JP2008111596A - 加熱システム - Google Patents

加熱システム Download PDF

Info

Publication number
JP2008111596A
JP2008111596A JP2006295134A JP2006295134A JP2008111596A JP 2008111596 A JP2008111596 A JP 2008111596A JP 2006295134 A JP2006295134 A JP 2006295134A JP 2006295134 A JP2006295134 A JP 2006295134A JP 2008111596 A JP2008111596 A JP 2008111596A
Authority
JP
Japan
Prior art keywords
cold water
valve
passage
heating fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295134A
Other languages
English (en)
Other versions
JP4954668B2 (ja
Inventor
Takahiro Okazaki
孝弘 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyawaki Inc
Original Assignee
Miyawaki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyawaki Inc filed Critical Miyawaki Inc
Priority to JP2006295134A priority Critical patent/JP4954668B2/ja
Publication of JP2008111596A publication Critical patent/JP2008111596A/ja
Application granted granted Critical
Publication of JP4954668B2 publication Critical patent/JP4954668B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

【課題】簡単で安価な構成でありながらも、所定温度の温水を常に安定に生成することができ、かつ加熱流体が無駄に消費されることのない加熱システムを提供する。
【解決手段】加熱流体Sと冷水Cとの間の熱交換により温水Mを生成する熱交換器11と、加熱流体供給源VAからの加熱流体Sを熱交換器11に導く加熱流体通路13と、給水源WAからの冷水Cを熱交換器11に導く冷水通路12と、冷水通路12に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁20と、加熱流体通路13に設けられて圧力弁20の上流側と下流側の差圧に応じて熱交換器11への加熱流体Sの供給量を調節する調節弁17と、圧力弁20をバイパスする冷水Cのバイパス経路21Aに設けられたオリフィス16Aとを備える。
【選択図】図1

Description

本発明は、例えば蒸気のような加熱流体で冷水を加熱することにより温水を生成する加熱システムに関するものである。
従来、冷水を蒸気で加熱することにより温水を生成する、加熱システムの一種である給湯装置が知られている(特許文献1参照)。この給湯装置における加熱システムは、図8に示すように、熱交換器60によって蒸気のような加熱流体Sの熱で冷水Cを加熱することにより温水Mを生成するものであり、給水源WAからの冷水Cを冷水配管61によって前記熱交換器60に導き、加熱流体供給源VAからの加熱流体Sを加熱流体配管62によって前記熱交換器60に導き、熱交換器60で冷水Cと加熱流体Sとの間の熱交換により生成された温水Mを温水配管63から導出する。前記加熱流体配管62にはこれの内部を流動する加熱流体Sの通過量を調節する調節弁64が設けられ、前記温水配管63には熱交換器60の出口側近傍に温度センサ65が設けられている。
前記給湯装置では、給水源WAからの冷水Cと加熱流体供給源VAからの加熱流体Sとが熱交換器60で熱交換されることによって温水Mが生成され、この温水Mがカラン66の開弁により外部へ取り出される。前記熱交換器60を通った熱交換後の加熱流体Sは、復水(ドレン)として排出通路67から外部へ排出される。また、この給湯装置では、熱交換器60で生成した温水Mの温度を温度センサ65で感知し、その感知した温水Mの温度情報をフィードバック回路68により調節弁64へフィードバックして、温水Mの温度が高ければ調節弁64を絞ることにより熱交換器60への加熱流体Sの供給量を減少させ、逆に温水Mの温度が低ければ調節弁64を開くことにより加熱流体Sの供給量を増加させて、所定温度の温水Mを取り出すようになっている。
特開2006−112719号公報
しかしながら、前記給湯装置では、温水Mの温度を感知して、その感知した温度に基づき調節弁64をフィードバック制御する複雑な機構を必要とするので、コスト高となるだけでなく、温度センサ65による温水Mの温度の感知遅れや加熱流体Sの供給量変化に対する温水Mの温度変化の遅れなどに起因して、温水Mの温度が不測に変化し易いので、常に所定温度の温水Mを安定に生成するのが難しい。しかも、カラン66を閉弁しているとき、つまり、温水Mを使用していないときでも、熱交換器60で生成した温水Mの温度が温度センサ65で常に感知されているから、この温度情報に基づきフィードバック回路68が調節弁64をフィードバック制御して温水Mの温度を所定値に保つように熱交換器60へ加熱流体Sの供給量を制御するので、温水Mの不使用時であっても、温水配管63での放熱によっ温水Mの温度が低下すると、加熱流体Sが熱交換器60に供給されて無駄に消費されてしまう。
本発明は、前記従来の課題に鑑みてなされたもので、簡単で安価な構成としながらも、所定温度の温水を常に安定に生成することができるとともに、蒸気のような加熱流体が無駄に消費されることがない加熱システムを提供することを目的としている。
上記目的を達成するために、本発明に係る加熱システムは、加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、給水源からの冷水を前記熱交換器に導く冷水通路と、前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスと、を備えている。ここで、温水とは、40℃ないし60℃程度の温湯のみならず、60℃を越える高温の温水をも含む。
この構成によれば、例えばカランを閉弁して温水を使用していないときには、冷水通路内を冷水が流れておらず、前記冷水通路に設けられたオリフィスの上流側と下流側との間で差圧が発生しない。この場合、オリフィスの上流側と下流側の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁は閉弁しているので、熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、例えばカランを開放して温水を使用しているときには、冷水通路内を冷水が熱交換器に向かって流れ、前記冷水通路に設けられたオリフィスの上流側と下流側との間で冷水の差圧が発生する。したがって、オリフィスの上流側と下流側の冷水の差圧に応じて熱交換器への加熱流体の供給量を調節する調節弁を開弁し、この調節弁によって熱交換器へ加熱流体が供給される。このとき、前記差圧の大小により前記調節弁の開度が調節される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体が効率的に使用される。また、温水の温度を検知して調節弁をフィードバック制御しないので、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。また、従来システムが温水の温度に基づき調節弁をフィードバック制御する複雑な機構を設けるのに比較して、簡単で安価な構成となり、その結果、コストダウンを達成できる。
ここで、温水の流量、つまり冷水の流量が少ないときは、冷水がオリフィスのみを通過し、そのときに前記差圧が生じる。他方、冷水の流量が多いときは、オリフィス前後の差圧が所定値を超える結果、圧力弁が開弁し、冷水がオリフィスと圧力弁の両方を通過するので、十分な流量が確保される。
本発明において、前記冷水通路に設けた仕切り壁に前記圧力弁の弁口と前記オリフィスとを形成することが好ましい。この構成によれば、構造がコンパクトになるとともに、オリフィスの上流側と下流側との間に発生する差圧を直接的に圧力弁の上流側と下流側とに作用させることができ、圧力弁の応答性が向上する。
また、本発明において、前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、下流側導入通路を介して前記圧力弁の下流側の冷水が導入される下流側導入室と、前記両導入室を仕切るダイヤフラムとを有し、前記上流側導入通路、下流側導入通路、上流側導入室および下流側導入室により前記バイパス経路が形成されており、前記上流側導入室および下流側導入室が前記オリフィスにより連通していることが好ましい。この構成によれば、冷水がオリフィスを通過することによる差圧が、ダイヤフラムで仕切られ、かつオリフィスにより連通されている上流側導入室と下流側導入室との間に発生するので、その差圧によりダイヤフラムを一層有効、且つ高い応答性で変形させることができ、調節弁の応答性が向上する。
本発明の加熱システムによれば、温水を使用していないときには、冷水通路内を冷水が流れない結果、オリフィスの上流側と下流側との間で差圧が発生しないので、前記差圧に応じて作動する調節弁は閉弁しており、熱交換器へ加熱流体が供給されないから、加熱流体が無駄に消費されることはない。一方、温水を使用しているときには、冷水通路内を冷水が熱交換器に向かって流れ、オリフィスの上流側と下流側との間で冷水の差圧が発生し、この差圧に応じて前記調節弁を開弁し、この調節弁によって熱交換器へ加熱流体が供給される。このとき、前記差圧の大小により調節弁の開度が調節される。このように、温水を使用していないときには加熱流体が消費されることがなく、温水を使用しているときにのみ加熱流体が消費され、しかも加熱流体の供給量がこの差圧に応じて制御されるので、加熱流体が効率的に使用され、また、温度検出の遅れがなくなり、常に安定した温度の温水が得られる。また、温水の温度に基づき調節弁をフィードバック制御する複雑な機構を設けるのと比較して、簡単で安価な構成となり、その結果、コストダウンを達成できる。
以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は本発明の第1実施形態に係る加熱システム10Aを示す系統図である。この加熱システム10Aは、蒸気のような加熱流体Sの熱で被加熱流体である冷水Cを加熱することにより温水Mを生成する熱交換器11を備えている。熱交換器11から導出される前記温水Mは、後述する湯水混合弁23からの温水M1よりも高温なので、以下では「熱水M」と呼ぶ。熱交換器11としては、例えば複数のプレートを重ねて、その間に図示しない加熱流体Sの通路と冷水Cの通路とを、前記プレートを介して交互に配置したプレート型熱交換器と呼ばれるものが、小型で熱交換容量が大きいことから、好ましい。
また、前記加熱システム10Aは、外部の給水源WAから供給される冷水Cを前記熱交換器11に導く冷水通路12と、加熱流体供給源VAから供給される蒸気のような加熱流体Sを前記熱交換器11に導く加熱流体通路13と、前記熱交換器11で生成された熱水Mを導出する温水導出通路14と、熱交換器11を通った加熱後の加熱流体Sを復水(ドレン)として排出する復水排出通路15とを有している。
前記冷水通路12には、冷水通路12を冷水Cの流れ方向と直交する方向に延びて、冷水通路12を上流側と下流側に仕切る仕切り壁51が設けられており、この仕切り壁51に、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁20と、この圧力弁20をバイパスする冷水Cのバイパス経路21Aと、このバイパス経路21Aを形成するオリフィス16Aとが設けられている。この具体的な構成は、図2に示すように、冷水通路12を構成する冷水配管50内に、冷水Cの流れ方向と直交する方向に延びる仕切り壁51を設け、この仕切り壁51に、オリフィス16Aと圧力弁20の弁口22とが並んで形成されている。オリフィス16Aは、冷水配管50内において上流側から下流側へ流れる冷水Cの通過流量を絞るように形成された小孔である。圧力弁20は、弁口22を開閉する弁体20aが圧縮コイルばね40のばね力により弁口22に押し付けられている。圧縮コイルばね40は、弁体20aとばね受け部材36との間に介装されており、ばね受け部材36に当接する調整ねじ41を仕切り壁51に向け進退させることにより圧縮コイルばね40のばね力を変化させて、開弁圧力、つまり弁体20aが弁口22を開放するときの仕切り壁51の上流側と下流側の圧力差を所定値に調整できるようになっている。
前記冷水配管50には、さらに、仕切り壁51を挟んで上流側の近傍箇所から上流側導入通路18を形成する上流側導入管52が分岐され、かつ仕切り壁51の下流側の近傍箇所から下流側導入通路19を形成する下流側導入管53が分岐されている。前記上流側導入管52および下流側導入管53の各先端は、図1の調節弁17に連結されている。この調節弁17は、加熱流体通路13に配設されて、圧力弁20の上流側と下流側の差圧に応じて開度が調整されることにより熱交換器11への加熱流体Sの供給量を調節するものである。つぎに、この調節弁17の具体的構造について、図3を参照しながら説明する。
図3は調節弁17の閉弁状態を示したもので、調節弁17は、上部に加熱流体通路13が形成されたケーシング25内に、鉛直方向に配置された弁棒26が摺動自在に支持されており、この弁棒26の一端部(下端部)に、調節弁17の駆動部27が設けられているとともに、弁棒26の他端(上端)に、加熱流体通路13を開閉するボール弁からなる弁体部28が配置されている。
前記駆動部27は、前記オリフィス16Aおよび圧力弁20の上流側の圧力と下流側の圧力との差圧を受けて弁棒26を軸方向に駆動して弁体部28を前記軸方向に移動させることにより弁開度を調節するものであり、弁棒26の下端に設けられた円板状の受け部材26aと、この受け部材26aに重ね合わせ状態で固定されたダイヤフラム30と、このダイヤフラム30により上下に仕切られた下流側導入室39および上流側導入室38とを有している。上流側導入室38には、図2のオリフィス16Aの上流側の冷水Cが上流側導入路18を通って導入され、下流側導入室39には、オリフィス16Aの下流側の冷水Cが下流側導入路19を通って導入される。弁体部28は、この弁体部28とケーシング25との間に介装された圧縮コイルばね29のばね力を受けて、弁棒26の上端または弁座25aに押し付けられる。
弁棒26とケーシング25との摺動面部位にはOリング42が取り付けられて、気密性および液密性が確保されており、これにより、下流側導入通路19から下流側導入室39に導入された冷水Cが加熱流体通路13に侵入しないように配慮されている。なお、図1に明示するように、この実施形態では弁棒26と弁体部28とが別体になった場合を例示しているが、これら弁棒26と弁体部28が一体的に形成されたものであってもよい。
また、図1に示すように、熱交換器11から導出された熱水Mを給湯出口となる給湯口弁(カラン)24に導く温水導出通路14には、熱交換器11からの熱水Mに給水源WAからの冷水Cを混合して、取り出すべき温水M1を所望の温度に調節する湯水混合弁23が配設されている。
さらに、冷水通路12から分岐して前記湯水混合弁23に至る冷水バイパス通路37および冷水通路12における上流側導入通路18の接続点よりも上流側の箇所には、逆止弁31,32がそれぞれ配設されている。また、復水排出通路15には、加熱流体Sである蒸気をトラップして復水のみを排出する蒸気トラップ33が配設されている。冷水通路12における圧力弁20と熱交換器11との間の箇所から分岐した冷水排出通路34には、給湯口弁24からの温水M1の取り出しが停止されたときに熱交換器11内の熱水Mの圧力が上昇し過ぎるのを防止する逃し弁35が配設されている。
つぎに、前記加熱システム10Aの作用について説明する。図1の給湯口弁24が閉じられた温水M1の不使用時には、冷水通路12内を冷水Cが流れないので、冷水通路12におけるオリフィス16Aを挟んで上流側と下流側の差圧がゼロとなり、かつ上流側導入室38と下流側導入室39の差圧もゼロとなる。そのため、図3に示すように、調節弁17は、弁体部28が圧縮コイルばね29のばね力により弁座25aに押し付けられて閉弁状態に保持され、加熱流体通路13が閉塞されて加熱流体Sの図1に示す熱交換器11への供給が停止される。すなわち、この加熱システム10Aでは、給湯口弁24の閉弁による冷水通路12内の冷水Cの流動停止をオリフィス16Aの上流側と下流側との差圧がゼロとなるのに基づき機械的に検知して、調節弁17を閉弁状態に保持する。したがって、従来の加熱システムのように温度センサで感知した温水の温度情報に基づき調節弁を常にフィードバック制御する場合とは異なり、給湯口弁24が開かれない限り、つまり温水M1が使用されない限り、熱交換器60へ加熱流体Sが供給されないので、加熱流体Sの無駄な消費を防止することができる。
給湯口弁24が開かれたときには、給水源WAからの冷水Cが冷水通路12のバイパス経路21Aに設けられたオリフィス16Aを通過して熱交換器11に流入する。この冷水Cがオリフィス16Aを通過するときには、ベンチュリ効果によって、冷水通路12におけるオリフィス16Aの下流側近傍の圧力が上流側近傍の圧力よりも低下する。この差圧が上流側導入通路18および下流側導入通路19を介して、図3の駆動部27の上流側導入室38および下流側導入室39に作用するので、上流側導入室38の圧力が下流側導入室39の圧力も大きくなる。この両導入室38,39間に生じる差圧により、図4に示すように、ダイヤフラム30が上方に向け変形されて受け部材26aを押し上げるので、それに伴って弁棒26が軸方向上方に駆動される。これにより、弁体部28が圧縮コイルばね29のばね力に抗して上方に移動され、調節弁17が開弁状態となり、加熱流体Sが加熱流体通路13を通って熱交換器11に供給される。
したがって、加熱流体通路13を通って熱交換器11に導かれた加熱流体Sとオリフィス16Aを通って熱交換器11に導かれた冷水Cとの間の熱交換により生成され、さらに湯水混合弁23で温度調節された温水M1が給湯口弁24から取り出される。ここで、給湯口弁24が小さな開度に開かれて比較的少量の温水M1が使用される場合には、圧力弁20が圧縮コイルばね40のばね力によって閉弁状態に保持され続けて、熱交換器11にはオリフィス16Aを通過した少量の冷水Cが供給される。他方、調節弁17は、両導入室38,39間の差圧に応じた開度となって、図1の熱交換器11への加熱流体Sの供給量を冷水Cの供給量に対応した少量に調節する。
一方、比較的大量の温水M1を使用する目的で給湯口弁24が大きな開度に開かれたときには、オリフィス16Aを通過する冷水Cの流量が増大して、仕切り壁51に対し上流側と下流側との間の差圧が圧力弁20の圧縮コイルばね40のばね力とバランスする所定値以上となったときに、圧力弁20が開弁して、オリフィス16Aよりも大径の弁口22を通過した大量の冷水Cが熱交換器11に供給される。このとき、圧力弁20の上流側と下流側との大きな差圧が上流側導入室38および下流側導入室39に作用して、調節弁17が大きな開度に調節され、加熱流体Sの供給量が増大する。
上述のように、この加熱システム10Aでは、温水M1の使用量が少量のときは冷水Cが小径のオリフィス16Aのみを通過して、オリフィス16Aの上流側と下流側との間に生じる差圧により応答性良く調節弁17を作動させ、温水M1の使用量が大量のときは圧力弁20を開弁させて、その弁口22およびオリフィス16Aの両方を通して大量の冷水Cを熱交換器11に供給するようにしているので、調節弁17による熱水Mの温度調整の応答性の向上と大量の熱水の確保の双方を同時に達成することができる。換言すれば、大きな差圧を得るためにオリフィス16Aを小径に形成した場合には温水M1の大きな使用量が確保できず、一方、温水M1の大きな使用量を確保するためにオリフィス16Aを大径に形成した場合には上流側と下流側との間の差圧が小さくなることから、調節弁17による温度調節が困難となるが、この加熱システム10Aは、オリフィス16Aと圧力弁20とを並列に設けることにより、前述の相反する二つの課題を同時に解決している。
この実施形態の加熱システム10Aは、従来の加熱装置のように感知した温水温度に基づいて調節弁をフィードバック制御する複雑な機構に代えて、オリフィス16Aおよび圧力弁20の各々の上流側と下流側との間に生じる差圧に応じて調節弁17の開度を調整することにより熱交換器11への加熱流体Sの供給量を調節する簡単な構成としているので、コストダウンを図ることができる。それに加えて、従来の加熱システムにおける温度センサによる温水温度の感知遅れや加熱流体の供給量変化に対する温水の温度変化の遅れなどに起因する温水の不測の温度変化が生じないので、湯水混合弁23を経て常に所定温度の温水M1を安定して生成することができる。
図5は本発明の第2実施形態に係る加熱システム10Bを示す系統図であり、同図において、図1と同一若しくは相当するものには同一の符号を付して重複する説明を省略する。この加熱システム10Bが図1のものと相違するのは、冷水通路12に図2と同様の圧力弁20のみを設ける一方で、オリフィス16Bを、調節弁17におけるダイヤフラム30を貫通して設け、このオリフィス16Bを介して上流側導入室38と下流側導入室39とを連通させた構成のみである。したがって、この加熱システム10Bでは、圧力弁20をバイパスするバイバス経路21Bが、上流側導入通路18を形成する上流側導入管52、下流側導入通路19を形成する下流側導入管53、上流側導入室38および下流側導入室39により形成されており、そのバイパス経路21Bにオリフィス16Bが設けられている。
図5の圧力弁20およびオリフィス16Bの具体的な構成について説明する。図6に示すように、冷水通路12に設けられた仕切り壁51には圧力弁20のみが設けられている。他方、図7に示すように、ねじ部材43が、ダイヤフラム30の挿通孔を貫通して、受け部材26aのねじ孔にねじ込み固定されており、このねじ部材43の中心部に軸方向に形成された小径の貫通孔によってオリフィス16Bが形成されている。ねじ部材43の外周にはブッシュ44が配置されており、ねじ部材43の締結によりダイヤフラム30が圧潰するのを防止している。なお、オリフィス16Bは、この実施形態において、ねじ部材43を軸方向に貫通する小孔としたが、二点鎖線で示すように、ケーシング25に上流側導入室38および下流側導入室39を互いに連通するよう形成した小孔を設けるようにしてもよい。
この加熱システム10Bは、基本的に第1実施形態とほぼ同様に作用するので、第1実施形態と異なる作用のみについて説明する。まず、図5の温水Mの不使用時の動作は第1実施形態と同一である。給湯口弁24が開かれたときには、給水源WAからの冷水Cが、上流側導入通路18、上流側導入室38、オリフィス16B、下流側導入室39および下流側導入通路19からなるバイパス経路21Bを通って流れる。このとき、オリフィス16Bに対し上流側導入室38内の圧力が下流側導入室38内の圧力よりも大きくなり、この両導入室38,39の間に生じる差圧により、ダイヤフラム30が図4の第1実施形態の場合とほぼ同様に上方に向け変形されて、図7の受け部材26aを押し上げるので、弁棒26が軸方向上方に駆動される。これにより、弁体部28が上方に移動して調節弁17が開弁状態となり、加熱流体Sが熱交換器11に供給される。上流側導入室38と下流側導入室39間の差圧が増大したとき、圧力弁20が開弁して、大量の温水M1が確保される。
この加熱システム10Bにおいては、第1実施形態で説明したのと同様の効果を得ることができるのに加えて、一般にゴムなどの耐熱性の低い素材からなるダイヤフラム30が、バイパス経路21Bを通って流れる流れる冷水Cにより冷却されるので、加熱流体Sからの伝熱によるダイヤフラム30の熱劣化が防止されて、調節弁17の弁動作が安定化するとともに、ダイヤフラム30の寿命が長くなる。
本発明の第1実施形態に係る加熱システムを示す系統図である。 同上の加熱システムにおけるオリフィスおよび圧力弁の近傍を示す縦断面図である。 同上の加熱システムにおける調節弁の閉弁状態を示す縦断面図である。 同上の調節弁の開弁状態を示す縦断面図である。 本発明の第2実施形態に係る加熱システムを示す系統図である。 同上の加熱システムにおける圧力弁の近傍を示す縦断面図である。 同上の加熱システムにおける調節弁の閉弁状態を示す縦断面図である。 従来の加熱システムの系統図である。
符号の説明
10A、10B 加熱システム
11 熱交換器
12 冷水通路
13 加熱流体通路
16A、16B オリフィス
17 調節弁
18 上流側導入通路
19 下流側導入通路
20 圧力弁
21A、21B バイパス経路
22 弁口
27 駆動部
28 弁体部
30 ダイヤフラム
38 上流側導入室
39 下流側導入室
51 仕切り壁
S 加熱流体
C 冷水
M 温水(熱水)
M1 温水
VA 加熱流体供給源
WA 給水源

Claims (3)

  1. 加熱流体と冷水との間の熱交換により温水を生成する熱交換器と、
    加熱流体供給源からの前記加熱流体を前記熱交換器に導く加熱流体通路と、
    給水源からの冷水を前記熱交換器に導く冷水通路と、
    前記冷水通路に設けられて、上流側の圧力が下流側の圧力よりも所定値以上大きくなったときに開弁する圧力弁と、
    前記加熱流体通路に設けられて、前記圧力弁の上流側と下流側の差圧に応じて前記熱交換器への加熱流体の供給量を調節する調節弁と、
    前記圧力弁をバイパスする冷水のバイパス経路に設けられたオリフィスと、
    を備えた加熱シテスム。
  2. 請求項1において、前記冷水通路に設けた仕切り壁に前記圧力弁の弁口と前記オリフィスとが形成されている加熱システム。
  3. 請求項1において、前記調節弁は、前記加熱流体通路を開閉する弁体部を駆動する駆動部が、上流側導入通路を介して前記圧力弁の上流側の冷水が導入される上流側導入室と、下流側導入通路を介して前記圧力弁の下流側の冷水が導入される下流側導入室と、前記両導入室を仕切るダイヤフラムとを有し、
    前記上流側導入通路、下流側導入通路、上流側導入室および下流側導入室により前記バイパス経路が形成されており、
    前記上流側導入室および下流側導入室が前記オリフィスにより連通している加熱システム。
JP2006295134A 2006-10-31 2006-10-31 加熱システム Active JP4954668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295134A JP4954668B2 (ja) 2006-10-31 2006-10-31 加熱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295134A JP4954668B2 (ja) 2006-10-31 2006-10-31 加熱システム

Publications (2)

Publication Number Publication Date
JP2008111596A true JP2008111596A (ja) 2008-05-15
JP4954668B2 JP4954668B2 (ja) 2012-06-20

Family

ID=39444196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295134A Active JP4954668B2 (ja) 2006-10-31 2006-10-31 加熱システム

Country Status (1)

Country Link
JP (1) JP4954668B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080619A (ja) * 2009-10-05 2011-04-21 Miyawaki Inc 給湯システム
JP7378178B1 (ja) * 2022-11-25 2023-11-13 株式会社ミヤワキ 蒸気調整弁
JP7465010B1 (ja) 2022-11-25 2024-04-10 株式会社ミヤワキ 蒸気調整弁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130982A (ja) * 1986-11-21 1988-06-03 Diesel Kiki Co Ltd 制御弁
JPH0213792A (ja) * 1988-06-30 1990-01-18 Motoyama Seisakusho:Kk 熱交換器用温度調整装置
JP2000241023A (ja) * 1999-02-19 2000-09-08 Miyawaki Inc 給湯装置
JP2006112719A (ja) * 2004-10-15 2006-04-27 Miyawaki Inc 蒸気給湯システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130982A (ja) * 1986-11-21 1988-06-03 Diesel Kiki Co Ltd 制御弁
JPH0213792A (ja) * 1988-06-30 1990-01-18 Motoyama Seisakusho:Kk 熱交換器用温度調整装置
JP2000241023A (ja) * 1999-02-19 2000-09-08 Miyawaki Inc 給湯装置
JP2006112719A (ja) * 2004-10-15 2006-04-27 Miyawaki Inc 蒸気給湯システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080619A (ja) * 2009-10-05 2011-04-21 Miyawaki Inc 給湯システム
JP7378178B1 (ja) * 2022-11-25 2023-11-13 株式会社ミヤワキ 蒸気調整弁
JP7465010B1 (ja) 2022-11-25 2024-04-10 株式会社ミヤワキ 蒸気調整弁

Also Published As

Publication number Publication date
JP4954668B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4910163B2 (ja) 恒温液循環装置及び該装置における温度制御方法
KR100721460B1 (ko) 이중관 열교환기의 초기 고온수 출탕 방지 장치
US7819333B2 (en) Air conditioning circuit control using a thermostatic expansion valve and sequence valve
RU2314475C9 (ru) Многоступенчатый теплообменный аппарат
JP4954668B2 (ja) 加熱システム
KR101331629B1 (ko) 판형 열교환기
JP4943117B2 (ja) 加熱システム
JP4943118B2 (ja) 加熱システム
RU2570485C2 (ru) Клапанное устройство теплообменника
JP4889380B2 (ja) 加熱システム
JP5103040B2 (ja) 加熱システム
JP5463096B2 (ja) 熱水生成装置およびこれを用いた蒸気給湯システム
JP2006112719A (ja) 蒸気給湯システム
JP5103495B2 (ja) 加熱システム
JP4728815B2 (ja) 温度調節弁とこれを備えた熱交換装置
JP4304142B2 (ja) 蒸気調節弁とこれを備えた熱交換装置および蒸気給湯システム
JP3476619B2 (ja) 膨張弁
US7343928B2 (en) Regulator insert with hydraulic damping in outlet
RU2674805C1 (ru) Отводящий узел с единственным соединением
KR20090047214A (ko) 순간식 개별 보일러의 시스템 분배기에 장착되는미세유량조절밸브
JP2004078347A (ja) 定流量バイパス流路付きバルブ
JP2003240138A (ja) 流量制御装置
KR200428505Y1 (ko) 난방시스템
JPS5920941B2 (ja) 消費水の加熱装置
JP5643557B2 (ja) 熱応動式スチームトラップ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250