JP2008153644A - 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置 - Google Patents

薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置 Download PDF

Info

Publication number
JP2008153644A
JP2008153644A JP2007304934A JP2007304934A JP2008153644A JP 2008153644 A JP2008153644 A JP 2008153644A JP 2007304934 A JP2007304934 A JP 2007304934A JP 2007304934 A JP2007304934 A JP 2007304934A JP 2008153644 A JP2008153644 A JP 2008153644A
Authority
JP
Japan
Prior art keywords
thin film
drain
film transistor
region
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007304934A
Other languages
English (en)
Inventor
Shinzo Tsuboi
眞三 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced LCD Technologies Development Center Co Ltd
Original Assignee
Advanced LCD Technologies Development Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced LCD Technologies Development Center Co Ltd filed Critical Advanced LCD Technologies Development Center Co Ltd
Priority to JP2007304934A priority Critical patent/JP2008153644A/ja
Publication of JP2008153644A publication Critical patent/JP2008153644A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】半導体薄膜上で良好なソース−ドレイン耐圧を確保する。
【解決手段】薄膜トランジスタは支持基板10の絶縁性表面上に設けられる半導体薄膜12と、半導体薄膜12上に設けられるゲート絶縁膜14と、ゲート絶縁膜14を介して半導体薄膜12上に形成されるゲート電極層16を備え、半導体薄膜12はゲート電極層16の下方に配置されるチャネル領域12Cと、チャネル領域12Cの両側に配置されるソース領域12Sおよびドレイン領域12Dとを含む。ソース領域12Sは不純物濃度が半導体薄膜12の厚さ方向においてゲート絶縁膜14との界面から支持基板10との界面に向かって低くなる不純物濃度プロファイルを有し、ソース領域の不純物濃度プロファイルにおいて支持基板付近の不純物濃度がゲート絶縁膜付近の不純物濃度に対して1/100以上低い。
【選択図】図7

Description

本発明は、例えば液晶表示パネルに組み込まれる薄膜トランジスタ、この薄膜トランジスタの製造方法、およびこの薄膜トランジスタを用いた表示装置に関する。
薄膜トランジスタ(TFT)はガラス基板のような絶縁基板上に堆積される半導体薄膜に形成したMOS(MIS)構造の電界効果トランジスタである。ここでは、例えば絶縁基板に接着してSOI(Semiconductor On Insulator) 構造基板を成す半導体ウェハに形成した電界効果トランジスタも同様に薄膜トランジスタとして取り扱う。
アクティブマトリクス型液晶表示パネルでは、薄膜トランジスタが一般に画素スイッチング素子として用いられている。最近では、ICチップからなる駆動回路に代って薄膜トランジスタで構成される駆動回路を液晶表示パネルと一体化することも検討されている。このため、薄膜トランジスタの電流駆動能力を改善する研究が盛んである。例えば多結晶シリコン膜の溶融再結晶化により得られるような単結晶シリコン粒膜に薄膜トランジスタを形成すれば、電流駆動能力の著しい改善を期待できる。しかしながら、このような薄膜トランジスタのソース−ドレインブレークダウン電圧(ソース−ドレイン耐圧)は多結晶シリコン膜に形成した薄膜トランジスタに比べて著しく劣化し、オフ電流の増大やラッチアップ現象が比較的小さなソース−ドレイン間の電圧で発生し易くなる。
チャネル領域内の電界強度は通常ドレイン端近傍で大きく、チャネル領域の両端間に電界を印加したときに発生したキャリアがそこで加速されてドレイン端に衝突するインパクトによって半導体をイオン化する。このインパクトイオン化により生成された少数キャリアはチャネル領域を構成するシリコンボディに蓄積して閾値電圧を変化させ、結果的にオフ電流を増大させてしまう。また、キャリアの蓄積は寄生バイポーラ現象としてチャネル領域に流れる電流をゲートによる制御不能な状態で自己継続させるシングルラッチアップの発生を容易にし、トランジスタの機能を損なわせる原因となる。
電界効果トランジスタにおいてソース−ドレイン耐圧を向上させる技術としては、Lightly-doped drain (LDD)構造が一般に知られている。また、閾値制御として不純物濃度をゲート絶縁膜側の表面付近の不純物濃度を設定し、ラッチアップを避けるためにゲート絶縁膜側の表面付近から離れた深い場所での不純物濃度を表面付近よりも高く設定されたウェルをチャネル領域に設けるレトログレードウェル技術が知られている(特許文献1を参照)。
特開平6−163844号公報
しかしながら、薄膜トランジスタでは、通常、抵抗を小さくするために、ソース領域およびドレイン領域の不純物濃度がゲート絶縁膜側で高く、絶縁基板に設けられた下地酸化膜側で低くなっている。同様にこれらソース領域およびドレイン領域とは反対の導電性となるチャネル領域の不純物濃度も、ゲート絶縁膜側で高く、下地酸化膜側で低くなっている。このような不純物濃度のプロファイルが半導体薄膜として用いられるシリコンボディの膜厚方向、すなわち深さ方向において存在すると、ゲート絶縁膜付近においてチャネル領域およびドレイン領域とが高い濃度で隣接する結果となり、これが十分なソース−ドレイン耐圧を得ることを困難にしている。
上述のLDD構造はゲート長をサブミクロンオーダーにすると、ソース−ドレイン耐圧を十分大きくすることができない。また、レトロクレードウェル技術も、シリコンボディの膜厚が20〜200nm程度に制限される場合には、ソース−ドレイン耐圧について十分な有効性を確保できなかった。
本発明の目的は、半導体薄膜上で良好なソース−ドレイン耐圧を確保することができる薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置を提供することにある。
本発明によれば、支持基板の絶縁性表面上に設けられる半導体薄膜と、半導体薄膜上に設けられるゲート絶縁膜と、ゲート絶縁膜を介して半導体薄膜上に形成されるゲート電極層を備え、半導体薄膜はゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、およびチャネル領域の両側に配置され第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有し、ソース領域は不純物濃度が半導体薄膜の厚さ方向においてゲート絶縁膜との界面から支持基板との界面に向かって低くなる不純物濃度プロファイルを有し、ソース領域の不純物濃度プロファイルにおいて支持基板付近の不純物濃度がゲート絶縁膜付近の不純物濃度に対して1/100以上低い薄膜トランジスタが提供される。
さらに本発明によれば、支持基板の絶縁表面上に設けられる半導体薄膜と、半導体薄膜上に設けられるゲート絶縁膜と、ゲート絶縁膜を介して半導体薄膜上に形成されるゲート電極層を備え、半導体薄膜はゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、およびチャネル領域の両側に配置され第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有する薄膜トランジスタの製造方法であって、ソース領域の不純物濃度を半導体薄膜の厚さ方向においてゲート絶縁膜との界面から支持基板との界面に向かって低くなる不純物濃度プロファイルに形成する薄膜トランジスタの製造方法が提供される。
さらに本発明によれば、液晶表示パネルと、液晶表示パネル上に配置される薄膜トランジスタを含む駆動回路とを備える表示装置であって、薄膜トランジスタは支持基板の絶縁性表面上に設けられる半導体薄膜、半導体薄膜上に設けられるゲート絶縁膜、ゲート絶縁膜を介して半導体薄膜上に形成されるゲート電極層を備え、半導体薄膜はゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、およびチャネル領域の両側に配置され第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有し、ソース領域およびLDD領域は不純物濃度が半導体薄膜の厚さ方向においてゲート絶縁膜との界面から支持基板との界面に向かって低くなる不純物濃度プロファイルを有する表示装置が提供される。
この薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置では、半導体薄膜上で良好なソース−ドレイン耐圧を確保することができる。
本願発明者は、高品質な半導体薄膜として特に多結晶シリコン膜の溶融再結晶化された結晶化領域に形成される短チャネルの薄膜トランジスタにおいて最初にソース領域の不純物プロファイルが高品質なソース−ドレイン耐圧BVに影響することを確認した。これは、薄膜トランジスタのソース領域の接合深さおよびこれらの物理的メカニズムに対するソース−ドレイン耐圧BVの依存性をシミュレーションおよび実験の両面から詳細に調査した結果である。
シリコンボディの厚さおよびゲート絶縁膜の厚さをそれぞれ100nmおよび30nmに設定して、0.5μmのゲート長(ソース領域およびドレイン領域間のチャネルに沿ったゲート電極の長さ)のシングルドレイン構造およびLDD構造を持つコプレーナー型nチャネル薄膜トランジスタのソース−ドレイン耐圧についてのシミュレーションを行った。n-のLDD領域の長さおよびドーズ量は、ソース−ドレイン耐圧BVと駆動電流との妥協点として0.2μmおよび1×1013(cm−2)に固定した。計算の全てはSENTAURUS PROCESS and DESSES(日本シノプス社製)を用いて行われた。
また、シミュレートされたデバイスと同一寸法を持つ複数の薄膜トランジスタをSOI(Semiconductor On Insulator)基板(ユニボンド社製)上に製作した。ゲート絶縁膜はTEOSおよびOをソースガスとして用いた300℃でのプラズマエンハンスドCVDにより堆積された。nのソース領域の不純物プロファイルは不純物イオン注入用の加速電圧を変更することにより変化させた。注入不純物の活性化は600℃での炉アニーリングによって行われた。ソース−ドレイン耐圧BVはシングルトランジスタラッチのはじまり時点のドレイン電圧として定義した。
シミュレーション段階では、nのソース領域にn型不純物としてイオン注入されるP(リン)イオンの加速エネルギー、すなわち加速電圧をそれぞれ15KeV、25KeV、および35KeVとして単純に異ならせたゲート長L=0.5μmの薄膜トランジスタのサンプルA,B,Cを用意した。図1はこれらサンプルA,B,Cにおけるnのソース領域の不純物プロファイルを示す。図1の測定条件はシリコンボディ厚Tsi=100nm, ゲート絶縁膜厚Tox=30nm, LDD長LD=0.2μm,LDD注入:Pのドーズ量=1×1013/cm,n注入:Pのドーズ量=2×1015/cm,サンプルA:加速電圧=15KeV,サンプルB:加速電圧=25KeV,サンプルC:加速電圧=35KeVである。ここでは、Pのドーズ量が2×1015(cm−2)に固定された(2×1015(cm−2)以下であればよい)。図2は、サンプルA,B,Cの不純物プロファイルに対するソース−ドレイン耐圧BVを調べた結果を示す。図2を参照すると、ソース−ドレイン耐圧BVはチャネル領域およびドレイン領域間にnのLDD領域を持たないシングルドレイン構造よりもこのLDD領域を設けたLDD構造において増大する。これに加えて、ソース−ドレイン耐圧BVはnソース領域の接合深さの低減に伴なって増大することが明らかである。図2には、実際に製作されたサンプルA,B,Cのソース−ドレイン耐圧BVを実測値としてシミュレーション結果の計算値と一緒に示している。これら実測値からも同様の傾向が確認される。このような現象の物理的な原因を考察するため、LDD構造のサンプルA,B,Cにおいてドレイン電圧およびゲート電圧をそれぞれ3.5Vおよび0.5Vとしてチャネルに沿った横方向の電界強度およびインパクトイオン化強度を調べた。図3はチャネルに沿った横方向の電界強度を示し、図4はチャネルに沿った横方向のインパクトイオン化強度を示す。図3および図4の測定条件は、PTS注入(チャネル):Bのドーズ量=4×1011/cm,加速電圧=35KeV;LDD注入:Pのドーズ量=1×1013/cm,加速電圧=15KeV;n注入:Pのドーズ量=2×1015/cm;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,LDD長LD=0.2μm,ドレイン電圧Vd=3.5V,ゲート電圧Vg=0.5V、チャネル方向の電界強度:ゲート絶縁膜から20nmの深さでの値、インパクトイオン化強度:ゲート絶縁膜から20nmの深さでの値である。図3および図4を比較すると、チャネル領域とLDD領域の接合部にみられる横方向電界のピーク値はサンプルA,B,Cについてほとんど同じである。しかしながら、ゲート絶縁膜付近の不純物濃度に対して絶縁性支持基板付近の不純物濃度が最も高いサンプルC、並びにゲート絶縁膜付近の不純物濃度に対して絶縁性支持基板付近の不純物濃度が最も低いサンプルAをインパクトイオン化強度のピーク値について比較すると、このピーク値がサンプルCからサンプルAへの移行により約1桁、すなわち1/10だけ低減される。nソース領域の深さの減少に伴うソース−ドレイン耐圧BVの増大が主として浅い接合構造によって低減されたインパクトイオン化によることは明らかなようである。ここで、なぜ浅いnソース領域を用いることによってインパクトイオン化強度が低減されるかが疑問となる。インパクトイオン化強度は最大電界強度および電子電流密度の関数であるため、ソース接合における注入電子の量は接合が浅くなると低減されるものと考えられる。ソース接合における電子注入はソース−ボディ接合の順バイアス値を決定するボディ電位によって制御される。
図5はサンプルA,B,Cについてシリコンボディにおける最小電位値(Vbmin)をドレイン電圧の関数として求めた結果を示す。図5の測定条件は、PTS注入(チャネル):Bのドーズ量=4×1011/cm,加速電圧=35KeV;LDD注入:Pのドーズ量=1×1013/cm,加速電圧=15KeV;n注入:Pのドーズ量=2×1015/cm;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,LDD長LD=0.2μm,ゲート電圧Vg=0.5V,最小電位値:ゲート絶縁膜から20nmの深さでの値である。図5から判るように、最小電位値Vbminは静電効果のためにドレイン電圧の増大に伴なって増大する。1.5V未満のドレイン電圧値では、これらの最小電位値VbminがサンプルA,B,Cの全てについてほぼ同じで、ドレイン電圧1.5Vでは0.25Vになる。ここでは、1.5Vのドレイン電圧値がドレイン接合でのインパクトイオン化のはじまりに対応しており、1.5Vを越えるドレイン電圧値では、最小電位値Vbminの上昇はnソース領域が深いほど大きい。これは、ソース−ボディ接合が深いn接合の場合についてより強く順バイアスされ、より多くの電子がボディ領域に注入されることを意味する。したがって、インパクトイオン化強度は深いn接合の場合ほど増すことになる。
図6はドレイン電圧およびゲート電圧をそれぞれ3.5Vおよび0.5VにバイアスしたサンプルA,B,Cにおける正孔密度分布を調べた結果を示す。図6では、例えば、8×1014(cm−3)よりも大きい正孔密度の領域が斜線で強調されている。斜線で強調された領域の境界(図中の丸で囲んだ部分)は有効ソース−ボディ接合長を反映していると考えられる。n接合深さの低減に伴い、有効ソース−ボディ接合長は過剰正孔がnソース領域の下に入り込むために大きくなる。これはソース−ボディ接合の有効面積がn深さの低減につれて大きくなることを意味する。ソース−ボディ接合間の順バイアスVbsは式(1)で表される。
Figure 2008153644
ここで、qは素電荷であり、kはボルツマン定数であり、Tは絶対温度であり、nおよびjsrはそれぞれn値およびソース−ボディ接合の逆飽和電流密度であり、IholeおよびIeは正孔および電子の電流成分であり、A0は有効接合面積である。式(1)によると、合計電流が一定であるとすれば、A0が大きくなったときにVbsが小さくなる。このメカニズムはドレイン電圧Vd>1.5Vにおける最小電位値Vbminのドレイン電圧依存性の違いをもたらすことになる。
以上のようにして、高性能薄膜トランジスタのソース−ドレイン耐圧BVに関するソース接合の深さの影響について研究し、その結果としてソース接合深さの低減がソース−ドレイン耐圧BVを実質的に増大させることが判明した。ソース−ドレイン耐圧BVの改善は主としてインパクトイオン化の抑制による。インパクトイオン化を低減することで、nソース領域の下方の過剰ホールの浸透を許すボディ電位の上昇を抑えることができる。
以下、本発明の一実施形態に係るシングルドレイン構造のnチャネル型薄膜トランジスタについて添付図面を参照して説明する。この薄膜トランジスタは、例えばアクティブマトリクス型液晶表示装置の表示パネルにおいて高いソース−ドレイン耐圧を必要とする画素スイッチや駆動回路を構成するために用いられる。
図7はこのシングルドレイン構造のnチャネル型薄膜トランジスタの断面構造を示す。この薄膜トランジスタは絶縁性支持基板10、この絶縁性支持基板10の絶縁性表面上に配置される厚さ30〜200nm程度の半導体薄膜12、この半導体薄膜12を覆う厚さ例えば30nm程度のゲート絶縁膜14、およびゲート絶縁膜14を介して半導体薄膜12上に形成される厚さ例えば200nm程度のゲート電極層16を備える。半導体薄膜12はゲート電極層16の下方に配置されるチャネル領域12Cと、このチャネル領域12Cの両側に配置されるソース領域12Sおよびドレイン領域12Dとを含む。ソース電極18Sおよびドレイン電極18Dはゲート絶縁膜14に形成される1対のコンタクトホールを介してソース領域12Sおよびドレイン領域12Dに接続される。チャネル領域12Cは、ソース領域12Sおよびドレイン領域12D間で電子または正孔のようなキャリアを移動させるための領域であり、このキャリアの移動はゲート電極層16に印加されるゲート電圧に対応した電界によって制御される。ここでは、ソース領域12Sおよびドレイン領域12Dの各々は例えばリン(P)のようなn型不純物を含有するn型不純物領域であり、チャネル領域12Cは例えばボロン(B)のようなp型不純物を含有するp型不純物領域である。ソース領域12Sおよびドレイン領域12D間のチャネルに沿ったゲート電極層16のゲート長Lは1μm以下、例えば0.5μmである。ゲート電極層16は例えばMoWの金属膜からなる。ゲート絶縁膜14は例えば二酸化ケイ素(すなわち、SiO)のような酸化物からなり、薄膜トランジスタを電界トランジスタとして機能させるためにゲート電極層16をチャネル領域12Cから電気的に絶縁する。
絶縁性支持基板10は、ガラス、溶融石英、サファイア、プラスチック、ポリイミド等の材料からなる絶縁性基板10Aを用いることができる。ここでは、ガラス基板が絶縁性基板10Aとして用いられ、さらにこの絶縁性基板10Aが半導体薄膜12の下地となる下地絶縁層10Bにより覆われている。半導体薄膜12は下地絶縁層10B上にアモルファスシリコン膜を堆積し、入射光を位相変調して逆ピーク状の光強度分布で出射する位相シフタを用いて空間的に強度変調されたエキシマレーザを照射する位相変調エキシマレーザ結晶化法によりアモルファスシリコン膜を溶融再結晶化して得られた単結晶シリコン粒膜からなる。位相変調エキシマレーザ結晶化法において、エキシマレーザは半導体薄膜12上において位相シフタに依存した光強度分布に設定され、この強度分布に対応した温度勾配を半導体薄膜12内に生じさせる。光強度分布は、連続する三角形状の光強度分布である。半導体薄膜12のエキシマレーザ光による照射領域を溶融する。エキシマレーザ光の遮断期間に、結晶成長する。この温度勾配は半導体薄膜12平面に平行な横方向において低温部分から高温部分に向かう単結晶シリコン粒SCの成長を促進する。この結果、単結晶シリコン粒SCが図8に示すように少なくとも1個の薄膜トランジスタを収容可能な数ミクロン程度の粒径に成長する。単結晶シリコン粒SCの結晶成長方向に電子又は正孔が移動するように薄膜トランジスタを形成することが望ましい。図8では、単結晶シリコン粒SCの形状が示されているが、半導体薄膜12はソース領域12S、ドレイン領域12D、およびチャネル領域12Cからなる島状部分だけを残すように製造過程でMESAエッチングされる。チャネル領域12C全体は単結晶シリコン粒SC内に配置されている。
尚、半導体薄膜12は下地絶縁層10Bを介さずに絶縁性基板10A上に直接に形成されてもよい。また、半導体薄膜12は例えば絶縁性基板に接着してSOI(Semiconductor On Insulator) 構造基板を成す半導体ウェハによって構成されてもよい。さらに、半導体薄膜12は例えばシリコン(Si)、シリコンゲンルマニウム(SiGe)のような半導体を含む層であってもよい。薄膜トランジスタの閾値電圧はチャネル領域12C内の不純物濃度に依存し、薄膜トランジスタの電流駆動能力はゲート長などに依存する。
チャネル領域12Cは不純物濃度が半導体薄膜12の厚さ方向においてゲート絶縁膜14との界面から絶縁性支持基板10との界面に向かって高くなる不純物濃度プロファイルを有し、ソース領域12Sおよびドレイン領域12Dは不純物濃度が半導体薄膜12の厚さ方向においてゲート絶縁膜14との界面から絶縁性支持基板10との界面に向かって低くなる不純物濃度プロファイルを有する。また、ソース領域12Sおよびドレイン領域12Dの不純物濃度プロファイルでは、絶縁性支持基板10付近の不純物濃度がゲート絶縁膜14付近の不純物濃度に対して1/100以上低いことが好ましい。但し、チャネル領域12Cおよびドレイン領域12Dについては、上述以外の不純物濃度プロファイルを持つようにしてもよい。
電子をキャリアとするnチャネル型薄膜トランジスタは、高移動度特性を得ることができるが、ソース−ドレイン耐圧が低いという課題が従来において存在していた。これに対して図7に示す本実施形態のnチャネルトランジスタは、ソース領域12Sおよびドレイン領域12Dの不純物濃度プロファイルにおいて絶縁性支持基板10付近の不純物濃度をゲート絶縁膜14付近の不純物濃度に対して1/100以上低くすることにより高耐圧化されている。
尚、ソース領域12Sおよびドレイン領域12Dの不純物濃度プロファイルについては、例えば2次イオン質量分析計により測定することができる。
図9は上述した薄膜トランジスタを用いた液晶表示装置の概略的な回路構成を示し、図10はこの液晶表示装置の概略的な断面構造を示す。
液晶表示装置は、液晶表示パネル101およびこの液晶表示パネル101を制御する液晶コントローラ102を備える。液晶表示パネル101は、例えば液晶層LQがアレイ基板ARおよび対向基板CT間に保持される構造を有し、液晶コントローラ102は液晶表示パネル101から独立した駆動回路基板PCB上に配置される。
液晶表示パネル101は、マトリクス状に配置される複数の表示画素PX、複数の表示画素PXの行に沿って配置される複数の走査線Y、複数の表示画素PXの列に沿って配置される複数のデータ線X、データ線Xおよび走査線Yの交差位置近傍にそれぞれ配置され各々1本の走査線Yからのゲートパルスに応答して1本のデータ線Xからのデータ信号を取り込みこのデータ信号を1個の表示画素PXに供給する複数の画素スイッチPS、複数の走査線Yを駆動する走査線ドライバ103、並びに複数のデータ線Xを駆動するデータ線ドライバ104を備える。複数の走査線Y、複数のデータ線X、画素スイッチPX、走査線ドライバ103、およびデータ線ドライバ104はアレイ基板AR上に形成される。各表示画素PXはアレイ基板AR上に形成される複数の画素電極PEの1個、複数の画素電極PEに対向して対向基板CT上に形成されコモン電位に設定される単一の共通電極CE、画素電極PEと共通電極CEとの間に位置する液晶層LQの一部、およびアレイ基板AR上に形成され画素電極PEおよび共通電極CE間の液晶容量に並列に接続される補助容量Csを有する。補助容量Csは画素スイッチPXから供給されるデータ信号の電圧を保持し、データ信号の電圧を画素電極PEに印加する。表示画素PXの透過率は画素電極PEおよび共通電極CE間の電位差によって制御される。
液晶コントローラ102は、例えば外部から供給されるデジタル映像信号VIDEOおよび同期信号を受取り、垂直走査制御信号YCTおよび水平走査制御信号XCTを発生する。垂直走査制御信号YCTは走査線ドライバ103に供給され、水平走査制御信号XCTは映像信号VIDEOと共にデータ線ドライバ104に供給される。走査線ドライバ103は垂直走査制御信号YCTによって制御され、1垂直走査(フレーム)期間においてゲートパルスを複数の走査線Yに順次供給する。ゲートパルスは各走査線Yに1水平走査期間(1H)だけ供給される。データ線ドライバ104は水平走査制御信号XCTによって制御され、1走査線Yがゲートパルスにより駆動される水平走査期間に入力される映像信号VIDEOの直並列変換およびデジタルアナログ変換を行って1行分のデータ信号を複数のデータ線Xにそれぞれ供給する。画素スイッチPS並びに走査線ドライバ103およびデータ線ドライバ104の各々は図7に示す構造の薄膜トランジスタを用いて構成される。
次に図7に示すシングルドレイン構造の薄膜トランジスタについて行ったシミュレーション結果を説明する。
図11はチャネル領域12Cの不純物プロファイルに対するボロン(B)のイオン注入条件の影響を示す。ここで、Vth注入は薄膜トランジスタの閾値電圧制御用にBFをイオン注入する注入方式である。PTS(パンチスルーストップ)注入は、半導体薄膜12の膜厚方向、すなわち深さ方向においてゲート絶縁膜14との界面から離れた部分の濃度を高めて低抵抗化することによりインパクトイオンの蓄積を防止するためにBをイオン注入する注入方式である。Vth注入のみを行う場合、Vth注入およびPTS注入を併用する場合、並びにPTS注入のみを行う場合についてシミュレーションしてみると、図11に示すように異なる不純物プロファイルが得られる。図11の測定条件は、Vth注入:BFのドーズ量=3×1011/cm,PTS注入:Bのドーズ量=5×1011/cm,Vth+PTS注入:(BFのドーズ量=1.8×1011/cm)+(Bのドーズ量=1.8×1011/cm),シリコンボディ厚Tsi=100nm,ゲート長L=0.5μmである。
図12〜図14は、ゲート長L=0.5μmであるシングルドレイン構造のデバイスにおいて、それぞれVth注入のみを行う場合、Vth注入およびPTS注入を併用する場合、並びにPTS注入のみを行う場合におけるゲート電圧Vg−ドレイン電流Id特性を示す。図12の測定条件は、Vth注入(チャネル):BFのドーズ量=3×1011/cm,加速電圧=50KeV;PTS注入(チャネル):無し;n注入:Pのドーズ量=2×1015/cm,加速電圧=35KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜2.5V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=1.7V,オン電流Ion(Vd=1.9V,Vg=3V)=170.4μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=6.9×10−7A,スイング値Sth=118.8mV/dec,最大移動度μmax=756.1cm/V・sという結果が得られた。図13の測定条件は、Vth注入(チャネル):BFのドーズ量=1.8×1011/cm,加速電圧=50KeV;PTS注入(チャネル):Bのドーズ量=1.8×1011/cm,加速電圧=35KeV;n注入:Pのドーズ量=2×1015/cm,加速電圧=35KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜2.5V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=1.9V,オン電流Ion(Vd=1.9V,Vg=3V)=173.2μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=1.3×10−8A,スイング値Sth=111.0mV/dec,最大移動度μmax=782.7cm/V・sという結果が得られた。図14の測定条件は、Vth注入(チャネル):無し;PTS注入(チャネル):Bのドーズ量=5×1011/cm,加速電圧=35KeV;n注入:Pのドーズ量=2×1015/cm,加速電圧=35KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜2.5V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=2.1V,オン電流Ion(Vd=1.9V,Vg=3V)=176.2μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=1.3×10−9A,スイング値Sth=99.0mV/dec,最大移動度μmax=863.3cm/V・sという結果が得られた。これら特性から、ソース−ドレイン耐圧BVはVth注入のみを行う場合に1.7Vとなり、Vth注入およびPTS注入を併用する場合に1.9V、PTS注入のみを行う場合に2.1Vとなる。
図15はドレイン電圧Vdへの閾値電圧Vthの依存性に対するボロン(B)のイオン注入条件の影響を示す。図15の測定条件は、Vth注入:BFのドーズ量=3×1011/cm,PTS注入:Bのドーズ量=5×1011/cm,Vth注入+PTS注入:(BFのドーズ量=1.8×1011/cm)+(Bのドーズ量=1.8×1011/cm);シリコンボディ厚Tsi=100nm,ゲート長L=0.5μmである。ここでは、ドレイン電圧Vdが低い場合(この場合は0.1V)でほぼ同じ閾値電圧Vthが得られるようにそれぞれの注入条件の詳細であるドーズ量を調整している。薄膜トランジスタでは、閾値電圧Vthがドレイン電圧Vdに依存して変化するDIBL(ドレイン誘導障壁低下)効果が生じることが避けられない。図15によれば、Vth注入のみを行う場合に最もDIBLの影響を強く受け、PTS注入のみを行う場合にDIBLの影響を受けづらいことが判る。
図16は薄膜トランジスタの最大移動度μmax、スイング値Sth、ソース−ドレイン耐圧BV、オン電流Ion、およびオフ電流Ioffに及ぼす注入条件の影響を一覧形式で示す。この注入条件は、イオン注入装置の加速電圧である。すなわち、Vth注入のみの場合に得られた結果は、ソース−ドレイン耐圧BV=1.7V,オン電流Ion(Vd=1.9V,Vg=3V)=170.4μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=6.9×10−7A,スイング値Sth=118.8mV/dec,最大移動度μmax=756.1cm/V・sである。PTS注入のみの場合に得られた結果は、ソース−ドレイン耐圧BV=2.1V,オン電流Ion(Vd=1.9V,Vg=3V)=176.2μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=1.3×10−9A,スイング値Sth=99.0mV/dec,最大移動度μmax=863.3cm/V・sである。Vth注入+PTS注入の場合に得られた結果は、ソース−ドレイン耐圧BV=1.9V,オン電流Ion(Vd=1.9V,Vg=3V)=173.2μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=1.3×10−8A,スイング値Sth=111.0mV/dec,最大移動度μmax=782.7cm/V・sである。この結果から、PTS注入のみを行う場合に、最も良好な最大移動度μmax、スイング値Sth、ソース−ドレイン耐圧BV、オン電流Ion、およびオフ電流Ioffを得られることが判る。
図17はソース領域12Sおよびドレイン領域12Dのようなn領域の不純物プロファイルに対するリン(P)をイオン注入するためのイオン注入装置の加速電圧の影響を示す。図17の測定条件は、ゲート絶縁膜厚Tox=30nm,ドーズ量=2×1015/cmである。ここでは、n注入が半導体薄膜12の膜厚方向、すなわち深さ方向においてゲート絶縁膜14との界面から離れた部分の濃度を低くするようにPをイオン注入するために行われる。このn注入についてシミュレーションしてみると、図17に示すように上記加速電圧毎に異なる不純物プロファイルが得られる。上記加速電圧が35KeVであれば、絶縁性支持基板10付近のリン濃度がゲート絶縁膜14付近のリン濃度に対して2桁、すなわち1/100程度に低くなる。また、上記加速電圧が15KeVであれば、絶縁性支持基板10付近のリン濃度がゲート絶縁膜14付近のリン濃度に対して4桁、すなわち1/10000程度に低くなる。
図18〜図20は、ゲート長L=0.5μmであるシングルドレイン構造の薄膜トランジスタにおいて、それぞれn注入が上記加速電圧=35KeVで行われる場合、n注入が上記加速電圧=25KeVで行われる場合、並びにn注入が上記加速電圧=15KeVで行われる場合におけるゲート電圧Vg−ドレイン電流Id特性を示す。図18の測定条件は、PTS注入(チャネル):Bのドーズ量=5×1011/cm,加速電圧=35KeV;n注入:Bのドーズ量=2×1015/cm,加速電圧=35KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜2.5V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=2.1V,オン電流Ion(Vd=1.9V,Vg=3V)=176.2μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=1.3×10−9A,スイング値Sth=99.0mV/dec,最大移動度μmax=863.3cm/V・sという結果が得られた。図19の測定条件は、PTS注入(チャネル):Bのドーズ量=4.9×1011/cm,加速電圧=35KeV;n注入:Bのドーズ量=2×1015/cm,加速電圧=25KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜2.9V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=2.5V,オン電流Ion(Vd=1.9V,Vg=3V)=117.7μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=5.1×10−10A,スイング値Sth=97.2mV/dec,最大移動度μmax=831.1cm/V・sという結果が得られた。図20の測定条件は、PTS注入(チャネル):Bのドーズ量=4.5×1011/cm,加速電圧=35KeV;n注入:Bのドーズ量=2×1015/cm,加速電圧=15KeV;シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nm,ゲート長L=0.5μm,ドレイン電圧Vd=0.1V,0.5V,1.1V〜3.5V(0.2刻み)である。この場合、ソース−ドレイン耐圧BV=3.1V,オン電流Ion(Vd=1.9V,Vg=3V)=160.5μA/μm,オフ電流Ioff(Vd=1.9V,Vg=0V)=6.4×10−11A,スイング値Sth=93.6mV/dec,最大移動度μmax=761.3cm/V・sという結果が得られた。これら特性から、ソース−ドレイン耐圧BVは、n注入が上記加速電圧=35KeVで行われる場合に2.1Vとなり、n注入が上記加速電圧=25KeVで行われる場合2.5V、n注入が上記加速電圧=35KeVで行われる場合に3.1Vとなる。
図21はドレイン電圧Vdへの閾値電圧Vthの依存性に対するリン(P)のイオン注入の加速電圧の影響を示す。図21の測定条件は、加速電圧=15KeVの場合のチャネル領域用Bのドーズ量=4.5×1011/cm,加速電圧=25KeVの場合のチャネル領域用Bのドーズ量=4.9×1011/cm,加速電圧=35KeVの場合のチャネル領域用Bのドーズ量=5×1011/cm,n注入:Pのドーズ量=2×1015/cm,シリコンボディ厚Tsi=100nm,ゲート長L=0.5μmである。ここでは、チャネル領域12Cにおいてボロン濃度をゲート絶縁膜14との界面から絶縁性支持基板10との界面に向かって高めるためにPTS注入を行い、ドレイン電圧Vdが小さい(ここでは、Vd=0.1V)時に、ほぼ同じ閾値電圧Vthが得られるようにそれぞれの加速電圧に対してチャネル領域12C用のイオン注入条件の詳細であるドーズ量を調整している。図21によれば、n領域形成時の加速電圧が小さいほどDIBLの影響を受けづらいことが判る。
図22は最大移動度μmax、スイング値Sth、ソース−ドレイン耐圧BV、オン電流Ion、およびオフ電流Ioffに及ぼす加速電圧の影響を一覧形式で示す。加速電圧=15KeVの場合、最大移動度μmax=761.3cm/V・s,スイング値Sth=93.6mV/dec,ソース−ドレイン耐圧BV=3.1V,オン電流Ion=160.5μA/μm,オフ電流Ioff=6.4×10−11Aという結果が得られた。加速電圧=25KeVの場合、最大移動度μmax=831.1cm/V・s,スイング値Sth=97.2mV/dec,ソース−ドレイン耐圧BV=2.5V,オン電流Ion=171.7μA/μm,オフ電流Ioff=5.1×10−10Aという結果が得られた。加速電圧=35KeVの場合、最大移動度μmax=863.3cm/V・s,スイング値Sth=99.0mV/dec,ソース−ドレイン耐圧BV=2.1V,オン電流Ion=176.2μA/μm,オフ電流Ioff=1.3×10−9Aという結果が得られた。この結果から、上記加速電圧を小さくすることにより、オン電流Ionが低下するものの、ソース−ドレイン耐圧BVが大きく向上することが判る。
図23は薄膜トランジスタのオン電流Ionに対するn注入用リン(P)のドーズ量の影響を示し、図24は薄膜トランジスタのソース−ドレイン耐圧BVに対するn注入用リン(P)のドーズ量の影響を示す。図23の測定条件は、n注入:加速電圧=15KeV,シリコンボディ厚Tsi=100nm,ゲート長L=0.5μm,オン電流Ion:ドレイン電圧Vd=1.9V,ゲート電圧Vg=3Vのときの値である。図24の測定条件は、n注入:加速電圧=15KeV,シリコンボディ厚Tsi=100nm,ゲート長L=0.5μmである。図23および図24を参照すると、リンのドーズ量を増大させることにより、ソース−ドレイン耐圧BVをほとんど低下させずに、オン電流Ionを増大させることが可能であることが判る。図23を詳細に検討すると、ドーズ量に対するオン電流Ionの増加の傾きが3×1015/cm以下と、4×1015/cm以上とで大きく変化していることが判る。つまり、ドーズ量を4×1015/cm以上にすることにより、効果的にオン電流Ionを増加させることができる。また、オン電流特性とさらにソース−ドレイン耐圧特性とを最適化した薄膜トランジスタは、図24に示されているようにソース−ドレイン耐圧BVが大幅に低下する値1×1016/cmを上限とし、図23に示されているようにオン電流Ionの増加の傾きが大きく変化するn注入用リン(P)のドーズ量を4×1015/cm以上に設定すれば得ることができる。
図25は最大移動度μmax、スイング値Sth、ソース−ドレイン耐圧BV、オン電流Ion、およびオフ電流Ioffに及ぼすn注入用リンのドーズ量および加速電圧の影響を一覧形式で示す。すなわち、加速電圧=15KeVの場合、最大移動度μmax=761.3cm/V・s,スイング値Sth=93.6mV/dec,ソース−ドレイン耐圧BV=3.1V,オン電流Ion=160.5μA/μm,オフ電流Ioff=6.4×10−11Aという結果が得られた。加速電圧=25KeVの場合、最大移動度μmax=823.5cm/V・s,スイング値Sth=96.0mV/dec,ソース−ドレイン耐圧BV=2.9V,オン電流Ion=170.3μA/μm,オフ電流Ioff=3.5×10−10Aという結果が得られた。加速電圧=35KeVの場合、最大移動度μmax=831.1cm/V・s,スイング値Sth=97.2mV/dec,ソース−ドレイン耐圧BV=2.5V,オン電流Ion=171.7μA/μm,オフ電流Ioff=5.1×10−10Aという結果が得られた。例えば加速電圧=15KeVで、n注入用リンのドーズ量=1×1016/cmであれば、概ね良好なソース−ドレイン耐圧BV=2.9V、オン電流Ion=170.3を得ることができる。
本実施形態では、不純物濃度が半導体薄膜の厚さ方向においてゲート絶縁膜との界面から絶縁性支持基板との界面に向かって低くなる不純物濃度プロファイルがソース領域12Sに設けられている。これにより、薄膜トランジスタの最大移動度μmaxを高くし、スイング値Sthを小さくし、オン電流Ionを増大し、およびオフ電流Ioffを低減する一方で、ソース−ドレイン耐圧BVを向上させ、さらにDIBL効果による閾値電圧Vthの変動を低減できる。また、ソース−ドレイン耐圧BVを向上させる不純物濃度プロファイルを得るために、閾値電圧が所望値からずれても、不純物のドーズ量を調整することによりゲート絶縁膜14付近の不純物濃度に対する絶縁性支持基板10付近の不純物濃度の比率を維持して所望の閾値電圧Vthを得ることができる。
ちなみに、上述の実施形態では、ドレイン領域18Dに対するドレイン電極18Dの接合部がチャネル領域12Cに隣接するドレイン領域12Dの端部からゲート長Lと同じ0.5μmという距離Dに設定されている。また、ソース領域18Sに対するソース電極18Sの接合部がチャネル領域12Cに隣接するソース領域12Sの端部からゲート長Lと同じ0.5μmという距離Dに設定されている。少なくともドレイン電極18Dの接合部からチャネル領域12Cに隣接するドレイン領域12Dの端部までの距離Dは上述のようなチャネル領域12C、ソース領域12S、ドレイン領域12Dの不純物濃度プロファイルにより得られる良好なデバイス特性を劣化させないために4μmを越えないように設定され、より好ましくは1μmを越えないように設定されるべきである。
尚、ドレイン電極18D接合部(コンタクトホール)の内側端からチャネル領域12Cとドレイン領域12Dとの接合部までの距離Dが4μm以下であることは、例えばレーザ顕微鏡、紫外線顕微鏡、光学顕微鏡による測定で確認できる。
図26〜図29は、ゲート長L=0.5μmであるシングルドレイン構造の薄膜トランジスタにおいて、それぞれ距離D=0.6μm、2.0μm、4.0μm、7.0μmをnイオン注入用の加速電圧=15KeVで得られる浅接合に対して適用した場合に得られるドレイン電流Id−ドレイン電圧Vd特性を示す。図26〜図29の測定条件は、ゲート長L=0.5μm,PTS注入(チャネル):Bのドーズ量=4×1011/cm,加速電圧=35KeV,n注入:Pのドーズ量=2×1015/cm,シリコンボディ厚Tsi=100nm,ゲート絶縁膜厚Tox=30nmである。距離D=7.0μmの場合、特性曲線がこの距離Dに対応した寄生容量により非常になまっていることが判る。従って、距離Dは少なくとも4μm以下、できれば1μm以下にすることが望ましい。
図30〜図33は、それぞれ距離D=0.6μm、2.0μm、4.0μm、7.0μmをnイオン注入用の加速電圧=25KeVで得られる中接合に対して適用した場合に得られるドレイン電流Id−ドレイン電圧Vd特性を示す。いずれの場合もゲート長Lは0.5μmに設定されている。この中接合でも、距離D=7.0μmの場合、特性曲線がこの距離Dに対応した寄生容量により非常になまっていることが判る。従って、距離Dは少なくとも4μm以下、できれば1μm以下にすることが望ましい。
図34〜図37は、それぞれ距離D=0.6μm、2.0μm、4.0μm、7.0μmをn注入用の加速電圧=35KeVで得られる深接合に対して適用した場合に得られるドレイン電流Id−ドレイン電圧Vd特性を示す。いずれの場合もゲート長Lは0.5μmに設定されている。深接合では、距離D=7.0μmの場合でも、寄生抵抗の影響が小さいことが判る。しなしながら、ソース−ドレイン耐圧に関して良好な特性を得ることができない。
図38はシングルドレイン構造の薄膜トランジスタにおいてn注入用の加速電圧およびゲート長Lがソース−ドレイン耐圧BVに及ぼす影響を示す。図38の測定条件は、シリコンボディ厚Tsi=100nm,チャネル領域:PTS注入のみである。n注入の加速電圧が15KeVの場合、ソース−ドレイン耐圧BVはL=0.5μmで3.1V、L=1.0μmで3.7V、L=2.0μmで4.5V、L=3.0μmで4.7Vである。n注入の加速電圧が25KeVの場合、ソース−ドレイン耐圧BVはL=0.5μmで2.5V、L=1.0μmで3.3V、L=2.0μmで4.3V、L=3.0μmで4.7Vである。n注入の加速電圧が35KeVの場合、ソース−ドレイン耐圧BVはL=0.5μmで2.1V、L=1.0μmで3.1V、L=2.0μmで4.3V、L=3.0μmで4.7Vである。図39はシングルドレイン構造の薄膜トランジスタにおいてチャネル注入条件とゲート長Lがソース−ドレイン耐圧BVに及ぼす影響を示す。図39の測定条件は、シリコンボディ厚Tsi=100nm,n注入:Pのドーズ量=2×1015/cm,加速電圧=35KeVである。PTS注入のみがチャネル領域で行われる場合、ソース−ドレイン耐圧BVはL=0.5μmで2.1V、L=1.0μmで3.1V、L=2.0μmで4.3V、L=3.0μmで4.7Vである。PTS注入+Vth注入がチャネル領域で行われる場合、ソース−ドレイン耐圧BVはL=0.5μmで1.9V、L=1.0μmで2.9V、L=2.0μmで4.3V、L=3.0μmで4.7Vである。Vth注入のみがチャネル領域で行われる場合、ソース−ドレイン耐圧BVはL=0.5μmで1.7V、L=1.0μmで2.7V、L=2.0μmで4.3V、L=3.0μmで4.7Vである。これらの図から明らかなように、ゲート長Lが1μmを越える場合、n+の接合を浅くしてもソース−ドレイン耐圧BVを大きく向上させる効果を期待できない。いいかえると、ゲート長Lを1μm以下にすることが上述のソース−ドレイン耐圧BVの向上させるために効果的となる。
尚、ゲート長Lが1μm以下であることは、例えばレーザ顕微鏡、紫外線顕微鏡、光学顕微鏡による測定で確認できる。ドレイン電極18D接合部(コンタクトホール)の内側端からチャネル領域12Cとドレイン領域12Dとの接合部までの距離Dが4μm以下の薄膜トランジスタでは、ソース領域12Dおよびドレイン領域12Dを上述の不純物濃度プロファイルにすることにより高いソース−ドレイン耐圧を得ることができる。
以下に、薄膜トランジスタがシリコンボディ厚Tsi=50nmである場合について説明を補足する。図40はソース領域12Sおよびドレイン領域12Dのようなn領域の不純物プロファイルに対するリン(P)をイオン注入するためのイオン注入装置の加速電圧の影響を示す。図40の測定条件は、ゲート絶縁膜厚Tox=30nm,n注入:Pのドーズ量=2×1015/cmである。ここでは、n注入が半導体薄膜12の膜厚方向、すなわち深さ方向においてゲート絶縁膜14との界面から離れた部分の濃度を低くするようにPをイオン注入するために行われる。このn注入についてシミュレーションしてみると、図40に示すように上記加速電圧毎に異なる不純物プロファイルが得られる。上記加速電圧が20KeVであれば、絶縁性支持基板10付近のリン濃度がゲート絶縁膜14付近のリン濃度に対して2桁、すなわち1/100程度に低くなる。また、上記加速電圧が12.5KeVであれば、絶縁性支持基板10付近のリン濃度がゲート絶縁膜14付近のリン濃度に対して3桁、すなわち1/1000程度に低くなる。
尚、ソース領域12Sおよびドレイン領域12Dの不純物濃度プロファイルについては、例えば2次イオン質量分析計により測定することができる。
シリコンボディ厚Tsiを50nmに低減すると、100nmのときほどソース−ドレイン耐圧BVを向上させることはできないが、浅接合によるソース−ドレイン耐圧BVの向上効果を確認することはできる。
また、上述のチャネル注入用の加速電圧はゲート絶縁膜を30nmで固定した場合に適合する値として選定されている。ゲート絶縁膜14を薄くする場合、基本的には、加速電圧を下げてチャネル領域12Cに同等の不純物濃度プロファイルを持たせることが可能であるため、結果的には同等の効果が得られる。
尚、本発明は上述の実施形態に限定されず、その要旨を逸脱しない範囲で様々に変形可能である。
上述の実施形態では、ポリシリコン半導体薄膜に形成された薄膜トランジスタより耐電圧が低い半導体薄膜として大粒径の結晶化領域を有する高品質な半導体薄膜に適用した実施形態について説明したが、比較的耐電圧特性のよいポリシリコンに薄膜トランジスタを形成してもよい。この薄膜トランジスタの支持体は、絶縁性支持基板例えばガラス基板、基板上に下地絶縁膜を設けた基板やSOI基板などのような支持基板に絶縁性表面を有するものである。
例えば絶縁性支持基板10は、全体が絶縁性である絶縁基板に限らず、半導体薄膜の下地となる表面に絶縁性を持たせた半導体ウェハや金属板でもよい。
また、上述の実施形態では、薄膜トランジスタが図7に示すようにnチャネル型であったが、pチャネル型であっても同様の効果を得ることができる。
また、製造プロセスを複雑化しないため、nのドレイン領域12Dの不純物プロファイルはnのソース領域12Dの不純物プロファイルと実質的に同じに設定されているが、独立に設定されてもよい。
上述の実施形態では、高品質な半導体薄膜上で良好なソース−ドレイン耐圧を確保することに重点をおいて説明したが、これら実施形態の薄膜トランジスタはホットキャリアストレス劣化に対して極めて良好な信頼性を有することが以下に述べる検証によって確認された。
ホットキャリアストレス劣化については、例えば「TFTの信頼性解析の現状」丹呉 浩侑、宇佐美 弦、菅沼 昌之(電子情報通信学会論文誌C、J87−C/3, p283-295, 2004)において図41に示すような2段の劣化モードになることが報告されている。1段目の劣化モードは電子トラッピングに起因し、2段目の劣化モードは界面準位の発生に起因する。
本発明者はホットキャリアストレス劣化の検証試験においてストレス(ゲート電圧Vg=2.1V,ドレイン電圧Vd=3.5V〜6.5V)の印加前後にId−Vg曲線(Vd=0.1V)を測定して、デバイス特性の劣化を計測した。ドレイン電流劣化率Delta-Id/Ioは、Vg=Vth+3Vでのドレイン電流Idの減衰率である。尚、閾値Vthはゲート幅W/ゲート長Lで規格化したドレイン電流Idが10−7Aとなるゲート電圧Vgで定義した。
図42はホットキャリア信頼性寿命に及ぼすボディ膜厚Tsiの影響を示す。ここでは、SOI(Single crystal On Insulator)のnチャネル型MOSトランジスタ(チャネルへの不純物ドープ無し)で、ボディ膜厚Tsi=100,50,40,30nmについて検証された。このトランジスタにおいて、ゲート長LはL=1.0μm,0.5μmであり、ゲート幅WはW=2.0μmとされた。この結果、ボディ膜厚Tsiが薄くなると、最大移動度μmaxが若干低下することが判る。
図43および図44はホットキャリアストレス劣化によるドレイン電流劣化率Delta-Id/Ioに及ぼすボディ膜厚Tsiの影響を示す。図43の測定条件は、SOI,L=0.5μm,W=2.0μm;ストレス:Vd=4.5V,Vg=2.1Vであり、図44の測定条件はSOI,L=0.5μm,W=2.0μm;ストレス:Vd=4.0V,Vg=2.1Vである。この結果、ボディ膜厚Tsiが厚くなるほど、ホットキャリアストレス劣化が小さいことが判る。また、この傾向は、ストレス条件が厳しくなるほど強くなる。
図45および図46はホットキャリアストレス劣化による閾値シフトに及ぼすボディ膜厚Tsiの影響を示す。図45の測定条件は、SOI,L=0.5μm,W=2.0μm;ストレス:Vd=4.5V,Vg=2.1Vであり、図46の測定条件はSOI,L=0.5μm,W=2.0μm;ストレス:Vd=4.0V,Vg=2.1Vである。この結果において、2段目の劣化モードの傾きはボディ膜厚Tsiが薄くなるほど急峻になる。従って、ホットキャリアストレス劣化に対する信頼性の観点からは、ボディ膜厚Tsiほ厚めに設定することが有効であることが判る。
図47はホットキャリアストレス劣化によるドレイン電流劣化率Delta-Id/Ioに及ぼすボディ膜厚Tsiの影響を示し、図48はホットキャリアストレス劣化による閾値シフトに及ぼすボディ膜厚Tsiの影響を示す。図47および図48の測定条件は、SOI,L=1.0μm,W=2.0μm;ストレス:Vd=5.0V,Vg=2.1Vである。この結果、ゲート長L=1.0μmの場合においても、ホットキャリアストレス劣化はボディ膜厚Tsiが厚いほど抑制される。また、閾値シフトの2段目の劣化モードの傾きはボディ膜厚Tsiが薄くなるほど急峻になる。従って、ホットキャリアストレス劣化に対する信頼性の観点からは、ボディ膜厚Tsiを厚めに設定することが有効であることが判る。
図49および図50は4端子法によるボディ電流Ibodyの測定例を示す。図49はボディ膜厚Tsi=100nmの場合であり、図50はボディ膜厚Tsi=50nmの場合である。図49および図50の測定条件は、SOI、L=1.0μm、W=5.0μmである。ゲート電圧Vgに対するボディ電流Ibodyはドレイン電圧Vd3.0〜7.0Vまでの0.5V刻みに設定して測定されたものである。
図51〜図54はボディ膜厚Tsiとボディ電流Ibodyとの関係を示す。図51の測定条件はSOI,L=0.5μm,W=5.0μm,Vd=4.5Vであり、図52の測定条件はSOI,L=0.5μm,W=5.0μm;Vd=4.0Vであり、図53の測定条件はSOI,L=1.0μm,W=5.0μm,Vd=5.0Vであり、図54の測定条件はSOI,L=1.0μm,W=5.0μm;Vd=4.0Vである。L=0.5μmおよびL=1.0μmのいずれにおいても、ボディ膜厚Tsiが薄いほど、最大移動度μmaxが若干低下するにもかかわらず、ボディ電流Ibodyが大きく、ドレイン接合端でのインパクトイオン化によるホールの発生が顕著になることを示唆している。この傾向はホットキャリアストレス劣化の傾向と一致する。すなわち、インパクトイオン化はホットキャリアストレス劣化に差を生じさせる要因であることが判る。
図55はシミュレーションで得られたドレイン端での電界強度に及ぼすボディ膜厚Tsiの影響を示す。図の横軸はシリコンボディ(Si)とゲート絶縁膜(SiO2)との界面からの距離を表している。この結果より、ボディ膜厚が薄くなると、電界強度が強くなっていることが確認された。つまり、ボディ膜厚が薄くなると、インパクトイオン化が大きくなって、たくさんのホットエレクトロンが発生するだけでなく、電界強度が強いため、よりたくさんのホットエレクトロンがゲート絶縁膜に注入され、その結果、ホットキャリアストレス劣化が大きくなることがわかる。
図56および図57はホットキャリアストレス劣化によるドレイン電流劣化率Delta-Id/Ioに及ぼすボディ膜厚Tsiの影響を示す。図56および図57では、シリコンボディがSOIではなく、位相変調エキシマレーザアニール(PMELA)による溶融再結晶化で得られた膜である薄膜トランジスタの場合について検証された。図56の測定条件は、PMELA,シングルドレイン構造,Tsi=100nm,L=1.0μm,W=2.0μm,Tox(SiO2のゲート絶縁膜厚)=30nm;Vg=2.1Vであり、図57の測定条件はPMELA,シングルドレイン構造,Tsi=50nm,L=1.0μm,W=2.0μm,Tox(SiO2のゲート絶縁膜厚)=30nm;Vg=2.1Vである。
図58はホットキャリアストレス劣化によるドレイン電流劣化率Delta-Id/Ioに及ぼすボディ膜厚Tsiの影響を共通のストレス条件で比較した結果を示す。ここでは、ストレス条件がVd=5.0V,Vg=2.1Vに設定されている。また、ボディ膜厚Tsiについては、Tsi=100,50,40nmに設定されている。この結果、PMELAによる薄膜トランジスタにおいても、ホットキャリアストレス劣化に対する信頼性の観点からボディ膜厚Tsiを厚めに設定することが有効であることが判る。
図59〜図61はホットキャリアストレス劣化に及ぼすn接合深さの影響を示す。具体的には、n接合深さに対するドレイン電流劣化率Delta-Id/Ioの依存性が図59にで確認され、n接合深さに対する最大相互コンダクタンス劣化率Delta-gmmax/gmmaxoの依存性が図60で確認され、n接合深さに対する閾値シフトDelta-Vthの依存性が図61で確認された。図59〜図61の測定条件はSOI,シングルドレイン構造,L=0.5μm,W=5.0μm;ストレス:Vd=5.0V,Vg=2.1Vである。n接合深さを決定するn注入での加速電圧は、35KeV,25KeV,15KeVに設定された。図59によれば、n注入の加速電圧を低くして接合深さを浅くするほど、ホットキャリアストレス劣化が小さくなる。図60および図61によれば、最大相互コンダクタンス劣化率Delta-gmmax/gmmaxoおよび閾値シフトDelta-Vthからみても、n注入の加速電圧を低くして接合深さを浅くするほど、ホットキャリアストレス劣化が小さくなる。この結果から、nの接合を浅くすることによりソース−ドレイン耐圧を高めるだけでなくホットキャリアストレス劣化に対する信頼性も高めることができることが判る。
以上について要約すると、ボディ膜厚Tsiに対するホットキャリアストレス劣化の依存性を調べた結果、ボディ膜厚Tsiが厚いほどホットキャリアストレス劣化が小さく、ホットキャリアストレス劣化に対する信頼先の観点からボディ膜厚Tsiを厚めに設定することが有効であることが確認された。また、4端子法によりボディ電流Ibodyを測定すると、ボディ膜厚Tsiが薄いほど、最大移動度μmaxが若干低下するにもかかわらず、ボディ電流Ibodyが大きく、ドレイン接合端でのインパクトイオン化によるホールの発生が顕著になることを示唆しており、この傾向はホットキャリアストレス劣化の傾向と一致している。さらに、n注入の加速電圧を低くして接合深さを浅くするほど、ホットキャリアストレス劣化が小さくなることが確認された。
本発明を概略的に説明するための図であって、リンのイオン注入の加速電圧を互いに異ならせた薄膜トランジスタのサンプルA,B,Cに得られるnのソース領域の不純物プロファイルを示す図である。 図1に示すサンプルA,B,Cの不純物プロファイルに対するソース−ドレイン耐圧を示す図である。 図1に示すサンプルA,B,Cのチャネルに沿った横方向の電界強度を示す図である。 図1に示すサンプルA,B,Cのチャネルに沿った横方向のインパクトイオン化強度を示す図である。 図1に示すサンプルA,B,Cについてシリコンボディにおける最小電位値をドレイン電圧の関数として求めた結果を示す図である。 図1に示すサンプルA,B,Cにおいてドレイン電圧およびゲート電圧をそれぞれ3.5Vおよび0.5Vにバイアスした場合に得られる正孔密度分布を示す図である。 本発明の一実施形態に係るシングルドレイン構造のnチャネル型薄膜トランジスタの断面構造を示す図である。 図7に示す薄膜トランジスタが半結晶シリコン粒内に配置された状態を示す図である。 図7に示す薄膜トランジスタを用いた液晶表示装置の概略的な回路構成を示す図である。 図9に示す液晶表示装置の概略的な断面構造を示す図である。 図7に示す薄膜トランジスタのチャネル領域の不純物プロファイルに対するボロンのイオン注入条件の影響を示す図である。 図7に示す薄膜トランジスタのチャネル領域についてVth注入のみを行う場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタのチャネル領域についてVth注入およびPTS注入を併用する場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタのチャネル領域についてPTS注入のみを行う場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタのドレイン電圧への閾値電圧の依存性に対するボロンのイオン注入条件の影響を示す図である。 図7に示す薄膜トランジスタの最大移動度、スイング値、ソース−ドレイン耐圧、オン電流、およびオフ電流に及ぼす注入条件の影響を一覧形式で示す図である。 図7に示す薄膜トランジスタのソース領域およびドレイン領域のようなn領域の不純物プロファイルに対するリンのイオン注入の加速電圧の影響を示す図である。 図7に示す薄膜トランジスタについてn注入が加速電圧=35KeVで行われる場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタについてn注入が加速電圧=25KeVで行われる場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタについてn注入が加速電圧=15KeVで行われる場合におけるゲート電圧−ドレイン電流特性を示す図である。 図7に示す薄膜トランジスタの閾値電圧のドレイン電圧依存性に対するリンのイオン注入の加速電圧の影響を示す図である。 図7に示す薄膜トランジスタの最大移動度、スイング値、ソース−ドレイン耐圧、オン電流、およびオフ電流及ぼす加速電圧の影響を一覧形式で示す図である。 図7に示す薄膜トランジスタのオン電流に対するn注入用リンのドーズ量の影響を示す図である。 図7に示す薄膜トランジスタのソース−ドレイン耐圧に対するn注入用リンのドーズ量の影響を示す図である。 図7に示す薄膜トランジスタの最大移動度、スイング値、ソース−ドレイン耐圧、オン電流、およびオフ電流に及ぼすn注入用リンのドーズ量および加速電圧の影響を一覧形式で示す図である。 図7に示す薄膜トランジスタにおいて距離D=0.6μmをn注入用の加速電圧=15KeVで得られる浅接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=2.0μmをn注入用の加速電圧=15KeVで得られる浅接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=4.0μmをn注入用の加速電圧=15KeVで得られる浅接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=7.0μmをn注入用の加速電圧=15KeVで得られる浅接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=0.6μmをn注入用の加速電圧=25KeVで得られる中接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=2.0μmをn注入用の加速電圧=25KeVで得られる中接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=4.0μmをn注入用の加速電圧=25KeVで得られる中接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=7.0μmをn注入用の加速電圧=25KeVで得られる中接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=0.6μmをn注入用の加速電圧=35KeVで得られる深接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=2.0μmをn注入用の加速電圧=35KeVで得られる深接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=4.0μmをn注入用の加速電圧=35KeVで得られる深接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示す薄膜トランジスタにおいて距離D=7.0μmをn注入用の加速電圧=35KeVで得られる深接合に対して適用した場合に得られるドレイン電流−ドレイン電圧特性を示す図である。 図7に示すシングルドレイン構造の薄膜トランジスタにおいてn注入用の加速電圧およびゲート長がソース−ドレイン耐圧に及ぼす影響を示す図である。 図7に示すシングルドレイン構造の薄膜トランジスタにおいてチャネル注入条件とゲート長がソース−ドレイン耐圧に及ぼす影響を示す図である。 図7に示す薄膜トランジスタにシリコンボディ厚Tsi=50nmを適用した場合に得られるn領域の不純物プロファイルに対するリンのイオン注入の加速電圧の影響を示す図である。 ホットキャリアストレス劣化の劣化モードの特徴を示す図である。 ホットキャリア信頼性寿命に及ぼすボディ膜厚の影響を示す図である。 ドレイン電圧Vd=4.5Vである場合おいてホットキャリアストレス劣化によるドレイン電流劣化率に及ぼすボディ膜厚の影響を示す図である。 ドレイン電圧Vd=4.0Vである場合おいてホットキャリアストレス劣化によるドレイン電流劣化率に及ぼすボディ膜厚の影響を示す図である。 ドレイン電圧Vd=4.5Vの場合においてホットキャリアストレス劣化による閾値シフトに及ぼすボディ膜厚の影響を示す図である。 ドレイン電圧Vd=4.0Vである場合おいてホットキャリアストレス劣化による閾値シフトに及ぼすボディ膜厚の影響を示す図である。 ゲート長L=1.0μmである場合においてホットキャリアストレス劣化によるドレイン電流劣化率及ぼすボディ膜厚の影響を示す図である。 ゲート長L=1.0μmである場合においてホットキャリアストレス劣化による閾値シフトに及ぼすボディ膜厚の影響を示す図である。 ボディ膜厚Tsi=100nmの場合において4端子法によるボディ電流の測定例を示す図である。 ボディ膜厚Tsi=50nmの場合において4端子法によるボディ電流の測定例を示す図である。 ゲート長L=0.5μmおよびドレイン電圧Vd=4.5Vの場合においてボディ膜厚とボディ電流との関係を示す図である。 ゲート長L=0.5μmおよびドレイン電圧Vd=4.0Vの場合においてボディ膜厚とボディ電流との関係を示す図である。 ゲート長L=1.0μmおよびドレイン電圧Vd=5.0Vの場合においてボディ膜厚とボディ電流との関係を示す図である。 ゲート長L=1.0μmおよびドレイン電圧Vd=4.0Vの場合においてボディ膜厚とボディ電流との関係を示す図である。 シミュレーションで得られたドレイン端での電界強度に及ぼすボディ膜厚の影響を示す図である。 PMELAでのボディ膜厚Tsi=100nmの場合においてホットキャリアストレス劣化によるドレイン電流劣化率に及ぼすボディ膜厚の影響を示す図である。 PMELAでのボディ膜厚Tsi=50nmの場合においてホットキャリアストレス劣化によるドレイン電流劣化率に及ぼすボディ膜厚の影響を示す図である。 ホットキャリアストレス劣化によるドレイン電流劣化率に及ぼすボディ膜厚の影響をドレイン電圧Vd=5.0V,ゲート電圧Vg=2.1Vという共通のストレス条件で比較した結果を示す図である。 ホットキャリアストレス劣化であるドレイン電流劣化率に及ぼすn接合深さの影響を示す図である。 ホットキャリアストレス劣化である最大相互コンダクタンス劣化率に及ぼすn接合深さの影響を示す図である。 ホットキャリアストレス劣化である閾値シフトに及ぼすn接合深さの影響を示す図である。
符号の説明
10…絶縁性支持基板、12…半導体薄膜、12S…ソース領域、12D…ドレイン領域、12C…チャネル領域、14…ゲート絶縁膜、16…ゲート電極層、18S…ソース電極、18D…ドレイン電極、SC…単結晶シリコン粒。

Claims (9)

  1. 支持基板の絶縁性表面上に設けられる半導体薄膜と、前記半導体薄膜上に設けられるゲート絶縁膜と、前記ゲート絶縁膜を介して前記半導体薄膜上に形成されるゲート電極層を備え、前記半導体薄膜は前記ゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、および前記チャネル領域の両側に配置され前記第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有し、前記ソース領域は不純物濃度が前記半導体薄膜の厚さ方向において前記ゲート絶縁膜との界面から前記支持基板との界面に向かって低くなる不純物濃度プロファイルを有し、前記ソース領域の不純物濃度プロファイルにおいて前記支持基板付近の不純物濃度が前記ゲート絶縁膜付近の不純物濃度に対して1/100以上低いことを特徴とする薄膜トランジスタ。
  2. 前記チャネル領域は不純物濃度が前記半導体薄膜の厚さ方向において前記ゲート絶縁膜との界面から前記支持基板との界面に向かって高くなる不純物濃度プロファイルを有することを特徴とする請求項1に記載の薄膜トランジスタ。
  3. 前記第1導電型がp型に設定され第2導電型がn型に設定されたnチャネル型トランジスタであることを特徴とする請求項1に記載の薄膜トランジスタ。
  4. 前記ソース領域内の不純物のドーズ量は4×1015/cm以上であることを特徴とする請求項3に記載の薄膜トランジスタ。
  5. 前記ドレイン領域の不純物濃度プロファイルは前記ソース領域の不純物濃度プロファイルと実質的に同じであることを特徴とする請求項1に記載の薄膜トランジスタ。
  6. 前記ソース領域および前記ドレイン領域間のチャネルに沿った前記ゲート電極層のゲート長は1μm以下であることを特徴とする請求項1に記載の薄膜トランジスタ。
  7. さらに前記ソース領域およびドレイン領域に接合する前記ソースおよびドレイン電極を備え、少なくとも前記ドレイン電極の接合部から前記チャネル領域に隣接する前記ドレイン領域の端部までの距離が4μmを越えないことを特徴とする請求項1に記載の薄膜トランジスタ。
  8. 支持基板の絶縁表面上に設けられる半導体薄膜と、前記半導体薄膜上に設けられるゲート絶縁膜と、前記ゲート絶縁膜を介して前記半導体薄膜上に形成されるゲート電極層を備え、前記半導体薄膜は前記ゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、および前記チャネル領域の両側に配置され前記第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有する薄膜トランジスタの製造方法であって、前記ソース領域の不純物濃度を半導体薄膜の厚さ方向においてゲート絶縁膜との界面から支持基板との界面に向かって低くなる不純物濃度プロファイルに形成することを特徴とする薄膜トランジスタの製造方法。
  9. 液晶表示パネルと、前記液晶表示パネル上に配置される薄膜トランジスタを含む駆動回路とを備える表示装置であって、前記薄膜トランジスタは支持基板の絶縁性表面上に設けられる半導体薄膜、前記半導体薄膜上に設けられるゲート絶縁膜、前記ゲート絶縁膜を介して前記半導体薄膜上に形成されるゲート電極層を備え、前記半導体薄膜は前記ゲート電極層の下方に配置され第1導電型の不純物を含むチャネル領域、および前記チャネル領域の両側に配置され前記第1導電型とは反対である第2導電型の不純物を含むソース領域およびドレイン領域を有し、前記ソース領域は不純物濃度が前記半導体薄膜の厚さ方向において前記ゲート絶縁膜との界面から前記支持基板との界面に向かって低くなる不純物濃度プロファイルを有することを特徴とする表示装置。
JP2007304934A 2006-11-24 2007-11-26 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置 Pending JP2008153644A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304934A JP2008153644A (ja) 2006-11-24 2007-11-26 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006317287 2006-11-24
JP2007304934A JP2008153644A (ja) 2006-11-24 2007-11-26 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置

Publications (1)

Publication Number Publication Date
JP2008153644A true JP2008153644A (ja) 2008-07-03

Family

ID=39655443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304934A Pending JP2008153644A (ja) 2006-11-24 2007-11-26 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置

Country Status (1)

Country Link
JP (1) JP2008153644A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270846A (ja) * 2001-03-12 2002-09-20 Oki Electric Ind Co Ltd 半導体装置の製造方法
JP2005079319A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270846A (ja) * 2001-03-12 2002-09-20 Oki Electric Ind Co Ltd 半導体装置の製造方法
JP2005079319A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 半導体装置

Similar Documents

Publication Publication Date Title
US6787846B2 (en) Transistor
KR100259181B1 (ko) 전계 효과 트랜지스터 및 cmos 소자
KR100727714B1 (ko) 반도체 장치 및 화상 표시 장치
JP2008060524A (ja) 自己整合型の低不純物濃度ドレインを備えたリセスゲート薄膜トランジスタ、および当該トランジスタの形成方法
US20080017887A1 (en) Thin film transistor array substrate, method of manufacturing the same, and display device
US8987120B2 (en) Flat panel display device comprising polysilicon thin film transistor and method of manufacturing the same
US7671418B2 (en) Double layer stress for multiple gate transistors
US6734498B2 (en) Insulated channel field effect transistor with an electric field terminal region
JP2005535139A (ja) 電界効果トランジスタ
US20090021661A1 (en) Thin-film transistor, thin-film transistor producing method, and display apparatus
US20070034973A1 (en) Methods and Apparatus for Operating a Transistor Using a Reverse Body Bias
JP2008153643A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置
JP2008153641A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置
JP2008153644A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置
Zheng et al. Impact of AC stress in low temperature polycrystalline silicon thin film transistors produced with different excimer laser annealing energies
JP2008153642A (ja) 薄膜トランジスタ、薄膜トランジスタの製造方法、および表示装置
US20070023836A1 (en) Semiconductor device
KR101136311B1 (ko) 액정표시장치
Furuta et al. Reliability of low-temperature poly-Si thin film transistors with lightly doped drain structures
Chen et al. Highly-doped region optimization for reduced hot-carrier effects in dual-gate low temperature polysilicon TFTs
US20060006467A1 (en) Transistor structure and circuit suitable for input/output protection of liquid crystal display device
JPH1154755A (ja) 半導体素子の製造方法および薄膜トランジスタ
KR100793278B1 (ko) 다결정 실리콘 박막트랜지스터의 제조 방법
JP2000340797A (ja) Soi半導体装置の安定化方法及びsoi半導体装置
JP2002299629A (ja) ポリシリコン薄膜半導体およびポリシリコン薄膜半導体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219