JP2008125162A - 電動車両 - Google Patents
電動車両 Download PDFInfo
- Publication number
- JP2008125162A JP2008125162A JP2006303076A JP2006303076A JP2008125162A JP 2008125162 A JP2008125162 A JP 2008125162A JP 2006303076 A JP2006303076 A JP 2006303076A JP 2006303076 A JP2006303076 A JP 2006303076A JP 2008125162 A JP2008125162 A JP 2008125162A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- electric vehicle
- ecu
- power supply
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】スイッチング素子の短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な電動車両を提供する。
【解決手段】電源ECU20は、車輪速度センサ11によって検出される駆動輪4の回転数WRNに基づいて、他車による牽引などの車両外部からの作用力による車両100の移動を検知する。そして、電源ECU20は、車両100の移動を検知すると、起動指令IGONとともに、移動検知信号OPCを出力する。すると、HV_ECU10は、短絡故障したトランジスタが検知されているか否かを判断し、短絡故障したトランジスタが検知されていれば、制御指令ME1およびME2の少なくとも一方を発し、モータジェネレータMGと検知されたトランジスタとを含む電流経路の形成を阻止する。
【選択図】図1
【解決手段】電源ECU20は、車輪速度センサ11によって検出される駆動輪4の回転数WRNに基づいて、他車による牽引などの車両外部からの作用力による車両100の移動を検知する。そして、電源ECU20は、車両100の移動を検知すると、起動指令IGONとともに、移動検知信号OPCを出力する。すると、HV_ECU10は、短絡故障したトランジスタが検知されているか否かを判断し、短絡故障したトランジスタが検知されていれば、制御指令ME1およびME2の少なくとも一方を発し、モータジェネレータMGと検知されたトランジスタとを含む電流経路の形成を阻止する。
【選択図】図1
Description
この発明は、交流回転電機が発生する駆動力により走行可能な電動車両に関し、特に交流回転電機の逆起電力に起因する損傷を防止する技術に関する。
近年、環境に配慮した自動車として、ハイブリッド自動車(Hybrid Vehicle)や電気自動車(Electric Vehicle)などの電動車両が大きく注目されている。このような電動車両は、二次電池などからなる電源装置と、当該電源装置からの電力を受けて駆動力を発生可能なモータジェネレータとを備えている。モータジェネレータは、発進時や加速時などにおいて駆動力を発生するとともに、制動時などにおいて車両の運動エネルギーを電気エネルギーに変換して電源装置に回収する。このように、モータジェネレータを車両の走行状況に応じて制御するために、一般的な電動車両には、インバータ装置などの、直流電力と交流電力との間で電力変換が可能な電力変換装置が搭載される。
上述のような電気エネルギーの回収動作は、モータジェネレータが発生する逆起電力を利用して実現される。すなわち、電力変換装置が適切に制御されることで、モータジェネレータから電源装置側へ電流が流れ、電力エネルギーとして回収される。
一方で、電力変換装置が制御可能な状態となる前に、何らかの要因によりモータジェネレータが回転するような状況が生じると、当該モータジェネレータの逆起電力により、電力変換装置や電源装置、ならびにそれらの周辺部位が損傷し得る。そこで、従来から、逆起電力による損傷を防止するための技術が提案されている。
たとえば、特開平10−257604号公報(特許文献1)には、メインバッテリとインバータとの間に設けられるコンタクタに対して、メインスイッチがOFF状態での牽引中や降坂中にメインスイッチをONした場合に、走行モータの逆起電力によるコンタクタの損傷を防止するための電気自動車の制御装置が開示されている。
また、特開2006−87175号公報(特許文献2)には、モータ駆動回路や走行モータなどにおける故障発生時に、車両を牽引したり重力によって降坂したりする行為に起因した損傷の発生を防止するための車両制御装置が開示されている。この車両制御装置は、電動機の短絡故障を検出する故障検出手段と、故障検出手段が短絡故障を検出した際に警告を行なう警告手段とを備える。
特開平10−257604号公報
特開2006−87175号公報
電力変換装置を構成するスイッチング素子が短絡故障した場合などには、電力変換装置による電力変換が行なえなくなるので、モータジェネレータによる走行は不能となる。このような場合には、他車に牽引されて修理工場などへ運ばれることになるが、そのような牽引中に必ずしも運転者が搭乗しているとは限らない。
そのため、上述の特開2006−87175号公報(特許文献2)に開示される車両制御装置のように、運転者に警告を発するだけでは保護機能として必ずしも十分とはいえない可能性があった。すなわち、より安全性を高めるためには、運転者が搭乗していない状態で牽引されたとしても、短絡故障したスイッチング素子の周辺部位に逆起電力に起因する損傷が及ばないようにすることが必要であった。
この発明は、このような問題点を解決するためになされたものであって、その目的は、スイッチング素子の短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な電動車両を提供することである。
この発明のある局面に従えば、交流回転電機が発生する駆動力により走行可能な電動車両である。そして、この局面に従う電動車両は、第1および第2の電源線を介して直流電力を供給可能に構成された電源装置と、電源装置と交流回転電機との間で電力変換を行なう電力変換装置とを備える。電力変換装置は、各々が、対応の供給線を介して、交流回転電機に対応の相電圧を供給するための複数のアーム回路を含む。複数のアーム回路の各々は、第1の電源線と第2の電源線との間に直列接続された複数のスイッチング素子と、複数のスイッチング素子の各々に逆並列接続された整流素子とを含む。さらに、この局面に従う電動車両は、供給線に介挿され、制御指令に応答して、少なくとも1つのアーム回路と交流回転電機とを電気的に遮断するための回路開閉部と、複数のスイッチング素子から短絡故障したスイッチング素子を検知する第1の検知手段と、車両外部からの作用力による電動車両の移動を検知する第2の検知手段と、第2の検知手段による移動検知に応答して、第1の検知手段により短絡故障したスイッチング素子が検知されているときに、交流回転電機と当該スイッチング素子とを含む電流経路の形成を阻止するように、回路開閉部への制御指令を発する制御手段とを備える。
この局面に従う発明によれば、他の車両による牽引時などのように、車両外部からの作用力による電動車両の移動が検知され、かつ電力変換装置を構成するスイッチング素子が短絡故障している場合には、回路開閉部が交流回転電機と当該短絡故障したスイッチング素子とを含む電流経路の形成を阻止する。これにより、車両外部からの作用力により交流回転電機に回転力が与えられて生じる起電力に起因する短絡電流を遮断することができる。
そのため、継続的に電動車両が牽引などされても、交流回転電機の起電力に起因する短絡電流が流れ続けることを回避でき、当該短絡電流による加熱などの損傷を防止できる。したがって、スイッチング素子の短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止できる。
好ましくは、この局面に従う電動車両は、運転者による始動操作に応じて起動指令を発する第1の制御装置と、起動指令に応答して作動を開始する第2の制御装置とをさらに備える。そして、第1の制御装置は、第2の検知手段を実現し、第2の制御装置は、第1の検知手段および制御手段を実現する。第1の制御装置は、第2の検知手段によって電動車両の移動が検知されると、運転者による始動操作にかかわらず起動指令を発する。
好ましくは、この局面に従う電動車両は、運転者による始動操作に応じて起動指令を発する第1の制御装置と、起動指令に応答して作動を開始する第2の制御装置とをさらに備える。そして、第1の制御装置は、第2の検知手段および制御手段を実現し、第2の制御装置は、第1の検知手段を実現する。
好ましくは、この局面に従う電動車両は、運転者による始動操作に応じて起動指令を発する第1の制御装置と、起動指令に応答して処理を開始する第1の処理部と、第1の処理部の処理停止期間において処理を実行する第2の処理部とを含む第2の制御装置とをさらに備える。そして、第1の処理部は、第1の検知手段を実現し、第2の処理部は、第2の検知手段および制御手段を実現する。
好ましくは、交流回転電機は、三相交流回転電機である。電力変換装置は、3個のアーム回路を含む。回路開閉部は、3個のアーム回路のうち、2個のアーム回路の各々と交流回転電機とを電気的に断続可能に構成される。
好ましくは、第2の検知手段は、駆動輪の回転数に基づいて、電動車両の移動を検知するように構成される。
好ましくは、第2の検知手段は、交流回転電機の回転数に基づいて、電動車両の移動を検知するように構成される。
好ましくは、第2の検知手段は、供給線に流れる電流値に基づいて、電動車両の移動を検知するように構成される。
好ましくは、第2の検知手段は、供給線の間に生じる電圧値に基づいて、電動車両の移動を検知するように構成される。
さらに好ましくは、第2の検知手段は、取得される値が所定のしきい値を超過する状態が所定のしきい時間より長く継続すると、電動車両の移動と判断する。
この発明によれば、スイッチング素子の短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な電動車両を実現できる。
この発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1に従う車両100の概略構成図である。
図1は、この発明の実施の形態1に従う車両100の概略構成図である。
図1を参照して、この発明の実施の形態1に従う車両100は、一例として、モータジェネレータが発生する駆動力により走行可能に構成された電動車両である。なお、「電動車両」とは、電源装置から供給される電力により、電動機(モータ)から駆動力を発生させ、駆動輪を回転させることが可能に構成された車両を含む概念であり、一例として、ハイブリッド自動車、電気自動車および燃料電池自動車などを含む。以下の説明では、車両100がハイブリッド自動車であるとして説明を行なう。すなわち、車両100は、図示しないエンジンにより発生される駆動力による走行も可能であるとともに、当該エンジンからの駆動力により発電可能にも構成される。
車両100は、電源装置PSと、コンデンサC2と、インバータ装置INVと、モータジェネレータMGと、駆動軸8と、ディファレンシャルギア6と、駆動輪4と、コンタクタMC1,MC2とを含む。
電源装置PSは、主正線PLおよび主負線NLを介して、直流電力をインバータ装置INVへ供給可能に構成される。より詳細には、電源装置PSは、蓄電装置BATと、システムリレーSR1,SR2と、コンデンサC1と、コンバータ部CONVとを含む。
蓄電装置BATは、直流電力による充放電が可能に構成される。一例として、蓄電装置BATは、リチウムイオン電池やニッケル水素電池などの二次電池、もしくは電気二重層キャパシタなどの蓄電素子からなる。
システムリレーSR1は、蓄電装置BATの正極と正線MLとの間に介装され、システム指令SEに応じて、蓄電装置BATの正極と正線MLとを電気的に接続または遮断する。同様に、システムリレーSR2は、蓄電装置BATの負極と主負線NLとの間に介装され、システム指令SEに応じて、蓄電装置BATの負極と主負線NLとを電気的に接続または遮断する。
コンデンサC1は、正線MLと主負線NLとの間に接続され、蓄電装置BATの充放電電圧を平滑化する。
コンバータ部CONVは、蓄電装置BATから放電された直流電力を昇圧してインバータ装置INVへ供給可能に構成されるとともに、インバータ装置INVから回生される直流電力を降圧して蓄電装置BATへ供給可能にも構成される。具体的には、コンバータ部CONVは、トランジスタQ1,Q2と、ダイオードD1,D2と、インダクタL1とからなるチョッパ回路で構成される。そして、コンバータ部CONVでは、スイッチング指令PWCに従って、トランジスタQ1およびQ2のスイッチング動作が行なわれる。
トランジスタQ1およびQ2は、主正線PLと主負線NLとの間に直列に接続される。また、トランジスタQ1とトランジスタQ2との接続点には、インダクタL1の一端が接続される。トランジスタQ1,Q2は、パワー半導体デバイスで構成され、一例として、IGBT(Insulated Gate Bipolar Transistor)からなる。代替的に、バイポーラトランジスタ、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、もしくはGTO(Gate Turn Off thyristor)を用いてもよい。
ダイオードD1は、トランジスタQ1のエミッタ側からコレクタ側に帰還電流を流すことができるように、トランジスタQ1のエミッタとコレクタとの間に接続される。同様に、ダイオードD2は、トランジスタQ2のエミッタ側からコレクタ側に帰還電流を流すことができるように、トランジスタQ2のエミッタとコレクタとの間に接続される。
インダクタL1は、トランジスタQ1とトランジスタQ2との接続点と、正線MLとの間に介装され、トランジスタQ1およびQ2のスイッチング動作に応じて生じる電流によって、電磁エネルギーの蓄積および放出を繰返す。すなわち、このようなインダクタL1における電磁エネルギーの蓄積および放出の繰返しによって、コンバータ部CONVは、昇圧動作または降圧動作を実現する。
コンデンサC2は、主正線PLと主負線NLとの間に接続され、電源装置PSとインバータ装置INVとの間で授受される直流電力を平滑化する。すなわち、コンデンサC2は、電力バッファとして機能する。
インバータ装置INVは、電源装置PSとモータジェネレータMGとの間で電力変換を行なう。すなわち、インバータ装置INVは、電源装置PSから主正線PLおよび主負線NLを介して供給される直流電力を3個の相電圧(U相電圧、V相電圧、W相電圧)を有する三相交流電力に変換可能であるとともに、モータジェネレータMGから供給される三相交流電力を直流電力にも変換可能である。具体的には、インバータ装置INVは、U相アーム回路1と、V相アーム回路2と、W相アーム回路3とを含む。
U相アーム回路1は、主正線PLと主負線NLとの間に直列接続されたトランジスタQ11およびQ12と、トランジスタQ11およびQ12にそれぞれ逆並列接続されたダイオードD11およびD12とを含む。そして、U相アーム回路1では、スイッチング指令PWMに従って、トランジスタQ11およびQ12のスイッチング動作が行なわれることにより、接続点N1にU相電圧が生じる。そして、このU相電圧は、U相供給線LN1を介して、モータジェネレータMGへ供給される。
ダイオードD11は、トランジスタQ11のエミッタ側からコレクタ側に帰還電流を流すことができるように、トランジスタQ11のエミッタとコレクタとの間に接続される。同様に、ダイオードD12は、トランジスタQ12のエミッタ側からコレクタ側に帰還電流を流すことができるように、トランジスタQ12のエミッタとコレクタとの間に接続される。すなわち、ダイオードD11およびD12は、主負線NLから主正線PLへの電流の流れを許容し、主正線PLから主負線NLへの電流の流れを遮断するような、逆並列接続される。
このようなダイオードD11およびD12は、それぞれトランジスタQ11およびQ12がオン状態からオフ状態に遷移した直後に生じるサージを抑制する機能を果たすものである。そのため、通常のスイッチング動作中には、ダイオードD11およびD12に主正線PLもしくは主負線NLから電流が流れ込むことはない。
同様に、V相アーム回路2は、主正線PLと主負線NLとの間に直列接続されたトランジスタQ21およびQ22と、トランジスタQ21およびQ22にそれぞれ逆並列接続されたダイオードD21およびD22とを含む。そして、V相アーム回路2は、接続点N2にV相電圧を発生し、V相供給線LN2を介して、モータジェネレータMGへ供給する。
また同様に、W相アーム回路3は、主正線PLと主負線NLとの間に直列接続されたトランジスタQ31およびQ32と、トランジスタQ31およびQ32にそれぞれ逆並列接続されたダイオードD31およびD32とを含む。そして、W相アーム回路3は、接続点N3にW相電圧を発生し、W相供給線LN3を介して、モータジェネレータMGへ供給する。
なお、上述したトランジスタQ1およびQ2と同様に、トランジスタQ11,Q12,Q21,Q22,Q31,Q32は、IGBT、バイポーラトランジスタ、MOSFETおよびGTOのいずれを用いてもよいが、本実施例では、一例として、IGBTで構成される。
モータジェネレータMGは、インバータ装置INVから供給される三相交流電力に応じて駆動力を発生し、機械的に連結された駆動軸8およびディファレンシャルギア6を介して、駆動輪4を回転駆動する。モータジェネレータMGは、一例として、永久磁石が埋設されたロータを備える三相交流回転電機からなる。モータジェネレータMGの内部では、この永久磁石が埋設されたロータが回転することにより、時間的および位置的な磁束変化が生じ、この結果、ロータの回転数に比例した逆起電力が生じる。
なお、図示しないエンジンによる駆動輪4の回転駆動を可能にする場合には、モータジェネレータMGからの駆動力伝達経路上に、遊星歯車機構などを用いた動力分割機構などを介挿し、モータジェネレータMGおよびエンジンが発生する駆動力を適切に分配するように構成してもよい。
コンタクタMC1は、U相供給線LN1に介挿され、制御指令ME1に応答して、U相アーム回路1とモータジェネレータMGとを電気的に遮断する。同様に、コンタクタMC2は、W相供給線LN3に介挿され、制御指令ME2に応答して、W相アーム回路3とモータジェネレータMGとを電気的に遮断する。後述するように、コンタクタMC1およびMC2は、インバータ装置INVを構成するいずれかのトランジスタの短絡故障時に、モータジェネレータMGの逆起電圧により生じる短絡電流を遮断する。すなわち、制御指令ME1およびME2は、短絡電流の遮断指令に相当する。
車両100は、電流センサ7と、HV_ECU(Hybrid Electrical Control Unit)10と、パワースイッチ18と、電源ECU20と、スマートECU12と、イモビライザーECU14と、送受信アンテナ13,15と、車輪速度センサ11とをさらに含む。
電流センサ7は、それぞれU相供給線LN1、V相供給線LN2およびW相供給線LN3に対応付けられて配置される。そして、3個の電流センサ7は、それぞれU相供給線LN1、V相供給線LN2およびW相供給線LN3に流れる相電流の電流値(Iu,Iv,Iw)を検出し、その検出結果をHV_ECU10へ出力する。
HV_ECU10は、電源ECU20からの起動指令IGONに応答して作動を開始するように構成される。すなわち、HV_ECU10は、電源ECU20からの起動指令IGONが与えられない限り、作動停止状態に維持される。
そして、起動指令IGONが与えられると、HV_ECU10は、予め格納されたプログラムを実行することで、図示しない各センサから送信された信号、走行状況、アクセル開度の変化率、蓄電装置の充電状態、格納しているマップなどに基づいて演算処理を実行する。これにより、HV_ECU10は、運転者の操作に応じて、車両100が所望の運転状態となるように、システム指令SEおよびスイッチング指令PWC,PWMなどを生成する。
特に、この発明の実施の形態1に従うHV_ECU10は、後述するように、電流センサ7によって検出される相電流値Iu,Iv,Iwの大きさと、スイッチング指令PWMの各モードにおいて流れるべき相電流とに基づいて、インバータ装置INVを構成するトランジスタのうち、短絡故障が発生しているものを検知する。そして、HV_ECU10は、起動指令IGONとともに、移動検知信号OPCを電源ECU20から与えられると、短絡故障したトランジスタが検知されているか否かを判断する。さらに、HV_ECU10は、短絡故障したトランジスタが検知されていれば、制御指令ME1およびME2の少なくとも一方を発し、モータジェネレータMGと検知されたトランジスタとを含む電流経路の形成を阻止する。
車輪速度センサ11は、駆動輪4の車輪速度を検出し、その検出結果を回転数WRNとして電源ECU20へ出力する。なお、一例として、車輪速度センサ11は、駆動輪4の回転軸に取り付けられた歯車状のロータ部材によって生じる磁束変化に基づいて、車輪速度を検出する。
パワースイッチ18は、運転者用シート前方のインストルメントパネルなどに配置され、車両100の始動操作に用いられる。すなわち、パワースイッチ18は、運転者によって押圧されると、パワーオン信号POWONを電源ECU20へ出力する。
なお、運転者は、キー16を所定のスロットに差込んだ後に、パワースイッチ18を押圧することで、車両100を作動状態に活性化する。また、キー16には、ロックボタンおよびアンロックボタンが設けられており、運転者の操作に応じて、それぞれ車両100のドア(図示しない)がロック状態にされ、もしくはドアロックが解除される。
電源ECU20は、車両100の動作状態(停止状態および作動状態)にかかわらず、常に車両100の状態を監視するように構成される。なお、車両100の「停止状態」とは、運転者が停止操作を行なって、走行可能の状態を解除されたことを意味し、車両100の「作動状態」とは、運転者が停止操作を行なって、走行可能な状態に設定されたことを意味する。
そして、電源ECU20は、パワーオン信号POWONが入力されると、後述する認証処理を実行した後、起動指令IGONをHV_ECU10へ出力し、モータジェネレータMGによる駆動力の発生を可能な状態にする。
特に、この発明の実施の形態1に従う電源ECU20は、車輪速度センサ11によって検出される駆動輪4の回転数WRNに基づいて、車両外部からの作用力による車両100の移動を検知する。すなわち、電源ECU20は、駆動輪4の回転数WRNに基づいて、代表的には、他車によって牽引されている状態などを検知する。より詳細には、電源ECU20は、車両100が停止状態、すなわち起動指令IGONが与えられていないときに、駆動輪4の回転数WRNが所定のしきい値以上となる状態が所定のしきい時間より長く継続すると、車両100の移動と判断する。
そして、車両100の移動を検知すると、電源ECU20は、パワーオン信号POWONが入力されていなくても、起動指令IGONとともに、移動検知信号OPCを出力する。すると、上述したように、HV_ECU10が所定の処理を実行し、いずれかのトランジスタに短絡故障が生じていても、モータジェネレータMGの逆起電圧による短絡電流が遮断される。
スマートECU12は、送受信アンテナ13を介して、運転者が保有するキー16と無線通信を可能に構成され、運転者によるキー16の操作に応答して、車両100のドアをロック状態にし、もしくはドアロックを解除する。
イモビライザーECU14は、送受信アンテナ15を介して、運転者が保有するキー16と無線通信を可能に構成され、キー16が格納するIDコードと自身の格納するIDコードとを照合し、両者が一致した場合にのみ、電源ECU20による起動指令IGONの出力を許可する。
図2は、トランジスタの短絡故障時にモータジェネレータMGの逆起電圧により生じる短絡電流の一例を示す図である。
図2(a)は、W相アーム回路3のトランジスタQ32に短絡故障が発生した場合に生じる短絡電流を示す。
図2(b)は、コンタクタMC2の開放により短絡電流が遮断された状態を示す。
図2(a)を参照して、牽引などにより車両100が移動すると、駆動輪4と機械的に連結されたモータジェネレータMGのロータが回転運動する。このロータの回転運度により、ステータ側の各相コイルと鎖交する磁束に時間的な変化が生じる。この磁束の時間的な変化により、モータジェネレータMGには逆起電力が発生する。
図2(a)を参照して、牽引などにより車両100が移動すると、駆動輪4と機械的に連結されたモータジェネレータMGのロータが回転運動する。このロータの回転運度により、ステータ側の各相コイルと鎖交する磁束に時間的な変化が生じる。この磁束の時間的な変化により、モータジェネレータMGには逆起電力が発生する。
ここで、W相アーム回路3のトランジスタQ32に短絡故障が発生していると、この逆起電力により、U相アーム回路1と、モータジェネレータMGと、W相アーム回路3とを含む電流経路に短絡電流Is1が流れる。すなわち、U相アーム回路1のトランジスタQ12に逆並列接続されたダイオードD12は、主負線NL側から主正線PL側に向けた電流の流れを許容するので、接続点N1を介して、主負線NLからU相供給線LN1へ電流が流れ得る。また、トランジスタQ32は短絡状態にあるので、接続点N3を介して、W相供給線LN3から主負線NLへ短絡電流が流れ得る。その結果、短絡電流Is1は、主負線NL、ダイオードD12、接続点N1、U相供給線LN1、モータジェネレータMGのU相コイル、モータジェネレータMGのW相コイル、W相供給線LN3、接続点N3、トランジスタQ32、および主負線NLの順に流れることになる。
同様に、V相アーム回路2と、モータジェネレータMGと、W相アーム回路3とを含む電流経路に短絡電流Is2が流れる。すなわち、短絡電流Is2は、主負線NL、ダイオードD22、接続点N2、V相供給線LN2、モータジェネレータMGのV相コイル、モータジェネレータMGのW相コイル、W相供給線LN3、接続点N3、トランジスタQ32、および主負線NLの順に流れることになる。
したがって、トランジスタQ32には、短絡電流Is1と短絡電流Is2との合計電流が流れることになる。
車両100が比較的長時間にわたり牽引されると、このような短絡電流が継続的に流れることになる。そのため、モータジェネレータMGの各相コイルや、短絡経路に存在するダイオード、インバータ装置INVとモータジェネレータMGとを接続する供給線(たとえば、ワイヤーハーネス)などが損傷を受け得る。したがって、このような短絡電流を遮断する必要がある。
ここで、各供給線に流れる短絡電流の方向に着目すると、U相供給線LN1およびV相供給線LN2を流れる短絡電流は、インバータ装置INVからモータジェネレータMGの向きであるのに対して、W相供給線LN3を流れる短絡電流は、モータジェネレータMGからインバータ装置INVの向きである。
図2(b)を参照して、トランジスタQ32が短絡故障している場合には、少なくともW相供給線LN3に介挿されたコンタクタMC2を開放することで、短絡電流を遮断できる。
なお、W相アーム回路3のトランジスタQ31に短絡故障が発生した場合にも同様の動作により、短絡電流が遮断される。
図3は、トランジスタの短絡故障時にモータジェネレータMGの逆起電圧により生じる短絡電流の別の一例を示す図である。
図3(a)は、V相アーム回路2のトランジスタQ22に短絡故障が発生した場合に生じる短絡電流を示す。
図3(b)は、コンタクタMC1およびMC2の開放により短絡電流が遮断された状態を示す。
図3(a)を参照して、U相アーム回路3のトランジスタQ22に短絡故障が発生していると、この逆起電力により、U相アーム回路1と、モータジェネレータMGと、V相アーム回路2とを含む電流経路に短絡電流Is3が流れる。同時に、W相アーム回路3と、モータジェネレータMGと、V相アーム回路2とを含む電流経路に短絡電流Is4が流れる。
ここで、各供給線に流れる短絡電流の方向に着目すると、U相供給線LN1およびW相供給線LN3を流れる短絡電流は、インバータ装置INVからモータジェネレータMGの向きであるのに対して、V相供給線LN2を流れる短絡電流は、モータジェネレータMGからインバータ装置INVの向きである。そこで、図3(b)に示すように、コンタクタMC1およびMC2を開放することで、インバータ装置INVからモータジェネレータMGの向きに流れるいずれの短絡電流も遮断される。
なお、V相アーム回路2のトランジスタQ21に短絡故障が発生した場合にも同様の動作により、短絡電流が遮断される。
さらに、U相アーム回路1のトランジスタQ11またはQ12に短絡故障が発生した場合には、コンタクタMC1を開放することにより、短絡電流が遮断される。
再度、図1を参照して、この発明の実施の形態1に従うHV_ECU10は、電源ECUからの起動指令IGONに応答して作動を開始するように構成される。そのため、HV_ECU10は、車両100が停止状態にあれば、作動停止状態に維持される。一方、コンタクタMC1およびMC2は、HV_ECU10からの制御指令ME1およびME2により作動するように構成される。したがって、車両100が停止状態にあるときに、車両外部からの作用力を受けて移動を生じると、トランジスタの短絡故障による短絡電流を遮断することができない。
そこで、この発明の実施の形態1に従う車両100では、車両100の動作状態にかかわらず常に作動する電源ECU20が、車両外部からの作用力による車両100の移動を検知するとともに、HV_ECU10にIGON信号を与え、コンタクタMC1およびMC2を開放できるようにする。
図4は、この発明の実施の形態1に従う電源ECU20の制御構造を示す機能ブロック図である。
図4を参照して、電源ECU20は、システム始動条件判断部30と、車両移動検知部32とを含む。
システム始動条件判断部30は、運転者による始動操作、すなわちキー16の差込およびパワースイッチ18の押圧に応じて、起動指令IGONを発する。具体的には、システム始動条件判断部30は、パワーオン信号POWONが与えられると、キー16に対する認証要求をイモビライザーECU14(図1)へ与えるとともに、イモビライザーECU14から認証結果を受信する。そして、システム始動条件判断部30は、認証結果が正常であれば、起動指令IGONをHV_ECU10へ出力する。
車両移動検知部32は、車両外部からの作用力による車両100の移動を判断する。そして、車両100の移動が検知されると、車両移動検知部32は、移動検知信号OPCを発するとともに、運転者による始動操作にかかわらず起動指令IGONを発する。
具体的には、車両移動検知部32は、比較部34と、遅延タイマ部36とを含む。比較部34は、車輪速度センサ11から与えられる駆動輪4の回転数WRNと、予め定められたしきい回転数αとを比較し、回転数WRNがしきい値を超過したときに、有効出力を遅延タイマ部36へ出力する。遅延タイマ部36は、有効出力が予め定められたしきい時間βより長く継続したときに、出力を有効にする。すると、当該出力信号は、移動検知信号OPCとして出力されるととともに、起動指令IGONとしても出力される。ここで、遅延タイマ部36から出力される起動指令IGONは、システム始動条件判断部30から出力される起動指令IGONに加算されるので、運転者による始動操作にかかわらず起動指令IGONが発せられる。
図5は、この発明の実施の形態1に従うHV_ECU10の制御構造を示す機能ブロック図である。
図5を参照して、HV_ECU10は、電源ECU20からの起動指令IGONに応答して、各部が活性化され、作動を開始する。具体的には、HV_ECU10は、指令生成部40と、故障素子検知部42と、故障素子記憶部44と、MG接続切離部46とを含む。
指令生成部40は、各種センサ(図示しない)などから得られる走行状況の情報に基づいて、コンバータ部CONVを含む電源装置PS、およびインバータ装置INVの作動を指示する制御指令(システム指令SE、スイッチング指令PWC,PWM)を生成する。さらに、指令生成部40は、後述する故障検知信号FALを受けると、少なくともインバータ装置INVでのスイッチング動作を停止させる。
故障素子検知部42は、電流センサ7によって検出される相電流値Iu,Iv,Iwの大きさと、指令生成部40から出力されるスイッチング指令PWMとに基づいて、インバータ装置INVを構成するトランジスタのうち、短絡故障が発生しているものを特定する。そして、短絡故障したトランジスタを特定するための情報を含む故障検知信号FALを故障素子記憶部44および指令生成部40へ出力する。
図6は、故障素子検知部42における短絡故障したトランジスタの検知方法の一態様を説明するための図である。
図6を参照して、インバータ装置INVが三相交流電力を発生する場合には、主正線PLに接続されるいずれか1つのトランジスタと、主負線NLに接続されるいずれか1つのトランジスタとが、それぞれの属するアーム回路が互いに異なるように順次活性化される。このようなトランジスタのスイッチングモードは、6つ存在する。すなわち、スイッチング指令PWMは、6つのスイッチングモードを逐次的に選択することになる。ここで、各スイッチングモードにおいて活性化されるトランジスタと、当該トランジスタの活性化により生じる相電流とは、対応関係を有する。
そこで、故障素子検知部42は、図6に示すような対応関係を示すテーブルを格納するとともに、各スイッチングモードにおいて、流れるはずのない相電流が流れているか否かに基づいて、トランジスタの短絡故障を検知する。
一例として、W相アーム回路3のトランジスタQ32に短絡故障が発生すると、本来は、W相の相電流が流れるはずのないスイッチングモード3または6においても、W相の相電流が流れることになる。そのため、スイッチングモード3または6のタイミングにおいて、所定のW相電流値Iwが検出される。このように、故障素子検知部42は、相電流値Iu,Iv,Iwの大きさと、スイッチング指令PWMとに基づいて、短絡故障が発生しているトランジスタを特定する。
なお、主正線PLまたは主負線NLに流れる電流値を検出し、その電流値の大きさに基づいて、インバータ装置INVでのトランジスタの短絡故障を検知した後に、上述の特定処理を行なうようにしてもよい。
再度、図5を参照して、故障素子記憶部44は、故障素子検知部42によって特定される短絡故障したトランジスタの特定情報を格納する。一例として、故障素子記憶部44は、フラッシュメモリなどの不揮発性メモリで構成される。
MG接続切離部46は、電源ECU20から移動検知信号OPCを与えられると、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されているか否かを判断する。そして、MG接続切離部46は、短絡故障したトランジスタの特定情報が格納されていると、当該トランジスタとモータジェネレータMGとを含む短絡電流の電流経路の形成を阻止するように、制御指令ME1およびME2の少なくとも一方を発する。
図7は、この発明の実施の形態1に従う電源ECU20における短絡電流の遮断に係る処理手順を示すフローチャートである。
図7を参照して、電源ECU20は、車両100が停止状態であるか否かを判断する(ステップS100)。車両100が停止状態である場合(ステップS100においてYESの場合)には、電源ECU20は、車輪速度センサ11によって検出される回転数WRNが所定のしきい値を超過しているか否かを判断する(ステップS102)。
回転数WRNが所定のしきい値を超過している場合(ステップS102においてYESの場合)には、電源ECU20は、当該超過状態が所定のしきい時間より長く継続するか否かを判断する(ステップS104)。
当該超過状態が所定のしきい時間より長く継続した場合(ステップS104においてYESの場合)には、電源ECU20は、HV_ECU10へ移動検知信号OPCおよび起動指令IGONを発する(ステップS106)。そして、電源ECU20は、最初の処理に戻る。
車両100が停止状態でない場合(ステップS100においてNOの場合)には、電源ECU20は、作動状態における通常処理を実行する(ステップS108)。なお、「作動状態における通常処理」とは、一例として、HV_ECU10を含む各部に対して電源供給を行なうためのリレーの活性化処理などである。
回転数WRNが所定のしきい値を超過していない場合(ステップS102においてNOの場合)、もしくは、しきい値の超過状態が所定のしきい時間より長く継続しなかった場合(ステップS104においてNOの場合)には、電源ECU20は、以後の処理を行なわず、最初の処理に戻る。
図8は、この発明の実施の形態1に従うHV_ECU10における短絡電流の遮断に係る処理手順を示すフローチャートである。
図8を参照して、HV_ECU10は、移動検知信号OPCが与えられているか否かを判断する(ステップS200)。移動検知信号OPCが与えられている場合(ステップS200においてYESの場合)には、HV_ECU10は、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されているか否かを判断する(ステップS202)。
故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されている場合(ステップS202においてYESの場合)には、HV_ECU10は、短絡故障したトランジスタとモータジェネレータMGとを含む短絡電流の電流経路の形成を阻止するために、制御指令ME1およびME2の少なくとも一方を発する(ステップS204)。そして、HV_ECU10は、処理を終了する。
故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されていない場合(ステップS202においてNOの場合)には、HV_ECU10は、処理を終了する。
移動検知信号OPCが与えられていない場合(ステップS200においてNOの場合)には、HV_ECU10は、通常の処理モードに移行する(ステップS206)。なお、「通常の処理モード」における処理には、故障素子検知部42における短絡故障が発生しているトランジスタの特定処理なども含まれる。
この発明の実施の形態1では、モータジェネレータMGが「交流回転電動機」に相当し、電源装置PSが「電源装置」に相当し、主正線PLおよび主負線NLが「第1および第2の電源線」に相当し、インバータ装置INVが「電力変換装置」に相当し、U相供給線LN1、V相供給線LN2およびW相供給線LN3が「供給線」に相当し、トランジスタQ11,Q12,Q21,Q22,Q31,Q32が「スイッチング素子」に相当し、ダイオードD11,D12,D21,S22,D31,D32が「整流素子」に相当し、コンタクタMC1およびMC2が「回路開閉部」に相当する。そして、故障素子検知部42が「第1の検知手段」を実現し、電源ECU20内の車両移動検知部32が「第2の検知手段」を実現し、HV_ECU10内のMG接続切離部46が「制御手段」を実現する。また、HV_ECU10が「第1の制御装置」に相当し、電源ECU20が「第2の制御装置」に相当する。
この発明の実施の形態1によれば、他の車両による牽引時などのように、車両外部からの作用力による車両の移動が検知され、かつインバータ装置を構成するトランジスタが短絡故障している場合には、コンタクタがモータジェネレータと当該短絡故障したトランジスタとを含む電流経路の形成を阻止する。これにより、車両外部からの作用力によりモータジェネレータに回転力が与えられて生じる起電力に起因する短絡電流を遮断することができる。
そのため、継続的に車両が牽引などされても、モータジェネレータの起電力に起因する短絡電流が流れ続けることを回避でき、当該短絡電流による加熱などの損傷を防止できる。したがって、トランジスタの短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止できる。
よって、トランジスタの短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な車両を実現できる。
また、この発明の実施の形態1によれば、一般的に車輪速度センサ11は、運転者に車両速度を表示するために、従来の車両にも設けられているものである。そのため、新たに車輪速度センサ11を設ける必要がなく、本発明をより安価に実現できる。
[実施の形態1の変形例1]
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの回転数を直接検出してもよい。
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの回転数を直接検出してもよい。
図9は、この発明の実施の形態1の変形例1に従う車両100Aの概略構成図である。
図9を参照して、この発明の実施の形態1の変形例1に従う車両100Aは、図1に示すこの発明の実施の形態1に従う車両100において、車輪速度センサ11に代えて、回転角センサ17を配置したものであり、その他の構成については、車両100と同様である。なお、図9では、簡略化のため、その要部構成のみを示す。
図9を参照して、この発明の実施の形態1の変形例1に従う車両100Aは、図1に示すこの発明の実施の形態1に従う車両100において、車輪速度センサ11に代えて、回転角センサ17を配置したものであり、その他の構成については、車両100と同様である。なお、図9では、簡略化のため、その要部構成のみを示す。
回転角センサ17は、モータジェネレータMGの回転軸上に配置され、ロータの回転角θを検出する。そして、検出された回転角θは、電源ECU20Aへ出力される。一例として、回転角センサ17は、レゾルバなどからなる。
電源ECU20Aは、回転角センサ17から出力される回転角θの単位時間当たりの変化に基づいて、モータジェネレータMGの回転数を算出する。そして、電源ECU20Aは、算出したモータジェネレータMGの回転数に基づいて、車両外部からの作用力による車両100Aの移動を検知する。その他の処理については、上述のこの発明の実施の形態1に従う電源ECU20と同様であるので、詳細な説明は繰返さない。
この発明の実施の形態1の変形例1によれば、上述のこの発明の実施の形態1における効果に加えて、モータジェネレータMGでの起電力発生の直接的な原因となるロータの回転を検出できるので、より正確に短絡電流を遮断できる。
[実施の形態1の変形例2]
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの起電力による短絡電流を検出した後に、当該短絡電流を遮断するようにしてもよい。
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの起電力による短絡電流を検出した後に、当該短絡電流を遮断するようにしてもよい。
図10は、この発明の実施の形態1の変形例2に従う車両100Bの概略構成図である。
図10を参照して、この発明の実施の形態1の変形例2に従う車両100Bは、図1に示すこの発明の実施の形態1に従う車両100において、車輪速度センサ11に代えて、電流センサ7により検出される相電流値Iu,Iv,Iwを電源ECU20Bへも伝達可能に構成されたものである。その他の構成については、車両100と同様である。なお、図10では、簡略化のため、その要部構成のみを示す。
電源ECU20Bは、車両100Bが停止状態において、モータジェネレータMGからインバータ装置INVへ流れる電流が検出されると、モータジェネレータMGに逆起電力が発生していると判断する。すなわち、電源ECU20Bは、車両100Bの停止状態において、相電流値Iu,Iv,Iwのいずれかが所定のしきい値を超えれば、車両外部からの作用力による車両100Bの移動と判断し、短絡電流の遮断処理を実行する。なお、モータジェネレータMGの逆起電力による短絡電流が実際に流れた後に、当該短絡電流の遮断処理が実行されることになるが、検出から遮断までに要する処理時間は極めて短いので、モータジェネレータMGや供給線が損傷することはない。その他の処理については、上述のこの発明の実施の形態1に従う電源ECU20と同様であるので、詳細な説明は繰返さない。
この発明の実施の形態1の変形例2によれば、上述のこの発明の実施の形態1における効果に加えて、駆動輪もしくはモータジェネレータの回転数を検出する必要がないので、本発明をより安価に実現できる。
[実施の形態1の変形例3]
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの起電力を直接検出するようにしてもよい。
上述のこの発明の実施の形態1では、駆動輪4の車輪速度を検出するための車輪速度センサ11を用いて、車両外部からの作用力による車両100の移動を検知する構成について例示したが、モータジェネレータMGの起電力を直接検出するようにしてもよい。
図11は、この発明の実施の形態1の変形例3に従う車両100Cの概略構成図である。
図11を参照して、この発明の実施の形態1の変形例3に従う車両100Cは、図1に示すこの発明の実施の形態1に従う車両100において、車輪速度センサ11に代えて、相電圧センサ19を配置したものであり、その他の構成については、車両100と同様である。なお、図11では、簡略化のため、その要部構成のみを示す。
相電圧センサ19は、一例として、U相供給線LN1とW相供給線LN3との間に電気的に接続され、U相−W相間の相間電圧Vuwを検出する。そして、検出された相間電圧Vuwは、電源ECU20Cへ伝達される。
電源ECU20Cは、車両100Cの停止状態において、相間電圧Vuwが検出されると、モータジェネレータMGに逆起電力が発生していると判断する。すなわち、電源ECU20Cは、車両100Cが停止状態において、相間電圧Vuwが所定のしきい値を超えれば、車両外部からの作用力による車両100Cの移動と判断し、短絡電流の遮断処理を実行する。その他の処理については、上述のこの発明の実施の形態1に従う電源ECU20と同様であるので、詳細な説明は繰返さない。
この発明の実施の形態1の変形例3によれば、上述のこの発明の実施の形態1における効果に加えて、モータジェネレータMGでの起電力を直接的に検出できるので、より正確に短絡電流を遮断できる。
[実施の形態2]
上述のこの発明の実施の形態1では、電源ECU20が車両100の移動を検知するとともに、HV_ECU10が短絡電流を遮断する構成について例示したが、電源ECUが両方の処理を実行するように構成してもよい。
上述のこの発明の実施の形態1では、電源ECU20が車両100の移動を検知するとともに、HV_ECU10が短絡電流を遮断する構成について例示したが、電源ECUが両方の処理を実行するように構成してもよい。
図12は、この発明の実施の形態2に従う車両100Dの概略構成図である。
図12を参照して、この発明の実施の形態2に従う車両100Dは、図1に示すこの発明の実施の形態1に従う車両100において、HV_ECU10および電源ECU20に代えて、それぞれHV_ECU10Dおよび電源ECU20Dを配置するとともに、コンタクタMC1およびMC2が電源ECU20Dにより発せられる制御指令ME1およびME2に応答して動作するように構成されたものである。その他の構成については、車両100と同様である。
図12を参照して、この発明の実施の形態2に従う車両100Dは、図1に示すこの発明の実施の形態1に従う車両100において、HV_ECU10および電源ECU20に代えて、それぞれHV_ECU10Dおよび電源ECU20Dを配置するとともに、コンタクタMC1およびMC2が電源ECU20Dにより発せられる制御指令ME1およびME2に応答して動作するように構成されたものである。その他の構成については、車両100と同様である。
概略すると、電源ECU20Dは、この発明の実施の形態1に従う電源ECU20において、車両の移動を検知した後に、モータジェネレータMGと短絡故障のトランジスタとを含む電流経路の形成を阻止するために、制御指令ME1およびME2の少なくとも一方を発する機能をさらに追加したものに相当する。すなわち、この発明の実施の形態2に従う車両100Dでは、電源ECU20DがコンタクタMC1およびMC2を開放可能に構成される。一方、HV_ECU10Dは、この発明の実施の形態1に従うHV_ECU10において、上述したような、制御指令ME1およびME2を発する機能を取除いたものに相当する。
上述のように、電源ECU20Dに対してコンタクタMC1およびMC2の開放を制御する機能を組込むという特徴的な構成により、HV_ECU10Dを起動させることなく、モータジェネレータMGの逆起電力に起因する損傷を防止できる。
その他の構成については、上述のこの発明の実施の形態1に従う車両100と同様であるので、詳細な説明は繰返さない。
図13は、この発明の実施の形態2に従う電源ECU20Dの制御構造を示す機能ブロック図である。
図13を参照して、電源ECU20Dは、システム始動条件判断部30Dと、車両移動検知部32Dと、故障素子記憶部44と、MG接続切離部46とを含む。
システム始動条件判断部30Dは、運転者による始動操作、すなわちキー16の差込およびパワースイッチ18の押圧に応じて、起動指令IGONを発する。また、システム始動条件判断部30Dは、運転者によるパワースイッチ18の再度の押圧に応じて、停止指令IGOFFを発する。なお、起動指令IGONの発生前の認証処理などについては、図4に示すシステム始動条件判断部30と同様であるので、詳細な説明は繰返さない。
車両移動検知部32Dは、システム始動条件判断部30Dからの停止指令IGOFFに応答して、車両外部からの作用力による車両100Dの移動についての判断処理を開始する。すなわち、車両移動検知部32Dは、車両100Dが停止状態において、他車による牽引状態などを検知する。車両移動検知部32Dにおける処理内容については、図4に示す車両移動検知部32と同様であるので、詳細な説明は繰返さない。
故障素子記憶部44およびMG接続切離部46は、図5に示すHV_ECU10に含まれるものと同一であるので、詳細な説明は繰返さない。
図14は、この発明の実施の形態2に従うHV_ECU10Dの制御構造を示す機能ブロック図である。
図14を参照して、HV_ECU10Dは、図5に示すHV_ECU10Dにおいて、故障素子記憶部44およびMG接続切離部46を取除いたものと等価である。すなわち、HV_ECU10Dは、起動指令IGONが発せられると、車両100Dの走行に係る制御指令を生成するとともに、短絡故障が発生すれば当該トランジスタを特定し、その特定情報を上述の電源ECU20Dへ出力する。なお、指令生成部40および故障素子検知部42における処理の内容については上述したので、詳細な説明は繰返さない。
図15は、この発明の実施の形態2に従う電源ECU20Dにおける短絡電流の遮断に係る処理手順を示すフローチャートである。
図15を参照して、電源ECU20Dは、車両100Dが停止状態であるか否かを判断する(ステップS300)。車両100Dが停止状態である場合(ステップS300においてYESの場合)には、電源ECU20Dは、車輪速度センサ11によって検出される回転数WRNが所定のしきい値を超過しているか否かを判断する(ステップS302)。
回転数WRNが所定のしきい値を超過している場合(ステップS302においてYESの場合)には、電源ECU20Dは、当該超過状態が所定のしきい時間より長く継続するか否かを判断する(ステップS304)。
当該超過状態が所定のしきい時間より長く継続した場合(ステップS304においてYESの場合)には、電源ECU20Dは、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されているか否かを判断する(ステップS306)。
故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されている場合(ステップS306においてYESの場合)には、電源ECU20Dは、短絡故障したトランジスタとモータジェネレータMGとを含む短絡電流の電流経路の形成を阻止するために、制御指令ME1およびME2の少なくとも一方を発する(ステップS308)。そして、電源ECU20Dは、最初の処理に戻る。
回転数WRNが所定のしきい値を超過していない場合(ステップS302においてNOの場合)、しきい値の超過状態が所定のしきい時間より長く継続しなかった場合(ステップS304においてNOの場合)、もしくは、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されていない場合(ステップS306においてNOの場合)には、電源ECU20Dは、最初の処理に戻る。
車両100Dが停止状態でない場合(ステップS300においてNOの場合)には、電源ECU20Dは、作動状態における通常処理を実行する(ステップS310)。なお、「作動状態における通常処理」とは、一例として、HV_ECU10Dを含む各部に対して電源供給を行なうためのリレーの活性化などである。
なお、この発明の実施の形態2に対して、上述のこの発明の実施の形態1の変形例1〜3のいずれかに示す構成を採用してもよい。
この発明の実施の形態2では、HV_ECU10Dが「第1の制御装置」に相当し、電源ECU20Dが「第2の制御装置」に相当する。
この発明の実施の形態2によれば、車両の動作状態にかかわらず常に作動する電源ECUが、車両外部からの作用力による車両の移動を検知するとともに、コンタクタMC1およびMC2を開放可能に構成される。この構成により、HV_ECUを起動させることなく、モータジェネレータの逆起電力に起因する短絡電流を遮断することができる。これにより、より簡素化された構成により、トランジスタの短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な車両を実現できる。
[実施の形態3]
上述のこの発明の実施の形態1では、電源ECU20が車両100の移動を検知するとともに、HV_ECU10が短絡電流を遮断する構成について例示したが、HV_ECUが両方の処理を実行するように構成してもよい。
上述のこの発明の実施の形態1では、電源ECU20が車両100の移動を検知するとともに、HV_ECU10が短絡電流を遮断する構成について例示したが、HV_ECUが両方の処理を実行するように構成してもよい。
図16は、この発明の実施の形態3に従う車両100Eの概略構成図である。
図16を参照して、この発明の実施の形態3に従う車両100Eは、図1に示すこの発明の実施の形態1に従う車両100において、HV_ECU10および電源ECU20に代えて、それぞれHV_ECU10Eおよび電源ECU20Eを配置するとともに、車輪速度センサ11で検出された回転数WRNがHV_ECU10Eへ伝達するように構成されたものである。その他の構成については、車両100と同様である。
図16を参照して、この発明の実施の形態3に従う車両100Eは、図1に示すこの発明の実施の形態1に従う車両100において、HV_ECU10および電源ECU20に代えて、それぞれHV_ECU10Eおよび電源ECU20Eを配置するとともに、車輪速度センサ11で検出された回転数WRNがHV_ECU10Eへ伝達するように構成されたものである。その他の構成については、車両100と同様である。
概略すると、電源ECU20Eは、この発明の実施の形態1に従う電源ECU20において、車両の移動を検知する機能を取除いたものに相当する。一方、HV_ECU10Eは、この発明の実施の形態1に従う電源ECU20において、車両の移動を検知する機能をさらに追加したものに相当する。すなわち、この発明の実施の形態3に従う車両100Eでは、HV_ECU10Eが車両100Eの移動を検知するとともに、短絡故障が生じたトランジスタとモータジェネレータMGとを含む電流経路の形成を阻止する。
上述のように、HV_ECU10Eに対して車両100Eの移動を検知する機能を組込むという特徴的な構成により、従来構成の電源ECU20Eを用いたまま、モータジェネレータMGの逆起電力に起因する損傷を防止できる。
特に、HV_ECU10Eは、起動指令IGONに応答して処理を開始する主処理部10aと、主処理部10aの処理停止期間において処理を実行する副処理部10bと、故障素子記憶部44とを含む。
主処理部10aは、起動指令IGONが与えられると、運転者の操作に応じて、車両100Eが所望の運転状態となるように、システム指令SEおよびスイッチング指令PWC,PWMを生成する。また、主処理部10aは、インバータ装置INVを構成するトランジスタのうち、短絡故障が発生しているものを検知する。すなわち、主処理部10aは、車両100Eが作動状態である期間において、車両100Eの走行に係る処理を実行する。
一方、副処理部10bは、主処理部10aの処理停止期間において、モータジェネレータMGの逆起電力による短絡電流を遮断する処理を実行する。すなわち、電源ECU20Eから停止指令IGOFF(図示しない)などが与えられると、主処理部10aは処理を停止するので、その処理停止期間において必要な処理を副処理部10bがバックアップする。
故障素子記憶部44は、後述するように、主処理部10aによって検出される短絡故障したトランジスタを特定する情報を格納する。一例として、故障素子記憶部44は、フラッシュメモリなどの不揮発性メモリで構成される。
その他の構成については、上述のこの発明の実施の形態1に従う車両100と同様であるので、詳細な説明は繰返さない。
図17は、この発明の実施の形態3に従う電源ECU20Eの制御構造を示す機能ブロック図である。
図17を参照して、電源ECU20Eは、図4に示す電源ECU20において、車両移動検知部32を取除いたものと等価である。すなわち、電源ECU20E(車両移動検知部32)は、運転者による始動操作、すなわちキー16の差込およびパワースイッチ18の押圧に応じて、起動指令IGONを発する。なお、起動指令IGONの発生前の認証処理などについては、図4に示すシステム始動条件判断部30と同様であるので、詳細な説明は繰返さない。
図18は、この発明の実施の形態3に従うHV_ECU10Eの制御構造を示す機能ブロック図である。
図18を参照して、HV_ECU10Eは、図5に示すHV_ECU10において、車両移動検知部32を追加したものに相当する。すなわち、HV_ECU10Eは、指令生成部40と、故障素子検知部42と、故障素子記憶部44と、MG接続切離部46と、車両移動検知部32とを含む。なお、指令生成部40および故障素子検知部42は、主処理部10aに組込まれるとともに、MG接続切離部46および車両移動検知部32は、副処理部10bに組込まれる。
なお、指令生成部40、故障素子検知部42、故障素子記憶部44およびMG接続切離部46における処理内容については、図5に示すHV_ECU10の対応部位と同様であるので、詳細な説明は繰返さない。また、車両移動検知部32は、図4に示す電源ECU20のそれと同様であるので、詳細な説明は繰返さない。
図19は、この発明の実施の形態3に従うHV_ECU10Eにおける短絡電流の遮断に係る処理手順を示すフローチャートである。
図19を参照して、HV_ECU10Eは、電源ECU20Eから起動指令IGONが与えられているか否かを判断する(ステップS400)。起動指令IGONが与えられている場合(ステップS400においてYESの場合)には、HV_ECU10Eは、運転者の操作に応じた運転状態となるように、システム指令SEおよびスイッチング指令PWC,PWMを生成する(ステップS402)。同時に、HV_ECU10Eは、インバータ装置INVを構成するトランジスタに短絡故障が発生しているか否かを判断する(ステップS404)。
トランジスタに短絡故障が発生していると判断された場合(ステップS404においてYESの場合)には、HV_ECU10Eは、短絡故障が発生しているトランジスタを特定し、特定したトランジスタの情報を故障素子記憶部44に格納する(ステップS406)。
短絡故障したトランジスタの情報を故障素子記憶部44に格納した後(ステップS406)、もしくはトランジスタに短絡故障が発生していないと判断された場合(ステップS404においてNOの場合)には、HV_ECU10Eは、最初の処理に戻る。
起動指令IGONが与えられていない場合(ステップS400においてNOの場合)には、HV_ECU10Eは、車輪速度センサ11によって検出される回転数WRNが所定のしきい値を超過しているか否かを判断する(ステップS408)。
回転数WRNが所定のしきい値を超過している場合(ステップS408においてYESの場合)には、HV_ECU10Eは、当該超過状態が所定のしきい時間より長く継続するか否かを判断する(ステップS410)。
当該超過状態が所定のしきい時間より長く継続した場合(ステップS410においてYESの場合)には、HV_ECU10Eは、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されているか否かを判断する(ステップS412)。
故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されている場合(ステップS412においてYESの場合)には、HV_ECU10Eは、短絡故障したトランジスタとモータジェネレータMGとを含む短絡電流の電流経路の形成を阻止するために、制御指令ME1およびME2の少なくとも一方を発する(ステップS414)。そして、HV_ECU10Eは、最初の処理に戻る。
回転数WRNが所定のしきい値を超過していない場合(ステップS408においてNOの場合)、しきい値の超過状態が所定のしきい時間より長く継続しなかった場合(ステップS410においてNOの場合)、もしくは、故障素子記憶部44に短絡故障したトランジスタの特定情報が格納されていない場合(ステップS412においてNOの場合)には、HV_ECU10Eは、最初の処理に戻る。
なお、この発明の実施の形態3に対して、上述のこの発明の実施の形態1の変形例1〜3のいずれかに示す構成を採用してもよい。
この発明の実施の形態3では、HV_ECU10Eが「第1の制御装置」に相当し、電源ECU20Eが「第2の制御装置」に相当し、主処理部10aが「第1の処理部」に相当し、副処理部10bが「第2の処理部」に相当する。
この発明の実施の形態3によれば、起動指令に応答して処理を開始する主処理部10aと、主処理部10aの処理停止期間において処理を実行する副処理部10bとを含むHV_ECUEを用いることで、車両外部からの作用力による車両の移動を検知するとともに、コンタクタMC1およびMC2を開放可能に構成される。この構成により、HV_ECU10Eで処理を完結できるので、電源ECU側に複雑な処理機能を組み込むことなく、トランジスタの短絡故障時に、牽引などによって生じる逆起電力に起因する損傷を確実に防止可能な車両を実現できる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 U相アーム回路、2 V相アーム回路、3 W相アーム回路、4 駆動輪、6 ディファレンシャルギア、7 電流センサ、8 駆動軸、10 HV_ECU、10a 主処理部、10b 副処理部、11 車輪速度センサ、12 スマートECU、13,15 送受信アンテナ、14 イモビライザーECU、16 キー、17 回転角センサ、18 パワースイッチ、19 相電圧センサ、20,20A,20B,20C,20D,20E 電源ECU、30,30D システム始動条件判断部、32 車両移動検知部、34 比較部、36 遅延タイマ部、40 指令生成部、42 故障素子検知部、44 故障素子記憶部、46 接続切離部、100,100A,100B,100C,100D,100E 車両、BAT 蓄電装置、C1,C2 コンデンサ、CONV コンバータ部、D1,D2,D11,D12,D21,S22,D31,D32 ダイオード、INV インバータ装置、L1 インダクタ、LN1 U相供給線、LN2 V相供給線、LN3 W相供給線、MC1,MC2 コンタクタ、MG モータジェネレータ、ML 正線、N1,N2,N3 接続点、NL 主負線、PL 主正線、PS 電源装置、Q1,Q2,Q11,Q12,Q21,Q22,Q31,Q32 トランジスタ、SR1,SR2 システムリレー。
Claims (10)
- 交流回転電機が発生する駆動力により走行可能な電動車両であって、
第1および第2の電源線を介して直流電力を供給可能に構成された電源装置と、
前記電源装置と前記交流回転電機との間で電力変換を行なう電力変換装置とを備え、
前記電力変換装置は、各々が、対応の供給線を介して、前記交流回転電機に対応の相電圧を供給するための複数のアーム回路を含み、
前記複数のアーム回路の各々は、
第1の電源線と第2の電源線との間に直列接続された複数のスイッチング素子と、
前記複数のスイッチング素子の各々に逆並列接続された整流素子とを含み、
前記電動車両は、さらに、
前記供給線に介挿され、制御指令に応答して、少なくとも1つの前記アーム回路と前記交流回転電機とを電気的に断続するための回路開閉部と、
前記複数のスイッチング素子から短絡故障したスイッチング素子を検知する第1の検知手段と、
車両外部からの作用力による前記電動車両の移動を検知する第2の検知手段と、
前記第2の検知手段による移動検知に応答して、前記第1の検知手段により短絡故障したスイッチング素子が検知されているときに、前記交流回転電機と当該スイッチング素子とを含む電流経路の形成を阻止するように、前記回路開閉部への前記制御指令を発する制御手段とを備える、電動車両。 - 前記電動車両は、
運転者による始動操作に応じて起動指令を発する第1の制御装置と、
前記起動指令に応答して作動を開始する第2の制御装置とをさらに備え、
前記第1の制御装置は、前記第2の検知手段を実現し、
前記第2の制御装置は、前記第1の検知手段および前記制御手段を実現し、
前記第1の制御装置は、前記第2の検知手段によって前記電動車両の移動が検知されると、運転者による始動操作にかかわらず前記起動指令を発する、請求項1に記載の電動車両。 - 前記電動車両は、
運転者による始動操作に応じて起動指令を発する第1の制御装置と、
前記起動指令に応答して作動を開始する第2の制御装置とをさらに備え、
前記第1の制御装置は、前記第2の検知手段および前記制御手段を実現し、
前記第2の制御装置は、前記第1の検知手段を実現する、請求項1に記載の電動車両。 - 前記電動車両は、
運転者による始動操作に応じて起動指令を発する第1の制御装置と、
前記起動指令に応答して処理を開始する第1の処理部と、前記第1の処理部の処理停止期間において処理を実行する第2の処理部とを含む第2の制御装置とをさらに備え、
前記第1の処理部は、前記第1の検知手段を実現し、
前記第2の処理部は、前記第2の検知手段および前記制御手段を実現する、請求項1に記載の電動車両。 - 交流回転電機は、三相交流回転電機であり、
前記電力変換装置は、3個の前記アーム回路を含み、
前記回路開閉部は、前記3個のアーム回路のうち、2個のアーム回路の各々と前記交流回転電機とを電気的に断続可能に構成される、請求項1〜4のいずれか1項に記載の電動車両。 - 前記第2の検知手段は、駆動輪の回転数に基づいて、前記電動車両の移動を検知するように構成される、請求項1〜5のいずれか1項に記載の電動車両。
- 前記第2の検知手段は、前記交流回転電機の回転数に基づいて、前記電動車両の移動を検知するように構成される、請求項1〜5のいずれか1項に記載の電動車両。
- 前記第2の検知手段は、前記供給線に流れる電流値に基づいて、前記電動車両の移動を検知するように構成される、請求項1〜5のいずれか1項に記載の電動車両。
- 前記第2の検知手段は、前記供給線の間に生じる電圧値に基づいて、前記電動車両の移動を検知するように構成される、請求項1〜5のいずれか1項に記載の電動車両。
- 前記第2の検知手段は、取得される値が所定のしきい値を超過する状態が所定のしきい時間より長く継続すると、前記電動車両の移動と判断する、請求項6〜9のいずれか1項に記載の電動車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006303076A JP2008125162A (ja) | 2006-11-08 | 2006-11-08 | 電動車両 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006303076A JP2008125162A (ja) | 2006-11-08 | 2006-11-08 | 電動車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008125162A true JP2008125162A (ja) | 2008-05-29 |
Family
ID=39509375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006303076A Withdrawn JP2008125162A (ja) | 2006-11-08 | 2006-11-08 | 電動車両 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008125162A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013008313A1 (ja) * | 2011-07-12 | 2013-01-17 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
JP2013066326A (ja) * | 2011-09-20 | 2013-04-11 | Toyota Motor Corp | 車両および車両の制御方法 |
WO2015050068A1 (ja) * | 2013-10-01 | 2015-04-09 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
CN112172544A (zh) * | 2020-09-25 | 2021-01-05 | 中车永济电机有限公司 | 基于电机控制器的电动汽车反拖控制电路 |
JP2021083188A (ja) * | 2019-11-15 | 2021-05-27 | 株式会社デンソー | 制御装置および制御方法 |
-
2006
- 2006-11-08 JP JP2006303076A patent/JP2008125162A/ja not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2733843A4 (en) * | 2011-07-12 | 2015-09-30 | Toyota Motor Co Ltd | VEHICLE AND METHOD FOR CONTROLLING A VEHICLE |
WO2013008313A1 (ja) * | 2011-07-12 | 2013-01-17 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
CN103650332A (zh) * | 2011-07-12 | 2014-03-19 | 丰田自动车株式会社 | 车辆和车辆的控制方法 |
JP5626468B2 (ja) * | 2011-07-12 | 2014-11-19 | トヨタ自動車株式会社 | 車両および車両の制御方法 |
CN103650332B (zh) * | 2011-07-12 | 2015-12-02 | 丰田自动车株式会社 | 车辆和车辆的控制方法 |
US9130489B2 (en) | 2011-07-12 | 2015-09-08 | Toyota Jidosha Kabushiki Kaisha | Vehicle and control method of vehicle |
JP2013066326A (ja) * | 2011-09-20 | 2013-04-11 | Toyota Motor Corp | 車両および車両の制御方法 |
WO2015050068A1 (ja) * | 2013-10-01 | 2015-04-09 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
US9744861B2 (en) | 2013-10-01 | 2017-08-29 | Hitachi Automotive Systems, Ltd. | Power conversion device |
EP3054578A4 (en) * | 2013-10-01 | 2017-05-10 | Hitachi Automotive Systems, Ltd. | Power conversion device |
JPWO2015050068A1 (ja) * | 2013-10-01 | 2017-03-09 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP2021083188A (ja) * | 2019-11-15 | 2021-05-27 | 株式会社デンソー | 制御装置および制御方法 |
JP7380115B2 (ja) | 2019-11-15 | 2023-11-15 | 株式会社デンソー | 制御装置および制御方法 |
CN112172544A (zh) * | 2020-09-25 | 2021-01-05 | 中车永济电机有限公司 | 基于电机控制器的电动汽车反拖控制电路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4179381B2 (ja) | 電動車両 | |
US9216655B2 (en) | Vehicle and power supply system | |
JP4179379B2 (ja) | 車両およびその制御方法ならびに車両の制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 | |
JP4957870B2 (ja) | 電力変換装置、電力変換装置の制御方法およびそれを搭載する車両 | |
US9043066B2 (en) | Vehicle and control method of vehicle | |
US8659182B2 (en) | Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system | |
US20090195199A1 (en) | Motor drive device | |
JP5292186B2 (ja) | 電動車両の電源システム | |
JP4582255B2 (ja) | 車両の制御装置および制御方法 | |
JP5780195B2 (ja) | ハイブリッド車両 | |
JP5015858B2 (ja) | 電動車両の電源システムおよびその制御方法 | |
JP2009201194A (ja) | 回転電機の異常検出装置および異常検出方法 | |
WO2012117550A1 (ja) | 車両のシフトロック装置 | |
JP2009201189A (ja) | 電気システムの制御装置 | |
JP2017070045A (ja) | 電動車両の電源システム | |
JP2008125162A (ja) | 電動車両 | |
JP4905204B2 (ja) | 負荷駆動装置 | |
JP5696589B2 (ja) | 車両および車両の制御方法 | |
JP2016165180A (ja) | 電動車両 | |
JP2006304542A (ja) | 電圧変換装置 | |
JP6151944B2 (ja) | 給電システム | |
JP2008182842A (ja) | 電動車両 | |
JP2008167600A (ja) | 電動車両 | |
JP2007189854A (ja) | 車両の電源装置 | |
JP6274169B2 (ja) | モータ駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |