JP2008138640A - ロータリピストンエンジンの燃料噴射装置 - Google Patents

ロータリピストンエンジンの燃料噴射装置 Download PDF

Info

Publication number
JP2008138640A
JP2008138640A JP2006328077A JP2006328077A JP2008138640A JP 2008138640 A JP2008138640 A JP 2008138640A JP 2006328077 A JP2006328077 A JP 2006328077A JP 2006328077 A JP2006328077 A JP 2006328077A JP 2008138640 A JP2008138640 A JP 2008138640A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
intake
rotor
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006328077A
Other languages
English (en)
Other versions
JP4811256B2 (ja
Inventor
Yoichi Kuji
洋一 久慈
Kohei Iwai
浩平 岩井
Nobuyasu Okui
伸宜 奥井
Ryoji Kagawa
良二 香川
Osamu Aoki
理 青木
巧朋 ▲高▼橋
Yoshitomo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2006328077A priority Critical patent/JP4811256B2/ja
Publication of JP2008138640A publication Critical patent/JP2008138640A/ja
Application granted granted Critical
Publication of JP4811256B2 publication Critical patent/JP4811256B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】作動室5内に直接、燃料を噴射するようにしたロータリピストンエンジン1において、その運転状態によって吸気の流れ場が変化しても、吸気流による燃料の気化、霧化を最大限に促進できるようにする。
【解決手段】ロータハウジング2のトロコイド内周面2aに臨んで各々吸気ポート11,13に向かうように燃料を噴射するとともに、一方が、常時開放の第1吸気ポート11寄りに、また、他方は反対寄りに燃料を噴射する第1、第2インジェクタ30,31を備える。低回転の第1運転域(I)において特に低負荷低回転の領域R1では第1インジェクタ30により燃料を噴射させ、それよりも高負荷ないし高回転側の領域R2では第2インジェクタ31により燃料を噴射させる。
【選択図】 図4

Description

本発明は、作動室内に燃料を直接、噴射するようにしたロータリピストンエンジンに関し、特に、吸気流動を利用して燃料噴霧の気化、霧化を促進するための対策に係る。
従来より、この種のロータリピストンエンジンとして、例えば特許文献1に開示されるように、排気行程にある作動室から吸気行程にある作動室に流入する高温のダイリューションガスを利用して、燃料噴霧の気化、霧化を促進するようにしたものが知られている。このものでは、吸気ポートがロータ外周を囲むハウジングのトロコイド内周面に開口しており(いわゆるペリフェラルポート)、この吸気ポート開口に向けて燃料を噴射するように燃料噴射弁が配設されている。
そして、前記の吸気ポート開口をロータの頂部(アペックス)が通過するときには、その吸気ポートを介して排気行程にある作動室と吸気行程にある作動室とが連通され(吸排気のオーバーラップ)、高温の既燃ガス(ダイリューションガス)が吸気行程にある作動室に流入するようになり、このタイミングで燃料を噴射することで、燃料噴霧を高温のダイリューションガスに衝突させて、その気化、霧化を十分に促進することができる。
特開平7−63063号公報
ところで、現在、例えば自動車用として実用化されているロータリピストンエンジンでは、燃費やエミッションの低減のために通常、吸気ポートをロータの側面が摺接するハウジングの側面に開口させており(いわゆるサイドポート)、この開口においては前記従来例のような吸排気のオーバーラップが生じないから、ダイリューションガスを利用して燃料の気化、霧化を促進することはできない。
また、そのようにハウジングの側面に開口する吸気ポートから作動室に流入する吸気の流れは、作動室に流入した後にロータの移動方向に向きを変えることになるが(図4の矢印Fを参照)、このとき、吸気ポート開口からの吸気流の慣性が小さければ、その流れは作動室内に入った直後に向きを変えるようになり(同図(a))、一方、吸気流の慣性が大きければ、流れは作動室内で大きく回り込みながら向きを変えるようになる(同図(b))。
この結果、作動室内をロータの移動方向に向かう吸気流動の主流は、吸気流の慣性が相対的に小さな低負荷低回転側では吸気ポート開口寄りを通ることになり、一方、吸気流の慣性が相対的に大きな高負荷高回転側では吸気ポート開口とは反対寄りを通ることになるため、この主流に対し燃料噴霧を衝突させることも容易ではない。
本発明は斯かる点に鑑みてなされたものであり、その目的とするところは、前記の如くエンジンの運転状態によって吸気の流れ場が変化することに着目し、これに対応して燃料の噴射方向を変化させることで、吸気流による燃料の気化、霧化を最大限に促進することにある。
前記の目的を達成するために、本願の請求項1の発明では、作動室に臨んでロータの側面が摺接するハウジングの側面に、吸気ポートが開口するとともに、該作動室内に直接、燃料を噴射可能な燃料噴射手段が設けられたロータリピストンエンジンの燃料噴射装置を対象として、前記燃料噴射手段を、エンジンが低負荷低回転の所定運転領域にあるとき、ロータの幅方向について前記吸気ポート開口寄りに燃料を噴射する一方、該所定運転領域よりも高負荷ないし高回転側ではロータ幅方向について前記と反対寄りに燃料を噴射するように構成したものである。
前記の構成により、エンジンの運転中に吸気行程にある作動室に燃料噴射手段によって燃料が噴射されると、この燃料噴霧は吸気の流れに巻き込まれて拡散するとともに、燃料液滴の気化、霧化が進行し、燃料蒸気が吸気と混ぜ合わされて混合気を形成することになる。この際、低負荷低回転の所定運転領域であれば吸気流の慣性が相対的に小さいので、ハウジングの側面に開口する吸気ポートから作動室に流入した吸気は直ちにロータの移動方向に向かい、その主流がロータ幅方向について吸気ポート開口寄りを通ることになる。
また、前記所定運転領域よりも高負荷ないし高回転側では、相対的に吸気流の慣性が大きくなるので、ハウジングの側面に開口する吸気ポートから作動室内に強い噴流となって吸気流が流入し、反対側のハウジング側面近くにまで進んだ後に、大きく回り込みながらロータの移動方向に向きを変えるようになる。よって、作動室内における吸気流の主流はロータ幅方向について吸気ポート開口とは反対寄りを通ることになる。
そのような吸気の流れ場の変化に対応して、前記燃料噴射手段は、低負荷低回転の前記所定運転領域ではロータ幅方向について吸気ポート開口寄りに燃料を噴射する一方、それよりも高負荷ないし高回転側では、ロータ幅方向について前記吸気ポート開口と反対寄りに燃料を噴射する。こうして噴射された燃料噴霧は、前記のような流れ場の変化に依らず、吸気流の主流に衝突するようになるので、燃料の微粒化及び気化、霧化が効果的に促進される。
前記の如く噴射方向を変える燃料噴射手段として、具体的には、各々ハウジングのトロコイド内周面にて作動室に臨み、ロータ幅方向について吸気ポート開口寄りに燃料を噴射する第1の燃料噴射弁と、ロータ幅方向について前記と反対寄りに燃料を噴射する第2の燃料噴射弁と、エンジンが低負荷低回転の所定運転領域にあるときには前記第1燃料噴射弁により燃料を噴射させる一方、該所定運転領域よりも高負荷ないし高回転側では前記第2燃料噴射弁により燃料を噴射させる噴射制御手段と、を備えればよい(請求項2)。
こうすれば、第1、第2の2つの燃料噴射弁を使い分けることで、エンジンの運転状態の変化に対応して燃料の噴射方向を変更することができる。また、相対的に低負荷側で使用する第1燃料噴射弁を高負荷側で使用する第2燃料噴射弁よりも小容量のものとすれば、燃料噴射量の少ないときでも噴射精度を高くし易い。
その場合に、前記のように低負荷低回転の所定運転領域にて使用する第1燃料噴射弁は、第2燃料噴射弁よりもロータの移動方向について遅れ側に配設するのが好ましい(請求項3)。すなわち、エンジンの負荷が低いときには吸気の充填効率、即ち密度が低くなり、また、エンジンの低回転域では吸気の流速が低くなるので、それらの要因により吸気流が弱くなる所定運転領域では、作動室内において吸気流が減衰しないよう、できるだけ早く燃料を噴射することが望ましい。
そこで、前記のように第1燃料噴射弁をロータの移動方向について相対的に遅れ側に、即ち、ロータの移動に伴い吸気行程になる作動室に相対的に早く臨むような位置に配設すれば、この第1燃料噴射弁によって相対的に早く燃料を噴射させることができるようになり、吸気流があまり減衰しないうちに燃料噴霧を衝突させることができる。
特に好ましいのは、前記第1燃料噴射弁による燃料噴射の時期を、吸気行程の前半においてロータの移動に伴い吸気ポートから作動室に吸入される吸気の流速が所定以上に高くなる期間内に設定することである(請求項5)。こうすれば、高速の吸気流との衝突によって燃料噴霧の気化、霧化を一層、効果的に促進できる。また、燃料液滴が小さくなってその運動量が減少することで、燃料噴霧のペネトレーションが弱くなり、壁面への付着も軽減される。尚、第1燃料噴射弁だけでなく、可能であれば第2燃料噴射弁からの燃料噴射も前記の期間内に行うことが好ましい。
また、ハウジングの一側面に開口し常時、開放される第1吸気ポートと、該ハウジングの他側面に開口し、所定運転領域よりも高回転側で開放される第2吸気ポートとが設けられている場合に、好ましいのは、第1燃料噴射弁を前記第1吸気ポート開口寄りに燃料を噴射するものとし、第2燃料噴射弁は反対寄りに(つまり、前記第2吸気ポート開口寄りに)燃料を噴射するものとした上で、第2吸気ポートの開放後は前記両方の燃料噴射弁によって燃料を噴射させるようにすることである(請求項4)。
こうすれば、低負荷低回転の所定運転領域と、それよりも高負荷ないし高回転側で且つ第2吸気ポートが開放されるまでの運転領域とにおいて、前記請求項1、2の発明の如き作用が得られる上に、第2吸気ポートが開放されるまでは吸気が第1吸気ポートのみから作動室に供給されるようになるので、低回転域であっても吸気の流速を高めることができ、吸気流による燃料の気化、霧化を促進し易い。
一方、第2吸気ポートが開放されれば、第1吸気ポートと併せて作動室に対し両側方から吸気が流入することになり、吸気流の主流の片寄りがなくなるとともに、吸気流量の増大によって流動自体が強くなるので、このときには第1、第2の両方の燃料噴射弁から燃料を噴射させることで、要求される燃料噴射量の増大に対応することができるとともに、いずれか一方のみから噴射するのに比べて燃料をロータ幅方向に広く分散させることができ、良好な混合気形成に有利になる。
以上、説明したように、本発明に係るロータリピストンエンジンの燃料噴射装置によると、エンジンが低負荷低回転の所定運転領域にあるときには、ロータ幅方向について吸気ポート開口寄りに燃料を噴射する一方、それよりも高負荷ないし高回転側では反対寄りに燃料を噴射することで、吸気の流れ場の変化に対応して燃料の噴射方向を変化させて、燃料噴霧を吸気流の主流に衝突させることができ、燃料の微粒化及び気化、霧化を効果的に促進できる。
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
(エンジンの全体構成)
図1は、本発明の実施形態に係るロータリピストンエンジン1の要部構成を示し、トロコイド内周面2aを有する繭状のロータハウジング2とサイドハウジング3とに囲まれたロータ収容室4に概略三角形状のロータ6が収容されて、その外周側に3つの作動室5,5,5が形成されている。図2に示すように、エンジン1は、2つのロータハウジング2,2を3つのサイドハウジング3,3,3の間に挟み込むようにして一体化し、その間に形成される2つのロータ収容室4,4にそれぞれロータ6,6を収容した2ロータタイプのものである。
以下、この実施形態では、2つのロータハウジング2,2の中間に位置するサイドハウジング3(図1に示すもの)を両端側のものと区別して、インターミディエイトハウジング3と呼ぶものとする。
前記ロータ6の内側には、図示しないが内歯車が形成されていて、この内歯車とサイドハウジング3側の外歯車とが噛合するとともに、ロータ6は、インターミディエイトハウジング3及びサイドハウジング3を貫通するエキセントリックシャフト7(以下、単にシャフト7ともいう)に対して、遊星回転運動をするように支持されている。
すなわち、ロータ6の回転運動は内歯車と外歯車との噛み合いによって規定され、ロータ6は、外周の3つの頂部にそれぞれ配設されたシール部が各々ロータハウジング2のトロコイド内周面2aに摺接しつつ、前記シャフト7の偏心輪7aの周りを自転しながら、該シャフト7の軸心Xの周りに公転する。そして、ロータ6が1回転する間に、該ロータ6の各頂部間にそれぞれ形成された作動室5,5,…が周方向に移動しながら、吸気、圧縮、膨張(燃焼)及び排気の各行程を行い、これにより発生する回転力がロータ6を介してシャフト7から出力される。
より具体的に、図1のようにシャフト7の軸心Xの方向に見ると、各ロータ収容室4の短軸方向の一側(図例では左側)が概ね吸気及び排気行程の領域になり、その反対側(図例では右側)が概ね圧縮及び膨張行程の領域になる。同図において第1吸気ポート11に連通する作動室5(図の左上側の作動室)は吸気行程の後半にあり、この作動室5がロータ6の回転に連れて図の時計回りに移動して圧縮行程に移行すると、その内部にて混合気が圧縮される。その後、図の右側に示す作動室5のように圧縮行程の終盤から膨張行程にかけて所定のタイミングにて点火プラグ9,10により点火されて、燃焼・膨張行程が行われる。
前記インターミディエイトハウジング3には、両側の2つのロータ収容室4,4においてそれぞれ吸気行程にある作動室5に連通するように一対の第1吸気ポート11,11(図1には1つのみ示す)が形成され、同様に、排気行程にある作動室5,5にそれぞれ連通するように一対の第1排気ポート12,12(図1には1つのみ示す)が形成されている。一方、前記サイドハウジング3には、吸気行程にある作動室5にそれぞれ連通するように第2及び第3の2つの吸気ポート13,14が形成され、また、排気行程にある作動室5に連通するように第2排気ポート15が形成されている。
そして、前記第1、第2及び第3吸気ポート11,13,14が、それぞれ、各ロータ収容室4の吸気行程にある作動室5に吸気を供給する吸気通路16の下流端部を構成している。すなわち、図3に示すように、吸気通路16は、各ロータ収容室4毎に3つに分岐してそれぞれ前記3つの吸気ポート11,13,14に連通していて、それら3つの経路による吸気の供給状態をエンジン1の運転状態に応じて変更することで、低負荷低回転から高負荷高回転までの全運転領域に渡って吸気を効率良く充填できようになっている。
尚、図3は、2つのロータ収容室4,4のうちの一方(図2における手前側のもの)を模式的に2つに分けて吸排気系の全体的な構成を示したものであり、図の左側には、図1と同様にインターミディエイトハウジング3の側が、また、図の右側にはサイドハウジング3の側が示されている。
図3に示すように、吸気通路16の上流にはエアクリーナ17とエアフローセンサ18とが配設される一方、該吸気通路16の下流側は2つの通路19,20に分岐し、そのうちの一方の通路19は下流側でさらに2つの独立吸気通路21,22に分かれている。第1の独立吸気通路21の下流端は第1吸気ポート11に連通し、第2の独立吸気通路22の下流端は第2吸気ポート13に連通している。また、他方の通路20の下流端は第3吸気ポート14に連通している。
前記のように分岐する手前の吸気通路16には、ステッピングモータ等により駆動されて通路の断面積を調節する電気式のスロットル弁23が配設されており、吸気の流れを絞ってその流量を調節するようになっている。また、第2独立吸気通路22にはシャッター弁24が配設されており、吸気通路16の負圧を利用する電磁空圧式のアクチュエータ25により駆動されて、第2独立吸気通路22を全閉とするか又は全開とするかのいずれかに切換えられる。
さらに、前記他方の通路20の下流端には、図示は省略するが、アクチュエータにより駆動されるロータリーバルブが配設されており、前記第1及び第2独立吸気通路21,22による吸気の供給だけでは吸気量が不足する所定の高回転状態でのみ開かれて、吸気を供給するようになる(以下、この通路20を追加吸気通路20と呼ぶ)。
尚、図1、3において符号26は、ロータ6側面等から吹き抜けたブローバイガスの一部を回収するキャッチタンクを示し、ここで回収されたブローバイガスは、図3にのみ示すブローバイガス通路27によって吸気通路16に導入される。
上述の如き吸気系によって吸気が導入される作動室5、即ち吸気行程にある作動室5の内部に直接、燃料を噴射するように、この実施形態では、各ロータ収容室4の長軸方向の一側(図1の上側)に臨んで第1及び第2の2つのインジェクタ30,31(燃料噴射弁)が配設されている。2つのインジェクタ30,31は、各々ロータハウジング2のトロコイド内周面2aからロータ収容室4内に臨んでおり、第1インジェクタ30が、第2インジェクタ31よりもロータ6移動方向について遅れ側に配置されている。
また、図1のように軸心X方向に見ると、前記2つのインジェクタ30,31は、各々第1、第2吸気ポート11,13に向かうように燃料を噴射するように配置されており、図4に示すように長軸方向の一側(図1の上側)から見ると明らかなように、第1インジェクタ30は、ロータ6の幅方向について第1吸気ポート11の開口寄りに燃料を噴射し、また、第2インジェクタ31は、ロータ幅方向について前記と反対寄りに、言い換えると、第2吸気ポート13の開口寄りに燃料を噴射するようになっている。
そのようにロータ幅方向について片寄って燃料を噴射するためには、インジェクタ30,31の軸心を傾けて配置するようにしてもよいが、インジェクタ先端部に形成する噴孔の向きをインジェクタ軸心から傾斜させるようにしてもよい。この実施形態では、一例として、先端部に複数の噴孔が設けられたマルチホール型のものを用いており、各噴孔の向きをインジェクタ軸心に対し傾斜させるようにしている。尚、インジェクタは、周知のスワーラ型のものであっても、またスリット型のものであってもよい。
前記のように2つのインジェクタ30,31からの燃料噴霧S1,S2をそれぞれ異なる向きとしているのは、詳しくは後述するが、エンジン1の運転状態に応じて変化する吸気の流れ(図4(a)、(b)の矢印Fを参照)に対応して、より適切な混合気形成を行うためである。すなわち、このエンジン1では、2つのインジェクタ30,31の使い分けによって、吸気の流れ場の変化に依らずその主流に燃料噴霧が衝突するようになり、その気化、霧化が促進されて良好な均質混合気が形成され、着火、燃焼されることになる。
そうした燃焼により生じる既燃ガスは、排気行程に移行した作動室5から第1、第2排気ポート12,15を介して排気マニホルド33内の通路に排出される。この排気マニホルド33内では2つのロータ収容室4,4からの排気が集合して、下流側の排気管34に流出する。排気マニホルド33には、排気中の酸素濃度を検出するO2センサ35が配設され、また、排気管34には排気を浄化するための2つの触媒コンバータ36,37が配設されている。O2センサ35は、インジェクタ30,31による燃料噴射量のフィードバック制御のために用いられる。
尚、図3にのみ示すが、符号38は、エキセントリックシャフト7の一端側に配設されてその回転角度を検出する電磁式の回転角センサ(エキセン角センサ)である。また、符号39は、ロータハウジング2の内部に形成されたウォータジャケット(図示せず)に臨んで冷却水の温度状態(エンジン水温)を検出する水温センサである。
(エンジン制御の概要)
前記点火プラグ9,10の点火回路、スロットル弁23のモータ、シャッター弁24のアクチュエータ25、インジェクタ30,31等は、コントロールユニット40(以下、ECUと略称する)により制御される。このECU40には少なくともエアフローセンサ18の出力信号と、O2センサ35の出力信号と、エキセン角センサ38の出力信号と、水温センサ39の出力信号とが入力され、さらに、アクセル開度センサ41からの信号が入力される。そして、ECU40においてエンジン1の運転状態(例えばエンジン負荷及びエンジン回転速度)が判定され、これに応じて各ロータ6の作動室5毎に燃料の噴射量及び噴射タイミング、点火時期等の制御が行われ、さらに吸気の流通する経路の切換えが行われる。
すなわち、まず、エンジン1の殆どの運転域で各ロータ収容室4の作動室5,5,…における混合気の空燃比が略理論空燃比になるように、燃料噴射量が制御される。これは、スロットル弁23により調整される吸気の流量をエアフローセンサ18により検出し、この検出値とエンジン回転速度とに応じてインジェクタ30,31による燃料の噴射量を決定するもので、一例として全負荷近傍の高負荷域においては理論空燃比よりもリッチ側に制御するようにしてもよいが、これに限らず全運転領域において理論空燃比になるように制御することもできる。
また、主にエンジン回転速度に対応して、第2独立吸気通路22のシャッター弁24や追加吸気通路20のロータリーバルブの開閉状態が切換えられて、吸気の流通経路が3通りに切換わる。すなわち、図5に制御マップの一例を示すようにシャッター弁24は、エンジン回転速度neが第1設定回転速度ne1(例えば3000rpm)以下の低回転域(図示の第1運転域(I))では全閉とされ、このときにはロータリバルブも閉じているので、吸気は第1独立吸気通路21から第1吸気ポート11を流通して、作動室5に流入するようになる。
エンジン回転速度neが第1設定回転速度ne1を越えるとシャッター弁24は全開とされ、吸気は第1及び第2独立吸気通路21,22から第1及び第2吸気ポート11,13を流通して、作動室5にその両側方から流入するようになる(図示の第2運転域(II))。そして、エンジン回転速度neが第2設定回転速度ne2(例えば6500rpm)を越えた高回転域(図示の第3運転域(III))ではロータリーバルブも開かれて、作動室5には追加吸気通路20及び第3吸気ポート14からも吸気が流入するようになる。
さらに、本発明の特徴としてこの実施形態では、前記の如くシャッター弁24が閉じられて、吸気が第1吸気ポート11のみから作動室5に供給される低回転側の第1運転域(I)において、その吸気の流れ場がエンジン1の運転状態によって変化することに着目し、これに対応して第1、第2インジェクタ30,31を使い分け、燃料の噴射方向を変化させることで、吸気流による燃料の気化、霧化を最大限に促進できるようにしている。
まず、エンジン1が低回転側の第1運転域(I)においても特に低回転で且つ低負荷の所定運転領域R1(図にクロスハッチを入れて示す)にあるとき、即ち吸気の密度が低く、その流速も低いため、吸気流の慣性が小さくなるときには、図4(a)に模式的に示すように、インターミディエイトハウジング3の側面に開口する第1吸気ポート11から作動室5に流入する吸気の流れFは直ちにロータ6の移動方向に向かい、その主流がロータ幅方向について第1吸気ポート11の開口寄りを通ることになる。
一方、前記領域R1よりも高負荷ないし高回転側の領域R2(図にハッチングを入れて示す)では相対的に吸気流の慣性が大きくなるため、同図(b)に模式的に示すように、第1吸気ポート11の開口から作動室5内に強い噴流となって吸気流Fが流入し、反対側のハウジング側面近くまで進んだ後に、大きく回り込みながらロータ6の移動方向に向きを変えるようになる。よって、作動室5内における吸気流Fの主流はロータ幅方向について第1吸気ポート11の開口とは反対寄り(第2吸気ポート13の開口寄り)を通ることになる。
そのような吸気の流れ場の変化に対して2つのインジェクタ30,31を使い分け、領域R1においては第1インジェクタ30によって第1吸気ポート11の開口寄りに燃料を噴射する一方、領域R2においては第2インジェクタ31によって前記とは反対寄りに燃料を噴射することで、それぞれの燃料噴霧S1,S2がいずれも吸気流Fの主流に衝突するようになり、燃料の微粒化及び気化、霧化が効果的に促進される。
尚、前記2つの領域R1,R2を除いた第1運転域(I)の相対的に高負荷側の運転域から中・高回転の第2、第3運転域(II)、(III)にかけては、第1、第2の両方のインジェクタ30,31により燃料を噴射させる。これは、要求される燃料の噴射量が増大することに対応するとともに、燃料をロータ幅方向に広く分散させるためであり、こうして噴射された燃料は、エンジン回転速度の上昇に伴い強くなる吸気流に巻き込まれて、十分に混合されるようになる。
(燃料噴射制御)
以下に、前記のように2つのインジェクタ30,31を使い分ける制御の具体的な手順を図6のフローチャートに基づいて説明する。尚、この制御は、各ロータ収容室4の作動室5,5,…毎にその点火時期に同期した所定のタイミングで実行される。
まず、スタート後のステップSA1では、エアフローセンサ18、O2センサ35、エキセン角センサ38、アクセル開度センサ41等からの各種信号を読み込み、続くステップSA2においてエンジン1が第1運転域(I)にあるかどうか判定する。この判定は、エキセン角センサ38からの信号に基づいて計算されるエンジン回転速度に基づき図5の制御マップを参照して行われ、第1運転域(I)にないNOと判定すれば、後述のステップSA10に進む一方、第1運転域(I)にあるYESと判定すればステップSA3に進む。
ステップSA3では、今度は第1運転域(I)の中でも特に低回転低負荷の領域R1にあるかどうか判定し、判定がNOで領域R1でなければ、後述のステップSA7に進む一方、領域R1にあるYESであればステップSA4に進んで、使用するインジェクタとして第1インジェクタ30を設定する。また、この第1インジェクタ30の流量特性を考慮して、目標とする燃料噴射量が得られる噴射パルス巾を決定する。尚、目標とする燃料噴射量は、エアフローセンサ18の出力(吸気流量)とエンジン回転速度とに基づいて計算される吸気充填効率ceに対して、目標とする空燃比になるように計算される。
続いてステップSA5では、図7に一例を示すような噴射時期マップに基づいて第1インジェクタ30による燃料の噴射時期を設定する。噴射時期マップは、第1及び第2インジェクタ30,31のそれぞれについてエンジン負荷(例えば吸気充填効率ce)及びエンジン回転速度、即ちエンジン1の運転状態に対応する最適な噴射タイミングを予め実験的に求めて設定し、図に模式的に示すように、吸気の流速が所定以上に高くなる期間内に噴射パルスが含まれるようにしたものである。
図8を参照して説明すると、この実施形態のロータリピストンエンジン1では、いずれかの作動室5がエキセン角で下死点前270°(BBDC270°Ecc.A)にあるとき(同図の(ア))から吸気行程が始まり、その後、図の(イ)のように第1吸気ポート11が開き始めると、狭い隙間から作動室5に流入する吸気の流速が第1のピークp1を示す。そして吸気ポート開口が大きくなって一旦、流速が低下した後に、ロータ6の移動速度が高くなることによって概ねBBDC180〜140°Ecc.Aの範囲内にて吸気流速が第2のピークp2を迎える。
ここで、この実施形態のエンジン1においては大体BBDC190°Ecc.Aまでは第1、第2インジェクタ30,31が吸気行程にある作動室5に臨んでおらず、図の(ウ)のようにBBDC190°Ecc.A以降で初めて第1インジェクタ30が作動室5内に燃料を噴射可能な状態になる。よって、第1インジェクタ30からの燃料噴霧を吸気流に衝突させて、その気化、霧化を促進する上で望ましい噴射タイミングは、吸気流速の前記第2のピークを含む期間内(吸気行程の前半においてロータ6の移動に伴い吸気の流速が所定以上に高くなる期間内)にある。
そこで、この実施形態では、作動室5内にて第1インジェクタ30からの燃料噴霧S1が形成される部位における吸気流速の変化を予め実験等により調べて、前記第2のピークが生じるタイミングを噴射期間に含むように、且つ、その噴射期間、即ち噴射開始から噴射終了までの間、常に吸気流速が前記第2のピーク値の70%以上になるようにして、前記図7のような噴射時期マップ(第1インジェクタ30についてのマップ)を作成したものである。
以上のように適切な噴射タイミングが設定されている噴射時期マップに基づいて、前記ステップSA5にて第1インジェクタ30の燃料噴射時期を設定した後、ステップSA6に進んでエキセン角センサ38からの信号により吸気行程にある作動室5の位置(エキセン角による位置)を検出し、前記の設定した噴射時期になれば第1インジェクタ30を作動させて燃料を噴射させ、しかる後にリターンする。
つまり、第1運転域(I)の中でも特に低回転低負荷の領域R1においては、第1インジェクタ30のみから燃料を噴射させ、図4(a)のように、相対的に吸気ポート11寄りに向かう燃料噴霧S1を形成する。この燃料噴霧S1は、相対的に第1吸気ポート11寄りを通る吸気流Fの主流に衝突して、その微粒化及び気化、霧化が効果的に促進される。
一方、前記ステップSA3にて領域R1にない(NO)と判定して進んだステップSA7では、今度は、より高負荷ないし高回転側の領域R2にあるかどうか判定し、この判定がNOであれば、後述のステップSA10に進む一方、領域R2であれば(YES)ステップSA8に進んで、使用するインジェクタとして第2インジェクタ31を設定するとともに、その流量特性を考慮して噴射パルス巾を決定する。
続いてステップSA9では、前記ステップSA5と同じく噴射時期マップに基づいて第2インジェクタ31による燃料の噴射時期を設定する。この噴射時期マップは、前記第1インジェクタ30についてのものと同様に、作動室5内にて第2インジェクタ31からの燃料噴霧S2が形成される部位における吸気流速の変化を予め実験等により調べて設定したものであり、作動室5内で大きく回り込む吸気流Fに合わせて、第1インジェクタ30よりもやや遅めに噴射時期が設定されている。
