JP2008177150A - プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 - Google Patents
プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 Download PDFInfo
- Publication number
- JP2008177150A JP2008177150A JP2007185787A JP2007185787A JP2008177150A JP 2008177150 A JP2008177150 A JP 2008177150A JP 2007185787 A JP2007185787 A JP 2007185787A JP 2007185787 A JP2007185787 A JP 2007185787A JP 2008177150 A JP2008177150 A JP 2008177150A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- phosphor layer
- plasma display
- ultraviolet light
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/20—Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
- H01J9/22—Applying luminescent coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/10—AC-PDPs with at least one main electrode being out of contact with the plasma
- H01J11/12—AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/42—Fluorescent layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/42—Measurement or testing during manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2209/00—Apparatus and processes for manufacture of discharge tubes
- H01J2209/01—Generalised techniques
- H01J2209/012—Coating
- H01J2209/015—Machines therefor
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
Abstract
【課題】欠陥には至らない程度のプロセス変動により生じる蛍光体塗布状態の変化を捉えて、塗布工程などの製造工程へのフィードバック・コントロールが実施できるようにしたことにある。
【解決手段】プラズマディスプレイの製造方法において、さらに、背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して輝度信号情報を取得し、該取得した輝度信号情報と、予め求めておいた蛍光体層形状モデルと輝度信号情報との相関関係とを比較して前記リブ内に塗布された蛍光体層の塗布状態(形状変化)を求める蛍光体検査工程を有し、該蛍光体検査工程により求められた蛍光体層の塗布状態(形状変化)を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
【選択図】図1
【解決手段】プラズマディスプレイの製造方法において、さらに、背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して輝度信号情報を取得し、該取得した輝度信号情報と、予め求めておいた蛍光体層形状モデルと輝度信号情報との相関関係とを比較して前記リブ内に塗布された蛍光体層の塗布状態(形状変化)を求める蛍光体検査工程を有し、該蛍光体検査工程により求められた蛍光体層の塗布状態(形状変化)を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
【選択図】図1
Description
本発明は、プラズマディスプレイパネルの製造方法及びそれに用いるプラズマディスプレイパネルの検査装置に関し、特にプラズマディスプレイパネルの背面板の製造における蛍光体塗布工程での塗布量・塗布位置制御、及び塗布結果の判定を高精度に行う有効な技術に関する。
プラズマディスプレイパネル(以下PDPという)の製造は、透明電極を配した前面板と発光体を塗布した背面板を別々に作成し、それらを張り合わせて一枚のパネルにする。PDPの背面板には、通常、R(赤)、G(緑)、B(青)用の蛍光体が、ストライプ状に順に繰り返し塗布されているが、リブ内に各蛍光体が均一に塗布されていなければ、表示の輝度及び色調が不均一となる色ムラが生じたり、あるいは、ある色の蛍光体が隣の蛍光体層にはみ出し色が混じる混色や、塗布抜けにより発光状態におかれ得ない暗点が存在する等の不具合が生じるものとなっている。
このような蛍光体の塗布状態に不具合を持つ背面板を、前面板と張り合わせることを防ぐために、また、塗布状態に不具合が発生した場合、直ちに製造工程の不具合箇所を修正して不良製品を造らないようにするためにも、背面板単体で検査を確実に行うことが必要となってくる。この検査は、通常、紫外線を各蛍光体が塗着されたプラズマディスプレイパネル背面板に照射し、蛍光体層が励起、発光した光を受光することによって行われている。
たとえば、リブ内に正しく蛍光体層が塗布・形成されたかどうかを検査するための簡便な方法が、例えば、特開平11−16498号公報(特許文献1)や特開2001−15030号公報(特許文献2)に開示されている。これらによる検査方式を図17を用いて簡単に説明する。
蛍光体形成が完成した背面板141に対し、紫外光源142による紫外光143を照射する。これにより、紫外光により蛍光体が励起されて発光する。その際の発光光144をカメラ145で検出し、検出信号を処理系146にて取得して、欠陥状態を検査する。
背面板141あるいは紫外光源142とカメラ145を連続的に走査することで背面板全面を検査する方式である。なお、特許文献2には、検出カメラ145は基板141に対して垂直方向での検出の他、45°以下の角度から検出する方式も開示されている。
背面板141あるいは紫外光源142とカメラ145を連続的に走査することで背面板全面を検査する方式である。なお、特許文献2には、検出カメラ145は基板141に対して垂直方向での検出の他、45°以下の角度から検出する方式も開示されている。
また、特許文献1には、紫外光により発生するオゾンを排出する機構についても開示されている。
上記特許文献1及び2には、リブ内に形成された蛍光体層を紫外光により励起・発光させ、基板上方或いは、45°以下の斜方より検出する方法などが示されている。これらの方式は、カメラで検出した画像信号を基準値と比較して蛍光体の混色や、未塗布、異物による蛍光不良、輝度むらなどの欠陥判定をおこなうものであり、塗布プロセスで生じるリブ内の蛍光体層の形状変化を正確に行えていない。
このため、欠陥には至らない程度のプロセス変動により生じる蛍光体塗布状態の変化が捉えられず、塗布工程などの製造工程へのフィードバック・コントロールが実施できないという課題があった。
上記課題を解決するために、本発明は、蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して画像を取得し、該取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーンを基に前記リブ内に塗布された蛍光体層の欠陥を検査して蛍光体層の欠陥情報を得る蛍光体検査工程を有し、該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
また、本発明は、蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を特定方向から撮像手段により撮像して画像を取得し、該取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーン間において差分領域を求め、該求められた前記差分領域を基に前記リブ内に塗布された蛍光体層の欠陥を検査して欠陥の位置、形状及びサイズからなる蛍光体層の欠陥情報を得る蛍光体検査工程を有し、該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
また、本発明は、蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を互いに異なる複数の方向から撮像手段により撮像して複数の画像を取得し、該取得した複数の画像の各々をRGBの各プレーンに分離し、該分離したRGBの各プレーン同士を比較することによって前記リブ内に塗布された蛍光体層の欠陥モードを検査して欠陥モードからなる蛍光体層の欠陥情報を得る蛍光体検査工程を有し、該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
また、本発明は、蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して輝度信号情報を取得し、該取得した輝度信号情報と、予め求めておいた蛍光体層形状モデルと輝度信号情報との相関関係とを比較して前記リブ内に塗布された蛍光体層の塗布状態を求める蛍光体検査工程を有し、該蛍光体検査工程により求められた蛍光体層の塗布状態を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とする。
また、本発明は、プラズマディスプレイの背面板に形成された蛍光体層を検査するプラズマディスプレイの検査装置において、前記蛍光体層を励起照明する紫外光発生手段と、前記紫外光発生手段からの励起照明により前記蛍光体層から発光する発光光を撮像して画像を取得する撮像装置と、該撮像装置により取得された画像をRGBの各プレーンに分離して発光状態の特徴量(輝度プロファイル)を抽出する画像処理部と、該抽出された前記発光状態の特徴量と、蛍光体層形状モデルと発光状態の特徴量との相関関係を記録したデータとから蛍光体層の塗布状態(形状及びプロファイルも含む)を算出する形状・面内分布把握部とを備えたことを特徴とする。
また、本発明は、前記画像処理部において、少なくとも1方向から生成された画像をRGBの各プレーンに分離して各プレーン間の差分領域を求め、欠陥の位置、形状、面積(サイズ)を抽出することを特徴とする。
また、本発明は、前記形状・面内分布把握部において、少なくとも2方向から生成された各画像をそれぞれRGBの各プレーンに分離して、1方向から撮像した画像のRGBの各プレーンと他の方向から撮像した画像のRGBの各プレーンとを比較して欠陥モードを判定することを特徴とする。
また、本発明は、プラズマディスプレイの製造システムとして、さらに、前記形状・面内分布把握部で算出された蛍光体層形状分布データから蛍光体塗布工程での変動を判定する状態判定部と、該状態判定部で判定された結果に基づき前記蛍光体塗布工程の製造装置のパラメータを制御する制御部とを有すること特徴とする。
以上説明したように、本発明の製造方法によれば、PDPの製造工程における蛍光体形成プロセスでの蛍光体塗布状態・蛍光体層形状を正確に把握し、速やかに製造工程にフィードバックできるため、歩留り向上、プロセス改善、不良防止に極めて大きな効果がある。
また、本発明の検査装置によれば、微細な欠陥、特に従来は欠陥と判定されない程度の蛍光体形状変化を捉えて、プロセス変動を木目細かく把握することができる。
以下、本発明を実施するための最良の形態について説明する。
本発明に係るPDPの製造方法及びPDPの検査装置の実施例1を以下に図面を用いて説明する。
まず、本実施例1の対象となるPDPの単純な構成を図19に示して説明すると、背面ガラス201上にストライプ上のリブ障壁202を形成し、その内部にRGB3色の発光をそれぞれ生じる蛍光体層203を充填する。リブの上部には前面板ガラス205を配置し、背面板との間隙にガスを封入する。前面板の透明電極206とこれに直交する背面板内のアドレス電極204の間でプラズマ放電208を起こして紫外線を発生させる。この紫外線により各画素内の蛍光体を励起発光させて、発光画素209として、映像を作り出す構成となっている。
次に、本実施例1のPDPの製造工程について図13を用いて説明する。まず、前面板工程においては、ガラス基板を洗浄した(S100)後、透明ITO電極をスパッタにより形成する(S101)。次にバス電極をホトリソグラフィ(ホトマスク成形⇒エッチング加工)などにより形成する(S102)。そして、誘電体膜を塗布・焼成した(S103〜S105)後、保護膜であるMgO膜を蒸着し、成膜する(S106)。
背面板も同様にして、ガラス基板洗浄から始まり(S200)、ホトリソグラフィなどによるアドレス電極形成後(S201〜S206)、誘電体膜を形成する(S207)。その後は前面板工程と異なり、リブ材を印刷し乾燥させリブ層を形成した後(S208)、サンドブラスト用のマスクを形成する(S209)。サンドブラスト加工(S210)により、リブを形成した後に焼成してリブ障壁が完成する(S211)。リブ障壁内に蛍光体ぺーストを印刷などにより充填し、焼成して蛍光体をリブ障壁内に固着させる(S212)。
最後に、前面板と背面板が完成すると両者を組立・封着した(S300)後、真空引き・放電ガス導入を行い、封止する(S301)。そして駆動回路をパネルに取り付け(S302)、TVセットとして組立て(S303)、完成となる。
ここで、本実施例1と特に関連のある蛍光体印刷・焼成工程S212について、図14を用いて詳しく説明する。図14(a)〜図14(g)は印刷方式による各工程を示す図である。
まず、図14(a)に示すように、リブ形成完成後の背面板101が第一の蛍光体(Rとした)塗布装置(図15)に搬送され、R用印刷マスク103に位置合わせされる。マスク103は予め決められたリブ内102にR蛍光体ペースト104が充填されるようにパターンが配置されており、スクリーン印刷の工法で背面板101上への充填が行われる。背面板全面への印刷が完了した後、図14(b)に示すように、R蛍光体充填背面板105は乾燥工程により、充填された蛍光体106中の溶剤成分が揮発し安定する。
次に、図14(c)に示すように、同様にして第二の蛍光体(Gとした)塗布工程において、前記のR蛍光体充填背面板105に対し、G用印刷マスク107を位置合わせし、予め決められたリブ内にG蛍光体ペースト108が充填するように、スクリーン印刷を行う。背面板全面への印刷が完了した後、図14(d)に示すように、G蛍光体充填背面板109は乾燥工程により、充填された蛍光体110中の溶剤成分が揮発し安定する。
次に、図14(e)に示すように、第三の蛍光体(Bとした)塗布工程においても同様に、前記のG蛍光体充填背面板109に対して、B用印刷マスク111を用いて、所定のリブ内にB蛍光体ペースト112を充填する。基板全面への印刷が完了した後、図14(f)に示すように、B蛍光体充填背面板113は乾燥工程により、充填された蛍光体114中の溶剤成分が揮発し安定する。
最後に、図14(g)に示すように、焼成工程にて、前記全蛍光体が塗布された背面板113を焼成し、蛍光体付背面板115が完成する。
この様な蛍光体印刷・焼成工程S212に用いる印刷装置の原理を、図15を用いて説明する。装置架台121上に背面板124を搭載し、アライメント調整したのち、架台121に固定する。製造する基板品種、蛍光体種類に対応したマスク122を前記背面板124上に重ね、アライメント調整を行う。次に、塗布ヘッド127がマスク122の一端から一定速度で、矢印129の方向に、一定量の蛍光体ペースト128をマスク上にライン状に塗布しながら反対側の端まで走査する。さらに、スキージ126が塗布ヘッド127の後方より走査され、マスク上の蛍光体ペースト128がマスクパターン123の開口部から背基板124の所定のリブ125内に充填される。
また、別の塗布方式であるディスペンサ方式による装置の原理を、図16を用いて説明する。装置架台131上に背面板132を搭載し、アライメント調整したのち、架台131に固定する。次に、製造する基板品種に対応したディスペンサ134を複数搭載した塗布ヘッド135にて、背面板の端から矢印136方向に沿って、一定速度で、走査する。その際、各ディスペンサからは、一定量の蛍光体ペースト134が、背面板132の所定のリブ内133に充填される。装置構成から明らかなように本方式の場合には、ディスペンサ134に装填する蛍光体ペースト種類を変えることにより、一度に全色の充填を行う工程とすることも可能である。
次に、本発明に係るリブ内に形成された蛍光体層状態を検査する検査装置の実施例について図1を用いて説明する。検査対象である背面板2は試料台1上に配置されて保持される。試料台1はステージ制御部14により、任意の位置に制御される。なお、13は、検査装置全体を制御する装置制御部である。従って、装置制御部13は、ステージ制御部14及び形状・面内分布把握部11に接続して構成される。
検査対象の背面板2の上方には、紫外光源3a、3bを配置し、それぞれ反射板4a、4bにて対向する紫外光を背面板2に照射する。背面板2のリブ内に形成された蛍光体層は上記紫外光により励起され、蛍光光を発する。
発生した蛍光光9a、9b、9cは、それぞれ、図1に示すように、背面板2に対して角度の異なる位置(左傾斜位置、ほぼ垂直位置、右傾斜位置)に配置されたレンズ5a、5b、5cを通して集光され、それぞれの光検出器6a、6b、6cにて検出される。レンズ5a及び光検出器6aはリブの左側壁から発生する蛍光光9aを良く検出でき、レンズ5c及び光検出器6cはリブの右側壁から発生する蛍光光9cを良く検出できることになる。各光検出器6a、6b、6cで検出された信号は、それぞれ画像生成部7a、7b、7cにて2次元の画像として生成され、画像処理部8a、8b、8cへ送られる。画像処理部8a、8b、8cでは後述する画像処理により2次元画像から、蛍光体層の特徴量である欠陥の位置、形状、面積(サイズ)などがそれぞれ算出され、形状・面内分布把握部11へ送られる。形状・面内分布把握部11では、後述する方法にて、蛍光体層に係わるリブの高さや蛍光体層等の形状設計寸法である幾何学的設計寸法、基板(背面板)の種類などの設計情報・基板情報10と、予め構築した蛍光体層形状モデルと発光輝度プロファイルデータとの相関関係データベース(形状モデル−輝度プロファイルの相関関係データベース)12とを利用して、検出した基板の蛍光体層の形状および各形状パラメータのパネル面内の分布などのデータを算出する。状態判定部15では、算出した上記データを基に、欠陥位置、欠陥モード、プロセス変動などの状態を判定し、上位サーバ16に当該情報をuploadする。なお上位サーバ16では、製造プロセスを統合的管理し、必要に応じて、製造装置(蛍光体塗布装置:蛍光体印刷・焼成装置等)17へ指令を行う。
次に、各構成について、詳しく説明する。図2(a)は、図1に記載した、角度の異なる位置に配置された検出レンズ(対物レンズ)5、並びに光検出器6の配置角度及び検出分解能に関して説明したものである。ここでは説明を簡単にするため、1つの検出レンズ及び光検出器のみ記述した。
光検出器6は、例えば、紙面と垂直な方向に配置されたラインセンサから構成され、基板(背面板)2を紙面横方向に走査することにより、画素20aを順次検出し、2次元像を撮像する。
今、50インチPDPパネルを対象にした場合、ハイビジョン画面である横16:縦9のサイズでフルハイビジョン規格の画素数である横1920画素の背面板のリブ間隔は、RGB3色分で1画素となるため、約190μmとなる(図2のLp=190μm)。また、説明を簡単にするためリブ壁が垂直であると仮定すると、角度θの斜め方向からパネルを観察した場合、観察可能なリブ側壁部の長さHsは、Hs=Lp×tanθ(但し、リブ高さHを超えない)と表される。
ここで、一般に人間がTVを斜めから視聴する限界角度を10°とすると、上記関係式より、Hs=190μm×tan10°=34μmとなり、リブ側壁部34μm分の蛍光体が見えることになる。この状態(限界角度10°)で認知可能な欠陥がリブの側壁部から検出する必要のある最小欠陥サイズとなるので、光検出器6は観察領域34μmの少なくとも1/2程度の分解能で撮像して検出することが必要となる。従って、本実施例では、光検出器6がリブ側壁上において撮像して検出する最小検出分解能rを15μm程度とした。
傾斜角θにおいて、上記リブ側壁上における認知可能な最小欠陥を検出できる最小検出分解能rを満足するためには、光検出器6によって走査方向に撮像サンプリングして検出する検出分解能RはR=r/tanθとなり、傾斜角θが例えば60°の場合光検出器6は走査方向にR=8.7μm程度間隔以下で撮像サンプリングして検出する必要が有り、傾斜角θが例えば45°の場合光検出器6は走査方向にR=15μm程度間隔以下で撮像サンプリングして検出する必要が有り、傾斜角θが例えば20°の場合光検出器6は走査方向にR=41.2μm程度間隔以下で撮像サンプリングして検出する必要が有る。この条件を表で示したものが、図2(b)である。ただし、傾斜角θが90°である垂直検出に近づくと光検出器6が撮像できる検出分解能Rは略ゼロとなり、リブ側壁上の最小欠陥を撮像することはできなくなる。なお、θ>90°の場合はθ<90°と左右対称であるため説明を省略する。
ところで、光検出器6が撮像可能なリブ壁高さHsの限界は、リブ高さHとリブピッチLpとのアスペクト比によって決まる。一般に、リブ自体の製造上の制約や、蛍光層の厚さなどにより、リブピッチLpとリブ高さHは同等程度である(アスペクト比1.0)ため、Hsも最大190μmとした。即ち、傾斜角θが45°以上になると光検出器6が撮像できるリブ壁高さHsはリブピッチLpと同程度の190μmとなり、リブ壁の蛍光体層の全領域を撮像できることになる。傾斜角θが例えば20°になると光検出器6が撮像できるリブ壁高さHsは69μm程度と限定されることになる。
また、傾斜角θが90°における検出レンズの焦点深度を1とすると、傾斜角θの斜方検出では検出レンズの実効的な焦点深度はsinθ倍となり、図2(b)に示すように傾斜角θが小さくなるほど焦点深度が浅くなり、焦点深度の深い検出レンズを使用する必要がある。
以上説明したように、実際の検出系5a〜5c、6a〜6cの設計では図2(b)に示す条件下で行えば良い。そして、相対向する検出系5a、5c;6a、6cを設けて傾斜角θを50°程度〜60°程度の範囲内にすれば、検出レンズの焦点深度が0.8倍程度以上確保でき、検出分解能(撮像サンプリング間隔)Rが12.6μm程度〜8.7μm程度で十分な走査速度が得られ、さらに撮像できるリブ壁高さHsはリブピッチLpと同程度の190μmとなり、リブ壁の蛍光体層の全領域を撮像できることになる。
なお、傾斜角θがより低角度での条件であれば、走査方向検出分解能Rは大きくても良いので、より高速に走査可能であるが、あらかじめ十分長い焦点深度を持つ検出レンズを搭載するか、基板と検出レンズとの間の距離を一定に保つ機構が必要となる。逆に、傾斜角θがより高い角度での条件であれば、走査方向検出分解能Rは小さくする必要があり、光検出器の検出レートが不変ならば検出速度(走査速度)を遅くする必要がある。
次に、各画像処理部8a、8b、8cでの処理例を、図3及び図4を用いて詳しく説明する。図3は、各画像処理部8a、8b、8cでの処理フローを示すフロー図である。図4は、各画像処理部8a、8b、8cでの処理内容の説明図である。なお、検出角度θによらず、処理方式は同一であるので、1検出器から検出された画像を用いて説明する。本実施例では、前記光検出器6a、6b、6cは光輝度及び色相を検出可能なカラー検出器とする。
本実施例1よる連続欠陥検出の処理を以下に説明する。各画像処理部8a、8b、8cは初めに得られた検出画像701から、処理対象の画像42を切出す。説明のため、連続位置ズレ欠陥及び複数の孤立欠陥が存在する例を示した。連続位置ズレ欠陥がB蛍光体塗布時に生じた例を示す(正常品画像40と比較するとB蛍光体が全てR蛍光体方向にズレている)。
各画像処理部は、検出画像701から切出された対象画像42を、カラー画像のRGBの各プレーンに分離する(S31)。そして、各画像処理部は、設計情報・基板情報10に格納されている基板設計情報(基板パラメータ)702からRGB並び方向及びパネル画素ピッチpを得、RGB並び方向に対応して、Bプレーン画像42bはY方向に+(1/3)×pシフトさせ、Gプレーン画像42gはY方向に−(1/3)×pシフトさせる(S32)。次に、各画像処理部は、各プレーンでの輝度値が一致するように画像上でGain調整を行い、輝度調整後の画像42b’、42r’、42g’を得る(S33)。次に、各画像処理部は、それぞれの画像間で差分演算を行い、(Bプレーン)−(Rプレーン)の差分画像44a、(Rプレーン)−(Gプレーン)の差分画像44b、(Gプレーン)−(Bプレーン)の差分画像44cを出力する(S34)。この結果、各画像処理部は、差分画像44a中のライン状欠陥46及び、差分画像44c中のライン状欠陥47に位置ズレ欠陥が発生していることがわかる(S35)。いずれの差分画像もBプレーンを含むことからB蛍光体での位置ズレ欠陥であると判定する。また、差分画像44b中の差分領域48から孤立欠陥が生じていることも判る。
このように、各画像処理部は少なくとも1方向(特定方向)からの画像を、RGBの各プレーンに分離し、各プレーン間の差分領域を求めることにより、従来は欠陥と判定されない程度の蛍光体形状変化を捉えて、欠陥の位置、形状、面積(サイズ)を特定することができる。
次に、形状・面内分布把握部11での欠陥モード判定の処理例について図5及び図6を用いて詳しく説明する。前記各画像処理部8a、8b、8cでの処理にて、欠陥の位置、形状、面積(サイズ)が判明するため、形状・面内分布把握部11は欠陥が含まれる領域をそれぞれの画像処理部8a、8b、8cの画像中から抜き出し、各プレーンでの欠陥状態から欠陥モードを判定する。
即ち、形状・面内分布把握部11は、画像処理部8aからのリブの左側壁を撮像する画像中のRプレーンで検出された欠陥領域51a(r)を、基板上の同一位置を捉えている画像処理部8aからの他のプレーンG、Bでの領域51a(g)、51a(b)、及び画像処理部8bからのリブの真上から撮像する画像中でのプレーンR、G、Bでの領域51b(r)、51b(g)、51b(b)、及び画像処理部8cからのリブの右側側壁を撮像する画像中のプレーンR、G、Bでの領域51c(r)、51c(g)、51c(b)と比較すると、画像処理部8cからの画像中の領域51c(r)、51c(g)、51c(b)では欠陥は無く、Bプレーンからの画像中の領域51a(b)、51b(b)でも欠陥は無く、領域51a(r)での欠陥サイズが領域51b(r)での欠陥サイズより大きく、同様に領域51a(g)での欠陥サイズが領域51b(g)での欠陥サイズより大きいので、上記欠陥領域51a(r)は図6の欠陥51に示す形状であり、G蛍光体61のリブ壁面にR蛍光体62が乗越えた欠陥モードであると判定する。
形状・面内分布把握部11は、同様にして、画像処理部8cからの画像を基に検出される領域52c(g)の欠陥は、他の領域に欠陥がないので、図6の欠陥52の形状を持つGリブ壁63での蛍光体欠落欠陥であると判定する。
また、形状・面内分布把握部11は、領域53a(r)の欠陥は、領域53b(r)、領域53c(r)に同程度のサイズの欠陥が有り、他のG、Bプレーンに欠陥が無いことから、図6の欠陥53の形状を持つRリブ64内の異物65による欠陥であると判定する。
また、形状・面内分布把握部11は、領域54a(r)の欠陥は、領域54b(r)、領域54a(b)、及び領域54b(b)に同程度のサイズの欠陥が有り、Gプレーン及び画像処理部8cからの画像に欠陥が無いことから、図6の欠陥54の形状を持つBリブ66内の側壁にR蛍光体67が付着した混色欠陥であると判定する。
このようにして、形状・面内分布把握部11は、欠陥モードを判定することで、蛍光体層の塗布工程におけるプロセス状態を正確に把握することが可能となる。
次に、形状・面内分布把握部11での蛍光体層形状判定の処理例を図7を用いて詳しく説明する。正常な蛍光体層形状71、蛍光体がやや少ない形状73及び蛍光体層が右側に偏った形状75に対して、リブのほぼ真上方向から撮像して画像処理部8bから得られる輝度信号のプロファイルをぞれぞれ72、74、76とする。形状・面内分布把握部11は、このような各輝度信号のプロファイル72、74、76において、ピーク輝度をp1、p1の70%輝度をp2として、輝度p2時のプロファイル幅p2w、及び中心からピーク位置の乖離量offを輝度プロファイルパラメータとして算出する。形状・面内分布把握部11は、更に算出した各パラメータp2w,offを、予め蛍光体層形状モデルと輝度プロファイルの相関関係を求めたデータである形状−輝度モデル12に参照することで、実際の蛍光体層の形状を得ることが可能となる。
このようにすることで、形状・面内分布把握部11は、欠陥と判定されない程度の蛍光体形状変化を捉えて、蛍光体塗布工程におけるプロセス変動を木目細かく把握することができる。
次に、形状・面内分布把握部11及び状態判定部15での処理について図8を用いて説明する。既に述べた処理により、検査対象基板上の欠陥位置、モード、サイズが判明するので、形状・面内分布把握部11は、例えば、蛍光体乗越え欠陥を○印81、混色欠陥を菱形印82として欠陥分布マップ80を生成する。生成された欠陥分布マップ80は状態判定部15へ送られ、例えば、発生位置により中央部か周辺部か、分布形状により円弧状か直線状かランダムかなどの状態判定が行われる。また、面取りされるパネル80a〜80f毎に欠陥情報が記録される。
形状・面内分布把握部11は、このような欠陥分布マップを生成することにより、蛍光体塗布工程におけるプロセス変動の傾向を速やかに把握することができる。
次に、別の処理例を図9を用いて説明する。形状・面内分布把握部11は、図7にて説明した中心からの蛍光体のピーク位置の乖離量offを、図9に示す間隔で表示した幾何学的変位量分布であるズレ量マップ90を生成する。ズレ量の大きさと方向を矢印91、93で示し、ズレがない場合は○印92で示す。状態判定部15では、ズレ量の大きい位置が中央部か周辺部か、ズレ方向が一定かランダムかなどの状態判定が行われる。また、面取りされるパネル90a〜90f毎にズレ量分布が記録される。
形状・面内分布把握部11は、このようなズレ量マップを生成することにより、蛍光体塗布工程におけるズレ量の傾向を速やかに把握することができる。
次に、本実施例1の製造方法における製造工程への制御を行う実施例について図10及び図11を用いて説明する。蛍光体層の製造工程である蛍光体塗布工程S212での製造装置(蛍光体塗布装置:蛍光体印刷・焼成装置等)17は、上位サーバ16から上述した蛍光体検査S220によって、蛍光体の欠陥の位置、形状、面積(サイズ)欠陥モード、欠陥分布、ズレ量が把握できるので、これら欠陥の情報の全部または一部を使用して、上記蛍光体塗布工程S212での製造装置17のパラメータをチェック・修正する。具体的には、図10に示す修正・チェック項目に示したパラメータ群であり、上述したスクリーン印刷方式、ディスペンサ方式毎に特有のパラメータもある。修正・チェック項目としては、スクリーン印刷方式及びディスペンサ方式に共通するものとしては、アライメント171及び基板クランプ状態172等があり、スクリーン印刷方式としては温度(基板、マスク)173、塗布量174、マスク・パターン確認175及びマスク・裏面クリーニング176等があり、ディスペンサ方式としては温度(基板)177、ヘッド走り方向178.塗布量179及びノズル詰り状態180等がある。そこで、製造装置17は、例えば、図11に示す欠陥−推定原因対応表(欠陥モード−分布状態−推定原因の対応表)に従って、該当する各パラメータ項目を確認・調整する。図11の推定原因に示す数字は以下の調整項目に相当する。1.アライメント(X−Y)、2.アライメント(回転)、3.基板クランプ、4.温度勾配、5.塗布量、6.マスクパターン、7.マスク裏面汚れ、8.ヘッド走り方向誤差、9.ノズル詰まりである。これらの欠陥の情報や調整すべき情報を蛍光体塗布工程(蛍光体印刷・焼成工程)S212にフィードバックすれば、蛍光体製造工程でのプロセス状態の変動を減少させ、安定した状態で製造することができる。
このように本実施例1の製造方法によれば、PDPの製造工程における蛍光体形成プロセスでの蛍光体塗布状態・蛍光体層形状から蛍光体塗布工程でのプロセス状態を木目細かく正確に把握し、速やかに蛍光体塗布工程にフィードバックして蛍光体塗布工程の製造装置を制御できるため、歩留り向上、プロセス改善、不良防止に極めて大きな効果がある。また、上述した蛍光体検査S220により、欠陥モードが判明しているので、修正可能かどうかの判定も容易になる。
次に、本実施例1における検査装置の構成について図12を用いて説明する。検査対象基板33(2)に対して、十分長い距離を照明可能な紫外ランプ31(3a,4a)、32(3b,4b)により、紫外光を基板33(2)に照射する構成とする。蛍光体の発光光の検出手段は、各検出方向に対応し、検出素子の分解能と1素子当り長さにより、検出範囲を分割して、検出手段30a−1〜30a−n(5a,6a)、30b−1〜30b−n(5b,6b)、30c−1〜30c−n(5c,6c)を配置する。検出素子としてはカラーラインセンサを用い、基板33の走査と同期して画像検出を行う構成とする。
このような構成とすることで、大きい基板であっても、高速に検査することが可能であり、製造タクト内での検査が可能となり、インライン検査装置として実現可能である。
なお紫外光としては、低圧水銀灯(波長184nm、254nm)の他、波長400nm以下の紫外レーザをライン状に走査するなどして実現可能であり、レーザ光源としては、KrFレーザ(248nm)、KrClレーザ(222nm)、ArFレーザ(193nm)などが利用できる。
次に、本発明に係る蛍光体検査装置の実施例2について図17を用いて説明する。図1に示す蛍光体検査装置の実施例1ではカメラ3台で3方向からの画像を検出したのに対し、本蛍光体検査装置の実施例2では、1台のカメラの方向を変化させて検出することが特徴である。他の構成は図1と同様なため説明を省略する。図1と同様に紫外光源3a、3b及び反射板4a、4bにより紫外光を背面板2に照射する。背面板2のリブ内に形成された蛍光体層は上記紫外光により励起され、該励起された蛍光体からの発光を、基板(背面板)2に対してある角度に設定されたレンズ5を通して集光し、光検出器6にて検出する。検出した信号は、画像生成部7にて2次元の画像として生成され、画像処理部8へ送られる。レンズ5と光検出器6は検出角度を任意に変えることが可能なレール200上に配置され、角度を変えることにより、複数台の検出器で検出したのと同様の画像を得ることができる。
本実施例2によれば、レンズ5及び光検出器6を1台のカメラで実現でき、構成の簡素化やコスト低減を図ることができる。また、本実施例2により得られた画像を、実施例1と同様に処理して得られた欠陥や調整すべき情報を蛍光体塗布工程S212にフィードバックすれば、蛍光体製造工程でのプロセス状態の変動を減少させ、安定した状態で製造することができる。
次に、形状・面内分布把握部11での欠陥モード判定の他の実施例3について図18を用いて説明する。図18は、図5に示した3方向からの検出例のうち、画像処理部8bからの画像分(中央)を省いて2方向の検出画像を用いた実施例3を示す。本実施例3のように、中央部での検出画像が無い場合でも、左右2方向からの検出画像においても、リブの死角による検出不能領域が無ければ、3方向からの検出と同様にして図6に示す欠陥モード(欠陥領域51a(r)及び51a(g)を基にR乗越え欠陥51を判定し、欠陥領域52c(g)を基にGリブ壁欠落欠陥52を判定し、欠陥領域53a(r)及び53c(r)を基にRリブ内異物欠陥53を判定し、欠陥領域54a(r)及び54a(b)を基にBリブ内混色欠陥54を判定する。)を特定することが可能となる。
2方向からの検出画像を用いているため、3方向からの検出例と比較してより迅速に処理が可能となる。また、本実施例3により得られた欠陥や調整すべき情報を蛍光体塗布工程S212にフィードバックすれば、実施例1と同様に、蛍光体製造工程でのプロセス状態の変動を減少させ、安定した状態で製造することができる。
1…装置試料台、2…背面板、3a、3b…紫外光源、4a、4b…UV用リフレクタ、5、5a、5b、5c…検出レンズ、6、6a、6b、6c…光検出器、7a、7b、7c…画像生成部、8a、8b、8c…画像処理部、9a、9b、9c…蛍光発光光、10…設計情報・基板情報データ、11…形状・面内分布把握部、12…蛍光体層形状−輝度プロファイルモデルDB、13…装置制御部、14…ステージ制御部、20a…斜方検出系での検出画素列、20b…垂直検出系での検出画素列、31、32…紫外光源、80a−1〜80a−n、80b−1〜80b−n、80c−1〜80c−n…検出手段、33…検査対象背面基板、40…正常検出画像、41…左隣接画像、42…処理対象画像、42b…画像42のB成分画像、42r…画像42のR成分画像、42g…画像42のG成分画像、42b’…画像42bのY方向シフトとGain調整をした画像、42r’…画像42rのGain調整をした画像、42g’…画像42gのY方向シフトとGain調整をした画像、43…右左隣接画像、44a…画像42b’と画像42r’の差分絶対値画像、44b…画像42r’と画像42g’の差分絶対値画像、44c…画像42g’と画像42b’の差分絶対値画像、46、47…ライン状欠陥、48…孤立欠陥、51a(r)〜54c(b)…各画像処理部からの欠陥画像領域(各プレーン)、61…G蛍光体層、62…R乗越え欠陥、63…G蛍光体リブ壁欠落欠陥、64…R蛍光体層、65…異物、66…B蛍光体層、67…付着したR蛍光体粒子、71…正常な蛍光体層形状の断面、 72…71の蛍光体層の輝度信号のプロファイル、73…蛍光体がやや少ない形状の断面、 74…73の蛍光体層の輝度信号のプロファイル、75…蛍光体層が偏った形状の断面、 76…75の蛍光体層の輝度信号のプロファイル、80…欠陥分布マップ、80a〜80f…面取りパネル、81…蛍光体乗越え欠陥位置、82…混色欠陥位置、90…蛍光体ずれ量マップ、90a〜90f…面取りパネル、91、93…ズレ量と方向矢印、92…ズレ無し、101…リブ形成完成後の背面基板、102…R蛍光体充填箇所、103…R用印刷マスク、104…R蛍光体ペースト、105…R蛍光体充填基板、106…充填されたR蛍光体、107…G用印刷マスク、108…G蛍光体ペースト、109…G蛍光体充填基板、110…充填されたG蛍光体中、111…B用印刷マスク、112…B蛍光体ペースト、113…B蛍光体充填基板、114…充填されたB蛍光体、115…蛍光体付背面基板、121…装置架台、122…マスク、123…マスクパターン開口部、124…背面板、125…印刷対象リブ、126…印刷スキージ、127…塗布ヘッド、128…蛍光体ペースト、129…印刷方向、131…装置架台、132…背面板、134…ディスペンサ、135…塗布ヘッド、136…塗布方向、141…背面板、142…紫外光源、143…紫外光、144…発光光、145…検出カメラ、146…信号処理系。
Claims (8)
- 蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、
更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して画像を取得し、該取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーンを基に前記リブ内に塗布された蛍光体層の欠陥を検査して蛍光体層の欠陥情報を得る蛍光体検査工程を有し、
該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とするプラズマディスプレイの製造方法。 - 蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、
更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を特定方向から撮像手段により撮像して画像を取得し、該取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーン間において差分領域を求め、該求められた前記差分領域を基に前記リブ内に塗布された蛍光体層の欠陥を検査して欠陥の位置、形状及びサイズからなる蛍光体層の欠陥情報を得る蛍光体検査工程を有し、
該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とするプラズマディスプレイの製造方法。 - 蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、
更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を互いに異なる複数の方向から撮像手段により撮像して複数の画像を取得し、該取得した複数の画像の各々をRGBの各プレーンに分離し、該分離したRGBの各プレーン同士を比較することによって前記リブ内に塗布された蛍光体層の欠陥モードを検査して欠陥モードからなる蛍光体層の欠陥情報を得る蛍光体検査工程を有し、
該蛍光体検査工程により得られた蛍光体層の欠陥情報を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とするプラズマディスプレイの製造方法。 - 蛍光体塗布装置を用いてプラズマディスプレイの背面板に設けられたリブ内に蛍光体層を塗布する蛍光体塗布工程を有するプラズマディスプレイの製造方法において、
更に、前記背面板のリブ内に塗布された蛍光体層に紫外光を照射して発光させ、該発光させた光を撮像手段により撮像して輝度信号情報を取得し、該取得した輝度信号情報と、予め求めておいた蛍光体層形状モデルと輝度信号情報との相関関係とを比較して前記リブ内に塗布された蛍光体層の塗布状態を求める蛍光体検査工程を有し、
該蛍光体検査工程により求められた蛍光体層の塗布状態を前記蛍光体塗布工程にフィードバックして前記蛍光体塗布装置を制御することを特徴とするプラズマディスプレイの製造方法。 - プラズマディスプレイの背面板に形成された蛍光体層を検査するプラズマディスプレイの検査装置において、
前記背面板を保持する保持台と、
該保持台を走行させる駆動部と、
前記蛍光体層に紫外光を照射する紫外光照射光学系と、
前記紫外光照射光学系による紫外光の照射により前記蛍光体層から発光する光を撮像して画像を取得する撮像装置と、
該撮像装置で取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーンを基に前記リブ内に塗布された蛍光体層の欠陥を検査して蛍光体層の欠陥情報を得る欠陥判定部と、
を備えたことを特徴とするプラズマディスプレイの検査装置。 - プラズマディスプレイの背面板に形成された蛍光体層を検査するプラズマディスプレイの検査装置において、
前記背面板を保持する保持台と、
該保持台を走行させる駆動部と、
前記蛍光体層に紫外光を照射する紫外光照射光学系と、
前記紫外光照射光学系による紫外光の照射により前記蛍光体層から発光する光を特定方向から撮像して画像を取得する撮像装置と、
該撮像装置で取得した画像をRGBの各プレーンに分離し、該分離したRGBの各プレーン間において差分領域を求め、該求められた前記差分領域を基に前記リブ内に塗布された蛍光体層の欠陥を検査して欠陥の位置、形状及びサイズからなる蛍光体層の欠陥情報を得る画像処理部と、
を備えたことを特徴とするプラズマディスプレイの検査装置。 - プラズマディスプレイの背面板に形成された蛍光体層を検査するプラズマディスプレイの検査装置において、
前記背面板を保持する保持台と、
該保持台を走行させる駆動部と、
前記蛍光体層に紫外光を照射する紫外光照射光学系と、
前記紫外光照射光学系による紫外光の照射により前記蛍光体層から発光する光を互いに異なる複数の方向から撮像して複数の画像を取得する撮像装置と、
該撮像装置で取得した複数の画像の各々をRGBの各プレーンに分離し、該分離したRGBの各プレーン同士を比較することによって前記リブ内に塗布された蛍光体層の欠陥モードを検査して欠陥モードからなる蛍光体層の欠陥情報を得る欠陥モード算出部と、
を備えたことを特徴とするプラズマディスプレイの検査装置。 - プラズマディスプレイの背面板に形成された蛍光体層を検査するプラズマディスプレイの検査装置において、
前記背面板を保持する保持台と、
該保持台を走行させる駆動部と、
前記蛍光体層に紫外光を照射する紫外光照射光学系と、
前記紫外光照射光学系による紫外光の照射により前記蛍光体層から発光する光を撮像して輝度信号情報を取得する撮像装置と、
該撮像装置で取得した輝度信号情報と、予め求めておいた蛍光体層形状モデルと輝度信号情報との相関関係とを比較して前記リブ内に塗布された蛍光体層の塗布状態を求める形状・面内分布把握部と、
を備えたことを特徴とするプラズマディスプレイの検査装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007185787A JP2008177150A (ja) | 2006-12-19 | 2007-07-17 | プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 |
US11/834,036 US20080145517A1 (en) | 2006-12-19 | 2007-08-06 | Method for manufacturing plasma display panel, and apparatus for inspecting plasma display panel |
KR1020070084786A KR100880335B1 (ko) | 2006-12-19 | 2007-08-23 | 플라즈마 디스플레이 패널의 제조 방법 및 플라즈마디스플레이 패널의 검사 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006341665 | 2006-12-19 | ||
JP2007185787A JP2008177150A (ja) | 2006-12-19 | 2007-07-17 | プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008177150A true JP2008177150A (ja) | 2008-07-31 |
Family
ID=39704006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007185787A Pending JP2008177150A (ja) | 2006-12-19 | 2007-07-17 | プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008177150A (ja) |
KR (1) | KR100880335B1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111999273A (zh) * | 2020-08-17 | 2020-11-27 | 无锡先导智能装备股份有限公司 | 物体缺陷检测方法、系统、装置、设备和存储介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101102043B1 (ko) * | 2009-12-30 | 2012-01-05 | (주)에이치아이티에스 | 발광 다이오드 검사 장치 및 방법 |
KR102446211B1 (ko) | 2017-12-11 | 2022-09-23 | 삼성디스플레이 주식회사 | 발광 소자의 검사 방법 및 발광 소자의 검사 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000337998A (ja) * | 1999-06-01 | 2000-12-08 | Toray Ind Inc | プラズマディスプレイパネルの検査装置および製造方法 |
JP4531186B2 (ja) * | 2000-03-06 | 2010-08-25 | パナソニック株式会社 | プラズマディスプレイパネル背面板の検査装置および製造方法 |
-
2007
- 2007-07-17 JP JP2007185787A patent/JP2008177150A/ja active Pending
- 2007-08-23 KR KR1020070084786A patent/KR100880335B1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111999273A (zh) * | 2020-08-17 | 2020-11-27 | 无锡先导智能装备股份有限公司 | 物体缺陷检测方法、系统、装置、设备和存储介质 |
CN111999273B (zh) * | 2020-08-17 | 2023-12-08 | 无锡先导智能装备股份有限公司 | 物体缺陷检测方法、系统、装置、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR20080057130A (ko) | 2008-06-24 |
KR100880335B1 (ko) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI235235B (en) | Method and device for checking a display panel and manufacturing method for the same | |
TWI226793B (en) | Apparatus and method for inspecting pattern defect | |
KR20060081783A (ko) | 박막 검사 센서어래이의 정렬용 조명장치와 그를 이용한센서어래이 정렬 방법 및 장치 | |
JP2008177150A (ja) | プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの検査装置 | |
JP4807154B2 (ja) | 欠陥検出方法 | |
JP2005291874A (ja) | パターンのムラ欠陥検査方法及び装置 | |
JP3657930B2 (ja) | プラズマディスプレイパネルの製造方法、蛍光体層の検査方法及び蛍光体層の検査装置 | |
JP5050398B2 (ja) | ディスプレイパネルの検査方法および検査装置ならびに製造方法 | |
US20080145517A1 (en) | Method for manufacturing plasma display panel, and apparatus for inspecting plasma display panel | |
JP3367474B2 (ja) | プラズマディスプレイパネルの検査装置、プラズマディスプレイパネル背面板の製造方法およびプラズマディスプレイパネル | |
JP4531186B2 (ja) | プラズマディスプレイパネル背面板の検査装置および製造方法 | |
JP3784762B2 (ja) | パターン欠陥検査装置およびパターン欠陥検査方法 | |
JP4432011B2 (ja) | プラズマディスプレイパネル背面板の検査装置および検査方法 | |
JP3771901B2 (ja) | 蛍光体検査方法及び蛍光体検査装置 | |
JP2004245829A (ja) | パターン欠陥検査装置およびパターン欠陥検査方法 | |
JP2000337998A (ja) | プラズマディスプレイパネルの検査装置および製造方法 | |
JP4747921B2 (ja) | Pdp用基板の欠陥検査方法 | |
JP2004294274A (ja) | ディスプレイパネルの検査装置 | |
JP2003288843A5 (ja) | ||
JP2001221712A (ja) | 蛍光体フィルター検査方法 | |
JPH10272758A (ja) | 印刷方法、印刷物及び印刷装置 | |
JP2008147061A (ja) | 欠陥検査方法 | |
JP4876665B2 (ja) | 欠陥検査方法 | |
JP2021124402A (ja) | 基板の検査装置、基板の検査方法 | |
JP4457786B2 (ja) | プラズマディスプレイパネル検査方法および検査装置 |