JP2008102054A - 半導体基板保持容器 - Google Patents
半導体基板保持容器 Download PDFInfo
- Publication number
- JP2008102054A JP2008102054A JP2006285777A JP2006285777A JP2008102054A JP 2008102054 A JP2008102054 A JP 2008102054A JP 2006285777 A JP2006285777 A JP 2006285777A JP 2006285777 A JP2006285777 A JP 2006285777A JP 2008102054 A JP2008102054 A JP 2008102054A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- substrate holding
- holding container
- holding
- evaluated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Sampling And Sample Adjustment (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【課題】半導体基板を用いた被評価液の品質評価において、一度容器に接触した被評価液が再び半導体基板に接触しない構造を持ち、基板保持容器からの汚染を受けずに被評価液中の不純物を高精度で測定する半導体基板保持容器を得ることを目的とする。
【解決手段】本発明に係る半導体基板保持容器1は、密閉した内部空間である基板保持室3と基板保持室3に半導体基板4を出し入れする基板出入り口とを有する保持容器本体2と、基板保持室3に保持容器本体3の内壁面とは間隔を有して半導体基板4を中空状態で保持する保持体5と、基板保持室3に保持された半導体基板4上に被評価液6を滴下する給水口7と、半導体基板4上から落下した被評価液6を排水する排水口8とを備える。
【選択図】図1
【解決手段】本発明に係る半導体基板保持容器1は、密閉した内部空間である基板保持室3と基板保持室3に半導体基板4を出し入れする基板出入り口とを有する保持容器本体2と、基板保持室3に保持容器本体3の内壁面とは間隔を有して半導体基板4を中空状態で保持する保持体5と、基板保持室3に保持された半導体基板4上に被評価液6を滴下する給水口7と、半導体基板4上から落下した被評価液6を排水する排水口8とを備える。
【選択図】図1
Description
本発明は、半導体基板洗浄に用いる純水等、半導体基板に適用される液体の水質ないし液質評価を行う際に使用される半導体基板保持容器に関するものである。
洗浄工程に使用する純水に含まれる不純物の濃度が、半導体基板の表面の清浄度に関係し、製品の品質や歩留まりに影響を与えるため、正確な純水の不純物分析が必要とされている。従来、純水の水質評価方法は、純水そのものを容器にサンプリングして不純物分析を行う方法が一般的である。この評価方法では、クリーンルーム外に設置されている純水製造設備等の定期管理およびメンテナンス前後の水質評価を行う際には、外気からの不純物混入がないようにクリーンベンチのもとで水を容器に採取して不純物分析を行っている。
しかしながら、純水をサンプリングして行う不純物分析では、半導体技術の微細化・高性能化に伴い、純水自体の分析という従来の水質評価技術で異常を発見するのは感度的に困難になっていること、また、純水そのものを分析する方法であるため、その純水が基板に与える影響を直接評価することはできないという問題があった。一方、純水中の悪影響を及ぼす物質は水中からウエハ表面に付着する物質に含まれていることから、純水を直接分析して水質を評価しなくても基板に付着した物質を解析することによって、実プロセスへの影響をみることができる。よって、純水を半導体基板に接触させたときの半導体基板の表面に付着する物質を不純物量としてみる水質評価が求められている。
上記の水質評価方法で、半導体基板上に不純物を付着させる際に用いる従来の半導体基板保持容器は、下記特許文献1に開示されているように、密閉した容器に基板を収納し、その容器内に純水を流し込む構造となっている。この半導体基板保持容器を用いることで、クリーンルーム外にある純水製造設備内の純水製造工程中の純水を半導体基板と接触させて分析することができ、外気からの汚染を低下させて、より正確な水質の評価ができる。
しかしながら、特許文献1の半導体基板保持容器を用いた純水の水質評価方法では、容器内部が純水で満たされており、容器に接触した純水が再び半導体基板に接触するような構成となっているため、容器内部に付着した汚染が通水中に溶出して半導体基板に付着し、本来測定したい純水中不純物の付着量が不明となる場合があるという問題がある。この容器内部の汚染の原因は、通水前に行う容器の洗浄不足、またはサンプリング前のパージを含め通水時に純水中の不純物が容器内壁に蓄積することである。
現在の半導体製造で使用する純水は極微量の不純物分析が必要である。よって、容器に付着した汚染は通水前に洗浄で除去すべきだが、実際には完全除去は困難であり、不純物の半導体基板付着量が水質によるものか、容器の洗浄不足により容器に付着した不純物によるものかの切り分けが難しい。この保持容器への汚染は基板の出し入れや運搬時に生じやすく、その後の通水時に保持容器の汚染は水中を拡散して半導体基板へ付着する。また、パージは容器内部を洗浄する目的で行うが、水質によってはパージ量が多いほど内壁汚染を加速する結果となり半導体基板付着量もパージ量に左右される結果となる。
本発明における半導体基板保持容器は上記のような問題点を解決するためになされたものであり、一度容器に接触した純水等の被評価液が再び半導体基板に接触しない構造を持ち、容器からの汚染を受けずに被評価液中の不純物を高精度で測定することを目的としている。
本発明に係る半導体基板保持容器は、半導体基板に被評価液を接触させるのに用いる半導体基板の保持容器であって、密閉した内部空間である基板保持室と前記基板保持室に半導体基板を出し入れする基板出入り口とを有する保持容器本体と、前記基板保持室に前記保持容器本体の内壁面とは間隔を有して前記半導体基板を中空状態で保持する保持体と、前記基板保持室に保持された前記半導体基板上に前記被評価液を滴下する給水口と、前記半導体基板上から落下した前記被評価液を排水する排水口とを備える。
本発明における半導体基板保持容器は、一度容器にふれた純水が再び半導体基板に触れない構造を持つことにより、通水時に受ける保持容器からの汚染の影響を取り除くことができ、被評価液の品質評価を高精度に行うことができる。
[実施の形態1]
図1は本発明の実施の形態1による半導体基板保持容器1を示す断面図であり、半導体基板保持容器1とは、半導体基板4に純水などの被評価液6を接触させて水質評価を行う際に用いる半導体基板4の保持容器のことである。
図1は本発明の実施の形態1による半導体基板保持容器1を示す断面図であり、半導体基板保持容器1とは、半導体基板4に純水などの被評価液6を接触させて水質評価を行う際に用いる半導体基板4の保持容器のことである。
半導体基板保持容器1の構成について説明する。半導体基板保持容器1は、密閉した内部空間である基板保持室3と基板保持室3に半導体基板4を出し入れする基板出入り口(図示せず)とを有する保持容器本体2と、基板保持室3に保持容器本体2の内壁面とは間隔を有して半導体基板4を中空状態で保持する支柱5aと基板固定部5bからなる保持体5と、保持容器本体2の天井に設置され基板保持室3に保持された半導体基板4上に被評価液6を滴下するノズル等からなる給水口7と、半導体基板4上から落下した被評価液6を排水する排水口8と、被評価液6を排水口8に集める傾斜部21とを備えている。また、この保持容器本体2は3本以上の足9で支えられている。
保持容器本体2の外形は例えば円形で、その大きさは半導体基板4の面積より大きい。また、保持容器本体2の内壁面と半導体基板4との間隔とは、半導体基板4に接触した純水が保持容器本体2の内壁面で跳ね返り再び半導体基板4に接触しない距離が望ましい。また、半導体基板4が設置されている中空状態とは、半導体基板4から流れ落ちた被評価液6が保持容器本体2の床で跳ね返り再び半導体基板4に接触しない位置が望ましい。
容器の材質は、下記実施例1ではポリカーボネートを用いているが、金属、有機物、無機質等の不純物を放出しにくい材質がよく、例えばポリテトラフルオロエチレンや石英、加工しやすいものとしてはポリエーテルエーテルケトンやポリブチレンテレフタレート、ポリプロピレンなどがよい。また、保持体5は溶出の少ない導電性樹脂で作られており、半導体基板の帯電を防止し、さらには外部機器を接続することにより電位の制御を可能としている。
被評価液6の給水から排水までは以下のようにして行われる。純水などの被評価液6はノズル等からなる給水口7より給水され、半導体基板4表面の中央部に滴下される。この半導体基板4は支柱5aと基板固定部5bからなる保持体5により点接触状態で保持されている。滴下された被評価液6は半導体基板4の表面の中心から保持体5に向かって同心円状に常に一方向に向かって広がっていく。半導体基板4から流れ落ちた被評価液6は傾斜部21によって排水口8に集められ、容器外に排出される。このとき、半導体基板4と保持体5との接触は半導体基板4の側面および裏面と保持体5との点接触のみであるため、半導体基板4表面上を同心円状に広がっていき保持体5に接触した被評価液6が保持体5により跳ね返り再び半導体基板4に接触することはない。よって保持体5からの汚染の影響を受けないため、高精度な水質評価を行うことができる。また、保持体5にそって被評価液6が伝い落ち、同時に傾斜部21によって被評価液6が速やかに排水口8に集められることで、保持容器本体2の床に溜まった水が流れ落ちてくる被評価液6によって跳ねて半導体基板4に接触することはない。よって、保持容器本体2からの汚染の影響を受けないため、高精度な水質評価を行うことができる。
上記実施の形態では被評価液6を純水で説明したが、本発明を適用できる技術分野は半導体基板に対する純水の水質評価に限らず、半導体基板に対する薬液等あらゆる液体(被評価液)の液中不純物評価にも用いることができる。薬液の液中不純物評価を行う際、薬液自体の分析よりも半導体基板に接触させて半導体基板に付着した物質を不純物付着量として品質評価を行う方が高感度であるという理由から、薬液製造メーカーではプラント内の各ポイントにおいての不純物評価が可能であり、同様の理由でユーザ側の製造ラインにおいても評価が可能である。
以上のように保持容器本体2に接触した水が、その後に半導体基板4に再び接触しない構造とすることで、半導体基板4は保持容器本体2の不純物を吸着しないため保持容器本体2からの汚染を防ぐことが可能となり、高精度な測定を行うことができる。
[実施の形態2]
図2は本発明の実施の形態2による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、ノズル等からなる給水口7に開閉自在なバルブ10と、排水口8に開閉自在なバルブ11および通水中も外気の混入を防ぐ排水トラップ12とをさらに添設した構成となっている。
図2は本発明の実施の形態2による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、ノズル等からなる給水口7に開閉自在なバルブ10と、排水口8に開閉自在なバルブ11および通水中も外気の混入を防ぐ排水トラップ12とをさらに添設した構成となっている。
給水口のバルブ10と排水口のバルブ11は、半導体基板保持容器1をクリーンルーム外に持ち出す際は共に閉状態とし、通水する際のみ開状態にすることにより、半導体基板保持容器1は外気が入らない密閉構造となり、クリーンルーム外で通水作業をする際でも半導体基板4は外界からの汚染を受けない。
図2では給水口に添設したバルブ10に三方弁を用いており、水配管から保持容器本体2への流路、および水配管から排水への流路の開閉切り替えが可能である。保持容器本体2と水配管とを接続する際は、保持容器本体2に水が流れないよう水配管から排水への流路が開くようにバルブ10を切り替えることで、搬送中にバルブ10に付着する異物や、バルブ接続作業時に低清浄度雰囲気および人から付着する異物や、水配管の特に先端部の汚染等をパージにより除去することができる。十分にパージを行った後、三方弁を切り替えて水配管から保持容器本体2への流路を開状態にし、容器内に水を通水する。
また、排水口8には排水トラップ12を添設して通水中も外気が混入しない構成とし、半導体基板4の出し入れはクリーンルーム内で実施するため、半導体基板4は外界からの汚染を受けない。水配管は汚染されないように、測定を行わないときも常にパージを行っておくことが望ましい。
以上のように、バルブ10、11および排水トラップ12を備えることにより、運搬および通水時に密閉状態を保つと同時に、水配管を接続するときの汚染や保持容器本体2に接続した水配管およびバルブ自体の汚染をパージにより除去することが出来る構造となり、外界からの影響を防ぐことができ、クリーンルーム外でも高精度な測定を行うことができる。
[実施の形態3]
図3は本発明の実施の形態3による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、フィルタ13と、基板保持室3に保持されている半導体基板4の近傍に設置されフィルタ13に接続されるマルチノズル14とをさらに備えた構成となっている。
図3は本発明の実施の形態3による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、フィルタ13と、基板保持室3に保持されている半導体基板4の近傍に設置されフィルタ13に接続されるマルチノズル14とをさらに備えた構成となっている。
上記構成によりフィルタ13とマルチノズル14を介して保持容器本体2の基板保持室3にN2やドライエアーなどの乾燥気体を導入することができ、半導体基板4は保持容器本体2に入れたままで乾燥することができる。フィルタ13を通すことによって清浄度を維持しており、マルチノズル14を用いることによって半導体基板4上に勢いよく乾燥気体を吹き付けて半導体基板4に付いた水を吹き飛ばし、より速く乾燥させることができる。
以上のように、容器に入れたままで乾燥ができる構造とすることで、濡れたままの半導体基板4を保持容器本体2から出し入れするときに受ける汚染を防ぎ、高精度な測定を行うことができる。
[実施の形態4]
図4は本発明の実施の形態4による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、基板保持室3の気体を排出するポンプ15をさらに備えた構成となっている。
図4は本発明の実施の形態4による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、基板保持室3の気体を排出するポンプ15をさらに備えた構成となっている。
上記構成により清浄度の高いポンプ15を用いて基板保持室3を真空状態にすることで、容器内部の反応性ガスを排除することができる。反応性ガスを排除する目的は2つあり、1つは純水などの被評価液6を滴下時に、空気中のCO2を巻き込み被評価液6が酸性化することを防ぐ目的がある。酸性化すると特にNa、Kなど軽元素の付着が少なくなるため不純物付着の挙動がわからず、実プロセスへの影響と相関がとれなくなる。もう1つの目的は、疎水面半導体基板での表面付着量評価を可能とするためで、N2導入により自然酸化膜の成長を防止することができる。
また、反応性ガスを排除する構造としては、真空ポンプ15以外にも実施の形態3の構造でN2やHeなどの不活性ガスを導入する構造でも良い。CO2除去だけを目的とするならばCO2除去用のケミカルフィルタをつけて、ドライエアーを流してもよい。
以上のように基板保持室3の反応性ガスの排除が行える構造とすることで、半導体基板4を用いた被評価液6の品質評価の利点の1つである実プロセスへの影響との相関を持った高精度な評価値を得ることができる。
[実施の形態5]
図5は本発明の実施の形態5による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、保持容器本体2を支える足9の長さを調整することにより基板保持室3に保持された半導体基板4の保持角度を調整する半導体基板保持角度調整機構16と、保持容器本体2の給水口7に添設され半導体基板4上に供給される被評価液6の量を制御する流量調整バルブ17を備えた構成となっている。
図5は本発明の実施の形態5による半導体基板保持容器1を示す断面図であり、実施の形態1の半導体基板保持容器1に、保持容器本体2を支える足9の長さを調整することにより基板保持室3に保持された半導体基板4の保持角度を調整する半導体基板保持角度調整機構16と、保持容器本体2の給水口7に添設され半導体基板4上に供給される被評価液6の量を制御する流量調整バルブ17を備えた構成となっている。
半導体基板4の不純物の付着量は半導体基板4表面近傍の被評価液6の流速から大きく影響を受けるため、流量調整バルブ17を設けることによって半導体基板4上に供給される被評価液6の量を制御し、かつ、半導体基板保持角度調整機構16により半導体基板4の保持角度を制御することで、半導体基板4上の被評価液6の流れを制御し、不純物の付着率を一定とすることができる。
流量を測定する装置は、排水ラインに設けるかもしくは給水ラインに設ける際には超音波流量計などの非接触の流量計を用いることで、水を汚染せずに測定することができる。
以上のように半導体基板上の被評価液の流れを制御する構造とすることで、不純物付着率を一定化することができ、より高精度な測定を行うことができる。
[実施の形態6]
図6は本発明の実施の形態6による半導体基板保持容器1を示す断面図であり、図7は本発明の実施の形態6による半導体基板保持容器1の要部を示す斜視図である。実施の形態1の半導体基板保持容器1に、モータ20と、モータ20によって回転する回転軸19と、基板保持室3に配置され回転軸19に接続される回転台18をさらに備えた構成となっており、回転台18の中心から一定の距離で複数の保持体5を設置し、各保持体5は基板保持室3に半導体基板4を保持容器本体2の内壁面とは間隔を有した中空状態で保持している。
図6は本発明の実施の形態6による半導体基板保持容器1を示す断面図であり、図7は本発明の実施の形態6による半導体基板保持容器1の要部を示す斜視図である。実施の形態1の半導体基板保持容器1に、モータ20と、モータ20によって回転する回転軸19と、基板保持室3に配置され回転軸19に接続される回転台18をさらに備えた構成となっており、回転台18の中心から一定の距離で複数の保持体5を設置し、各保持体5は基板保持室3に半導体基板4を保持容器本体2の内壁面とは間隔を有した中空状態で保持している。
給水口7は各半導体基板4の中央に被評価液6が滴下される位置にあり、ある時期の水質の被評価液6が接触した半導体基板4を容器の持ち運びやタイムラグなしに同時にもしくは順に複数枚作成することが可能で、かつ、基板保持室3はモータ20からの発塵が半導体基板4に影響を与えないように気密や気流が制御された構造としている。
基板保持室3で複数枚の半導体基板4に対してサンプリングを同時にする目的は1つが再現性確認目的で、もう1つが例えば有機、無機等の別の不純物分析に用いる目的である。上記構成によると、一定のスピードで回転台18を回すことで各半導体基板4が同様の条件で被評価液6と接触する。保持容器本体2内で複数枚の半導体基板4に対してサンプリングを順におこなう目的は、例えば純水製造設備メンテナンス後の経時変化を評価したい場合など時間に制約がある場合で、容器の持ち運びの手間・時間が省略されるため有効である。この場合は1枚目の半導体基板4中央に水が滴下され、規定時間が経過したら回転台18が2枚目の半導体基板4中央位置に水が滴下されるように回転し、3枚目、4枚目も同様に進行する。この方法により、例えばメンテナンス後1時間、2時間といった短時間においても純水中不純物の変動を確認できる。
以上のように、1つの基板保持室3に複数の半導体基板4を格納し、回転台18上に配置することにより複数のサンプリングを行える構造とすることで、同時に複数、もしくは連続した複数のサンプリングを行うことができ、利便性を向上させることができる。
[実施例1]
実施の形態1において、超純水の水質評価を行った。まず、直径8インチの半導体基板(半導体ウエハ)を8枚用意し、洗浄装置を用いて通常のRCA洗浄を行い、ウエハの表面を清浄化した。このうちの2枚について表面の金属元素(Ca)分析を行い、その結果、洗浄後の半導体基板表面のCa濃度は1×109atoms/cm2以下であった。
実施の形態1において、超純水の水質評価を行った。まず、直径8インチの半導体基板(半導体ウエハ)を8枚用意し、洗浄装置を用いて通常のRCA洗浄を行い、ウエハの表面を清浄化した。このうちの2枚について表面の金属元素(Ca)分析を行い、その結果、洗浄後の半導体基板表面のCa濃度は1×109atoms/cm2以下であった。
次に、このうちの5枚について以下に示す手順で超純水に接触させた。クリーンルーム(クラス100)内に設置されたクリーンベンチ内で図2に示した半導体基板保持容器に半導体基板を入れた。この半導体基板保持容器を同クリーンルーム内に設置されたドラフトに搬送して、試料水の配管と保持容器の試料水入り口(給水口)とを接続し、2L/minの流量で10時間の通水を行った。その後、クリーンベンチ内で半導体基板を取り出して乾燥させた。
以上の方法により超純水に接触させた半導体基板について、表面の金属元素(Ca)濃度は2.4±0.5×1010atoms/cm2であった。すなわち、2L/minの流量で10時間の通水でおよそ2.0×1010atoms/cm2のCaを付着させる水であると評価することができる。
[比較例1]
実施例1において洗浄を行った半導体基板の残りの1枚について、以下に示す手順で超純水に接触させた。実施例1と同様にクリーンルーム(100)内に設置されたクリーンベンチ内で図2に示す半導体基板保持容器に半導体基板を入れた。この半導体基板保持容器を同クリーンルーム内に設置されたドラフトに搬送して、試料水の配管と保持容器の試料水入り口(給水口)とを接続し、排水口を閉じた上で容器の上部に設けられた換気口(図2では図示せず)から空気を出すことで容器内に水を満たし、容器に触れた水が再び半導体基板に触れる状態にした。
実施例1において洗浄を行った半導体基板の残りの1枚について、以下に示す手順で超純水に接触させた。実施例1と同様にクリーンルーム(100)内に設置されたクリーンベンチ内で図2に示す半導体基板保持容器に半導体基板を入れた。この半導体基板保持容器を同クリーンルーム内に設置されたドラフトに搬送して、試料水の配管と保持容器の試料水入り口(給水口)とを接続し、排水口を閉じた上で容器の上部に設けられた換気口(図2では図示せず)から空気を出すことで容器内に水を満たし、容器に触れた水が再び半導体基板に触れる状態にした。
次に、換気口を閉じて排水口を開け、容器に水が満たされた状態で2L/minの流量で10時間の通水を行った。通水終了時は、換気口を開けることで排水口から水を抜いた。その後、クリーンベンチ内で半導体基板を取り出して乾燥させた。以上の方法により超純水に接触させた半導体基板について表面の金属元素(Ca)分析を行った。その結果、超純水との接触後の半導体基板表面のCa濃度は7.0×1010atoms/cm2であった。すなわち、2L/minの流量で10時間の通水中に容器から受けるCa汚染はおよそ5.0×1010atoms/cm2であり、純水から受ける汚染(すなわち実施例1の場合)よりも多いことがわかった。
1 半導体基板保持容器、2 保持容器本体、3 基板保持室、4 半導体基板、5 保持体、6 被評価液、7 給水口、8 排水口、9 足、10、11 バルブ、12 排水トラップ、13 フィルタ、14 マルチノズル、15 ポンプ、16 半導体基板保持角度調整機構、17 流量調整バルブ、18 回転台、19 回転軸、20 モータ、21 傾斜部。
Claims (7)
- 半導体基板に被評価液を接触させるのに用いる半導体基板の保持容器であって、
密閉した内部空間である基板保持室と前記基板保持室に半導体基板を出し入れする基板出入り口とを有する保持容器本体と、
前記基板保持室に前記保持容器本体の内壁面とは間隔を有して前記半導体基板を中空状態で保持する保持体と、
前記基板保持室に保持された前記半導体基板上に前記被評価液を滴下する給水口と、
前記半導体基板上から落下した前記被評価液を排水する排水口と、を備える半導体基板保持容器。 - 前記保持体は、
前記半導体基板を点接触状態で保持する構造を有する請求項1記載の半導体基板保持容器。 - 前記給水口に添設された開閉自在なバルブと、
前記排水口に添設された開閉自在なバルブ、および外気の混入を防ぐ排水トラップと、をさらに備えることを特徴とする請求項1記載の半導体基板保持容器。 - フィルタと、
前記フィルタに接続され、前記基板保持室に保持されている前記半導体基板の近傍に設置されるマルチノズルと、をさらに備えることを特徴とする請求項1記載の半導体基板保持容器。 - 前記基板保持室の気体を排出するポンプをさらに備えることを特徴とする請求項1記載の半導体基板保持容器。
- 前記保持容器本体を支える足の長さを調整することにより前記基板保持室に保持された半導体基板の保持角度を制御する半導体基板保持角度調整機構と、
前記保持容器の給水口に添設され、前記半導体基板上に供給される被評価液の量を制御する流量調整バルブと、をさらに備えることを特徴とする請求項1記載の半導体基板保持容器。 - モータと、
前記モータに接続され前記モータによって回転する回転軸と、
前記基板保持室に配置され、前記回転軸に接続される回転台と、をさらに備え、
前記回転台の中心から一定の距離で前記回転台上に複数の前記保持体を設置し、前記各保持体は前記基板保持室に前記保持容器本体の内壁面とは間隔を有して前記半導体基板を中空状態で保持することを特徴とする請求項1記載の半導体基板保持容器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285777A JP2008102054A (ja) | 2006-10-20 | 2006-10-20 | 半導体基板保持容器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006285777A JP2008102054A (ja) | 2006-10-20 | 2006-10-20 | 半導体基板保持容器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008102054A true JP2008102054A (ja) | 2008-05-01 |
Family
ID=39436480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006285777A Pending JP2008102054A (ja) | 2006-10-20 | 2006-10-20 | 半導体基板保持容器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008102054A (ja) |
-
2006
- 2006-10-20 JP JP2006285777A patent/JP2008102054A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3603278B2 (ja) | 蛍光x線分析システムおよびそれに用いるプログラム | |
TWI671138B (zh) | 基板處理裝置及處理罩洗淨方法 | |
KR101271181B1 (ko) | 운송 인클로저 오염도 측정장치 및 이를 이용한 오염도 측정방법 | |
JP3584262B2 (ja) | 蛍光x線分析用試料前処理システムおよびそれを備えた蛍光x線分析システム | |
KR100430445B1 (ko) | 입자 계수기 및 세정 장치를 구비한 처리 장치, 및 그것을이용하는 세정 방법, 세정도 측정 방법 및 반도체 제조 장치 | |
KR100832107B1 (ko) | 오염 검사 장치 및 방법, 그리고 상기 장치를 이용한레티클 세정 설비 및 방법 | |
KR102239956B1 (ko) | 기판 처리 방법 및 기판 처리 장치 | |
KR101565091B1 (ko) | 반도체 공정 오염감시용 웨이퍼 이송장치 | |
US20070246065A1 (en) | Ion sampling method for wafer | |
KR101217037B1 (ko) | 수질 평가 방법 및 그에 이용하는 기판 접촉 기구 | |
US20070107495A1 (en) | Particle adsorption chamber, sampling apparatus having a particle adsorption chamber, and sampling method using the same | |
JP2006029880A (ja) | 水質評価方法、該方法を用いる超純水評価装置及び超純水製造システム | |
JP2008102054A (ja) | 半導体基板保持容器 | |
JP4449135B2 (ja) | 半導体基板の保持容器 | |
JP2006214877A (ja) | 気相分解装置ならびにそれを用いた試料前処理装置および蛍光x線分析システム | |
JP4693268B2 (ja) | 試料水の水質評価方法 | |
JP4507659B2 (ja) | 超純水の評価方法 | |
KR20010099780A (ko) | 단면 웨이퍼용 이온 추출 방법 및 장치 | |
TW201827831A (zh) | 用於接收小容量液體樣品的樣品容器 | |
JP4505918B2 (ja) | 水質評価用基板の保持容器 | |
JPH09145616A (ja) | 気中不純物監視装置および気中不純物監視方法 | |
US8771535B2 (en) | Sample contamination method | |
JP3865941B2 (ja) | 気中不純物監視装置 | |
JP4507336B2 (ja) | 水質の評価方法と、水質評価用半導体基板の保持容器 | |
JP5407900B2 (ja) | 流量測定装置及び流量測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080905 |