWを繰り返すので、クロック信号CK64Kの周波数に等しい周波数の信号となっている。
オフセット補正信号発生回路55のフリップフロップ86は、第1の補正指示信号発生回路53から供給されるリップルキャリー出力RCのHIGHへの変化又は第2の補正指示信号発生回路54から供給される制御信号S2のHIGHへの変化に応答して、オフセット検出回路52から供給されるオフセット検出信号Pを取り込む。フリップフロップ86の出力はスイッチ制御信号SとしてスイッチSW2に供給され、スイッチSW2の接続状態を制御する。スイッチSW2は、スイッチ制御信号SがHIGHのとき(プラスのオフセット状態のとき)に端子CP側に接続され、スイッチ制御信号SがLOWのとき(マイナスのオフセット状態のとき)に端子CN側に接続される。
ここで端子CPには、電源電圧VDとシグナルグランド電圧SGとの間を抵抗素子87及び88によりR1:R2の比率で分割した電圧が供給される。また端子CNには、シグナルグランド電圧SGとグランド電圧(電源グランド)VSとの間を抵抗素子89及び90によりR3:R4の比率で分割した電圧が供給される。この抵抗列による電圧分割の意味については後ほど説明する。
モード指示信号MODEが通常動作モードを示すときには、第1の補正指示信号発生回路53からのリップルキャリー出力RC及び第1の補正指示信号COR1に基づいて、オフセット補正信号発生回路55がオフセット補正動作を実行する。またモード指示信号MODEが高速動作モードを示すときには、第2の補正指示信号発生回路54からの制御信号S2及び第2の補正指示信号COR2に基づいて、オフセット補正信号発生回路55がオフセット補正動作を実行する。
通常動作モード時において、第1の補正指示信号COR1がLOWの状態でスイッチSW1がスイッチSW2側に接続され、その時のオフセット状態(プラスのオフセット状態かマイナスのオフセット状態)に応じた極性で、容量素子83に電荷が充電される。即ち、プラスのオフセット状態の時には容量素子83のスイッチSW1側の端子がシグナルグランドSGよりも高い電圧となるように電荷が蓄積される。またマイナスのオフセット状態の時には容量素子83のスイッチSW1側の端子がシグナルグランドSGよりも低い電圧となるように電荷が蓄積される。端子CPの電圧がシグナルグランド電圧SGよりΔVchargeだけ高く、また端子CNの電圧がシグナルグランド電圧SGよりΔVchargeだけ低いとすると、容量素子83に蓄積される電荷量Q1は、
Q1=±C2×ΔVcharge
となる。
第1の補正指示信号COR1がクロック信号CK8KのLOWパルスの期間だけHIGHになると、スイッチSW1はその期間だけアンプ81の入力側に接続される。これにより、容量素子83に蓄積された電荷が放電されて容量素子82に移動する。これによるアンプ81の出力電圧OFの変化、即ち一度のオフセット補正動作(容量素子83の一回の充放電)によるオフセット補正電圧の変化量ΔOFは、
ΔOF=±C2×ΔVcharge/C1
となる。
高速動作モード時には、クロック信号CK24KのHIGHパルスの期間において第2の補正指示信号COR2がLOWになると、スイッチSW1がスイッチSW2側に接続され、その時のオフセット状態(プラスのオフセット状態かマイナスのオフセット状態)に応じた極性で、容量素子83に電荷が充電される。第2の補正指示信号COR2がクロック信号CK64KのLOWパルスの期間においてHIGHになると、スイッチSW1はその期間だけアンプ81の入力側に接続される。これにより、容量素子83に蓄積された電荷が放電されて容量素子82に移動する。これによるアンプ81の出力電圧OFの変化、即ち一度のオフセット補正動作(容量素子83の一回の充放電)によるオフセット補正電圧の変化量ΔOFは、
ΔOF=±C2×ΔVcharge/C1
となる。第2の補正指示信号COR2は、クロック信号CK64Kに同期して高速にHIGH/LOWを繰り返す信号であり、そのHIGH/LOWの繰り返しに応じて容量素子83が高速に充放電を繰り返す。従って、高速動作モード時には、高速にオフセットを補正することが可能となる。
図6は、図5のオフセット補正回路の通常動作モード時における各信号の変化の一例を示す図である。図7は、図5のオフセット補正回路の高速動作モード時における各信号の変化の一例を示す図である。
図6に示す例ではカウンタ72として、リセット時にカウント値CNTが10000(10h)となる5ビットのアップ/ダウンカウンタを使用している。例えば8kHzのクロック信号CK8Kにより、125μs毎にカウント値CNTのアップ/ダウンが行われる。オフセット検出信号PがHIGHの場合にはカウント値CNTを増加させ、オフセット検出信号PがLOWの場合はカウント値CNTを減少させる。オフセット検出信号PがHIGHの状態でカウント値CNTが11110(1Eh)のとき、又はオフセット検出信号PがLOWの状態でカウント値CNTが00001(01h)のとき、クロック信号CK8Kの次の立ち上りでカウンタ72のリップルキャリーRCがHIGHとなる。それに続くクロックのLOW期間において、第1の補正指示信号COR1がHIGHとなる。この第1の補正指示信号COR1のHIGH状態により、スイッチSW1がアンプ81の入力側に接続され、オフセット補正動作が実行される。更に次のクロックにおいてカウント値CNTはリセットされ初期値の10000(10h)に戻り、第1の補正指示信号COR1はLOWとなり、スイッチSW1がスイッチSW2側に接続される。