そうして噴射時期を設定すれば前記ステップSA6に進んで、エキセン角センサ38からの信号に基づき、前記の設定した噴射時期になったと判定すれば、第2インジェクタ31を作動させて燃料を噴射させ、しかる後にリターンする。
つまり、領域R1よりも高負荷ないし高回転側の領域R2においては、作動室5内で吸気流Fが大きく回り込み第2吸気ポート13寄りを通ることに対応して、第2インジェクタ31のみに燃料を噴射させ、図4(b)のように第2吸気ポート13寄りに向かう燃料噴霧S2を形成する。これにより、前記領域R1のときと同様に燃料噴霧S2を吸気流Fの主流に衝突させて、その微粒化及び気化、霧化を効果的に促進できる。
さらに、前記ステップSA2,SA7にてそれぞれNOと判定して進んだステップSA10では、第1、第2の両方のインジェクタ30,31を設定するとともに、それら各々の流量特性を考慮して噴射パルス巾を決定する。続くステップSA11では前記ステップSA5,SA9と同様に第1、第2インジェクタ30,31の各噴射時期を各々噴射時期マップから設定して前記ステップSA6に進み、それら両方のインジェクタ30,31により燃料を噴射させて、しかる後にリターンする。
こうして2つのインジェクタ30,31の両方を作動させることで、相対的に負荷の高い運転状態で要求される燃料を相対的に短い期間で噴射することが可能になり、燃料噴霧S1,S2を比較的吸気流速の高いときに形成できるので、その気化、霧化を促進する上で有利になる。特に第2運転域(II)以上の中高回転域においては、第1及び第2吸気ポート11,13を介して作動室5にその両側方から吸気が流入し、両方のインジェクタ30,31の作動によってロータ幅方向に広く分散された燃料噴霧が吸気流に巻き込まれて、十分に混合されるようになる。
前記図6のフローが全体として、エンジン1が低負荷低回転の所定運転領域(領域R1)にあるときに、第1インジェクタ30により燃料を噴射させる一方、それよりも高負荷ないし高回転側の領域R2では第2インジェクタ31により燃料を噴射させる噴射制御手段40aに対応している。
噴射制御手段40aは、前記領域R1における第1インジェクタ30の燃料噴射を、吸気行程の前半においてロータ6の移動に伴い第1吸気ポート11から作動室5に吸入される吸気の流速が所定以上に高くなる期間内で行うように構成されている。このような噴射制御手段40aの機能は、ECU40のメモリに格納されているプログラムがCPUによって実行されることで、実現する。
(作用効果)
したがって、この実施形態に係るロータリピストンエンジン1では、まず、低回転側の第1運転域(I)において第2独立吸気通路22のシャッター弁24が閉じられて、吸気が第1独立吸気通路21のみを流通するようになり、吸気の流量が少ないときでもその流速を高めて、作動室5における吸気流動を強化することができる。よって、吸気流動により燃料噴霧の気化、霧化を促進する上で有利になる。
また、特に低負荷低回転の領域R1においては、ロータ6の移動に伴い吸気流速が所定以上に高くなる期間内で第1インジェクタ30により燃料を噴射させ、ロータ幅方向について第1吸気ポート11寄りに向かう燃料噴霧S1を形成する一方、それよりも高負荷ないし高回転側の領域R2では、第2インジェクタ31により燃料を噴射させて、ロータ幅方向について前記とは反対向きの燃料噴霧S2を形成することで、エンジン1の運転状態の変化に依らず、作動室5内の吸気流の主流に燃料噴霧S1,S2を衝突させて、その微粒化及び気化、霧化を効果的に促進することができる。
さらに、前記第1運転域(I)の高負荷側(領域R1,R2以外)から第2、第3運転域(II)(III)にかけての中高回転域においては、2つのインジェクタ30,31の両方から燃料を噴射させることで、燃料噴射量の増大に対応するとともに、燃料を相対的に吸気流速の高い期間に噴射することが可能になり、吸気流によって気化、霧化を促進する上で有利になる。
特に、シャッター弁24が開かれて吸気が第1及び第2の両方の独立吸気通路21,22を流通し、作動室5に両側方から流入するようになれば、両方のインジェクタ30,31からロータ幅方向に広く分散するように噴射した燃料を吸気流に巻き込んで、十分に混合することができ、このことも燃料の気化、霧化を促進する上で有利になる。
尚、本発明の構成は、前記実施形態のものに限定されることはなく、その他の種々の構成を包含する。すなわち、前記実施形態では、第1、第2の2つのインジェクタ30,31を使い分けて、作動室5への燃料噴射の向きを変更するようにしているが、これに限るものではなく、例えばエアアシスト・タイプのインジェクタにおいてアシストエアの供給方向を可変とすることにより、燃料の噴射方向を変更するもののように、1つのインジェクタで作動室5への燃料噴射の向きを変更することもできる。
但し、前記実施形態のように2つのインジェクタ30,31を使い分けるようにすれば、相対的に低負荷側で使用する第1インジェクタ30を高負荷側で使用する第2インジェクタ31よりも小容量のものとすることで、燃料噴射量の少ない領域R1における噴射制御の精度を高めることができ、好ましい。
また、前記実施形態では、第1、第2の2つのインジェクタ30,31を互いにやや間隔を空けて配置しているが、両者を近接させて配置してもよい。但し、低負荷側で使用する第1インジェクタ30は、前記実施形態のようにロータ6の移動方向について相対的に遅れ側に配置するのが好ましい。これは、吸気流が減衰しないよう、できるだけ早く燃料を噴射するためであり、また、相対的に吸気ポート11の開口に近づけて配置するためでもある。
さらに、前記実施形態においてエンジン1は、追加吸気通路20を有し、吸気量の多い高回転域においては第1及び第2独立吸気通路21,22に加えて追加吸気通路20からも吸気を供給するようにしたものであるが、この追加吸気通路20はなくてもよい。
以上、説明したように、本発明に係るロータリピストンエンジンは、作動室に直接、噴射する燃料の気化、霧化を促進し、混合気の燃焼性を高めることができるものであるから、自動車用エンジン等に好適である。
本発明の実施形態に係るロータリピストンエンジンの要部構成を示す断面図である。 同エンジンの要部の斜視図である。 同エンジンの制御システムを含めた全体構成図である。 2つのインジェクタから各々ロータ幅方向に片寄って噴射される燃料噴霧を模式的に示す説明図である。 エンジンの制御マップの一例を示す説明図である。 インジェクタを使い分ける制御のフローチャート図である。 噴射時期マップの一例を示す説明図である。 エキセン角の変化に伴う吸気流速の変化を示す説明図である。
符号の説明
1 ロータリピストンエンジン
2 ロータハウジング
2a トロコイド内周面
3 サイドハウジング、インターミディエイトハウジング
5 作動室
6 ロータ
11 第1吸気ポート
13 第2吸気ポート
30 第1インジェクタ(第1燃料噴射弁)
31 第2インジェクタ(第2燃料噴射弁)
40 コントロールユニット(ECU)
40a 噴射制御手段
S1,S2 燃料噴霧

Claims (5)

  1. 作動室に臨むハウジングの側面に吸気ポートが開口するとともに、該作動室内に直接、燃料を噴射可能な燃料噴射手段が設けられたロータリピストンエンジンの燃料噴射装置であって、
    前記燃料噴射手段は、エンジンが低負荷低回転の所定運転領域にあるとき、ロータの幅方向について前記吸気ポート開口寄りに燃料を噴射する一方、該所定運転領域よりも高負荷ないし高回転側ではロータ幅方向について前記と反対寄りに燃料を噴射するように構成されている
    ことを特徴とするロータリピストンエンジンの燃料噴射装置。
  2. 請求項1の燃料噴射装置において、
    燃料噴射手段は、
    各々ハウジングのトロコイド内周面にて作動室に臨み、ロータ幅方向について吸気ポート開口寄りに燃料を噴射する第1の燃料噴射弁、及び、ロータ幅方向について前記と反対寄りに燃料を噴射する第2の燃料噴射弁と、
    エンジンが低負荷低回転の所定運転領域にあるとき、前記第1燃料噴射弁により燃料を噴射させる一方、該所定運転領域よりも高負荷ないし高回転側では前記第2燃料噴射弁により燃料を噴射させる噴射制御手段と、を備える
    ことを特徴とするロータリピストンエンジンの燃料噴射装置。
  3. 請求項2の燃料噴射装置において、
    第1燃料噴射弁が、第2燃料噴射弁よりもロータの移動方向について遅れ側に配設されていることを特徴とするロータリピストンエンジンの燃料噴射装置。
  4. 請求項2の燃料噴射装置において、
    ハウジングの一側面に開口し常時、開放される第1吸気ポートと、該ハウジングの他側面に開口し、所定運転領域よりも高回転側で開放される第2吸気ポートと、が設けられ、
    噴射制御手段は、前記第2吸気ポートの開放後は第1及び第2燃料噴射弁の両方により燃料を噴射させるように構成されている
    ことを特徴とするロータリピストンエンジンの燃料噴射装置。
  5. 請求項1の燃料噴射装置において、
    燃料噴射手段がロータ幅方向について吸気ポート開口寄りに噴射する燃料の噴射時期は、吸気行程の前半においてロータの移動に伴い吸気ポートから作動室に吸入される吸気の流速が所定以上に高くなる期間内に設定されている
    ことを特徴とするロータリピストンエンジンの燃料噴射装置。
JP2006328077A 2006-12-05 2006-12-05 ロータリピストンエンジンの燃料噴射装置 Expired - Fee Related JP4811256B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328077A JP4811256B2 (ja) 2006-12-05 2006-12-05 ロータリピストンエンジンの燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328077A JP4811256B2 (ja) 2006-12-05 2006-12-05 ロータリピストンエンジンの燃料噴射装置

Publications (2)

Publication Number Publication Date
JP2008138640A true JP2008138640A (ja) 2008-06-19
JP4811256B2 JP4811256B2 (ja) 2011-11-09

Family

ID=39600361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328077A Expired - Fee Related JP4811256B2 (ja) 2006-12-05 2006-12-05 ロータリピストンエンジンの燃料噴射装置

Country Status (1)

Country Link
JP (1) JP4811256B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042692A2 (en) * 2008-10-08 2010-04-15 Pratt & Whitney Rocketdyne, Inc. Rotary engine with exhaust gas supplemental compounding
WO2010047961A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with distributed fuel injection
WO2010047960A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with scarped pocket rotor
WO2010047962A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with conformal injector nozzle tip
JP2010156288A (ja) * 2008-12-27 2010-07-15 Mazda Motor Corp 直噴エンジンの燃料噴射装置
JP2010156289A (ja) * 2008-12-27 2010-07-15 Mazda Motor Corp ロータリーピストンエンジンの燃料噴射制御装置
JP2010229983A (ja) * 2009-03-30 2010-10-14 Mazda Motor Corp ロータリーピストンエンジンの燃料噴射制御方法及び燃料噴射制御装置
JP2017053332A (ja) * 2015-09-11 2017-03-16 マツダ株式会社 ロータリーピストンエンジン
US10978728B2 (en) 2019-04-12 2021-04-13 Korea Institute Of Energy Research Method for producing high-purity electrolyte for vanadium redox flow battery using catalytic reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114503U (ja) * 1974-02-28 1975-09-18
JPH024936U (ja) * 1988-06-24 1990-01-12
JPH03275944A (ja) * 1990-03-22 1991-12-06 Mazda Motor Corp エンジンの燃料噴射制御装置
JPH0587016A (ja) * 1991-09-27 1993-04-06 Mazda Motor Corp ロ−タリピストンエンジンの燃料噴射装置
JPH06288249A (ja) * 1993-03-31 1994-10-11 Mazda Motor Corp 直噴式ロ−タリピストンエンジン
JP2004116493A (ja) * 2002-09-30 2004-04-15 Mazda Motor Corp ロータリーエンジンの燃料噴射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114503U (ja) * 1974-02-28 1975-09-18
JPH024936U (ja) * 1988-06-24 1990-01-12
JPH03275944A (ja) * 1990-03-22 1991-12-06 Mazda Motor Corp エンジンの燃料噴射制御装置
JPH0587016A (ja) * 1991-09-27 1993-04-06 Mazda Motor Corp ロ−タリピストンエンジンの燃料噴射装置
JPH06288249A (ja) * 1993-03-31 1994-10-11 Mazda Motor Corp 直噴式ロ−タリピストンエンジン
JP2004116493A (ja) * 2002-09-30 2004-04-15 Mazda Motor Corp ロータリーエンジンの燃料噴射装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042692A2 (en) * 2008-10-08 2010-04-15 Pratt & Whitney Rocketdyne, Inc. Rotary engine with exhaust gas supplemental compounding
US8689764B2 (en) 2008-10-08 2014-04-08 Aerojet Rocketdyne Of De, Inc. Rotary engine with exhaust gas supplemental compounding
WO2010042692A3 (en) * 2008-10-08 2010-07-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with exhaust gas supplemental compounding
WO2010047960A3 (en) * 2008-10-21 2010-07-22 Pratt & Whitney Rocketdyne, Inc. Rotary engine with scarped pocket rotor
WO2010047962A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with conformal injector nozzle tip
WO2010047960A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with scarped pocket rotor
WO2010047962A3 (en) * 2008-10-21 2010-08-12 Pratt & Whitney Rocketdyne, Inc. Rotary engine with conformal injector nozzle tip
WO2010047961A3 (en) * 2008-10-21 2010-08-12 Pratt & Whitney Rocketdyne, Inc. Rotary engine with distributed fuel injection
WO2010047961A2 (en) * 2008-10-21 2010-04-29 Pratt & Whitney Rocketdyne, Inc. Rotary engine with distributed fuel injection
JP2010156288A (ja) * 2008-12-27 2010-07-15 Mazda Motor Corp 直噴エンジンの燃料噴射装置
JP2010156289A (ja) * 2008-12-27 2010-07-15 Mazda Motor Corp ロータリーピストンエンジンの燃料噴射制御装置
JP2010229983A (ja) * 2009-03-30 2010-10-14 Mazda Motor Corp ロータリーピストンエンジンの燃料噴射制御方法及び燃料噴射制御装置
JP2017053332A (ja) * 2015-09-11 2017-03-16 マツダ株式会社 ロータリーピストンエンジン
US10978728B2 (en) 2019-04-12 2021-04-13 Korea Institute Of Energy Research Method for producing high-purity electrolyte for vanadium redox flow battery using catalytic reactor

Also Published As

Publication number Publication date
JP4811256B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4811256B2 (ja) ロータリピストンエンジンの燃料噴射装置
EP0532020B1 (en) An internal combustion engine
US7219650B2 (en) Control apparatus of fuel injection type internal combustion engine
EP1243777A2 (en) Control system for in-cylinder direct injection engine
JP4161974B2 (ja) ディーゼル式内燃機関の制御装置
KR20020022059A (ko) 직접 분사식 불꽃 점화 엔진
KR19980064111A (ko) 기통내분사형 내연기관의 제어장치
EP1243770B1 (en) Control system for in-cylinder direct injection engine
KR100237531B1 (ko) 기통내분사형 내연기관의 제어장치
JP4888092B2 (ja) ロータリピストンエンジンの燃料噴射装置
JP2003027978A (ja) 過給機付火花点火式直噴エンジン
JP2019120131A (ja) 内燃機関の制御装置
JP4186344B2 (ja) 火花点火式直噴エンジンの制御装置
JP2003262132A (ja) 火花点火式直噴エンジンの吸気装置
EP1705351B1 (en) Control apparatus of multi-cylinder engine
JP2007051549A (ja) 燃料噴射弁及びそれを備えた筒内噴射式エンジン
JP4161796B2 (ja) 筒内噴射式火花点火機関の暖機制御方法
JPH02125911A (ja) 筒内直接噴射内燃機関
JP5359268B2 (ja) ロータリーピストンエンジン
JP2003027977A (ja) 過給機付火花点火式直噴エンジン
JP2002357129A (ja) 内燃機関の燃料噴射装置
JP2004116493A (ja) ロータリーエンジンの燃料噴射装置
EP1705349B1 (en) Control apparatus of multi-cylinder engine
JP7405006B2 (ja) ロータリエンジン
JP2003262146A (ja) 火花点火式直噴エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4811256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees