JP2008115776A - エタノール水溶液の改質システム - Google Patents

エタノール水溶液の改質システム Download PDF

Info

Publication number
JP2008115776A
JP2008115776A JP2006300111A JP2006300111A JP2008115776A JP 2008115776 A JP2008115776 A JP 2008115776A JP 2006300111 A JP2006300111 A JP 2006300111A JP 2006300111 A JP2006300111 A JP 2006300111A JP 2008115776 A JP2008115776 A JP 2008115776A
Authority
JP
Japan
Prior art keywords
reforming
ethanol
reforming reactor
rotary engine
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006300111A
Other languages
English (en)
Other versions
JP4800180B2 (ja
Inventor
Kazuki Tanihata
一樹 谷端
Yoji Mizuno
庸司 水野
Masayasu Miyamoto
正泰 宮本
Junnosuke Tamagawa
準之介 玉川
Toshiaki Murata
逞詮 村田
Hitoshi Koyama
斎 小山
Makoto Matsuda
誠 松田
Hajime Sato
肇 佐藤
Junichiro Hayashi
潤一郎 林
Kazuhiro Kumabe
和弘 隈部
Masateru Nakano
真輝 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Hokkaido University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Hokkaido University NUC
Priority to JP2006300111A priority Critical patent/JP4800180B2/ja
Publication of JP2008115776A publication Critical patent/JP2008115776A/ja
Application granted granted Critical
Publication of JP4800180B2 publication Critical patent/JP4800180B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】第1に、構成が簡単容易であり、設備コスト等に優れると共に、第2に、効率面やランニングコスト等にも優れた、エタノール水溶液の改質システムを提案する。
【解決手段】この改質システムは、予熱器2と改質反応器3とロータリーエンジン5とを備えており、濃度が20wt%以上〜60wt%以下、例えば40wt%以上〜50wt%以下程度の粗エタノール水溶液1が、供給される。予熱器2は、この粗エタノール水溶液1を加熱して気化し、もってエタノールと水蒸気を改質反応器3に供給する。改質反応器3は、ロータリーエンジン5からの高温の排気ガス6を利用し、その熱の作用と、充填された触媒8の作用とに基づき、エタノールと水蒸気とを反応させ、もって水素,一酸化炭素,二酸化炭素等に、水蒸気改質する。ロータリーエンジン5は、改質ガス9中の水素や一酸化炭素を燃料として運転され、例えば、発電機18が接続されている。
【選択図】図1

Description

本発明は、エタノール水溶液の改質システムに関する。すなわち、エタノールを水素や一酸化炭素等に改質する、改質システムに関する。
《技術的背景》
エタノールは最近、ガソリン代替燃料として注目を集めている。すなわち、石油を原材料としたガソリンに比し、植物を原材料としているため、コスト面に優れると共に、製造過程で生じる地球温暖化の原因となる二酸化炭素が加算されず、ガソリンの代替用や混入用として、脚光を浴びている。
エタノールは、このような燃料としての用途の他、周知のように各種の医薬品,化粧品,洗剤,溶剤,飲料等の原料として、広く利用されている。
《従来技術》
さてエタノールは、通常、水分を4.0wt%含有した共沸混合物として、上述した各種用途に使用されている。そして、このような濃度96wt%の純粋エタノールは、原料となる濃度10wt%程度の(原)エタノール水溶液を、精製して製造されていた。
代表的な精製法としては、原料となる濃度10wt%程度の(原)エタノール水溶液を、まず、単蒸留法により濃度20wt%〜60wt%程度、代表的には40wt%〜50wt%程度の粗エタノール水溶液とし、このような単蒸留段階の次に、更に精密蒸留段階を経ることにより、純粋エタノールが精製されていた。
又、分子篩モリキュラシーブ精製法により、特殊透過膜を使用して、原料となる(原)エタノール水溶液を純粋エタノールへと精製することも、行われていた。
他方、原料となる濃度10wt%程度の(原)エタノール水溶液から、直接又はエチレン,エタン,メタン等を順次転化生成してから、これを改質することにより水素を燃料電池等に供給する改質法も、最近開発されていた。
《先行技術文献情報》
改質法としては、例えば、次の特許文献1に示されたものが挙げられる。
特開2006−82996号公報
ところで、上述した各従来例については、次の問題が指摘されていた。
《第1の問題点》
第1に、設備が大型化,大規模化,複雑化,精緻化し、もって設備コスト,精製コスト,製造コスト等に問題が指摘されていた。
すなわち、純粋エタノールを精製する精製法の従来例については、精密蒸留設備,加熱設備,特殊透過膜,その他の付帯設備,関連設備等が必須的であり、この種設備が一般的に大型,大規模,複雑,精緻であることに鑑み、設備コスト,精製コスト,製造コスト等が嵩むという問題があった。
又、改質法の従来例についても同様であり、予備加熱装置付設や,脱水・水素化反応,断熱式予備改質,主改質等の各工程設備が必須的であり、設備が大型,大規模,複雑,精緻化し、もって設備コスト,精製コスト,製造コスト等が嵩むという指摘があった。
《第2の問題点》
第2に、効率面やランニングコスト等にも、問題が指摘されていた。すなわち、精製法の従来例については、精製された純粋エタノールが、例えば燃料として使用に供されるものの、その精製設備について、加熱その他に運転コスト,ランニングコストが嵩む等、効率が悪かった。
改質法の従来例についても同様であり、加熱その他各工程の運転コスト,ランニングコストが嵩む等、効率が悪かった。
《本発明について》
本発明のエタノール水溶液の改質システムは、このような実情に鑑み、上記従来例の課題を解決すべくなされたものである。
そして本発明は、第1に、設備コスト等に優れると共に、第2に、効率面やランニングコスト等にも優れた、エタノール水溶液の改質システムを提案することを、目的とする。
《請求項について》
このような課題を解決する本発明の技術的手段は、次のとおりである。まず、請求項1については次のとおり。請求項1のエタノール水溶液の改質システムは、エンジンからの高温の排気ガスを利用して、エタノールを改質する改質反応器と、該改質反応器にて生成された改質ガスを燃料とする該エンジンと、を有していることを特徴とする。
次に、請求項2については次のとおり。請求項2のエタノール水溶液の改質システムでは、請求項1において、該改質反応器は、該エンジンから導入された排気ガスによる高温下において、触媒のもとでエタノールと水蒸気とを反応させ、もって水素と一酸化炭素や二酸化炭素に水蒸気改質すること、を特徴とする。
請求項3については次のとおり。請求項3のエタノール水溶液の改質システムでは、請求項2において、予熱器が、エタノール水溶液を予め加熱して気化し、もってエタノールと水蒸気を該改質反応器に供給し、該改質反応器は、該エンジンからの排気ガスが導入され、もって内部が650℃以上例えば800℃程度に維持されており、該エンジンは、ロータリーエンジンよりなること、を特徴とする。
請求項4については次のとおり。請求項4のエタノール水溶液の改質システムでは、請求項3において、該予熱器は、該ロータリーエンジンからの高温の排気ガスが導入されて加熱を実施し、エタノール濃度が20wt%以上〜60wt%以下、例えば40wt%以上〜50wt%以下程度の粗エタノールを、該改質反応器に供給し、該ロータリーエンジンは、改質ガス中の水素や一酸化炭素を燃料として運転されること、を特徴とする。
《作用等について》
本発明のエタノール水溶液の改質システムは、このような手段よりなるので、次のようになる。
(1)この改質システムは、予熱器と改質反応器とロータリーエンジンとを、備えており、濃度20wt%〜60wt%程度の粗エタノール水溶液が、供給される。
(2)そして粗エタノール水溶液は、まず予熱器にて加熱,気化されるが、この加熱は、ロータリーエンジンからの排気ガスを熱源とする。
(3)気化された水蒸気とエタノールは、改質反応器に供給される。改質反応器は、ロータリーエンジンの排気ガスの熱量が導入され、650℃以上例えば800℃程度に維持されている。
(4)そこでエタノールは、熱と触媒の作用に基づき、水蒸気と反応して改質される。
(5)すなわち、エタノールCOHは、水蒸気HOと反応して、水素Hと一酸化炭素COや二酸化炭素COに、水蒸気改質される。
(6)生成された改質ガスは、燃料としてロータリーエンジンに供給される。
(7)ロータリーエンジンの排気ガスの熱量は、改質反応器へと導入される。
(8)さてこのように、改質反応器の改質ガスを、ロータリーエンジンの燃料として使用すると共に、ロータリーエンジンの排気ガスを、改質反応器や予熱器にて活用する。このシステムでは、このように、その構成がサイクル的,循環的に関連付けられており、その分、設備が簡単容易化される。
(9)このように、その構成設備である改質反応器,ロータリーエンジン,予熱器が関連した系をなしているので、システム運用に無駄がなく効率的である。すなわち、システムのランニング面において、その燃料や熱源が無駄なく生成,利用されている。
(10)そこで、本発明のエタノール水溶液の改質システムは、次の効果を発揮する。
《第1の効果》
第1に、設備コスト等に優れている。すなわち、本発明のエタノール水溶液の改質システムは、改質ガスをロータリーエンジンの燃料とすると共に、ロータリーエンジンの排気ガスを、改質反応器や予熱器用に活用する。
そこで、前述したこの種従来例に比し、構成設備が簡単容易化,簡略化,小型,小規模化される等、設備コスト,製造コスト等に優れている。
《第2の効果》
第2に、効率面やランニングコスト等にも優れている。すなわち、本発明のエタノール水溶液の改質システムは、改質ガスをロータリーエンジンの燃料とすると共に、その排気ガスが高温であることに着目して、改質反応器や予熱器の熱源として活用する。
そこで、前述したこの種従来例に比し無駄がなく効率的であり、その分、運転コスト,ランニングコスト,製造コストに優れている。例えば、上述した第1の設備コスト等とこの第2のランニングコスト等とのトータルコストは、従来例のトータルコストの半分以下となる。
このように、この種従来例に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
《図面について》
以下、本発明のエタノール水溶液の改質システムを、図面に示した発明を実施するための最良の形態に基づいて、詳細に説明する。
図1〜図4は、本発明を実施するための最良の形態の説明に供する。そして、図1は構成フロー図であり、図2〜図4は、それぞれ実施例1,2,3の計測データのグラフである。
《エタノールについて》
本発明は、エタノール水溶液1の改質システムに関する。そこで、まずエタノールについて述べておく。
エタノールつまりエチルアルコールCOH(CHCHOH,CO)は、糖類やデンプン質を原材料とする発酵法のほか、硫酸水和法や直接水和法で製造される。最近は、デンプン質を多く含む植物、特にトウモロコシの実,サトウキビ,稲わらの茎や葉等の穀物を原材料としたバイオエタノールが、量産化用に注目を集めている。
ところで、この種のエタノールは、通常まず、濃度10wt%程度の(原)エタノール水溶液1として提供される。水を溶媒溶液とし、エタノールを低濃度の溶質成分として、水和状態で提供される。
そして、単蒸留法により粗蒸留され、もってエタノール濃度20wt%〜60wt%程度(水80wt%〜40wt%程度)の粗エタノール水溶液1へと、精製される。代表的には、濃度40wt%〜50wt%程度(水60wt%〜50wt%程度)まで、精製される。
本発明は、このような粗エタノール水溶液1を対象とする。
《予熱器2について》
次に、予熱器2について説明する。上述により精製,提供された粗エタノール水溶液1は、予熱器2で気化された後、次工程の改質反応器3に供給される。
この予熱器2について、更に詳述する。予熱器2は、粗エタノール水溶液1を加熱により気化し、もって水蒸気とエタノールよりなる粗エタノールの混合ガス4を、改質反応器3へと供給する。そのエタノール濃度は、20wt%〜60wt%程度、代表的には40wt%〜50wt%程度である。
図示例の予熱器2は、改質反応器3から使用済として排出され、まだ高温を維持しているロータリーエンジン5の排気ガス6が、管路7を介して導入され、もって加熱用熱源として使用される。加熱に使用される排気ガス6の温度、つまり予熱器2の内部温度は、例えば650℃程度である。
予熱器2は、このようになっている。
《改質反応器3について》
次に、改質反応器3について説明する。改質反応器3は、予熱器2から供給されたエタノールを、水蒸気改質する。
すなわち改質反応器3は、ロータリーエンジン5からの排気ガス6が、650℃以上例えば800℃から900℃程度で導入されると共に、内部が650℃以上例えば800℃程度に維持される。そして、このように高温の排気ガス6を利用し、高温下において触媒8のもとで、エタノールと水蒸気とを反応させ、もって、水素と一酸化炭素や二酸化炭素に水蒸気改質して、改質ガス9を生成する。
このような改質反応器3について、更に詳述する。改質反応器3には、予熱器2から管路10を介して混合ガス4が供給されると共に、ロータリーエンジン5から管路11を介して、排気ガス6が導入される。改質反応器3は、排気ガス6の経路が内部配設されており、供給された混合ガス4の水蒸気とエタノールが、経路を通過する排気ガス6の顕熱にて、例えば800℃程度に維持される。
そこで改質反応器3内では、改質対象であるエタノールが、このような熱の作用と、内部充填された触媒8の作用とに基づき、水蒸気をガス化剤として反応して、水素,一酸化炭素,二酸化炭素等に変換され、水蒸気改質される。
反応促進用の改質触媒8としては、ニッケル系のものが代表的に使用され、例えば、ニッケル担持アルミナ粒状触媒(粒度60〜80mesh)が使用されるが、その他、シリカ系,白金系,ロジウム系,ゼオライト系のものも使用可能である。そして触媒8は、例えば粒子固定反応層として、改質反応器3内に充填される。
改質反応器3は、このようになっている。
《反応式について》
水蒸気改質反応については、次のとおり。改質反応器3では、次の化1,化2の化学反応式により、水蒸気改質が行われる。
Figure 2008115776
Figure 2008115776
化1の反応式において、エタノールCHCHOHは、水蒸気HOと反応して、一酸化炭素COと水素Hとに水蒸気改質される。エタノールと水蒸気の系は、高温付与により系のエンタルピーが上がり、吸熱反応により一酸化炭素と水素の混合気体に完全ガス化されるが、生成水素量(水素収率)は最小である。
これに対し化2の反応式では、エタノールCHCHOHは水蒸気HOと反応して、二酸化炭素COと水素Hとに水蒸気改質される。これは、化1の反応式より多量の水蒸気が作用すると共に、化1の反応式の一酸化炭素も完全に改質された場合であり、吸熱反応により二酸化炭素と水素に完全ガス化され、生成水素量(水素収率)は最大となる。
すなわち、この化2の反応式では、化1の反応式で生成された一酸化炭素COが、発熱反応である化3のシフト反応により、水蒸気HOと反応して、二酸化炭素COと水素Hの混合気体に改質,変換される。そこで、化1の反応式に、次の化3の反応式の2倍を加えると、化2の反応式となる。
Figure 2008115776
さてそこで、シフト反応が0%の場合は化1の反応式により、シフト反応が100%の場合は化2の反応式により、水蒸気改質が進行することになる。
しかしこれらは理論上,リミット上であり、実際上は、一酸化炭素濃度を低減するシフト反応の発生程度等に従い、化1と化2の中間の反応式により、水蒸気改質が進行する可能性が高い。この場合は、一酸化炭素COと二酸化炭素COと水素Hの混合気体が生成される。例えば、化1の反応式の反応に加え化2の反応式の反応が半分起きた、次の化4の反応式にて、水蒸気改質が進行することが考えられる。
Figure 2008115776
《精製オーダー,その他について》
改質反応器3における化学反応式は、上述した通りである。そこで、予熱器2を経由して改質反応器3に供給される混合ガス4、つまり粗エタノール水溶液1の精製オーダーについては、次のとおり。
水蒸気改質に際し、エタノール1モル(46g)に対し、理論上必要な水蒸気量は、化1と化2の反応式により1〜3モル(18g〜54g)であり、もってエタノール1gに対する必要水蒸気量は、0.39〜1.17gとして算出される。
このような理論上の必要量に対し、実際上の必要量は、通常その1.3倍とされているので、実際上必要な水蒸気量は、エタノール重量の0.51〜1.52倍となる。
従って、粗エタノール水溶液1の精製オーダーは、エタノール濃度が例えば40wt%〜50wt%(含水量がエタノール質量の1倍〜1.5倍)程度で良いことになる。つまり、前述した単蒸留法により粗蒸留された低濃度の粗エタノールで良いことになる。
なお第1に、前述した化1,化2,化3の反応式の過程において、次の化5,化6の中間反応も見られる。
Figure 2008115776
Figure 2008115776
すなわち、前述した水蒸気改質の過程で、若干のメタンCHが、中間生成物として随伴生成されるが、このメタンCHは、化5,化6の反応式により、殆ど一酸化炭素COと水素Hとに分解されてしまう。
なお第2に、精製,供給された粗エタノール水溶液1中には、蒸留されたにもかかわらず、不純物として糖類,アミノ酸類が、僅かに付随的に付加混入されている場合もある。しかしながら、このような糖類,アミノ酸類は、改質反応器3において、一酸化炭素,水素,水蒸気等に改質されてしまう。
精製オーダー,その他については、上述した通りである。
《ロータリーエンジン5等について》
次に、ロータリーエンジン5について述べる。エンジン代表的に使用されるロータリーエンジン5は、改質反応器3にて生成された改質ガス9の水素や一酸化炭素を燃料として、運転される。
このようなロータリーエンジン5について、更に詳述する。ロータリーエンジン5は、周知のごとく、燃焼室内でローターが偏心回転して、主軸に回転力を伝達する、間欠燃焼式・容積式の内燃機関である。そして、このロータリーエンジン5の燃料として、改質反応器3から管路10で供給された、改質ガス9中の水素,一酸化炭素,メタン等が使用される。
このロータリーエンジン5への管路10には、途中に、冷却水12による冷却部13と、改質ガス9の圧送用兼流量調整用のポンプ14と、改質ガス9への空気15の導入量調整用の調節ユニット16とが、順に介装されている。冷却部13からは、改質ガス9中に残存していた剰余水蒸気が、凝縮水17となって、排出,除去される。
ロータリーエンジン5の主軸は、隣接設置された発電機18に連結されており、その駆動が発電に利用されているが、勿論、電力化以外の駆動エネルギー源として各種用途に利用可能である。
ロータリーエンジン5の排気ガス6は、650℃以上例えば800℃〜900℃程度であり、煙道である管路11を介して、改質反応器3に導入される。図示例の管路11には、燃焼部19が介装されている。
すなわち、ロータリーエンジン5の排気ガス6中には、燃料の未燃分がかなり残留しているので、これを再燃焼させる燃焼部19が介装されており、燃焼部19は、例えば酸化触媒付のワイヤメッシュ構造よりなり、燃料の未燃分を捕集,燃焼させ、もって改質反応器3へと向かう排気ガス6の温度を一段と高温化し、例えば800℃〜900℃程度とする。
なお、このようにロータリーエンジン5が代表的に使用されるが、エンジンとして、その他のレシプロエンジン例えばディーゼルエンジンやガスエンジンも使用可能であり、更にガスタービン等も使用可能であるが、これらの場合、その排気ガス6は300℃〜600℃、例えば350℃〜450℃程度なので、800℃以上に高温加熱されて、改質反応器3へと導入される。
ロータリーエンジン5等は、このようになっている。
《作用等》
本発明のエタノール水溶液1の改質システムは、以上説明したように構成されている。そこで、以下のようになる。
(1)この改質システムは、予熱器2と改質反応器3とロータリーエンジン5とを備えている。そして、濃度20wt%〜60wt%程度、代表的には濃度40wt%〜50wt%程度の粗エタノール水溶液1が、精製,供給される。
(2)供給された粗エタノール水溶液1は、まず予熱器2にて、加熱,気化される。この加熱は、ロータリーエンジン5から排出されると共に、改質反応器3を経由した後の排気ガス6の余熱を利用して、例えば650℃程度で実施される。
(3)このように粗エタノール水溶液1は、予熱器2にて加熱,気化され、水蒸気とエタノールの混合ガス4となって、改質反応器3に供給される。改質反応器3には、ロータリーエンジン5からの排気ガス6が、650℃以上例えば800℃〜900℃程度で導入され、内部が650℃以上例えば800℃程度に維持されている。
(4)そこでエタノールは、この改質反応器3内において、排気ガス6の熱の作用と、内部充填された触媒8の作用とに基づき、水蒸気と反応して改質される。
(5)すなわち、エタノールCOHは、前述した化1,化2,化3の化学反応式により、水蒸気HOと反応して、水素H,一酸化炭素CO,二酸化炭素CO等に、水蒸気改質により変換される。
(6)このように改質,生成された混合気体である改質ガス9は、ロータリーエンジン5に供給される。ロータリーエンジン5は、改質ガス9中の水素や一酸化炭素を燃料として、運転される。
(7)そして、ロータリーエンジン5の排気ガス6は、650℃以上例えば800℃〜900℃程度と高温であり、改質反応器3へと排出,導入される。なお、改質反応器3にて使用,排出された排気ガス6は、まだ650℃程度と高温を維持しており、更に予熱器2に導入されて加熱用に利用される。
(8)さて、このエタノール水溶液1の改質システムは、以上説明したように、改質反応器3からの改質ガス9を、ロータリーエンジン5の燃料として使用すると共に、ロータリーエンジン5の排気ガス6が極めて高温であることに着目して、排気ガス6を、改質反応器3や予熱器2に持ち込んで活用する。
この改質システムでは、このように、改質反応器3とロータリーエンジン5と予熱器2との間が、有機的に関連付けられている。つまり、その各構成間が、サイクル的,相互補完的,循環的に関係しており、その分だけ設備が、簡単容易化,簡略化,小型化,小規模化されるようになる。
(9)この改質システムは、このように、その構成設備である改質反応器3,ロータリーエンジン5,予熱器2間が、有機的,サイクル的,相互補完的,循環的に関連付けられている。
そこで、全体のシステム運用に無駄がなく、効率的である。すなわち、システムのランニング面において、その燃料や熱源が無駄なく生成,利用されており、もって例えば、電力をコスト面に優れて供給可能となる。
(10)なお以上、エタノールの水蒸気改質について説明したが、本発明の技術は、他のアルコール系にも応用可能である。例えば、メタノール,プロパノール,ブタノール等について、濃度の薄い溶液を同様に水蒸気改質して、燃料化することも考えられる。
ここで、本発明のエタノール水溶液1の改質システムについて、その各実施例について述べておく。
まず図2は、実施例1のテスト結果の計測データのグラフである。この実施例1では、図1に示した改質システムにおいて、触媒8が充填された改質反応器3に対し、粗エタノール水溶液1を混合ガス4に気化して連続的に供給し、もって水蒸気改質についてテストした。実施例1のテスト条件は、次のとおり。
・供給比(wt) : COH 30 対 HO 70
・そのカーボンCと水HOの比率(mol): 1 対 3
・触媒温度(℃) : 800
・ガス滞留時間(ms): 69
・触媒: ニッケルNi触媒,層高13mm,層断面積78.5mm,層空隙率0.4
・テスト時間(min): 35
このようなテスト条件のもと、改質反応器3から生成,排出される改質ガス9を、経時的に計測した結果、図2に示したように次のデータが得られた。
・改質ガスの構成(vol%): H 70%, CO 13%, CO 17%
, CH 0.1%
・エタノール改質変換率(%): 99.99(エタノール残留は検出されず)
・炭素析出 : No coke deposition
・炭化水素 : No C2-hydrocarbons
実施例1のテスト結果によると、このように、エタノールCOHは、所期のごとく水蒸気HOと反応して、水素H,一酸化炭素CO,二酸化炭素CO,極く僅かのメタンCH等に、水蒸気改質された。この点が、データ的に確認された。
実施例1については、以上のとおり。
次に図3は、実施例2のテスト結果の計測データのグラフである。実施例2では、実施例1と同様、改質反応器3に粗エタノール水溶液1を気化して連続的供給し、もって水蒸気改質についてテストした。実施例2のテスト条件は、次のとおり。
・供給比(wt) : COH 30 対 HO 70
・そのカーボンCと水HOの比率(mol): 1 対 3
・触媒温度(℃) : 700
・ガス滞留時間(ms): 48
・触媒: ニッケルNi触媒,層高13mm,層断面積78.5mm,層空隙率0.4
・テスト時間(min): 60
このようなテスト条件のもと、生成,排出される改質ガス9を、経時的に計測した結果、図3に示した次のデータが得られた。
・改質ガスの構成(vol%): H 70%, CO 12.5%, CO
17%, CH 0.5%
・エタノール改質変換率(%): 99.99(エタノール残留は検出されず)
・炭素析出 : Slight coke deposition
・炭化水素 : No C2-hydrocarbons
実施例2のテスト結果によると、このように、エタノールCOHは、所期のごとく水蒸気HOと反応して、水素H,一酸化炭素CO,二酸化炭素CO,僅かのメタンCH等に、水蒸気改質された。この点が、データ的に確認された。
実施例2については、以上のとおり。
図4は、実施例3のテスト結果の計測データのグラフである。実施例3では、実施例1,2と同様、改質反応器3に粗エタノール水溶液1を気化して連続的供給し、もって水蒸気改質についてテストした。この実施例3のテスト条件は、次のとおり。
・供給比(wt) : COH 56.3 対 HO 47.7
・そのカーボンCと水HOの比率(mol): 1 対 0.99
・触媒温度(℃) : 700
・ガス滞留時間(ms): 49
・触媒: ニッケルNi触媒,層高13mm,層断面積78.5mm,層空隙率0.4
・テスト時間(min): 60
このようなテスト条件のもと、生成,排出される改質ガス9を、経時的に計測した結果、図4に示した次のデータが得られた。
・改質ガスの構成(vol%): H 63%, CO 23%, CO 10%
, CH 3%
・エタノール改質変換率(%): 99.99(エタノール残留は検出されず)
・炭素析出 : Significant coke deposition
・炭化水素 : No C2-hydrocarbons
実施例3のテスト結果によると、このように、エタノールCOHは、所期のごとく水蒸気HOと反応して、水素H,一酸化炭素CO,二酸化炭素CO,若干のメタンCH等に、水蒸気改質された。この点が、データ的に確認された。
実施例3については、以上のとおり。
本発明に係るエタノール水溶液の改質システムについて、発明を実施するための最良の形態の説明に供し、構成フロー図である。 同発明を実施するための最良の形態の説明に供し、実施例1の計測データのグラフである。 同発明を実施するための最良の形態の説明に供し、実施例2の計測データのグラフである。 同発明を実施するための最良の形態の説明に供し、実施例3の計測データのグラフである。
符号の説明
1 (粗)エタノール水溶液
2 予熱器
3 改質反応器
4 混合ガス
5 ロータリーエンジン(エンジン)
6 排気ガス
7 管路
8 触媒
9 改質ガス
10 管路
11 管路
12 冷却水
13 冷却部
14 ポンプ
15 空気
16 調節ユニット
17 凝縮水
18 発電機
19 燃焼部

Claims (4)

  1. エンジンからの高温の排気ガスを利用して、エタノールを改質する改質反応器と、該改質反応器にて生成された改質ガスを燃料とする該エンジンと、を有していることを特徴とする、エタノール水溶液の改質システム。
  2. 請求項1に記載したエタノール水溶液の改質システムにおいて、該改質反応器は、該エンジンから導入された排気ガスによる高温下において、触媒のもとでエタノールと水蒸気とを反応させ、もって水素と一酸化炭素や二酸化炭素に水蒸気改質すること、を特徴とする、エタノール水溶液の改質システム。
  3. 請求項2に記載したエタノール水溶液の改質システムにおいて、予熱器が、エタノール水溶液を予め加熱して気化し、もってエタノールと水蒸気を該改質反応器に供給し、該改質反応器は、該エンジンからの排気ガスが導入され、もって内部が650℃以上例えば800℃程度に維持されており、該エンジンは、ロータリーエンジンよりなること、を特徴とする、エタノール水溶液の改質システム。
  4. 請求項3に記載したエタノール水溶液の改質システムにおいて、該予熱器は、該ロータリーエンジンからの高温の排気ガスが導入されて加熱を実施し、濃度が20wt%以上〜60wt%以下、例えば40wt%以上〜50wt%以下程度の粗エタノールを、該改質反応器に供給し、該ロータリーエンジンは、改質ガス中の水素や一酸化炭素を燃料として運転されること、を特徴とするエタノール水溶液の改質システム。
JP2006300111A 2006-11-06 2006-11-06 エタノール水溶液の改質システム Expired - Fee Related JP4800180B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300111A JP4800180B2 (ja) 2006-11-06 2006-11-06 エタノール水溶液の改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300111A JP4800180B2 (ja) 2006-11-06 2006-11-06 エタノール水溶液の改質システム

Publications (2)

Publication Number Publication Date
JP2008115776A true JP2008115776A (ja) 2008-05-22
JP4800180B2 JP4800180B2 (ja) 2011-10-26

Family

ID=39501919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300111A Expired - Fee Related JP4800180B2 (ja) 2006-11-06 2006-11-06 エタノール水溶液の改質システム

Country Status (1)

Country Link
JP (1) JP4800180B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783685B1 (ko) * 2016-07-15 2017-10-10 한국항공대학교산학협력단 촉매 반응을 이용한 저 질소 산화물 가스터빈 연소기
KR20190030044A (ko) * 2017-09-13 2019-03-21 한국에너지기술연구원 유기물의 수증기 개질 반응을 통한 수소 가스 생성 장치 및 이를 이용한 수소 가스 생성 방법
KR102107152B1 (ko) * 2018-11-14 2020-05-06 최승인 로터리엔진용 배기가스 저감장치
CN114198200A (zh) * 2021-12-27 2022-03-18 广东蓝玖新能源科技有限公司 一种发动机保养方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS60230556A (ja) * 1984-04-07 1985-11-16 ジヤガー カーズ リミテツド 内燃機関およびその作動方法
JP2000291499A (ja) * 1999-04-06 2000-10-17 Nissan Motor Co Ltd 燃料改質装置付き内燃機関
JP2005238025A (ja) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd 燃料改質触媒、およびこれを用いた燃料改質システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS60230556A (ja) * 1984-04-07 1985-11-16 ジヤガー カーズ リミテツド 内燃機関およびその作動方法
JP2000291499A (ja) * 1999-04-06 2000-10-17 Nissan Motor Co Ltd 燃料改質装置付き内燃機関
JP2005238025A (ja) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd 燃料改質触媒、およびこれを用いた燃料改質システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783685B1 (ko) * 2016-07-15 2017-10-10 한국항공대학교산학협력단 촉매 반응을 이용한 저 질소 산화물 가스터빈 연소기
KR20190030044A (ko) * 2017-09-13 2019-03-21 한국에너지기술연구원 유기물의 수증기 개질 반응을 통한 수소 가스 생성 장치 및 이를 이용한 수소 가스 생성 방법
KR102000664B1 (ko) * 2017-09-13 2019-07-16 한국에너지기술연구원 유기물의 수증기 개질 반응을 통한 수소 가스 생성 장치 및 이를 이용한 수소 가스 생성 방법
KR102107152B1 (ko) * 2018-11-14 2020-05-06 최승인 로터리엔진용 배기가스 저감장치
CN114198200A (zh) * 2021-12-27 2022-03-18 广东蓝玖新能源科技有限公司 一种发动机保养方法

Also Published As

Publication number Publication date
JP4800180B2 (ja) 2011-10-26

Similar Documents

Publication Publication Date Title
Da Silva et al. Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycerol, n-butanol and methanol): thermodynamic modelling
JP4977826B2 (ja) バイオマスからメタンおよび/またはメタンハイドレートを生成する方法
JP4864902B2 (ja) 石油ベースの液体炭化水素を改良する熱中性法
Budzianowski Negative net CO2 emissions from oxy-decarbonization of biogas to H2
JP2005298329A (ja) 水素ガスを生成するための方法及び装置
KR20140103141A (ko) 연료 전지용의 조절가능한 기체 조성물의 제조방법
JP4800180B2 (ja) エタノール水溶液の改質システム
CN116249671A (zh) 用于制备包含一氧化碳的气体料流的方法
Salemme et al. Thermodynamic analysis of ethanol processors–PEM fuel cell systems
Palma et al. Methane auto-thermal reforming on honeycomb and foam structured catalysts: The role of the support on system performances
CA3126620A1 (en) Chemical synthesis plant and method for utilization of carbon dioxide
US20230339747A1 (en) Syngas stage for chemical synthesis plant
Salemme et al. Energy efficiency of membrane-based fuel processors–PEM fuel cell systems
Wang et al. Hydrogen production on Ni–Pd–Ce/γ-Al2O3 catalyst by partial oxidation and steam reforming of hydrocarbons for potential application in fuel cells
JP2008144614A (ja) 揮発性有機化合物の廃液改質システム
Cerqueira et al. Combined autothermal and sorption-enhanced reforming of olive mill wastewater for the production of hydrogen: thermally neutral conditions analysis
JP5347330B2 (ja) 水素生成装置
WO2008105793A2 (en) Integrated catalytic and turbine system and process for the generation of electricity
US20090241551A1 (en) Cogeneration of Hydrogen and Power
RU2515477C2 (ru) Способ получения водорода
CN102791619B (zh) 制氢方法
US20230330620A1 (en) Off-gas utilization in electrically heated reforming plant
JP2003238113A (ja) 燃料改質方法および燃料改質装置
JP2005146311A (ja) 燃料改質装置および改質ガスの製造方法
KR102000664B1 (ko) 유기물의 수증기 개질 반응을 통한 수소 가스 생성 장치 및 이를 이용한 수소 가스 생성 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees