JP2008098183A - 高分子電解質型燃料電池 - Google Patents

高分子電解質型燃料電池 Download PDF

Info

Publication number
JP2008098183A
JP2008098183A JP2007323864A JP2007323864A JP2008098183A JP 2008098183 A JP2008098183 A JP 2008098183A JP 2007323864 A JP2007323864 A JP 2007323864A JP 2007323864 A JP2007323864 A JP 2007323864A JP 2008098183 A JP2008098183 A JP 2008098183A
Authority
JP
Japan
Prior art keywords
conductive
anode
cathode
gas
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007323864A
Other languages
English (en)
Inventor
Kazufumi Nishida
和史 西田
Junji Niikura
順二 新倉
Hisaaki Gyoten
久朗 行天
Kazuhito Hado
一仁 羽藤
Hideo Obara
英夫 小原
Teruhisa Kanbara
輝壽 神原
Satoru Fujii
覚 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007323864A priority Critical patent/JP2008098183A/ja
Publication of JP2008098183A publication Critical patent/JP2008098183A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】長期間使用しても金属板の腐食や溶解が起こらない導電性セパレータ板を具備する燃料電池を提供する。
【解決手段】導電性セパレータ板は、金属板およびアノードまたはカソードに面する表面を部分的にまたは全面を被覆する耐酸化性の導電性被膜からなり、金属板と導電性被膜との界面部分に導電性被膜材料の拡散した拡散層を有し、導電性被膜が、Cr、Zr、Al、TaおよびWからなる群より選ばれる元素の窒化物からなる高分子電解質型燃料電池。
【選択図】図7

Description

本発明は、ポータブル電源、電気自動車用電源、家庭内コージェネレーションシステム等に使用される固体高分子電解質型燃料電池、特にその導電性セパレータ板の改良に関する。
固体高分子電解質を用いた燃料電池は、水素を含有する燃料ガスと空気など酸素を含有する酸化剤ガスとを電気化学的に反応させることにより、電力と熱とを同時に発生させるものである。この燃料電池は、基本的には、水素イオンを選択的に輸送する高分子電解質膜、および高分子電解質膜の両面に形成された一対の電極、すなわちアノードとカソードから構成される。前記の電極は、通常、白金族金属触媒を担持したカーボン粉末を主成分とし、高分子電解質膜の表面に形成される触媒層、およびこの触媒層の外面に形成される、通気性と電子伝導性を併せ持つ拡散層からなる。
さらに、電極に供給される燃料ガスおよび酸化剤ガスが外にリークしたり、二種類のガスが互いに混合したりしないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットが配置される。これらのシール材やガスケットは、電極及び高分子電解質膜と一体化してあらかじめ組み立てられる。これをMEA(電極電解質膜接合体)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に、場合によっては並列に、接続するための導電性のセパレータ板が配置される。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路が形成される。ガス流路は、セパレータ板と別に設けることもできるが、セパレータ板の表面に溝を設けてガス流路とする方式が一般的である。
これらの溝に燃料ガスおよび酸化剤ガスを供給するためは、燃料ガスおよび酸化剤ガスをそれぞれ供給する配管を、使用するセパレータ板の枚数に分岐し、その分岐先を直接セパレータ板の溝につなぐ配管治具が必要となる。この治具をマニホールドと呼び、上記のような燃料ガスおよび酸化剤ガスの供給配管から直接つなぎ込むタイプを外部マニホールドと呼ぶ。このマニホールドには、構造をより簡単にした内部マニホールドと呼ぶ形式のものがある。内部マニホールドとは、ガス流路を形成したセパレータ板に、貫通した孔を設け、ガス流路の出入り口をこの孔まで通し、この孔から直接燃料ガスおよび酸化剤ガスをガス流路に供給するものである。
燃料電池は、運転中に発熱するので、電池を良好な温度状態に維持するために、冷却水等で冷却する必要がある。通常、1〜3セル毎に、冷却水を流す冷却部が設けられる。冷却部をセパレータ板とセパレータ板との間に挿入する形式と、セパレータ板の背面に冷却水流路を設けて冷却部とする形式とがあり、後者が多く利用される。これらのMEAとセパレータ板および冷却部を交互に重ねて10〜200セル積層し、その積層体を集電板と絶縁板を介して端板で挟み、締結ボルトで両端から固定するのが一般的な積層電池の構造である。
このような高分子電解質型燃料電池では、セパレータ板は導電性が高く、かつ燃料ガスおよび酸化剤ガスに対して気密性が高く、さらに水素/酸素を酸化還元する際の反応に対して高い耐食性を持つ必要がある。このような理由から、従来のセパレータ板は、通常グラッシーカーボンや膨張黒鉛などのカーボン材料で構成され、ガス流路もその表面の切削や、膨張黒鉛の場合は型による成型により、作製されていた。
従来のカーボン板を切削する方法では、カーボン板の材料コストと共に、これを切削するためのコストを引き下げることが困難であった。また、膨張黒鉛を用いた方法も材料コストが高く、これが実用化のための障害と考えられている。
近年、従来より使用されたカーボン材料に代えて、ステンレス鋼などの金属板を用いる試みが行われている(特許文献1〜5参照)
しかし、上述の金属板を用いる方法では、金属板が高温においてpH2〜3程度の酸化性の雰囲気に曝されるため、長期間使用すると、金属板の腐食や溶解が起こる。金属板が腐食すると、腐食部分の電気抵抗が増大し、電池の出力が低下する。また、金属板が溶解すると、溶解した金属イオンが高分子電解質膜に拡散し、これが高分子電解質膜のイオン交換サイトにトラップされ、結果的に高分子
電解質自身のイオン伝導性が低下する。これらの原因により、金属板をそのままセパレータ板に使用し、電池を長期間運転すると、発電効率が次第に低下するという問題があった。
国際公開第98/40537号パンフレット 国際公開第98/33224号パンフレット 特開平5−25635号公報 特開平5−25636号公報 特開平10−241709号公報
本発明は、燃料電池に使用されるセパレータ板を改良して、加工の容易な金属を素材とし、そのガスに露出する表面を酸性雰囲気に曝されても化学的不活性を維持するものとして、腐食と溶解が抑制されかつ良好な導電性を有するセパレータ板を提供することを目的とする。
本発明の高分子電解質型燃料電池は、高分子電解質膜、前記高分子電解質膜を挟むアノードおよびカソード、前記アノードに燃料ガスを供給するガス流路を有するアノード側導電性セパレータ板、および前記カソードに酸化剤ガスを供給するガス流路を有するカソード側導電性セパレータ板を具備し、前記アノード側およびカソード側導電性セパレータ板は、金属およびそのアノードまたはカソードに面する表面を、特定の中間層を介して、被覆する耐酸化性の導電性被膜からなることを特徴とする。
本発明によれば、ステンレス鋼などの金属材料を切削加工しないで用いることができるので、量産時に大幅なコスト低減が図れる。また、セパレータ板をいっそう薄くできるので、積層電池のコンパクト化に寄与する。さらに、セパレータ板の金属基板と導電性被膜の間に中間層を形成することにより、金属基板の耐食性が向上するために、燃料電池の長期駆動における出力安定性を向上することができる。
本発明のセパレータ板は、基本的には、表面が特定の中間層を介して、耐酸化性の導電性被膜で被覆された金属板から構成される。そして、この金属板は、プレス加工などによりガス流路を形成するためのリブないし溝を有している。
本発明の好ましいセパレータ板は、燃料ガスまたは酸化剤ガスを導くためのリブないし溝を電極に面する表面に有する前記の加工された金属板と、ガスケットとして働く弾性を有する絶縁性のシートとの組み合わせから構成される。前記の絶縁性シートは、前記金属板のリブないし溝と協同して燃料ガスまたは酸化剤ガスをその供給側から排出側に導くガス流路を形成し、かつ燃料ガスまたは酸化剤ガスが前記ガス流路から外部に漏れるのを防止するガスケットとして働く。
導電性被膜を形成する金属板としては、ステンレス鋼、アルミニウムなどの導電性に優れ、かつプレス加工などによりガス流通路となるリブないし溝を容易に形成できる金属板が用いられる。
前記金属板の表面を被覆する耐酸化性の導電性被膜は、ZrN、TiAlN、TiZrN、TaN、WN、CrNなどの窒化物からなる。これらの導電性被膜の場合、当該被膜と金属板との界面に形成される中間層は、前記導電性被膜材料が金属板に拡散した拡散層である。
前記の貴金属からなる被膜を形成するには、rfスパッタ法を用いるのが好ましい。しかし、化学蒸着法やめっき法などによって形成することもできる。前記窒化物よりなる導電性被膜を形成する方法としては、窒化物を構成する金属をターゲットとして窒素ガスを含む雰囲気下でのスパッタ法が好ましい。これらの導電性被膜を形成した後、前記の拡散層を形成するには、非酸化性雰囲気、具体的にはアルゴン、窒素または真空(0.1Pa以下)雰囲気下において250〜400℃で5分〜2時間熱処理するのが好ましい。
上記の導電性被膜および拡散層は、他の態様においては、金属板の表面を島状に被覆している。この場合、金属板の導電性被膜が形成されていない部分には、耐食性被膜が形成されていることが好ましい。この島状に被覆する部分の個々の面積は、少なくとも50オングストローム×50オングストロームであり、その被覆部分全体の占める割合は、面積比で30%以上であることが好ましい。
前記金属板の表面を被覆する耐酸化性の導電性被膜は、他の好ましい態様においては、上に例示したような化合物で、Cr、Zr、Al、TaおよびWからなる群より選ばれる元素の窒化物で構成される。これらの導電性被膜の場合、当該被膜と金属板との界面に形成される中間層は、導電性化合物
被膜を構成する金属元素で構成される。これらの導電性化合物被膜を形成するには、まず金属板の表面に導電性化合物を構成する金属元素からなる中間層を形成し、その上に導電性化合物被膜を形成する。この中間層により金属基板と導電性被膜の密着力が向上するとともに、ピンホールを防止することができる。これらの中間層および導電性化合物被膜を形成する方法は、上記のようなrfスパッタ法が好ましい。また、導電性被膜中の金属元素の含有率が、中間層との界面から導電性被膜の表面方向に向かうに従って減少するよう、傾斜を設けると、金属セパレータ板と導電性被膜の密着力を向上させるとともに、被膜の残留応力を緩和し、さらにピンホールを防止することができる。窒化物からなる導電性被膜中の金属原子の含有率を制御する方法としては、後述の実施例に示すように、窒素を含む雰囲気中で金属をスパッタして当該金属の窒化物を生成させる際、スパッタガス中の窒素の流量比を制御する方法、またはrfパワーを制御する方法を用いるのが好ましい
前記のような中間層および導電性化合物被膜を形成した金属板は、さらに熱処理することにより耐食性が向上する。好ましい熱処理の条件は、非酸化性雰囲気、具体的にはアルゴン、窒素または真空(0.1Pa以下)雰囲気下200〜500℃、より好ましくは250〜400℃で、30分〜2時間熱処理することである。この熱処理により、前記中間層の金属元素が金属基板に拡散した拡散層が形成される。
次に、本発明による燃料電池の構成例を図1〜図5を参照して説明する。ここに用いられた構造図は理解を容易にするためのものであって、各要素の相対的大きさや位置関係は必ずしも正確ではない。
図1は燃料電池積層体の要部を模式的に示す断面図であり、図2はそのアノード側セパレータ板の平面図、図3はカソード側セパレータ板の平面図である。
10は固体電解質膜11、その両面に接合されたアノード12及びカソード13、並びにこれらの周辺部に配されたガスケット14、15などからなる電解質膜−電極接合体(以下、MEAという)を表す。このMEAの外側には、アノード側セパレータ板21及びカソード側セパレータ板31が配置されている。上記のMEA10及びセパレータ板21、31が単セルを構成し、これらの単セルが
複数個直列に接続されるように積層されている。この例では、2セル毎にセパレータ板21と31との間に導電性の金属メッシュ16及びガスケット17を挿入して、冷却水を通すための冷却部を構成してある。
アノード側セパレータ板21は、図4に示す金属板22と図5に示す絶縁性シート27とを貼り合わせて構成したものである。金属板22はプレス加工により、アノードに対向する一方の主表面側に突出する複数のリブ23の配列を中央に有し、左右には流体導入用開口24a、25a、26aと流体排出用開口24b、25b、26bを有する。一方、絶縁性シート27は、シートを打抜き加工して作製したもので、金属板22のリブ23を有する面に貼り合わせることにより、流体導入用開口24aから流体排出用開口24bに流体、すなわち燃料ガスを導く溝28を形成するとともに、アノードに密着させたとき、前記の溝28から燃料ガスが外部に洩れるのを防止し、さらに開口25a、25b、開口26a、26bを通る流体が外部に洩れるのを防止するガスケットとして機能する。
セパレータ板21の表面に形成される溝28は、金属板22のリブ23とシート27のリブ片29との組み合わせにより、リブ23の両側に形成される2つの溝23'が燃料ガスを流通させることになる。
カソード側セパレータ板31は、図3に示すように、プレス加工によりカソードに対向する一方の主表面側に突出する複数のリブ33の配列を中央に有し、左右には流体導入用開口34a、35a、36aと流体排出用開口34b、35b、36bを有する金属板32と、そのリブ33を有する面に貼り合わせた絶縁性シート37とから構成されている。このカソード側セパレータ板31のカソードと対向する表面には、流体導入用開口36aから流体導出用開口36bに流体、すなわち酸化剤ガスを導く溝38が形成されている。そして、シート37は、前記の溝38から酸化剤ガスが外部に洩れるのを防止するとともに、開口34a、35a、開口34b、35bを通る流体が外部に洩れるのを防止するガスケットとして機能する。
前記の溝38は、金属板32のリブ33とシート37のリブ片39との組み合わせにより、リブ33の間に形成される4つの溝33'が酸化剤ガスを流通させることとなる。
このようにプレス加工により複数のリブを形成した金属板と打抜き加工した絶縁性シートとを組み合わせてセパレータ板を構成すると、絶縁シートの形状を変えるのみで、流体通路用溝の大きさを変えることができる。
上記の例では、カソード側セパレータ板31の溝38に連なるガス流路であるリブ33の間に形成される流路の断面積は、アノード側セパレータ板21の溝28に連なるガス流路であるリブ23の間に形成される流路の断面積の3倍である。従って、酸化剤ガスの流速を燃料ガスのそれより大きくすることができる。
上の例では、アノード側導電性セパレータ板およびカソード側導電性セパレータ板は各々独立に作製されたが、アノード側導電性セパレータ板およびカソード側導電性セパレータ板が1枚のセパレータ板で構成され、その一方の面側がアノード側導電性セパレータ板であり、他方の面側がカソード側導電性セパレータ板である構成とすることもできる。
以下、本発明の実施例を図面を参照しながら説明する。
アセチレンブラックに、平均粒径約30オングストロームの白金粒子を担持した電極触媒を調製した。この電極触媒のカーボンと白金の重量比は3:1であった。この触媒粉末のイソプロパノ−ル分散液に、パーフルオロカーボンスルホン酸粉末のエチルアルコール分散液を混合し、ペースト状にした。このペーストをスクリ−ン印刷法により、厚み250μmのカ−ボン不織布の一方の面に印刷して電極触媒層を形成した。得られた触媒層中に含まれる白金量は0.5mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。こうしてカーボン不織布に触媒層を形成することにより、同じ構成のアノードおよびカソードを作製した。
これらの電極を、電極より一回り大きい面積を有するプロトン伝導性高分子電解質膜の中心部の両面に、触媒層が電解質膜側に接するようにホットプレスによって接合して、電解質膜−電極接合体(MEA)を作製した。ここで用いたプロトン伝導性高分子電解質膜は、次式においてx=1、y=2、m=5〜13.5、n≒1000であるパーフルオロカーボンスルホン酸を25μmの厚みに薄膜化したものである。また、触媒層に混合されたパーフルオロカーボンスルホン酸は、前記電解質膜と同じ化合物である。
Figure 2008098183
次に、導電性セパレータ板の作製方法を示す。図3に示したように、厚さ0.3mmのステンレス鋼SUS316板の中央部10cm×9cmの領域に、幅約2.8mm、高さ約1mmのリブ23を5.6mmピッチでプレス加工によって形成した。次いで、この表面にAuをrfマグネトロンスパッタ法により、0.2μmの厚さに形成した。成膜条件は、アルゴン雰囲気、rfパワー300W、
成膜時間は15分間、基板温度は200℃とした。なお、基板は、前記の製膜前に逆スパッタ法によりクリーニングして表面の自然酸化膜を除去した(以下の実施例においても同じ)。
同様にして各種の貴金属、窒化物および炭化物からなる導電性被膜を形成した。これらの導電性被膜の成膜条件をそれぞれ表1、表2および表3に示す。なお、表1および3は参考例であり、表2中のTiNも参考例である。
Figure 2008098183
Figure 2008098183
Figure 2008098183
続いて、導電性被膜を形成した導電性セパレータ板を熱処理することにより、導電性被膜材料が金属基板に拡散した拡散層を形成した。熱処理は、真空(0.1Pa以下)雰囲気下において加熱温度300℃で1時間実施した。熱処理後における抵抗率は、5〜20%程度増加したが、燃料電池の特性への大きな影響は見られなかった。しかし、導電性被膜とセパレータ板との間に拡散層を形成することによって、耐薬品性に大きな向上が見られた。実際、ステンレス鋼SUS基板に導電性被膜のみを形成したサンプル、および導電性被膜と拡散層を形成した同じステンレス鋼基板を80℃の0.01N硫酸に500時間浸漬させて腐食状態を目視により観察した結果、導電性被膜だけを形成したサンプルでは、被膜のピンホールに起因すると推定される腐食が認められた。しかしながら、拡散層を設けたサンプルには腐食は認められなかった。以上より、拡散層を形成することにより、拡散層自体の耐薬品性、ならびに導電性被膜のピンホールの減少を図れることがわかる。
上記のようにして導電性被膜を形成し、熱処理により拡散層を形成したステンレス鋼からなる金属基板22に、流体導入用開口24a、25a、26aおよび流体排出用開口24b、25b、26bを設けた。次いで、金属基板の前記導電性被膜を形成した面に、図5に示す厚み約1mmのフェノール樹脂製絶縁性シート27を貼り合わせてアノード側セパレータ板21を作製した。同様に処理した
金属基板32に、流体導入用開口34a、35a、36aおよび流体排出用開口34b、35b、36bを形成し、前記導電性被膜を形成した面に、厚み約1mmのフェノール樹脂製絶縁性シート37を貼り合わせてカソード側セパレータ板31を作製した。
これらのセパレータ板を上記のMEAに組み合わせて50セルを積層し、この積層セルを集電板と絶縁板を介し、ステンレス鋼製の端板と締結ロッドで、20kgf/cm2の圧力で締結した。この締結圧力は、小さすぎるとガスがリークし、導電性部材同士の接触抵抗も大きくなるので電池性能が低くなる。また、締結圧力が大きすぎると電極が破損したり、セパレータ板が変形したりするので、ガス流通溝の設計に応じて締結圧を変えることが重要である。
比較例として、Auによる導電性被膜を形成したが、拡散層を形成しないセパレータ板を用いた燃料電池を比較例1、表面処理をしないステンレス鋼SUS316板よりなるセパレータ板を用いた燃料電池を比較例2とする。
Auによる導電性被膜を形成し、さらに拡散層を形成したセパレータ板を用いた本実施例の燃料電池と、比較例1および比較例2の燃料電池を、85℃に保持し、アノード側に83℃の露点となるよう加湿・加温した水素ガスを、またカソード側に78℃の露点となるように加湿・加温した空気をそれぞれ供給した。その結果、電流を外部に出力しない無負荷時には、50Vの開路電圧を示した。
これらの電池を燃料利用率80%、酸素利用率40%、電流密度0.5A/cm2の条件で連続発電試験を行い、出力特性の時間変化を図6に示した。その結果、比較例2の電池は時間の経過と共に出力が低下するのに対し、比較例1および実施例1の電池は、8000時間以上にわたって約1000W(22V−45A)の電池出力を維持した。実施例1の電池は、セパレータ板の金属基板が導電性被膜との間に拡散層が形成されていることにより、長駆動時間における出力低下量は減少した。駆動時間3000時間以降、本実施例の電池の出力は、比較例1の電池の出力を上回った。これは、拡散層の形成により、セパレータ板の金属基板の耐腐食性が向上したためと考えられる。
上記と同様の運転条件において、他の導電性被膜を有する金属セパレータ板を用いた電池について、初期(運転開始10時間後)および運転時間が8000時間経過したときの電池出力を調べた。その結果を表4に示す。
Figure 2008098183
本実施例では、ガス流通溝が複数の平行な直線の場合を示したが、ガス導入側開口からガス排出側開口を繋ぐガス流通溝の途中に複数の湾曲部を設けたり、巻き貝の殻のように中央部のマニホルド孔と外側のマニホルド孔とを渦巻き状のガス流通溝で繋ぐ構造など様々な変形が可能である。
また、本実施例においては、セパレータ板の金属基板として、SUS316を用いたが、他のステンレス鋼やAl、Tiなども用いることができる。
本実施例では、セパレータ板の金属基板上に、導電性被膜を島状に形成した。島状の導電性被膜の作製プロセスの断面図を図7に示した。成膜時間を2〜6分間とした点を除いては、実施例1と同様の条件で、島状の導電性被膜2を金属基板1上に作製した(図7のa)。続いて、実施例1と同様にして、島状の導電性被膜2の下に拡散層3を形成した(図7のb)。すなわち、真空(0.1Pa以下)雰囲気下、加熱温度300℃、処理時間20分の条件で熱処理を実施した。前記の島状の個々の導電性被膜2の面積は0.04mm2であり、それら全体の占める割合は面積比で50%である。図7の(b)に示した状態でも導電性セパレータ板として使用可能である。しかしながら、さらに、空気中において250℃で1時間程度熱処理を行った。その結果、島状の導電性被膜に覆われていない部分は、金属酸化物からなる耐食性被膜4が成長した。例えば、Alを金属基板とした場合には酸化アルミニウム被膜が、Tiを金属基板とした場合には酸化チタン被膜がそれぞれ耐食性被膜として成長する。また、ステンレス鋼を金属基板として用いた場合には、硝酸などの化学処理を行うことにより酸化クロム被膜が耐食性被膜として成長する。これらの耐食性被膜によりセパレータ板の金属基板の耐薬品性が大幅に向上する。
上記のように表面処理した金属基板をセパレータ板に用いて実施例1と同様の燃料電池を組み立て、実施例1と同じく、燃料電池を85℃に保持し、アノード側に83℃の露点となるよう加湿・加温した水素ガスを、カソード側に78℃の露点となるように加湿・加温した空気をそれぞれ供給し、燃料利用率80%、酸素利用率40%、電流密度0.5A/cm2の条件で連続発電試験を行った。金属基板、導電性被膜、および耐食性被膜の種類と、初期(運転開始10時間後)および運転時間が8000時間経過したときの電池出力の関係を表5に示す。拡散層および耐食性被膜を導入することにより、出力電圧の経時変化を小さくすることが可能となった。なお、表5中のTiNは参考例である。
Figure 2008098183
セパレータ板の金属基板1上に厚さ0.01〜0.05μmの中間層5をrf−マグネトロンスパッタ法により形成し(図8のa)、次いで実施例1および2と同様にして導電性被膜6を形成した(図8のb)。中間層5の作製条件を表6に示した。ここに用いた金属基板は、ステンレス鋼SUS316である。中間層を形成した目的は、金属基板と導電性被膜の密着力を向上させるとともに、ピンホールを防止することにある。中間層は、導電性被膜を構成する金属元素の薄膜により形成した。即ち、TiN系の導電性被膜ではTiを、ZrN導電性被膜ではZrをそれぞれ中間層として形成した。
Figure 2008098183
上記のようにして中間層および導電性被膜を形成した導電性金属セパレータ板を用いて実施例1と同様の燃料電池を組み立て、実施例1と同条件で連続発電試験を行った。初期(運転開始10時間後)および運転時間が8000時間経過したときの電池出力を表7に示した。中間層を導入することにより、出力電圧の経時変化を小さくすることが可能となった。また、上記の中間層および導電性被膜を形成した導電性金属セパレータ板を真空(0.1Pa以下)雰囲気下において300℃で60分間熱処理をして、中間層の金属元素が金属板に拡散した拡散層を形成した場合、運転時間8000時間経過後の出力は、表6より10〜30%向上した。なお、表7中のTiNは参考例である。
Figure 2008098183
セパレータ板の金属基板1上に、実施例3と同様にして、rf−マグネトロンスパッタ法により厚さ0.01〜0.05μmの中間層7を形成した(図9のa)。その後、中間層7上に、導電性被膜8−1、8−2、・・・、および8−nをn層形成した(図9のb)。各導電性被膜中の金属原子の含有率は異ならせた。すなわち、導電性被膜中の金属原子の含有率は、中間層7との界面から導電性被膜の表面方向に従って減少している。金属原子の含有比率は、連続的に減少する構成でも問題はない。
導電性被膜中の金属原子の含有率を制御する方法としては、スパッタガス中のN2流量比を制御する方法と、rfパワーを制御する方法を用いた。表8にスパッタガス中のN2流量比を制御する方法の成膜条件を、表9にrfパワーを制御する方法の成膜条件をそれぞれ示した。スパッタガス中のN2分圧を制御する方法ではn=6、すなわち6層を、rfパワーを制御する方法ではn=4、すなわち4層をそれぞれ積層した。なお、成膜パラメーターを連続的に変化させて導電性被膜中の金属原子の含有率を連続的に変化させることも可能であり、本発明において効果的であることは明らかである。なお、表8〜10中のTiNは、いずれも参考例である。
Figure 2008098183
Figure 2008098183
導電性被膜中の金属元素の含有率に傾斜を設けた目的は、金属セパレータ板と導電性被膜の密着力を向上させるともに、被膜の残留応力を緩和し、さらにピンホールを防止することにある。その結果、燃料電池の出力の安定性が大きく向上した。中間層としては、導電性被膜を構成する金属元素の薄膜を用いた。即ち、TiN系の導電性被膜ではTiを、ZrN系導電性被膜ではZrをそれぞれ中間層として形成した。
中間層を形成し、かつ導電性被膜の金属元素の含有率に傾斜を設けた導電性金属セパレータ板を用いて実施例1と同様に燃料電池を組み立て、実施例1と同じ条件で連続発電試験を行った。初期(運転開始10時間後)および運転時間が8000時間経過したときの電池出力を表10に示した。中間層を導入し、かつ導電性被膜の金属元素の含有率に傾斜を設ける構成により、出力電圧の経時変化を小さくすることが可能となった。また、上記の中間層および導電性被膜を形成した導電性金属セパレータ板を真空(0.1Pa)雰囲気下において300℃で60分間熱処理をして、中間層の金属元素が金属板に拡散した拡散層を形成した場合、運転時間8000時間経過後の出力は、表10より10〜30%向上した。
Figure 2008098183
ステンレス鋼SUS316Lを基板とし、TiN、TiAlNおよびTiCからなる導電性被膜を形成するほかは実施例1と同様にして3種の導電性セパレータ板を作製した。これら導電性被膜の形成条件は次のとおりである。それぞれTiN、TiAlNおよびTiCをターゲットとし、4×10−2Torrのアルゴン雰囲気中において、基板温度500℃、300℃および500℃、スパッタ電力400W、300Wおよび400Wで、rf−スパッタ法により製膜速度1.5μm/時、1.0μm/時および1.5μm/時にて厚さ1μm、1.2μmおよび1μmの被膜を形成した。
一方、電極は次のようにして作製した。まず、厚さ400μmのカーボン不織布にフッ素樹脂の水性デスパージョンを含浸し、400℃で30分間熱処理することにより撥水性を付与した。カーボン粉末に白金触媒を重量比1:1の割合で担持させ、そのスラリーを前記のカーボン不織布の片面に塗工して触媒層を形成した。上記の他は実施例1と同様にして50セルを積層した燃料電池を組み立てた。そして、実施例1と同じ条件で初期および運転時間が8000時間を経過したときの出力を調べた。その結果を表11に示す。表4の結果と比べると劣るが、出力の低下はかなり低減されている。金属基板に侵入型化合物のみの被膜を形成する場合、その厚みは120オングストロームから1μmの範囲が適当である。なお、表11中のTiNは参考例である。
Figure 2008098183
以上のように本発明によれば、セパレータ板として従来のカーボン板の切削工法に替わり、ステンレス鋼などの金属材料を切削加工しないで用いることができるので、量産時に大幅なコスト低減が図れる。また、セパレータ板をいっそう薄くできるので、積層電池のコンパクト化に寄与する。さらに、セパレータ板の金属基板と導電性被膜の間に中間層を形成することにより、金属基板の耐食性が向上するために、燃料電池の長期駆動における出力安定性を向上することができる。
本発明の実施例における燃料電池の要部を模式的に表す断面図である。 同燃料電池のアノード側セパレータ板の平面図である。 同燃料電池のカソード側セパレータ板の平面図である。 アノード側セパレータ板を構成する金属板の平面図である。 アノード側セパレータ板を構成する絶縁性シートの平面図である。 本発明の実施例および比較例の燃料電池の出力特性を示した図である。 本発明の他の実施例におけるセパレータ板の金属基板の表面処理のプロセスを示す断面図である。 本発明のさらに他の実施例における金属基板の表面処理のプロセスを示す断面図である。 本発明の他の実施例における金属基板の表面処理のプロセスを示す断面図である。

Claims (5)

  1. 高分子電解質膜、前記高分子電解質膜を挟むアノードおよびカソード、前記アノードに燃料ガスを供給するガス流路を有するアノード側導電性セパレータ板、および前記カソードに酸化剤ガスを供給するガス流路を有するカソード側導電性セパレータ板を具備し、前記アノード側およびカソード側導電性セパレータ板は、金属板およびそのアノードまたはカソードに面する表面を部分的にまたは全面を被覆する耐酸化性の導電性被膜からなり、前記金属板と導電性被膜との界面部分に前記導電性被膜材料の拡散した拡散層を有し、前記導電性被膜が、Cr、Zr、Al、TaおよびWからなる群より選ばれる元素の窒化物からなる高分子電解質型燃料電池。
  2. 高分子電解質膜、前記高分子電解質膜を挟むアノードおよびカソード、前記アノードに燃料ガスを供給するガス流路を有するアノード側導電性セパレータ板、および前記カソードに酸化剤ガスを供給するガス流路を有するカソード側導電性セパレータ板を具備し、前記アノード側およびカソード側導電性セパレータ板は、金属板およびそのアノードまたはカソードに面する表面を被覆する耐酸化性の導電性化合物被膜からなり、前記導電性化合物が、Cr、Zr、Al、TaおよびWからなる群より選ばれる元素の窒化物であり、前記金属板と導電性化合物被膜との界面部分に前記導電性化合物を構成する金属元素からなる中間層を有する高分子電解質型燃料電池。
  3. 前記導電性化合物被膜は、前記中間層との界面から導電性化合物被膜の表面にかけて導電性化合物を構成する金属元素の構成比が変化している請求項記載の高分子電解質型燃料電池。
  4. 前記中間層と金属板との界面に、前記中間層の金属元素が拡散した拡散層を有する請求項記載の高分子電解質型燃料電池。
  5. 前記アノード側導電性セパレータ板が、燃料ガスを導くための溝またはリブを前記アノードに面する表面に有する金属板と、前記溝またはリブと協同して燃料ガスをその供給側の流体導入用開口から排出側の流体排出用開口に導くガス流路を前記金属板表面に形成し、かつ燃料ガスが前記ガス流路から外部に漏れるのを防止するガスケットとして働く弾性を有する絶縁性シートからなり、前記カソード側導電性セパレータ板が、酸化剤ガスを導くための溝またはリブを前記カソードに面する表面に有する金属板と、前記溝またはリブと協同して酸化剤ガスをその供給側の流体導入用開口から排出側の流体排出用開口に導くガス流路を前記金属板表面に形成し、かつ酸化剤ガスが前記ガス流路から外部に漏れるのを防止するガスケットとして働く弾性を有する絶縁性シートからなる請求項1または2に記載の高分子電解質型燃料電池。
JP2007323864A 1999-09-17 2007-12-14 高分子電解質型燃料電池 Ceased JP2008098183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323864A JP2008098183A (ja) 1999-09-17 2007-12-14 高分子電解質型燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26297099 1999-09-17
JP29892699 1999-10-20
JP2007323864A JP2008098183A (ja) 1999-09-17 2007-12-14 高分子電解質型燃料電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001525785A Division JP4097431B2 (ja) 1999-09-17 2000-09-06 高分子電解質型燃料電池

Publications (1)

Publication Number Publication Date
JP2008098183A true JP2008098183A (ja) 2008-04-24

Family

ID=39380766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323864A Ceased JP2008098183A (ja) 1999-09-17 2007-12-14 高分子電解質型燃料電池

Country Status (1)

Country Link
JP (1) JP2008098183A (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010426A1 (en) * 1988-04-25 1989-11-02 Kawasaki Steel Corporation Steel sheet having dense ceramic coating with excellent adhesion,smoothness and corrosion resistance and process for its production
JPH0525635A (ja) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd 乾式Ti系めつきステンレス鋼材の製造方法
JPH0525636A (ja) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd 装飾用乾式TiNめつきステンレス鋼材の製造方法
JPH05320872A (ja) * 1992-05-19 1993-12-07 Sumitomo Metal Mining Co Ltd 耐食性被膜付き金属物品及びその製造方法
JPH06146006A (ja) * 1992-11-04 1994-05-27 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼材とその製造法
JPH10241709A (ja) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd 固体高分子膜型燃料電池及び固体高分子膜型燃料電池用セパレータ
JPH11162478A (ja) * 1997-12-02 1999-06-18 Aisin Seiki Co Ltd 燃料電池用セパレータ
JP2000021420A (ja) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2000323151A (ja) * 1999-05-12 2000-11-24 Matsushita Electric Ind Co Ltd 燃料電池およびその製造法
JP2000353531A (ja) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd 固体高分子型燃料電池用セパレータおよびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010426A1 (en) * 1988-04-25 1989-11-02 Kawasaki Steel Corporation Steel sheet having dense ceramic coating with excellent adhesion,smoothness and corrosion resistance and process for its production
JPH0525635A (ja) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd 乾式Ti系めつきステンレス鋼材の製造方法
JPH0525636A (ja) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd 装飾用乾式TiNめつきステンレス鋼材の製造方法
JPH05320872A (ja) * 1992-05-19 1993-12-07 Sumitomo Metal Mining Co Ltd 耐食性被膜付き金属物品及びその製造方法
JPH06146006A (ja) * 1992-11-04 1994-05-27 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼材とその製造法
JPH10241709A (ja) * 1997-02-28 1998-09-11 Aisin Takaoka Ltd 固体高分子膜型燃料電池及び固体高分子膜型燃料電池用セパレータ
JPH11162478A (ja) * 1997-12-02 1999-06-18 Aisin Seiki Co Ltd 燃料電池用セパレータ
JP2000021420A (ja) * 1998-06-30 2000-01-21 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2000323151A (ja) * 1999-05-12 2000-11-24 Matsushita Electric Ind Co Ltd 燃料電池およびその製造法
JP2000353531A (ja) * 1999-06-08 2000-12-19 Sumitomo Electric Ind Ltd 固体高分子型燃料電池用セパレータおよびその製造方法

Similar Documents

Publication Publication Date Title
JP4097431B2 (ja) 高分子電解質型燃料電池
US7056613B2 (en) Fuel cell having metalized gas diffusion layer
US6372376B1 (en) Corrosion resistant PEM fuel cell
JP4920137B2 (ja) 高分子電解質型燃料電池の運転方法
WO2000001025A1 (fr) Pile a combustible electrolytique en polymere solide
US7674546B2 (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
JP5078689B2 (ja) 燃料電池用スタック
JP2001297777A (ja) 高分子電解質型燃料電池
WO2002015312A1 (fr) Pile a combustible a electrolyte polymere
JP4367062B2 (ja) 燃料電池用セパレータ
JP3970026B2 (ja) 高分子電解質型燃料電池
JPH11162478A (ja) 燃料電池用セパレータ
EP2050158A2 (en) Conductive coating for solid oxide fuel cell
JP4366726B2 (ja) 固体高分子型燃料電池
JP5183143B2 (ja) 燃料電池
US20070015043A1 (en) Fuel cell having metalized gas diffusion layer
US8507145B2 (en) Fuel cell and method of producing the fuel cell
JP2002025579A (ja) 高分子電解質型燃料電池
JP7424323B2 (ja) 燃料電池
JP2008098183A (ja) 高分子電解質型燃料電池
CA2493554A1 (en) Bipolar plate for a fuel cell
JP2003282099A (ja) 高分子電解質型燃料電池
JP2002198059A (ja) 高分子電解質型燃料電池およびその運転方法
JP3110902B2 (ja) 燃料電池
JP2004127708A (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120412

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120830