JP2008209913A - 撮像装置および情報コード読取装置 - Google Patents
撮像装置および情報コード読取装置 Download PDFInfo
- Publication number
- JP2008209913A JP2008209913A JP2008017626A JP2008017626A JP2008209913A JP 2008209913 A JP2008209913 A JP 2008209913A JP 2008017626 A JP2008017626 A JP 2008017626A JP 2008017626 A JP2008017626 A JP 2008017626A JP 2008209913 A JP2008209913 A JP 2008209913A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical system
- image
- imaging
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Lens Barrels (AREA)
- Lenses (AREA)
- Studio Devices (AREA)
Abstract
【課題】光学系を簡単化でき、コスト低減を図ることができることはもとより、樹脂レンズの変動を抑えることが可能で、膨張によるレンズの性能劣化を抑えることができる撮像装置および情報コード読取装置を提供する。
【解決手段】光学系210は、第2レンズ212は樹脂、他はガラスにより形成され、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、光学系210のパワーに比べて小さいように各パワーが設定され、鏡枠構造部300は、レンズ保持部310と撮像素子保持部320とが別個に構成され、レンズ保持部310と撮像素子保持部320は中間部材330によって介して固定されており、レンズ保持部310と撮像素子保持部320の線膨張係数が異なり、この係数を制御する。
【選択図】図8
【解決手段】光学系210は、第2レンズ212は樹脂、他はガラスにより形成され、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、光学系210のパワーに比べて小さいように各パワーが設定され、鏡枠構造部300は、レンズ保持部310と撮像素子保持部320とが別個に構成され、レンズ保持部310と撮像素子保持部320は中間部材330によって介して固定されており、レンズ保持部310と撮像素子保持部320の線膨張係数が異なり、この係数を制御する。
【選択図】図8
Description
本発明は、撮像素子を用い、光学系を備えた撮像装置および情報コード読取装置に関するものである。
近年急峻に発展を遂げている情報のデジタル化に相俟って映像分野においてもその対応が著しい。
特に、デジタルカメラに象徴されるように撮像面は従来のフィルムに変わって固体撮像素子であるCCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)センサが使用されているのが大半である。
特に、デジタルカメラに象徴されるように撮像面は従来のフィルムに変わって固体撮像素子であるCCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)センサが使用されているのが大半である。
このように、撮像素子にCCDやCMOSセンサを使った撮像レンズ装置は、被写体の映像を光学系により光学的に取り込んで、撮像素子により電気信号として抽出するものであり、デジタルスチルカメラの他、ビデオカメラ、デジタルビデオユニット、パーソナルコンピュータ、携帯電話機、携帯情報端末(PDA:Personal DigitalAssistant)、画像検査装置、自動制御用産業カメラ等に用いられている。
図23は、一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。
この撮像レンズ装置1は、光学系2とCCDやCMOSセンサ等の撮像素子3とを有する。
光学系は、物体側レンズ21,22、絞り23、および結像レンズ24を物体側(OBJS)から撮像素子3側に向かって順に配置されている。
この撮像レンズ装置1は、光学系2とCCDやCMOSセンサ等の撮像素子3とを有する。
光学系は、物体側レンズ21,22、絞り23、および結像レンズ24を物体側(OBJS)から撮像素子3側に向かって順に配置されている。
撮像レンズ装置1においては、図23に示すように、ベストフォーカス面を撮像素子面上に合致させている。
図24(A)〜(C)は、撮像レンズ装置1の撮像素子3の受光面でのスポット像を示している。
図24(A)〜(C)は、撮像レンズ装置1の撮像素子3の受光面でのスポット像を示している。
また、位相板により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする等の撮像装置が提案されている(たとえば非特許文献1,2、特許文献1〜5参照)。
また、伝達関数を用いたフィルタ処理を行うデジタルカメラの自動露出制御システムが提案されている(たとえば特許文献6参照)。
また、伝達関数を用いたフィルタ処理を行うデジタルカメラの自動露出制御システムが提案されている(たとえば特許文献6参照)。
また、CCD、CMOSなどの画像入力機能を持った装置においては、たとえば風景など、所望の映像とともに、バーコード等の近接静止画像を読み取ることが、極めて有用であることが多い。
バーコードの読み取りは、たとえば第一の例としてレンズを繰り出すオートフォーカスでピントを合わせる技術や、第二の例として深度拡張技術としては、たとえばカメラにおいてF値を絞ることで被写界深度を広げて固定ピントとしているものがある。
さらに、ピントの合う被写界を増やす手法は、たとえば特許文献8に開示されている。
バーコードの読み取りは、たとえば第一の例としてレンズを繰り出すオートフォーカスでピントを合わせる技術や、第二の例として深度拡張技術としては、たとえばカメラにおいてF値を絞ることで被写界深度を広げて固定ピントとしているものがある。
さらに、ピントの合う被写界を増やす手法は、たとえば特許文献8に開示されている。
"Wavefront Coding;jointly optimized optical and digital imaging systems",Edward R.Dowski,Jr.,Robert H.Cormack,Scott D.Sarama.
"Wavefront Coding;A modern method of achieving high performance and/or low cost imaging systems",Edward R.Dowski,Jr.,Gregory E.Johnson.
USP6,021,005
USP6,642,504
USP6,525,302
USP6,069,738
特開2003−235794号公報
特開2004−153497号公報
特開2004−37733号公報
特開2002−27047号公報
上述した各文献にて提案された撮像装置においては、その全ては通常光学系に上述の位相板を挿入した場合のPSF(Point−Spread−Function)が一定になっていることが前提であり、PSFが変化した場合は、その後のカーネルを用いたコンボリューションにより、被写界深度の深い画像を実現することは極めて難しい。
したがって、単焦点でのレンズではともかく、ズーム系やAF系などのレンズでは、その光学設計の精度の高さやそれに伴うコストアップが原因となり採用するには大きな問題を抱えている。
換言すれば、従来の撮像装置においては、適正なコンボリューション演算を行うことができず、ワイド(Wide)時やテレ(Tele)時のスポット(SPOT)像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求される。
しかしながら、これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
したがって、単焦点でのレンズではともかく、ズーム系やAF系などのレンズでは、その光学設計の精度の高さやそれに伴うコストアップが原因となり採用するには大きな問題を抱えている。
換言すれば、従来の撮像装置においては、適正なコンボリューション演算を行うことができず、ワイド(Wide)時やテレ(Tele)時のスポット(SPOT)像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求される。
しかしながら、これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
また、上記技術では、常温においては所望の被写界深度を得ることができるが、高温の場合と低温の場合でバックフォーカス位置が変わり、ピント位置が異なってくる。
さらに、樹脂レンズが強いパワーを持ってしまうと、温度変化による性能変化は著しく復元処理を行っても十分な画質を得ることができない。
さらに、樹脂レンズとレンズ保持部の線膨張が異なると、温度変化に伴う膨張率の違いで、レンズががたついたり、クラックの入るおそれもある。
さらに、樹脂レンズが強いパワーを持ってしまうと、温度変化による性能変化は著しく復元処理を行っても十分な画質を得ることができない。
さらに、樹脂レンズとレンズ保持部の線膨張が異なると、温度変化に伴う膨張率の違いで、レンズががたついたり、クラックの入るおそれもある。
本発明は、光学系を簡単化でき、コスト低減を図ることができることはもとより、樹脂レンズの変動を抑えることが可能で、膨張によるレンズの性能劣化を抑えることができ、適切な画質の、ノイズの影響が小さい復元画像を得ることが可能な撮像装置および情報コード読取装置を提供することにある。
本発明の第1の観点の撮像装置は、ガラスと樹脂のレンズを含む固定焦点の光学系と、前記光学系を通過した被写体像を撮像する撮像素子と、前記光学系と前記撮像素子とを保持する鏡枠構造部と、を有し、前記鏡枠構造部は、前記光学系の各レンズを保持するレンズ保持部と、前記撮像素子を保持する撮像素子保持部と、を含む。
好適には、前記レンズ保持部の線膨張係数の可変により温度変化によるレンズと撮像素子との相対的位置関係が調整されている。
好適には、前記光学系に含まれる樹脂レンズのパワーの合算が負であるとき、最も撮像素子側に配置される最終レンズの撮像素子側の面と撮像素子の間隔が常温より高温で短くなり、低温で長くなる。
好適には、前記光学系に含まれる樹脂レンズのパワーの合算が正であるとき、最も撮像素子側に配置される最終レンズの撮像素子側の面と撮像素子の間隔が常温より高温で長くなり、低温で短くなる。
好適には、前記鏡枠構造部は、一端側が前記レンズ保持部を固定し、他端側が前記撮像素子保持部を固定する中間部材を有する。
好適には、前記中間部材の線膨張係数は、前記保持部および前記撮像素子保持部の線膨張係数に比べて小さい。
好適には、前記中間部材と前記レンズ保持部は、前記レンズ保持部の軸方向における中央部より物体側で固定されている。
好適には、前記光学系は、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、かつ光学系のパワーに比べて小さいようにパワーが設定されている。
好適には、前記撮像素子で撮像される被写体分散像は、撮像素子上ではピントが合わず、深度の深い光束とボケ部分が形成された像で、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する画像処理部を有する。
好適には、前記光学系は、物体側の第1レンズと、前記第1レンズより撮像素子側に配置された第2レンズを少なくとも含み、前記第1レンズはガラスレンズにより形成され、前記第2レンズは樹脂レンズにより形成される。
好適には、前記光学系は、物体側から、第1レンズ、第2レンズ、第3レンズ、および第4レンズが順に配置され、前記第1レンズはガラスレンズにより形成され、前記第2、第3、および第4レンズのうち少なくとも第2レンズは樹脂レンズにより形成される。
好適には、前記光学系は光波面変調機能を有し、当該光波面変調機能が、前記光学系の光軸をz軸とし、互いに直交する2軸をx、yとしたとき、位相が下記式で表される。
本発明の第2の観点は、第1の観点に示す撮像装置と、前記撮像装置で撮像され、処理を施された情報コードの画像信号をデコード化する情報コードデコーダ部と、前記撮像装置で撮像され、処理を施された情報コードの画像信号をデコードする情報コードデコード部と、前記デコードされたデータを外部データ処理装置へ送信するデータ送信部と、を含む情報コード読み取り装置。
本発明によれば、光学系を簡単化でき、コスト低減を図ることができことはもとより、樹脂レンズの変動を抑えることが可能で、膨張によるレンズの性能劣化を抑えることがで
き、しかも適切な画質の、ノイズの影響が小さい復元画像を得ることができる利点がある。
き、しかも適切な画質の、ノイズの影響が小さい復元画像を得ることができる利点がある。
以下、本発明の実施形態を添付図面に関連付けて説明する。
図1は、本発明の実施形態に係る情報コード読取装置の一例を示す外観図である。
図2(A)〜(C)は、情報コードを例を示す図である。
図3は、図1の情報コード読取装置に適用される撮像装置の構成例を示すブロックである。
図2(A)〜(C)は、情報コードを例を示す図である。
図3は、図1の情報コード読取装置に適用される撮像装置の構成例を示すブロックである。
本実施形態に係る情報コード読取装置100は、図1に示すように、本体110がケーブル111を介して図示しない電子レジスタ等の処理装置と接続され、たとえば読み取り対象物120に印刷された反射率の異なるシンボル、コード等の情報コード121を読み取り可能な装置である。
読み取り対象の情報コードとしては、たとえば図2(A)に示すような、JANコードのような1次元のバーコード122と、図2(B)および(C)に示すようなスタック式のCODE49、あるいはマトリックス方式のQRコードのような2次元のバーコード123が挙げられる。
読み取り対象の情報コードとしては、たとえば図2(A)に示すような、JANコードのような1次元のバーコード122と、図2(B)および(C)に示すようなスタック式のCODE49、あるいはマトリックス方式のQRコードのような2次元のバーコード123が挙げられる。
本実施形態に係る情報コード読取装置100は、本体110内に、図示しない照明光源と、図3に示すような撮像装置200とが配置されている。
撮像装置200は、後で詳述するように、光学系に光波面変調素子を適用し、光波面変調素子により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする波面収差制御光学系システム、あるいは深度拡張光学系システム(DEOS:Depth Expantion Optical system)というシステムを採用し、JANコードのような1次元のバーコードとQRコードのような2次元のバーコードのような情報コードを的確に高精度で読み取ることが可能に構成されている。
撮像装置200は、後で詳述するように、光学系に光波面変調素子を適用し、光波面変調素子により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする波面収差制御光学系システム、あるいは深度拡張光学系システム(DEOS:Depth Expantion Optical system)というシステムを採用し、JANコードのような1次元のバーコードとQRコードのような2次元のバーコードのような情報コードを的確に高精度で読み取ることが可能に構成されている。
情報コード読取装置100の撮像装置200は、図3に示すように、光学系210、撮像素子220、アナログフロントエンド部(AFE)230、画像処理装置240、カメラ信号処理部250、画像表示メモリ260、画像モニタリング装置270、操作部280、および制御装置290を有している。
そして、撮像装置200で撮像され、処理を施された情報コードの画像信号は図示しない情報コードデコード手段によってデコードされ、デコードされたデータは図示しないデータ送信部からケーブル111を介して、もしくは無線通信によって図示しない電子レジスタ等のデータ処理装置に送信される。
そして、撮像装置200で撮像され、処理を施された情報コードの画像信号は図示しない情報コードデコード手段によってデコードされ、デコードされたデータは図示しないデータ送信部からケーブル111を介して、もしくは無線通信によって図示しない電子レジスタ等のデータ処理装置に送信される。
図4は、本実施形態に係る光学系を形成する撮像レンズユニットの基本構成を示す図である。
光学系210Aは、被写体物体OBJを撮影した像を撮像素子220に供給する。また、光学系210Aは、第1レンズ211、第2レンズ212、絞り213、第3レンズ214、および第4レンズ215を有している。
光学系210Aは、物体側から順に、第1レンズ211、第2レンズ212、絞り213、第3レンズ214、第4レンズ215が配置されている。
本実施形態の光学系210Aは、第3レンズ214と第4レンズ215が接続されている。すなわち、本実施形態の光学系210Aのレンズユニットは、接合レンズを含んで構成されている。
光学系210Aは、被写体物体OBJを撮影した像を撮像素子220に供給する。また、光学系210Aは、第1レンズ211、第2レンズ212、絞り213、第3レンズ214、および第4レンズ215を有している。
光学系210Aは、物体側から順に、第1レンズ211、第2レンズ212、絞り213、第3レンズ214、第4レンズ215が配置されている。
本実施形態の光学系210Aは、第3レンズ214と第4レンズ215が接続されている。すなわち、本実施形態の光学系210Aのレンズユニットは、接合レンズを含んで構成されている。
そして、本実施形態の光学系210は、温度変化に対応した光学系として構成されている。
物体と接触する側の第1レンズ211、第3レンズ214、および第4レンズ215はガラスにより形成され、第2レンズ212は樹脂により形成されている。
そして、ガラスに比べて線膨張が大きく、温度変化に敏感に反応する樹脂レンズのパワ
ーを制御することにより使用環境が低温から高温にまで及んだとしても十分な性能を確保することができ、さらに深度拡張光学系において、被写界深度の温度変化を緩和することができるように構成されている。
物体と接触する側の第1レンズ211、第3レンズ214、および第4レンズ215はガラスにより形成され、第2レンズ212は樹脂により形成されている。
そして、ガラスに比べて線膨張が大きく、温度変化に敏感に反応する樹脂レンズのパワ
ーを制御することにより使用環境が低温から高温にまで及んだとしても十分な性能を確保することができ、さらに深度拡張光学系において、被写界深度の温度変化を緩和することができるように構成されている。
より具体的には、第1レンズ211、第3レンズ214、および第4レンズ215はガラスにより形成され、第2レンズ212は樹脂により形成され、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、かつ、光学系210Aのパワーに比べて小さいようにパワーが設定されている。
さらに、光学系210Aにおいて、レンズを保持する部分(ホルダ)210aの線膨張係数が樹脂レンズに比べて小さいように設定されることが望ましい。
さらに、光学系210Aにおいて、レンズを保持する部分(ホルダ)210aの線膨張係数が樹脂レンズに比べて小さいように設定されることが望ましい。
本実施形態の光学系210Aは、光波面変調素子をレンズと別に設ける代わりに、たとえば第2レンズ212にその機能を併せ持たせている。
第2レンズ212の撮像面側の面の光軸を中心とした中央部が所定の曲率を持たせて凹状に形成されており、この形状により第2レンズ212は、光波面変調素子の機能を有している。
第2レンズ212の撮像面側の面の光軸を中心とした中央部が所定の曲率を持たせて凹状に形成されており、この形状により第2レンズ212は、光波面変調素子の機能を有している。
図5は、樹脂レンズが強い負のパワーを持ったアナログのスポット像のディフォーカス図である。
図6は、樹脂レンズが強い正のパワーを持ったアナログのスポット像のディフォーカス図である。
図7は、本実施形態の光学系のように、樹脂レンズのパワーを抑えたアナログのスポット像のディフォーカス図である。
図6は、樹脂レンズが強い正のパワーを持ったアナログのスポット像のディフォーカス図である。
図7は、本実施形態の光学系のように、樹脂レンズのパワーを抑えたアナログのスポット像のディフォーカス図である。
図5および図6に示すように、樹脂レンズが強い負または正のパワーを持ったアナログのスポット像は、常温、高温側、低温側で異なり、十分な性能を確保することができない。
これに対して、本実施形態の光学系210Aは、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、光学系210Aのパワーに比べて小さくなるように各パワーが設定されていることから、図7に示すように、使用環境が低温から高温にまで及んだとしても十分な性能を確保することができ、さらに深度拡張光学系において、被写界深度の温度変化を緩和することができる。
これに対して、本実施形態の光学系210Aは、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、光学系210Aのパワーに比べて小さくなるように各パワーが設定されていることから、図7に示すように、使用環境が低温から高温にまで及んだとしても十分な性能を確保することができ、さらに深度拡張光学系において、被写界深度の温度変化を緩和することができる。
なお、光学系210Aにおいて、レンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、A、B、C、Dを非球面係数、rを中心曲率半径としたとき次式で表される。hは光線の高さ、cは中心曲率半径の逆数をそれぞれ表している。ただし、Zは面頂点に対する接平面からの深さを、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
以上の構成を採ることにより、目的の撮像レンズを実現できる。
また、図4に示すように、本実施形態の撮像レンズユニット210Aにおいて、第1レ
ンズ211の物体側面1の中心曲率半径はR1に、第1レンズ211の像面側2の中心曲率半径はR2に、および第2レンズ212の物体側面3の中心曲率半径はR3に、第2レンズ212の像面側面4の中心曲率半径はR4に、絞りを213、第3レンズ214の物体側面5の中心曲率半径はR5に、第3レンズ214の像面側面6の中心曲率半径はR6に、第4レンズ215の像面側面7の中心曲率半径はR7に、撮像部220のカバーガラス221の第4レンズ215側の面8の中心曲率半径はR8に、カバーガラス221の撮像素子222側の面9の中心曲率半径はR9に設定されている。なお、カバーガラス221の両面8、9の中心曲率半径R8、R9は0である。
また、第1レンズ211の屈折率はn1、分散値はν1、第2レンズ212の屈折率はn2
、分散値はν2、第3レンズ214の屈折率は屈折率はn3、分散値はν3、第4レンズ215の屈折率は屈折率はn4、分散値はν4に設定される。
ンズ211の物体側面1の中心曲率半径はR1に、第1レンズ211の像面側2の中心曲率半径はR2に、および第2レンズ212の物体側面3の中心曲率半径はR3に、第2レンズ212の像面側面4の中心曲率半径はR4に、絞りを213、第3レンズ214の物体側面5の中心曲率半径はR5に、第3レンズ214の像面側面6の中心曲率半径はR6に、第4レンズ215の像面側面7の中心曲率半径はR7に、撮像部220のカバーガラス221の第4レンズ215側の面8の中心曲率半径はR8に、カバーガラス221の撮像素子222側の面9の中心曲率半径はR9に設定されている。なお、カバーガラス221の両面8、9の中心曲率半径R8、R9は0である。
また、第1レンズ211の屈折率はn1、分散値はν1、第2レンズ212の屈折率はn2
、分散値はν2、第3レンズ214の屈折率は屈折率はn3、分散値はν3、第4レンズ215の屈折率は屈折率はn4、分散値はν4に設定される。
撮像素子220は、第4レンズ215側から、ガラス製の平行平面板(カバーガラス)221と、たとえばCCDあるいはCMOSセンサ等からなる撮像素子の撮像面222が順に配置されている。
撮像光学系210を介した被写体OBJからの光が、撮像素子220の撮像面222上に結像される。
なお、撮像素子220で撮像される被写体分散像は、撮像素子220上ではピントが合わず、深度の深い光束とボケ部分が形成された像である。
そして、本実施形態においては、画像処理装置240にてフィルタ処理を加えることにより2物体間の距離の解像を補完することができるように構成されている。
この光学系210については、後でさらに詳述する。
撮像光学系210を介した被写体OBJからの光が、撮像素子220の撮像面222上に結像される。
なお、撮像素子220で撮像される被写体分散像は、撮像素子220上ではピントが合わず、深度の深い光束とボケ部分が形成された像である。
そして、本実施形態においては、画像処理装置240にてフィルタ処理を加えることにより2物体間の距離の解像を補完することができるように構成されている。
この光学系210については、後でさらに詳述する。
撮像素子220は、光学系210で取り込んだ像が結像され、結像1次画像情報を電気信号の1次画像信号FIMとして、アナログフロントエンド部230を介して画像処理装置240に出力するCCDやCMOSセンサからなる。
図3においては、撮像素子220を一例としてCCDとして記載している。
図3においては、撮像素子220を一例としてCCDとして記載している。
アナログフロントエンド部230は、タイミングジェネレータ231、アナログ/デジタル(A/D)コンバータ232と、を有する。
タイミングジェネレータ231では、撮像素子220のCCDの駆動タイミングを生成しており、A/Dコンバータ232は、CCDから入力されるアナログ信号をデジタル信号に変換し、画像処理装置240に出力する。
タイミングジェネレータ231では、撮像素子220のCCDの駆動タイミングを生成しており、A/Dコンバータ232は、CCDから入力されるアナログ信号をデジタル信号に変換し、画像処理装置240に出力する。
信号処理部の一部を構成する画像処理装置(二次元コンボリューション手段)240は、前段のAFE230からくる撮像画像のデジタル信号を入力し、二次元のコンボリューション処理を施し、後段のカメラ信号処理部(DSP)250に渡す。
画像処理装置240、制御装置290の露出情報に応じて、光学的伝達関数(OTF)に対してフィルタ処理を行う。なお、露出情報として絞り情報を含む。
画像処理装置240は、撮像素子220による複数の画像に対して、光学的伝達関数(OTF)のレスポンスを向上させ、物体距離に応じた光学的伝達関数(OTF)の変化をなくすようにフィルタ処理(たとえばコンボリューションフィルタ処理)を行う機能を有し、複数の物体距離に依存しながらも、深い被写界深度を得る。また、画像処理装置240は、最初のステップでノイズ低減フィルタリングを施す機能を有する。
画像処理装置240は、光学的伝達関数(OTF)に対してフィルタ処理を行いコントラストを改善する処理を施す機能を有する。
画像処理装置240の処理については後でさらに詳述する。
画像処理装置240、制御装置290の露出情報に応じて、光学的伝達関数(OTF)に対してフィルタ処理を行う。なお、露出情報として絞り情報を含む。
画像処理装置240は、撮像素子220による複数の画像に対して、光学的伝達関数(OTF)のレスポンスを向上させ、物体距離に応じた光学的伝達関数(OTF)の変化をなくすようにフィルタ処理(たとえばコンボリューションフィルタ処理)を行う機能を有し、複数の物体距離に依存しながらも、深い被写界深度を得る。また、画像処理装置240は、最初のステップでノイズ低減フィルタリングを施す機能を有する。
画像処理装置240は、光学的伝達関数(OTF)に対してフィルタ処理を行いコントラストを改善する処理を施す機能を有する。
画像処理装置240の処理については後でさらに詳述する。
カメラ信号処理部(DSP)250は、カラー補間、ホワイトバランス、YCbCr変換処理、圧縮、ファイリング等の処理を行い、メモリ260への格納や画像モニタリング
装置270への画像表示等を行う。
装置270への画像表示等を行う。
制御装置290は、露出制御を行うとともに、操作部280などの操作入力を持ち、それらの入力に応じて、システム全体の動作を決定し、AFE230、画像処理装置240、DSP250、絞り213等を制御し、システム全体の調停制御を司るものである。
また、本実施形態におけるいわゆる鏡枠構造部300は、基本的に、図8および図9に示すように、レンズ保持部310と撮像素子保持部320とが別個に構成され、これらのレンズ保持部310と撮像素子保持部320は中間部材330によって介して固定されており、レンズ保持部310と撮像素子保持部320の線膨張係数が異なる。
さらにこの線膨張係数による影響はレンズ保持部310の係数が撮像素子保持部320の係数に比べて大きく、この係数を制御することによりバックフォーカス位置ズレを緩和し使用環境が低温から高温にまで及んだとしても十分な性能を確保することができるように構成することができる。さらにDEOS(深度拡張光学系)において、被写界深度の温度変化も緩和することができるように構成されている。
さらにこの線膨張係数による影響はレンズ保持部310の係数が撮像素子保持部320の係数に比べて大きく、この係数を制御することによりバックフォーカス位置ズレを緩和し使用環境が低温から高温にまで及んだとしても十分な性能を確保することができるように構成することができる。さらにDEOS(深度拡張光学系)において、被写界深度の温度変化も緩和することができるように構成されている。
レンズ保持部310は、たとえば円筒状に形成され、物体側から順に、第1レンズ211を保持する第1保持部311、第2レンズ212を保持する第2保持部312、第3レンズ214を保持する第3保持部313、第4レンズ215を保持する第4保持部314が形成されている。
そして、レンズ保持部310の外側部の軸方向の中央より物体側が中間部材330の一端部と、たとえば接着剤340により固定されている。
レンズ保持部310は、たとえば樹脂により形成される。
そして、レンズ保持部310の外側部の軸方向の中央より物体側が中間部材330の一端部と、たとえば接着剤340により固定されている。
レンズ保持部310は、たとえば樹脂により形成される。
撮像素子保持部320は、レンズ保持部310の外径より大きい外径を有する円筒状に形成され、中央部が軸方向に開口され、底面側(第1面側)321に撮像素子220が固定されている。
また、撮像素子保持部320の上面側(物体側面)322には中間部材330の一端部333が接着剤等により固定されている。
撮像素子保持部320は、たとえば樹脂により形成される。
また、撮像素子保持部320の上面側(物体側面)322には中間部材330の一端部333が接着剤等により固定されている。
撮像素子保持部320は、たとえば樹脂により形成される。
中間部材330は、レンズ保持部310の外径より大きな内径を有する円筒状に形成され、その内壁331の一端部には円周上に、レンズ保持部310を固定する際に注入される接着剤340の溜り部332が形成されている。
また、中間部材330の他端部は、内側に延びるように鍔部333が形成されており、この鍔部333の外側面(底面)が撮像素子保持部320の上面側322と当接するようにして固定されている。
この中間部材330は、線膨張係数が小さい金属材料、たとえばアルミニウム(Al)により形成される。
また、中間部材330の他端部は、内側に延びるように鍔部333が形成されており、この鍔部333の外側面(底面)が撮像素子保持部320の上面側322と当接するようにして固定されている。
この中間部材330は、線膨張係数が小さい金属材料、たとえばアルミニウム(Al)により形成される。
このように、本実施形態の鏡枠構造部300においては、撮像素子保持部320とレンズ保持部310は固定し光学系は固定焦点となっており、レンズ保持部310の材質と撮像素子保持部320の材質の線膨張係数を異ならせることで駆動機構を持たずに温度変化によるバックフォーカスの位置変動を緩和できる機構をもつようになる。
中間部材330の線膨張係数をレンズ保持部310および撮像素子保持部320の線膨張係数に比べて小さくすることで、たとえば温度によるレンズ系のバックフォーカス位置変動が小さく、バックフォーカスが十分に長い光学系に対し、鏡枠構造部300の各レンズの相対的な位置変動量を抑えることができる。
また、本実施形態においては、光学系210に含まれる樹脂レンズのパワーの合算が負であるとき、最終レンズである第4レンズ215の撮像素子220側の面と撮像素子220の間隔が常温より高温で短くなり、低温で長くなるように構成される。
また、本実施形態においては、光学系210に含まれる樹脂レンズのパワーの合算が正であるとき、最終レンズである第4レンズ215の撮像素子220側の面と撮像素子の間隔が常温より高温で長くなり、低温で短くなるように構成される。
また、中間部材330とレンズ保持部310は、レンズ保持部310の軸方向における中央部より物体側で固定されている。
このように、本実施形態においては、レンズ設計の時点で樹脂レンズのパワーを抑えることで温度による樹脂レンズの変動を抑え、さらにレンズ保持部310と撮像素子保持部320が別である構成を有し、両部材の線膨張係数を変えることで温度によるバックフォーカス変動の性能劣化を抑えるように構成される。
ここで、撮像素子保持部320とレンズ保持部310の材質を変えた温度考慮設計について説明する。
温度を考慮しない設計を行うと、高温で枠は樹脂にした場合一方的にバックはのびてしまう。
さらに、レンズ部分は高温になると屈折率は小さくなるため、特に影響力のある樹脂レンズが負のパワーをもつ場合、レンズパワーが弱くなりバックは短い方にシフトしてしまう。つまり鏡枠とレンズが悪い方向に温度変化してしまうことになる。
そのため、撮像素子保持部320が樹脂の場合、レンズ系のプラスチックレンズは正のパワーであることが好ましい。
図8に示す実例では、樹脂レンズが負の場合に鏡枠でどのように緩和するかを示している。
今回の温度補正バレルについて高温の場合を想定すると
<1>:撮像素子保持部320は樹脂で形成されていて撮像素子220面を基準として物体側に大きくバックが伸びる。
<2>:アルミニウムにより形成される中間部材330は樹脂に比べて線膨張が小さいため撮像素子保持部320との受けを基準に小さくバックが伸びる。
<3>:レンズ保持部310は樹脂で形成されていて接着位置を基準に撮像素子側に大きく伸びる。
以上のことから、鏡枠構造部300,300Aの部品材料の異なる線膨張係数の組み合わせで高温でも鏡枠によってレンズ最終面から撮像素子面までの間隔は短くすることができ、温度によるバックフォーカス変動を抑えることができる。
さらに、レンズ部分は高温になると屈折率は小さくなるため、特に影響力のある樹脂レンズが負のパワーをもつ場合、レンズパワーが弱くなりバックは短い方にシフトしてしまう。つまり鏡枠とレンズが悪い方向に温度変化してしまうことになる。
そのため、撮像素子保持部320が樹脂の場合、レンズ系のプラスチックレンズは正のパワーであることが好ましい。
図8に示す実例では、樹脂レンズが負の場合に鏡枠でどのように緩和するかを示している。
今回の温度補正バレルについて高温の場合を想定すると
<1>:撮像素子保持部320は樹脂で形成されていて撮像素子220面を基準として物体側に大きくバックが伸びる。
<2>:アルミニウムにより形成される中間部材330は樹脂に比べて線膨張が小さいため撮像素子保持部320との受けを基準に小さくバックが伸びる。
<3>:レンズ保持部310は樹脂で形成されていて接着位置を基準に撮像素子側に大きく伸びる。
以上のことから、鏡枠構造部300,300Aの部品材料の異なる線膨張係数の組み合わせで高温でも鏡枠によってレンズ最終面から撮像素子面までの間隔は短くすることができ、温度によるバックフォーカス変動を抑えることができる。
逆に、樹脂レンズのパワーが正となった場合、高温でレンズパワーが弱くなりバックは長い方にシフトしてしまう。
そのため、鏡枠の膨張により最終レンズである第4レンズ215の撮像素子面側から撮像素子330面までの間隔は高温で長くなるようにシフトするのが好ましい。
図9に示す実例では、樹脂レンズのパワーが正の場合に鏡枠でどのように緩和するかを示している。
今回の温度補正バレルについて高温の場合を想定すると、
<1>:撮像素子保持部320は樹脂で形成されていて撮像素子220面を基準として物体側に大きくバックが伸びる。
<2>レンズのバック変動にリンクするようにレンズ保持部310の線膨張を調整して、高温でもバックフォーカスが変動しないようにする。
以上のことから鏡枠部品材料の異なる線膨張係数の組み合わせで高温で伸びるレンズ最終面から撮像素子面までの間隔を適正にして温度によるバックフォーカス変動を抑えることができる。
そのため、鏡枠の膨張により最終レンズである第4レンズ215の撮像素子面側から撮像素子330面までの間隔は高温で長くなるようにシフトするのが好ましい。
図9に示す実例では、樹脂レンズのパワーが正の場合に鏡枠でどのように緩和するかを示している。
今回の温度補正バレルについて高温の場合を想定すると、
<1>:撮像素子保持部320は樹脂で形成されていて撮像素子220面を基準として物体側に大きくバックが伸びる。
<2>レンズのバック変動にリンクするようにレンズ保持部310の線膨張を調整して、高温でもバックフォーカスが変動しないようにする。
以上のことから鏡枠部品材料の異なる線膨張係数の組み合わせで高温で伸びるレンズ最終面から撮像素子面までの間隔を適正にして温度によるバックフォーカス変動を抑えることができる。
なお、図8および図9の構成において、レンズ保持部310の樹脂は、たとえば、PCGF20(線膨張係数0.000065)を想定している。このレンズ保持部310については、たと
えば樹脂にガラスを含有させて線膨張係数を制御することが好ましい。
えば樹脂にガラスを含有させて線膨張係数を制御することが好ましい。
なお、本実施形態においては、紫外線を照射することにより硬化する接着剤340を用いる。このような接着剤を用いることにより、レンズ保持部(バレル)を自由に調整した後に(たとえば、光軸と非平行方向にも調整した後に)固定することができるようになる。
なお、本固着は、レンズ保持部(バレル)または中間部材に凸部、反対側に凹部を設けるように構成し、その部分をはめ込むようにして固着してもよい。このような機構的な固着方法により、接着剤を用いた場合に生じるおそれがある経時変化の影響を抑えることができる。
なお、本固着は、レンズ保持部(バレル)または中間部材に凸部、反対側に凹部を設けるように構成し、その部分をはめ込むようにして固着してもよい。このような機構的な固着方法により、接着剤を用いた場合に生じるおそれがある経時変化の影響を抑えることができる。
以下に、撮像レンズユニット210Aの具体的な数値による実施例1,2を示す。
なお、各実施例1,2においては、撮像レンズユニット210Aの各レンズ群を構成する、各レンズ211,212,214,215、並びに撮像素子220を構成するカバーガラス221に対して、図4に示すような面番号を付与した。
なお、各実施例1,2においては、撮像レンズユニット210Aの各レンズ群を構成する、各レンズ211,212,214,215、並びに撮像素子220を構成するカバーガラス221に対して、図4に示すような面番号を付与した。
(実施例1)
表1および表2に実施例1の各数値を示す。実施例の各数値は図4の撮像レンズユニット210Aに対応している。表1は、実施例1における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。
表1および表2に実施例1の各数値を示す。実施例の各数値は図4の撮像レンズユニット210Aに対応している。表1は、実施例1における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。
表2は、実施例1における非球面を含む一枚目の第1レンズ211、第2レンズ212、第3レンズ214、第4レンズ215の所定面の非球面係数を示す。表2において、kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。また、α、βは位相面係数であり、x、yは図4に示す方向である。
(実施例2)
表3および表4に実施例2の各数値を示す。実施例の各数値は図10の撮像レンズユニット110Bに対応している。表3は、実施例2における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。
表3および表4に実施例2の各数値を示す。実施例の各数値は図10の撮像レンズユニット110Bに対応している。表3は、実施例2における撮像レンズの各面番号に対応した絞り、各レンズ、カバーガラスの曲率半径(R:mm),間隔(D:mm)、屈折率(N)、および分散値(ν)を示している。
表4は、実施例2における非球面を含む第1レンズ211、第2レンズ212、第3レンズ214、第4レンズ215の所定面の非球面係数を示す。表4において、kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。また、α、βは位相面係数であり、x、yは図4に示す方向である。
表5および表6に線膨張係数による屈折率変動の例を示す。
このことから温度が変化した場合、樹脂の屈折率変動がガラスに比べてはるかに大きいことが分かる。
以上のことから、第2レンズ212を樹脂とした場合、温度による屈折率変動が起きた
場合においても実施例2の第2レンズパワーを抑えているため、温度によるバックフォーカス位置の変動を緩和できる。
以上のことから、第2レンズ212を樹脂とした場合、温度による屈折率変動が起きた
場合においても実施例2の第2レンズパワーを抑えているため、温度によるバックフォーカス位置の変動を緩和できる。
本実施形態においては、各実施例1,2で示したように、結像性能の優れた撮像レンズユニットを実現することが可能である。
以下、本実施形態の光学系、画像処理装置の構成および機能について具体的には説明する。
次に、画像処理装置240のフィルタ処理について説明する。
本実施形態においては、光学系210により収束される光束を規則正しく分散する光学レンズである。この位相板を挿入することにより、撮像素子220上ではピントのどこにも合わない画像を実現する。
換言すれば、光学系210によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成している。
前述したように、この規則的に分散した画像をデジタル処理により、光学系210を移動させずにピントの合った画像に復元する手段を波面収差制御光学系システム、あるいは深度拡張光学系システム(DEOS:Depth Expantion Optical
system)といい、この処理を画像処理装置240において行う。
本実施形態においては、光学系210により収束される光束を規則正しく分散する光学レンズである。この位相板を挿入することにより、撮像素子220上ではピントのどこにも合わない画像を実現する。
換言すれば、光学系210によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成している。
前述したように、この規則的に分散した画像をデジタル処理により、光学系210を移動させずにピントの合った画像に復元する手段を波面収差制御光学系システム、あるいは深度拡張光学系システム(DEOS:Depth Expantion Optical
system)といい、この処理を画像処理装置240において行う。
ここで、DEOSの基本原理について説明する。
図11に示すように、被写体の画像fがDEOS光学系Hに入ることにより、g画像が生成される。
これは、次のような式で表される。
図11に示すように、被写体の画像fがDEOS光学系Hに入ることにより、g画像が生成される。
これは、次のような式で表される。
(数3)
g=H*f
ただし、*はコンボリューションを表す。
g=H*f
ただし、*はコンボリューションを表す。
生成された画像から被写体を求めるためには、次の処理を要する。
(数4)
f=H-1*g
f=H-1*g
ここで、Hに関するカーネルサイズと演算係数について説明する。
ズームポジションをZPn,ZPn−1・・・とする。また、それぞれのH関数をHn,Hn−1、・・・・とする。
各々のスポット像が異なるため、各々のH関数は、次のようになる。
ズームポジションをZPn,ZPn−1・・・とする。また、それぞれのH関数をHn,Hn−1、・・・・とする。
各々のスポット像が異なるため、各々のH関数は、次のようになる。
この行列の行数および/または列数の違いをカーネルサイズ、各々の数字を演算係数とする。
ここで、各々のH関数はメモリに格納しておいても構わないし、PSFを物体距離の関数としておき、物体距離によって計算し、H関数を算出することによって任意の物体距離に対して最適なフィルタを作るように設定できるようにしても構わない。また、H関数を物体距離の関数として、物体距離によってH関数を直接求めても構わない。
ここで、各々のH関数はメモリに格納しておいても構わないし、PSFを物体距離の関数としておき、物体距離によって計算し、H関数を算出することによって任意の物体距離に対して最適なフィルタを作るように設定できるようにしても構わない。また、H関数を物体距離の関数として、物体距離によってH関数を直接求めても構わない。
本実施形態においては、図3に示すように、光学系210からの像を撮像素子220で受像して、絞り開放時には画像処理装置240に入力させ、光学系に応じた変換係数を取得して、取得した変換係数をもって撮像素子220からの分散画像信号より分散のない画像信号を生成するように構成している。
本実施形態においては、DEOSを採用し、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることが可能となっている。
図12は、本実施形態の光波面変調素子を含む光学系の光軸をz軸とし、互いに直交する2軸をx、yとしたとき、下記式で表される波面収差の形状である。
波面収差が0.5λ以下の範囲では位相の変化が小さく、通常の光学系と変わらないOTFを持つ。したがって波面収差が0.5λ程度になるまで絞って取り付け位置の調整を行う。
図13は、前記波面収差の形状と0.5λ以下の範囲を太線で表したものである。
ただし、λはたとえば可視光領域、赤外領域の波長を用いる。
図13は、前記波面収差の形状と0.5λ以下の範囲を太線で表したものである。
ただし、λはたとえば可視光領域、赤外領域の波長を用いる。
なお、図12に示す形状は、一例であって、光波面変調素子が、光学系の光軸をz軸とし、互いに直交する2軸をx、yとしたとき、位相が下記式で表されるものであれば適用可能である。
画像処理装置240は、上述したように、撮像素子220による1次画像FIMを受けて、フィルタによるコンボリューション処理によって被写界深度を拡張する処理等を施して高精細な最終画像FNLIMを形成する。
画像処理装置240の構成および処理について説明する。
画像処理装置240は、図3に示すように、生(RAW)バッファメモリ241、コンボリューション演算器242、記憶手段としてのカーネルデータ格納ROM243、およびコンボリューション制御部244を有する。
コンボリューション制御部244は、コンボリューション処理のオンオフ、画面サイズ、カーネルデータの入れ替え等の制御を行い、制御装置290により制御される。
また、カーネルデータ格納ROM243には、図14、図15、または図16に示すように予め用意されたそれぞれの光学系の点像強度分布(PSF)により算出されたコンボリューション用のカーネルデータが格納されており、制御装置290によって露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。
なお、露出情報には、絞り情報が含まれる。
なお、露出情報には、絞り情報が含まれる。
図14の例では、カーネルデータAは光学倍率(×1.5)、カーネルデータBは光学倍率(×5)、カーネルデータCは光学倍率(×10)に対応したデータとなっている。
また、図15の例では、カーネルデータAは絞り情報としてのFナンバ(2.8)、カーネルデータBはFナンバ(4)に対応したデータとなっている。なお、Fナンバ(2.8)、Fナンバ(4)は上記した0.5λの範囲外である。
また、図16の例では、カーネルデータAは物体距離情報が100mm、カーネルデータBは物体距離が500mm、カーネルデータCは物体距離が4mに対応したデータとなっている。
図17は、制御装置290の露出情報(絞り情報を含む)により切り替え処理のフローチャートである。
まず、露出情報(RP)が検出されコンボリューション制御部244に供給される(ST101)。
コンボリューション制御部244においては、露出情報RPから、カーネルサイズ、数値演係数がレジスタにセットされる(ST102)。
そして、撮像素子220で撮像され、AFE230を介して二次元コンボリューション演算部242に入力された画像データに対して、レジスタに格納されたデータに基づいてコンボリューション演算が行われ、演算され変換されたデータがカメラ信号処理部250に転送される(ST103)。
まず、露出情報(RP)が検出されコンボリューション制御部244に供給される(ST101)。
コンボリューション制御部244においては、露出情報RPから、カーネルサイズ、数値演係数がレジスタにセットされる(ST102)。
そして、撮像素子220で撮像され、AFE230を介して二次元コンボリューション演算部242に入力された画像データに対して、レジスタに格納されたデータに基づいてコンボリューション演算が行われ、演算され変換されたデータがカメラ信号処理部250に転送される(ST103)。
以下に画像処理装置240の信号処理部とカーネルデータ格納ROMについてさらに具体的な例について説明する。
図18は、信号処理部とカーネルデータ格納ROMについての第1の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図18の例は露出情報に応じたフィルタカーネルを予め用意した場合のブロック図である。
図18の例は露出情報に応じたフィルタカーネルを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。2次元コンボリューション演算部242においては、カーネルデータを用いてコンボリューション処理を施す。
図19は、信号処理部とカーネルデータ格納ROMについての第2の構成例を示す図で
ある。なお、簡単化のためにAFE等は省略している。
図19の例は、信号処理部の最初にノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタ処理ST1を予め用意した場合のブロック図である。
ある。なお、簡単化のためにAFE等は省略している。
図19の例は、信号処理部の最初にノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタ処理ST1を予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部242においては、前記ノイズ低減フィルタST1を施した後、カラーコンバージョン処理ST2によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST3を施す。
再度ノイズ処理ST4を行い、カラーコンバージョン処理ST5によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、再度のノイズ処理ST4は省略することも可能である。
2次元コンボリューション演算部242においては、前記ノイズ低減フィルタST1を施した後、カラーコンバージョン処理ST2によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST3を施す。
再度ノイズ処理ST4を行い、カラーコンバージョン処理ST5によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、再度のノイズ処理ST4は省略することも可能である。
図20は、信号処理部とカーネルデータ格納ROMについての第3の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図20の例は、露出情報に応じたOTF復元フィルタを予め用意した場合のブロック図である。
図20の例は、露出情報に応じたOTF復元フィルタを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部242は、ノイズ低減処理ST11、カラーコンバージョン処理ST12の後に、前記OTF復元フィルタを用いてコンボリューション処理ST13を施す。
再度ノイズ処理ST14を行い、カラーコンバージョン処理ST15によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST11、ST14は、いずれか一方のみでもよい。
2次元コンボリューション演算部242は、ノイズ低減処理ST11、カラーコンバージョン処理ST12の後に、前記OTF復元フィルタを用いてコンボリューション処理ST13を施す。
再度ノイズ処理ST14を行い、カラーコンバージョン処理ST15によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST11、ST14は、いずれか一方のみでもよい。
図21は、信号処理部とカーネルデータ格納ROMについての第4の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図21の例は、ノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタを予め用意した場合のブロック図である。
なお、再度のノイズ処理ST4は省略することも可能である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部242においては、ノイズ低減フィルタ処理ST21を施した後、カラーコンバージョン処理ST22によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST23を施す。
再度、露出情報に応じたノイズ処理ST24を行い、カラーコンバージョン処理ST25によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST21は省略することも可能である。
図21の例は、ノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタを予め用意した場合のブロック図である。
なお、再度のノイズ処理ST4は省略することも可能である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部244を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部242においては、ノイズ低減フィルタ処理ST21を施した後、カラーコンバージョン処理ST22によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST23を施す。
再度、露出情報に応じたノイズ処理ST24を行い、カラーコンバージョン処理ST25によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST21は省略することも可能である。
以上は露出情報のみに応じて2次元コンボリューション演算部242においてフィルタ処理を行う例を説明したが、たとえば被写体距離情報、ズーム情報、あるいは撮影モード情報と露出情報とを組み合わせることにより適した演算係数の抽出、あるいは演算を行うことが可能となる。
図22は、被写体距離情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
画像処理装置400は、図22に示すように、コンボリューション装置401、カーネル・数値演算係数格納レジスタ402、および画像処理演算プロセッサ403を有する。
この画像処理装置400においては、物体概略距離情報検出装置500から読み出した被写体の物体距離の概略距離に関する情報および露出情報を得た画像処理演算プロセッサ403では、その物体離位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値算係数格納レジスタ402に格納し、その値を用いて演算するコンボリューション装置401にて適正な演算を行い、画像を復元する。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置500により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置500により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
上記の画像処理はコンボリューション演算により行うが、これを実現するには、たとえばコンボリューション演算の演算係数を共通で1種類記憶しておき、焦点距離に応じて補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成をとることができる。
この構成の他にも、以下の構成を採用することが可能である。
この構成の他にも、以下の構成を採用することが可能である。
焦点距離に応じて、カーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算を行う構成、焦点距離に応じた演算係数を関数として予め記憶しておき、焦点距離によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
図22の構成に対応付けると次のような構成をとることができる。
変換係数記憶手段としてのレジスタ402に被写体距離に応じて少なくとも位相板に相当する樹脂レンズに起因する収差に対応した変換係数を少なくとも2以上予め記憶する。画像処理演算プロセッサ403が、被写体距離情報生成手段としての物体概略距離情報検出装置500により生成された情報に基づき、レジスタ402から被写体までの距離に応じた変換係数を選択する係数選択手段として機能する。
そして、変換手段としてのコンボリューション装置401が、係数選択手段としての画像処理演算プロセッサ403で選択された変換係数によって、画像信号の変換を行う。
そして、変換手段としてのコンボリューション装置401が、係数選択手段としての画像処理演算プロセッサ403で選択された変換係数によって、画像信号の変換を行う。
または、前述したように、変換係数演算手段としての画像処理演算プロセッサ403が、被写体距離情報生成手段としての物体概略距離情報検出装置500により生成された情報に基づき変換係数を演算し、レジスタ402に格納する。
そして、変換手段としてのコンボリューション装置401が、変換係数演算手段としての画像処理演算プロセッサ403で得られレジスタ402に格納された変換係数によって、画像信号の変換を行う。
そして、変換手段としてのコンボリューション装置401が、変換係数演算手段としての画像処理演算プロセッサ403で得られレジスタ402に格納された変換係数によって、画像信号の変換を行う。
または、補正値記憶手段としてのレジスタ402にズーム光学系210のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する。この補正値には、被写体収差像のカーネルサイズを含まれる。
そして、被写体距離情報生成手段としての物体概略距離情報検出装置500により生成された距離情報に基づき、補正値選択手段としての画像処理演算プロセッサ403が、補正値記憶手段としてのレジスタ402から被写体までの距離に応じた補正値を選択する。
変換手段としてのコンボリューション装置401が、第2変換係数記憶手段としてのレジスタ402から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ403により選択された補正値とに基づいて画像信号の変換を行う。
そして、被写体距離情報生成手段としての物体概略距離情報検出装置500により生成された距離情報に基づき、補正値選択手段としての画像処理演算プロセッサ403が、補正値記憶手段としてのレジスタ402から被写体までの距離に応じた補正値を選択する。
変換手段としてのコンボリューション装置401が、第2変換係数記憶手段としてのレジスタ402から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ403により選択された補正値とに基づいて画像信号の変換を行う。
以上説明したように、本実施形態によれば、1次画像を形成する光学系210および撮像素子220と、1次画像を高精細な最終画像に形成する画像処理装置240とを含み、光学系210は、第1レンズ211、第2レンズ212、絞り213と、第3レンズ214、および第4レンズ215を含み、第1レンズ211、第3レンズ214、および第4レンズ215はガラスにより形成され、第2レンズ212は樹脂により形成され、樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、光学系210のパワーに比べて小さいように各パワーが設定されていることから、使用環境が低温から高温にまで及んだとしても十分な性能を確保することができ、さらに深度拡張光学系において、被写界深度の温度変化を緩和することができる。なお、本実施形態では第2レンズ212のみを樹脂レンズとした場合について説明したが、第2〜4レンズのいずれか1枚または2枚以上を樹脂レンズとし、個々の樹脂レンズのパワーをガラスレンズのパワーに比べて小さくし、樹脂レンズの総合的なパワーを光学系のパワーに比べて小さくするようにすれば同様の効果を得ることができる。
また、本実施例の4枚のレンズ構成以外の枚数構成であっても良いが、第1レンズ211(物体側のレンズ)は物体や外気に接触することがあるために、キズ防止および腐食防止の目的からガラスレンズであることが好ましい。さらに、第4レンズ(撮像素子側のレンズ)もガラスレンズとすることにより、樹脂レンズがガラスレンズと鏡筒内で密封されるために、耐環境効果を向上することができるようになる。
また、本実施例の4枚のレンズ構成以外の枚数構成であっても良いが、第1レンズ211(物体側のレンズ)は物体や外気に接触することがあるために、キズ防止および腐食防止の目的からガラスレンズであることが好ましい。さらに、第4レンズ(撮像素子側のレンズ)もガラスレンズとすることにより、樹脂レンズがガラスレンズと鏡筒内で密封されるために、耐環境効果を向上することができるようになる。
また、本実施形態における鏡枠構造部300,300Aは、レンズ保持部310と撮像素子保持部320とが別個に構成され、これらのレンズ保持部310と撮像素子保持部320は中間部材330によって介して固定されており、レンズ保持部310と撮像素子保持部320の線膨張係数が異なり、この係数を制御することによりバックフォーカス位置ズレを緩和し使用環境が低温から高温にまで及んだとしても十分な性能を確保することができる。さらにDEOS(深度拡張光学系)において、被写界深度の温度変化も緩和することができる。
また、コンボリューション演算時に用いるカーネルサイズやその数値演算で用いられる係数を可変とし、操作部280等の入力により知り、適性となるカーネルサイズや上述した係数を対応させることにより、倍率やディフォーカス範囲を気にすることなくレンズ設計ができ、かつ精度の高いコンボリュ−ションによる画像復元が可能となる利点がある。
また、難度が高く、高価でかつ大型化した光学レンズを必要とせずに、かつ、レンズを駆動させること無く、自然な画像を得ることができる利点がある。
そして、本実施形態に係る撮像装置200は、デジタルカメラやカムコーダー等の民生機器の小型、軽量、コストを考慮されたDEOSの光学システムに使用することが可能である。
また、光学系210の構成を簡単化でき、製造が容易となり、コスト低減を図ることができる。
また、難度が高く、高価でかつ大型化した光学レンズを必要とせずに、かつ、レンズを駆動させること無く、自然な画像を得ることができる利点がある。
そして、本実施形態に係る撮像装置200は、デジタルカメラやカムコーダー等の民生機器の小型、軽量、コストを考慮されたDEOSの光学システムに使用することが可能である。
また、光学系210の構成を簡単化でき、製造が容易となり、コスト低減を図ることができる。
ところで、CCDやCMOSセンサを撮像素子として用いた場合、画素ピッチから決まる解像力限界が存在し、光学系の解像力がその限界解像力以上であるとエリアジングのような現象が発生し、最終画像に悪影響を及ぼすことは周知の事実である。
画質向上のため、可能な限りコントラストを上げることが望ましいが、そのことは高性能なレンズ系を必要とする。
画質向上のため、可能な限りコントラストを上げることが望ましいが、そのことは高性能なレンズ系を必要とする。
しかし、上述したように、CCDやCMOSセンサを撮像素子として用いた場合、エリ
アジングが発生する。
現在、エリアジングの発生を避けるため、撮像レンズ装置では、一軸結晶系からなるローパスフィルタを併用し、エリアジングの現象の発生を避けている。
このようにローパスフィルタを併用することは、原理的に正しいが、ローパスフィルタそのものが結晶でできているため、高価であり、管理が大変である。また、光学系に使用することは光学系をより複雑にしているという不利益がある。
アジングが発生する。
現在、エリアジングの発生を避けるため、撮像レンズ装置では、一軸結晶系からなるローパスフィルタを併用し、エリアジングの現象の発生を避けている。
このようにローパスフィルタを併用することは、原理的に正しいが、ローパスフィルタそのものが結晶でできているため、高価であり、管理が大変である。また、光学系に使用することは光学系をより複雑にしているという不利益がある。
以上のように、時代の趨勢でますます高精細の画質が求められているにもかかわらず、高精細な画像を形成するためには、従来の撮像レンズ装置では光学系を複雑にしなければならない。複雑にすれば、製造が困難になったりし、また高価なローパスフィルタを利用したりするとコストアップにつながる。
しかし、本実施形態によれば、ローパスフィルタを用いなくとも、エリアジングの現象の発生を避けることができ、高精細な画質を得ることができる。
しかし、本実施形態によれば、ローパスフィルタを用いなくとも、エリアジングの現象の発生を避けることができ、高精細な画質を得ることができる。
また、図14、図15、および図16のカーネルデータ格納ROMに関しても、光学倍率、Fナンバやそれぞれのカーネルのサイズ、物体距離の値に対して用いられるものとは限らない。また用意するカーネルデータの数についても3個とは限らない。
200・・・撮像装置、210・・・光学系、211・・・第1レンズ、212・・・第2レンズ、213・・・絞り、214・・・第3レンズ、215・・・第4レンズ、220・・・撮像素子、230・・・アナログフロントエンド部(AFE)、240・・・画像処理装置、250・・・カメラ信号処理部、280・・・操作部、290・・・制御装置、242・・・コンボリューション演算器、243・・・カーネルデータROM、244・・・コンボリューション制御部、300,300A・・・鏡枠構造部、310・・・レンズ保持部、320・・・撮像素子保持部、330・・・中間部材。
Claims (13)
- ガラスと樹脂のレンズを含む固定焦点の光学系と、
前記光学系を通過した被写体像を撮像する撮像素子と、
前記光学系と前記撮像素子とを保持する鏡枠構造部と、を有し、
前記鏡枠構造部は、
前記光学系の各レンズを保持するレンズ保持部と、
前記撮像素子を保持する撮像素子保持部と、を含む
撮像装置。 - 前記レンズ保持部の線膨張係数の可変により温度変化によるレンズと撮像素子との相対的位置関係が調整されている
請求項1記載の撮像装置。 - 前記光学系に含まれる樹脂レンズのパワーの合算が負であるとき、最も撮像素子側に配置される最終レンズの撮像素子側の面と撮像素子の間隔が常温より高温で短くなり、低温で長くなる
請求項1または2記載の撮像装置。 - 前記光学系に含まれる樹脂レンズのパワーの合算が正であるとき、最も撮像素子側に配置される最終レンズの撮像素子側の面と撮像素子の間隔が常温より高温で長くなり、低温で短くなる
請求項1または2記載の撮像装置。 - 前記鏡枠構造部は、
一端側が前記レンズ保持部を固定し、他端側が前記撮像素子保持部を固定する中間部材を有する
請求項1から4のいずれか一に記載の撮像装置。 - 前記中間部材の線膨張係数は、前記保持部および前記撮像素子保持部の線膨張係数に比べて小さい
請求項5記載の撮像装置。 - 前記中間部材と前記レンズ保持部は、前記レンズ保持部の軸方向における中央部より物体側で固定されている
請求項5または6記載の撮像装置。 - 前記光学系は、
樹脂レンズのパワーはガラスレンズのパワーに比べて小さく、かつ光学系のパワーに比べて小さいようにパワーが設定されている
請求項1から7のいずれか一に記載の撮像装置。 - 前記撮像素子で撮像される被写体分散像は、撮像素子上ではピントが合わず、深度の深い光束とボケ部分が形成された像で、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する画像処理部を有する
請求項1から8のいずれか一に記載の撮像装置。 - 前記光学系は、
物体側の第1レンズと、
前記第1レンズより撮像素子側に配置された第2レンズを少なくとも含み、
前記第1レンズはガラスレンズにより形成され、前記第2レンズは樹脂レンズにより形成される
請求項1から9のいずれか一に記載の撮像装置。 - 前記光学系は、物体側から、
第1レンズ、第2レンズ、第3レンズ、および第4レンズが順に配置され、
前記第1レンズはガラスレンズにより形成され、前記第2、第3、および第4レンズのうち少なくとも第2レンズは樹脂レンズにより形成される
請求項1から10のいずれか一に記載の撮像装置。 - 請求項1に記載の撮像装置と、
前記撮像装置で撮像され、処理を施された情報コードの画像信号をデコード化する情報コードデコーダ部と、
前記撮像装置で撮像され、処理を施された情報コードの画像信号をデコードする情報コードデコード部と、
前記デコードされたデータを外部データ処理装置へ送信するデータ送信部と、を含む
情報コード読み取り装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008017626A JP2008209913A (ja) | 2007-01-30 | 2008-01-29 | 撮像装置および情報コード読取装置 |
US12/525,056 US8567678B2 (en) | 2007-01-30 | 2008-01-30 | Imaging device, method of production of imaging device, and information code-reading device |
PCT/JP2008/051453 WO2008093752A1 (ja) | 2007-01-30 | 2008-01-30 | 撮像装置、撮像装置の製造方法、および情報コード読取装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007020149 | 2007-01-30 | ||
JP2008017626A JP2008209913A (ja) | 2007-01-30 | 2008-01-29 | 撮像装置および情報コード読取装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008209913A true JP2008209913A (ja) | 2008-09-11 |
Family
ID=39786216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008017626A Pending JP2008209913A (ja) | 2007-01-30 | 2008-01-29 | 撮像装置および情報コード読取装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008209913A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011171866A (ja) * | 2010-02-17 | 2011-09-01 | Hitachi Automotive Systems Ltd | カメラ装置 |
KR20220028243A (ko) * | 2020-08-28 | 2022-03-08 | 삼성전기주식회사 | 카메라 모듈 |
-
2008
- 2008-01-29 JP JP2008017626A patent/JP2008209913A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011171866A (ja) * | 2010-02-17 | 2011-09-01 | Hitachi Automotive Systems Ltd | カメラ装置 |
KR20220028243A (ko) * | 2020-08-28 | 2022-03-08 | 삼성전기주식회사 | 카메라 모듈 |
KR102428594B1 (ko) * | 2020-08-28 | 2022-08-03 | 삼성전기주식회사 | 카메라 모듈 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5188397B2 (ja) | 撮像装置および情報コード読取装置 | |
US8567678B2 (en) | Imaging device, method of production of imaging device, and information code-reading device | |
JP4712631B2 (ja) | 撮像装置 | |
JP5282272B2 (ja) | 広角光学系および撮像装置 | |
JP4663737B2 (ja) | 撮像装置およびその画像処理方法 | |
JP4749984B2 (ja) | 撮像装置、並びにその製造装置および製造方法 | |
US8462213B2 (en) | Optical system, image pickup apparatus and information code reading device | |
JP2008268937A (ja) | 撮像装置および撮像方法 | |
JP2007322560A (ja) | 撮像装置、並びにその製造装置および製造方法 | |
JP2008048293A (ja) | 撮像装置、およびその製造方法 | |
JP2009244430A (ja) | 撮像装置 | |
JP2007300208A (ja) | 撮像装置 | |
JP4658162B2 (ja) | 撮像装置および電子機器 | |
JP2008242310A (ja) | 撮像装置 | |
JP2008245266A (ja) | 撮像装置および撮像方法 | |
JP2006311473A (ja) | 撮像装置および撮像方法 | |
JP2009086017A (ja) | 撮像装置および撮像方法 | |
JP2008209913A (ja) | 撮像装置および情報コード読取装置 | |
CN112882192B (zh) | 拍摄光学系统、拍摄装置以及移动终端 | |
JP2008245265A (ja) | 撮像装置、並びにその製造装置および製造方法 | |
JP2009033607A (ja) | 撮像装置および画像処理方法 | |
JP2008058540A (ja) | 撮像装置、および画像処理方法 | |
JP2009134023A (ja) | 撮像装置および情報コード読取装置 | |
JP2008211780A (ja) | 撮像装置および情報コード読取装置 | |
JP2008185843A (ja) | 撮像装置の製造方法 |