オフセット検出信号PをリップルキャリーRCの立ち上がりでフリップフロップ86に取り込むことにより、スイッチ制御信号SがHIGH又はLOWに設定される。このスイッチ制御信号SのHIGH又はLOWに応じて、スイッチSW2がCP側に接続されるかCN側に接続されるかが制御される。容量C2の容量素子83には、図示されるように、スイッチSW2の状態に応じた極性の電荷が蓄積される。
また図6に示されるように、イネーブル信号ENがHIGHの場合のみカウンタ72のカウント値CNTが変化し、イネーブル信号ENがLOWの場合にはカウンタ72のカウント値CNTが変化しない。これにより、不要なオフセット補正制御動作を抑制することができる。
図7に示す高速動作モード時の動作において、クロック信号CK64Kはクロック信号CK8Kの8倍の周波数であることを想定しているが、図示の都合上、図面中央部において時間軸を拡大しクロック信号CK64Kに同期した動作を示してある。被オフセット補正回路51の出力OUTにおいて正のオフセット状態が続くと、AND回路76の出力AL1がHIGHになる。この出力AL1のHIGH状態に応答して、クロック信号CK64KのHIGHパルス期間で制御信号S2がHIGHとなり、クロック信号CK64KのLOWパルス期間で第2の補正指示信号COR2がHIGHとなる。
制御信号S2の立ち上がりタイミングでのオフセット検出信号PのHIGH/LOWに応じて、スイッチSW2がCP側に接続されるかCN側に接続されるかが制御される。容量C2の容量素子83には、図示されるように、スイッチSW2の状態に応じた極性の電荷が蓄積される。また第2の補正指示信号COR2がLOWのときにスイッチSW1はスイッチSW2側(図7のSW1に"S"として示してある)に接続され、第2の補正指示信号COR2がHIGHのときにスイッチSW1はアンプ81側(図7のSW1に"A"として示してある)に接続される。
図5に示した構成では、前述のように、電源電圧VDとシグナルグランド電圧SGとの間をR1:R2の比率で分割した電圧と、シグナルグランド電圧SGとグランド電圧(電源グランド)VSとの間をR3:R4の比率で分割した電圧とを生成し、容量素子83に供給している。この構成により、一回のオフセット補正動作(容量素子83の一回の充放電)によるオフセット電圧補正量を小さくすることができる。以下に、この構成の効果について説明する。
図2に示す従来のオフセット補正回路の動作では、被オフセット補正回路51の信号出力がない状態でも、オフセットをプラス側に補正する動作とオフセットをマイナス側に補正する動作とが交互に実行されることになる。即ち、一回のオフセット補正動作によるオフセット補正量分だけ、被オフセット補正回路51の出力OUTが上下に揺らぐことになる。
例えば、被オフセット補正回路51の出力が符号器に接続されている場合、符号器の出力が例えばITU−T勧告G.711音声周波数帯域信号のPCM符号化方式に規定されているμ則による符号器に被オフセット補正回路51の出力を接続した場合、最大負荷レベル(信号電圧の最大値)に対応する識別値8159に対して、一回のオフセット補正動作によるオフセット補正量がステップ幅の2未満であれば、オフセット補正動作による符号器への影響はなくなる。従って、一回のオフセット補正動作によるオフセット補正量は、信号電圧の最大値の4080分の1未満であればよい。電源電圧範囲に対する出力電圧の可動範囲が80%であるとすると、オフセット補正量は、VD−VSの電源電圧に対して約10000分の1未満である必要がある。図2に示す構成例では、容量素子30への印加電圧は電源電圧の2分の1であるから、容量素子29の容量値を容量素子30の容量値の5000倍以上にする必要がある。
集積回路に実装する容量素子は、他の配線の浮遊容量の影響を考慮すると余り小さい容量値とすることはできないので、容量素子30の容量値の下限が決まってしまう。これにより、容量素子29を極めて大きい容量値のものとする必要が生じ、レイアウト面積の増大即ちコスト上昇の要因となってしまう。
図5に示す本発明の構成では、前述のように、一回のオフセット補正動作によるオフセット補正量はΔOF=±C2×ΔVcharge/C1である。従って、ΔVchargeを小さくすることにより、容量素子29の容量値C1をそれ程大きくすることなく、十分に小さなオフセット補正量を実現することができる。
またこのオフセット補正量ΔOFをオフセット検出回路52の閾値以下、即ちΔOF<2×ΔVとすることで、出力極性が変るオフセット補正を行った場合に必ずオフセットが閾値以下となるように設定することができる。従来の例では通常動作時において、無信号時においてもオフセット補正動作が繰り返し連続的に実行されることにより、オフセット補正電圧を振幅とする低レベルの矩形波が雑音として発生していた。それに対して本発明では、極性の変るオフセット補正を行った場合は必ずオフセットが閾値以下となるので、引き続き連続してオフセット補正動作が実行されることがない。従って、従来技術のような矩形波による雑音が発生しない。
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。
従来のオフセット補正回路の構成を示すブロック図である。 図1のオフセット補正回路の回路構成の一例を示す図である。 図2のオフセット補正回路の動作における各信号の変化の一例を示す図である。 本発明によるオフセット補正回路の実施例の構成を示すブロック図である。 図4のオフセット補正回路の回路構成の一例を示す図である。 図5のオフセット補正回路の通常動作モード時における各信号の変化の一例を示す図である。 図5のオフセット補正回路の高速動作モード時における各信号の変化の一例を示す図である。
符号の説明
51 被オフセット補正回路
52 オフセット検出回路
53 第1の補正指示信号発生回路
54 第2の補正指示信号発生回路
55 オフセット補正信号発生回路

Claims (5)

  1. 補正対象回路の出力のオフセットを検出してオフセット検出信号を出力するオフセット検出回路と、
    該オフセット検出信号に応じて第1の周波数のクロック信号に同期して変化する第1の補正指示信号を生成する第1の補正指示信号発生回路と、
    高速動作モード時に該オフセット検出信号に応じて該第1の周波数よりも高い第2の周波数のクロック信号に同期して変化する第2の補正指示信号を生成する第2の補正指示信号発生回路と、
    該高速動作モードでない場合に該第1の補正指示信号の変化に応答して容量素子への充放電を行うことにより、該充放電動作に伴う該容量素子の電荷量の変化により該補正対象回路へのオフセット補正入力電圧を変化させるとともに、該高速動作モードの場合に少なくとも該第2の補正指示信号の変化に応答して該容量素子への充放電を行うことにより、該充放電動作に伴う該容量素子の電荷量の変化により該補正対象回路へのオフセット補正入力電圧を変化させるオフセット補正信号発生回路
    を含むことを特徴とするオフセット補正回路。
  2. 該オフセット検出回路は該オフセットが所定の閾値以上であるか以下であるかを示すイネーブル信号を出力するように構成され、該第1の補正指示信号発生回路は該オフセットが所定の閾値以下であることを該イネーブル信号が示す場合に動作しないことを特徴とする請求項1記載のオフセット補正回路。
  3. 該オフセット検出回路は該オフセットが所定の閾値以上であるか以下であるかを示すイネーブル信号を出力するように構成され、該第2の補正指示信号発生回路は該オフセットが所定の閾値以下であることを該イネーブル信号が示す場合に動作しないことを特徴とする請求項1記載のオフセット補正回路。
  4. 該オフセット補正信号発生回路の該容量の第1端は基準電圧に接続され、該容量の第2端はスイッチを介して電源電圧と該基準電圧との間の第1の電圧又は該基準電圧とグランド電圧との間の第2の電圧との何れかに接続されるよう構成されることを特徴とする請求項1記載のオフセット補正回路。
  5. 該第1の補正指示信号発生回路は該高速動作モード時以外に動作して該高速動作モード時には動作せず、第2の補正指示信号発生回路は該高速動作モード時に動作して該高速動作モード時以外には動作しないことを特徴とする請求項1記載のオフセット補正回路。
JP2007051966A 2007-03-01 2007-03-01 オフセット補正回路 Expired - Fee Related JP4859710B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051966A JP4859710B2 (ja) 2007-03-01 2007-03-01 オフセット補正回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051966A JP4859710B2 (ja) 2007-03-01 2007-03-01 オフセット補正回路

Publications (2)

Publication Number Publication Date
JP2008219295A true JP2008219295A (ja) 2008-09-18
JP4859710B2 JP4859710B2 (ja) 2012-01-25

Family

ID=39838833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051966A Expired - Fee Related JP4859710B2 (ja) 2007-03-01 2007-03-01 オフセット補正回路

Country Status (1)

Country Link
JP (1) JP4859710B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008593A1 (ja) * 2018-07-05 2020-01-09 三菱電機株式会社 リミッティング増幅回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185004A (ja) * 1988-01-19 1989-07-24 Fuji Facom Corp 多段階オフセット補償方式
JPH01284118A (ja) * 1988-05-11 1989-11-15 Anarogu Debaisezu Kk A/d変換回路
JP2001044770A (ja) * 1999-07-30 2001-02-16 Fujitsu Ten Ltd 増幅回路
JP2002504280A (ja) * 1997-06-10 2002-02-05 シーラス ロジック,インコーポレイテッド 拡張された条件付き安定のための動的オフセット低減、制御された飽和電流限界、および電流フィードバックを備える高位マルチパス演算増幅器
JP2002305447A (ja) * 2001-04-06 2002-10-18 Sharp Corp 直流オフセット補償回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185004A (ja) * 1988-01-19 1989-07-24 Fuji Facom Corp 多段階オフセット補償方式
JPH01284118A (ja) * 1988-05-11 1989-11-15 Anarogu Debaisezu Kk A/d変換回路
JP2002504280A (ja) * 1997-06-10 2002-02-05 シーラス ロジック,インコーポレイテッド 拡張された条件付き安定のための動的オフセット低減、制御された飽和電流限界、および電流フィードバックを備える高位マルチパス演算増幅器
JP2001044770A (ja) * 1999-07-30 2001-02-16 Fujitsu Ten Ltd 増幅回路
JP2002305447A (ja) * 2001-04-06 2002-10-18 Sharp Corp 直流オフセット補償回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008593A1 (ja) * 2018-07-05 2020-01-09 三菱電機株式会社 リミッティング増幅回路
JPWO2020008593A1 (ja) * 2018-07-05 2020-12-17 三菱電機株式会社 リミッティング増幅回路

Also Published As

Publication number Publication date
JP4859710B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
US5302869A (en) Voltage comparator and subranging A/D converter including such voltage comparator
US8164357B2 (en) Digital noise protection circuit and method
US20090225044A1 (en) Determining touch on keys of touch sensitive input device
EP2547096A2 (en) Solid-state image sensing apparatus
US20100065341A1 (en) Driving scanned channel and non-scanned channels of a touch sensor with same amplitude and same phase
JP2015156159A5 (ja)
KR20060042204A (ko) 시정수 자동조정 회로
JP2010178438A (ja) スイッチング電源制御回路
JP5124476B2 (ja) 電流測定回路及び方法
JP4835009B2 (ja) 発振回路及び発振制御方法
JP5535766B2 (ja) タイマー回路
JP4859710B2 (ja) オフセット補正回路
CN101257252B (zh) 电压控制电路
EP3393040A1 (en) Oscillator circuit with comparator delay cancelation
JP2009077172A (ja) アナログデジタル変換器及び撮像装置
CN109656426B (zh) 电容式触控感测电路及其电荷补偿方法
JP2011188250A (ja) 時定数調整回路
US9374101B2 (en) Sensor device including high-resolution analog to digital converter
JP2001004681A (ja) 電荷検出装置
KR950004637B1 (ko) 플로우팅 감지 회로
JP4828560B2 (ja) 三角波生成回路および台形波生成回路
TWI828339B (zh) 觸碰偵測電路及操作裝置
KR102521732B1 (ko) 시간 증폭기, 이를 포함하는 아날로그-디지털 변환기 및 이미지 센서
US20060245130A1 (en) Delay circuit
TW201332294A (zh) 以計數器為基礎之可擴充解析度的數位脈寬調變裝置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees