JP2008093770A - Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance - Google Patents

Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance Download PDF

Info

Publication number
JP2008093770A
JP2008093770A JP2006276969A JP2006276969A JP2008093770A JP 2008093770 A JP2008093770 A JP 2008093770A JP 2006276969 A JP2006276969 A JP 2006276969A JP 2006276969 A JP2006276969 A JP 2006276969A JP 2008093770 A JP2008093770 A JP 2008093770A
Authority
JP
Japan
Prior art keywords
layer
titanium
cutting tool
coated cutting
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006276969A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Keiji Nakamura
惠滋 中村
Hisashi Honma
尚志 本間
Akira Osada
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006276969A priority Critical patent/JP2008093770A/en
Publication of JP2008093770A publication Critical patent/JP2008093770A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coated layer exhibiting excellent chipping resistance in high speed heavy cutting machining. <P>SOLUTION: The hard coated layer constituted by alternately laminating a Ti-Cr composite carbonitride layer a Cr inclusion rate of which is 0.01-0.1 (atomic ratio) and an Al<SB>2</SB>O<SB>3</SB>layer is provided on a surface of a tool base body, or this alternately laminated layer is made an upper part layer, a TiN layer, a TiC layer, TiCN layer or one layer or more than one layers of a (Ti, Zr)N layer, a (Ti, Zr)C layer and a (Ti, Zr)CN layer at least a Ti component of one layer of a lower part layer of which is substituted with Zr is or are provided as the lower part layer between the upper part layer and the tool base body surface, and the Ti-Cr composite carbonitride layer which is a constitutive layer of the upper part layer is constituted of the Ti-Cr composite carbonitride layer which is a constitutive atom covalent lattice point distribution graph formed in accordance with a measuring result of an inclination made by a normal of a (001) face and a (011) face of a crystal grain existing in a measuring area of a surface polishing surface and a normal of the surface polishing surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、特に鋼、工具鋼および鋳鉄などのミーリング加工を、高速で、かつ、高送り、高切り込みなどの高速重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention exhibits excellent chipping resistance with a hard coating layer, especially when milling processing of steel, tool steel, cast iron, etc. is performed at high speed and under high-speed heavy cutting conditions such as high feed and high cutting. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

従来、一般的に、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層の下部層として、Ti炭窒化物層(以下、「従来TiCN層」で示す)等のTi化合物層、あるいは、チタンとクロムの複合炭窒化物層(以下、「Ti−Cr複合炭窒化物層」で示す)を蒸着形成し、硬質被覆層の上部層としてAl層を蒸着形成した被覆工具が知られており、これらの被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られている。 Conventionally, a substrate composed of a tungsten carbide group (hereinafter referred to as WC group) cemented carbide or a titanium carbonitride group (hereinafter referred to as TiCN group) cermet (hereinafter collectively referred to as a tool substrate). ), As a lower layer of the hard coating layer, a Ti compound layer such as a Ti carbonitride layer (hereinafter referred to as “conventional TiCN layer”), or a composite carbonitride layer of titanium and chromium (hereinafter referred to as “ Coating tools are known in which a Ti—Cr composite carbonitride layer ”is formed by vapor deposition, and an Al 2 O 3 layer is vapor-deposited as an upper layer of the hard coating layer. It is also well known that it is used for continuous cutting and intermittent cutting of steel and cast iron.

そして、上記従来TiCN層は、例えば、通常の化学蒸着装置にて、
(イ)反応ガス組成(容量%):
TiCl:2〜10%、
CHCN:1〜5%、
2:10〜30%、
2:残り、
(ロ)反応雰囲気温度:800〜930℃、
(ハ)反応雰囲気圧力:6〜15kPa、
の条件で蒸着形成されることが知られ、また、
上記Ti−Cr複合炭窒化物層は、例えば、上記従来TiCN層を形成する反応ガスに、CrClを微量添加して化学蒸着を行うことにより形成されることが知られている。
And the said conventional TiCN layer is in a normal chemical vapor deposition apparatus, for example,
(B) Reaction gas composition (volume%):
TiCl 4: 2~10%,
CH 3 CN: 1~5%,
N 2: 10~30%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 800-930 ° C.
(C) Reaction atmosphere pressure: 6 to 15 kPa,
It is known that it is vapor-deposited under the conditions of
It is known that the Ti—Cr composite carbonitride layer is formed, for example, by performing chemical vapor deposition by adding a small amount of CrCl 3 to the reaction gas for forming the conventional TiCN layer.

また、上記の被覆工具において、硬質被覆層の構成層は、一般に粒状結晶組織を有するが、従来TiCN層の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより縦長成長結晶組織をもつTiCN層(以下、l−TiCN層で示す)を形成することも知られている。
特開平10−244405号公報 特開2001−11632号公報 特開平6−8010号公報
In the above-mentioned coated tool, the constituent layer of the hard coating layer generally has a granular crystal structure. For the purpose of improving the strength of the conventional TiCN layer, an organic carbonitride is used as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to form a TiCN layer (hereinafter, referred to as an l-TiCN layer) having a vertically elongated crystal structure by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing.
JP-A-10-244405 JP 2001-11632 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工の省力化および省エネ化に対する要求は強く、これに伴い、切削加工は一段と高速化、また、高送り高切込み化の傾向にあるが、上記の従来被覆工具においては、これを鋼、工具鋼および鋳鉄などの通常の加工条件でのミーリング切削に用いた場合には問題はないが、これを高速高送り高切込み加工に用いた場合、硬質被覆層のAl層の高温強度が十分でないために、高速高送り高切り込みミーリング加工下における機械的・熱的な負荷に耐えることができず、早期にチッピング(微小欠け)が発生し、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there are strong demands for labor saving and energy saving of cutting work.Accordingly, cutting has been further increased in speed and high feed and high cutting depth. In the above conventional coated tool, there is no problem when this is used for milling cutting under normal processing conditions such as steel, tool steel and cast iron, but when this is used for high-speed high-feed high-cutting, Since the high temperature strength of the Al 2 O 3 layer of the hard coating layer is not sufficient, it cannot withstand the mechanical and thermal loads under high-speed, high-feed, high-cut milling, and chipping (small chipping) occurs early. However, at present, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、Al層の下部層として、Ti−Cr複合炭窒化物層を設けた被覆工具の硬質被覆層の耐チッピング性向上を図るべく、研究を行った結果、
(a)Al層を上部層とし、また、Ti−Cr複合炭窒化物層を下部層とする従来被覆工具において、Al層は、高温硬さと耐熱性にすぐれるものの、高送り、高切り込みなどの高速重切削条件下では、満足できる高温強度を備えるものではないが、Al層の平均層厚を0.2〜2μmとし、さらに、0.2〜2μmの平均層厚を有するTi−Cr複合炭窒化物層との交互積層構造として硬質被覆層を形成することにより、Ti−Cr複合炭窒化物層の備えるすぐれた高温強度によって、Al層の強度が補完され、硬質被覆層は、全体として、すぐれた高温硬さ、耐熱性およびすぐれた高温強度を相兼ね備えたものとなり、その結果として、高速重切削条件下でのチッピング発生が抑制されること。
即ち、上記交互積層構造の構成層であるTi−Cr複合炭窒化物層は、
(イ)反応ガス組成(容量%):
TiCl:2〜10%、
CrCl:0.02〜1%、
CHCN:1〜5%、
2:10〜30%、
2:残り、
(ロ)反応雰囲気温度:800〜930℃、
(ハ)反応雰囲気圧力:15〜25kPa、
の条件で蒸着することによって形成され、この結果形成されたTi−Cr複合炭窒化物層は、Tiとの合量に占める割合で1〜10原子%の割合でCrを含有し、上記の従来TiCN層と同じNaCl型面心立方晶の結晶構造(上記図1参照)、すなわち、Ti原子の一部がCr原子で置換されたNaCl型面心立方晶の結晶構造をもつものになると共に、置換含有したCrの作用で、高温強度が一段と向上したものになるため、切刃部にきわめて高い機械的・熱的負荷がかかる高速高送り高切り込みミーリング切削において、前記硬質被覆層の耐チッピング性を向上させること。
Therefore, the present inventors aim to improve the chipping resistance of the hard coating layer of the coated tool provided with the Ti—Cr composite carbonitride layer as the lower layer of the Al 2 O 3 layer from the above viewpoint. , As a result of research,
(A) In a conventional coated tool having an Al 2 O 3 layer as an upper layer and a Ti—Cr composite carbonitride layer as a lower layer, the Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, Under high-speed heavy cutting conditions such as high feed and high cutting, it does not have satisfactory high-temperature strength, but the average layer thickness of the Al 2 O 3 layer is 0.2 to 2 μm, and further 0.2 to 2 μm. By forming the hard coating layer as an alternate laminated structure with the Ti—Cr composite carbonitride layer having an average layer thickness, the excellent high-temperature strength of the Ti—Cr composite carbonitride layer makes it possible to form the Al 2 O 3 layer. Strength is complemented, and the hard coating layer as a whole has excellent high temperature hardness, heat resistance and excellent high temperature strength, and as a result, the occurrence of chipping under high speed heavy cutting conditions is suppressed. thing.
That is, the Ti—Cr composite carbonitride layer, which is a constituent layer of the above-described alternately laminated structure,
(B) Reaction gas composition (volume%):
TiCl 4: 2~10%,
CrCl 3 : 0.02 to 1%,
CH 3 CN: 1~5%,
N 2: 10~30%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 800-930 ° C.
(C) Reaction atmosphere pressure: 15 to 25 kPa,
The Ti—Cr composite carbonitride layer formed as a result of vapor deposition under the following conditions contains Cr at a ratio of 1 to 10 atomic% in the ratio to the total amount with Ti, and the above conventional The same crystal structure of the NaCl type face centered cubic crystal as that of the TiCN layer (see FIG. 1 above), that is, a crystal structure of NaCl type face centered cubic crystal in which a part of Ti atoms are replaced by Cr atoms, The high temperature strength is further improved by the action of Cr contained in the substitution, so the chipping resistance of the hard coating layer in high-speed, high-feed, high-cut milling cutting that requires extremely high mechanical and thermal loads on the cutting edge. To improve.

(b)上記従来TiCN層および上記Ti−Cr複合炭窒化物層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、前記従来TiCN層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記Ti−Cr複合炭窒化物層は、図3に例示される通り、Σ3に最高ピークが存在し、かつ、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、しかも、前記Ti−Cr複合炭窒化物層のΣ3の分布割合は、層中のCr含有量によって変化し、さらに、層中のCr含有量は、反応ガス中のCrClの配合割合によって調整できること。
(B) For the conventional TiCN layer and the Ti—Cr composite carbonitride layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 2A shows (001) of the crystal planes. When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. Are measured at the interface between crystal grains adjacent to each other, based on the measured tilt angles obtained as a result of the measurement. Calculate the distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystals, The constituent atomic shared lattice point form in which there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) is represented by ΣN + 1. When the constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit value of N is 28 in relation to the frequency) is created, the conventional TiCN layer is shown in FIG. As illustrated, the Ti—Cr composite carbonitride layer has a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, as shown in FIG. , Σ3 has the highest peak, and the distribution ratio of Σ3 shows an extremely high constituent atom shared lattice point distribution graph of 60% or more, and the distribution ratio of Σ3 in the Ti—Cr composite carbonitride layer is Depending on the Cr content in the layer Changes Te, further, Cr content in the layer, can be adjusted by the mixing ratio of CrCl 3 in the reaction gas.

(c)つまり、Ti−Cr複合炭窒化物層の蒸着形成に際し、蒸着時の反応ガス中のCrCl含有量を0.02〜1容量%とし、形成されたTi−Cr複合窒化物層中のCr含有割合を、Tiとの合量に占める割合で1〜10原子%とすることによって、構成原子共有格子点分布グラフでのΣ3の分布割合が60%以上のきわめて高いものになり、この結果、Ti−Cr複合炭窒化物層は上記従来TiCN層と比べ、一段と高温強度が向上したものとなるのであり、したがって、層中のCr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、構成原子共有格子点分布グラフでのΣ3の分布割合が60%未満になってしまい、所望の高温強度向上効果が得られなくなること。 (C) In other words, when the Ti—Cr composite carbonitride layer is formed by vapor deposition, the content of CrCl 3 in the reaction gas at the time of vapor deposition is 0.02 to 1% by volume, and the formed Ti—Cr composite nitride layer By making the Cr content ratio of 1 to 10 atomic% in the ratio to the total amount of Ti, the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph becomes extremely high of 60% or more. As a result, the Ti-Cr composite carbonitride layer has a further improved high-temperature strength as compared with the conventional TiCN layer. Therefore, even if the Cr content ratio in the layer deviates from the above range, Alternatively, even if the value is higher, the distribution ratio of Σ3 in the constituent atom shared lattice distribution graph becomes less than 60%, and the desired high temperature strength improvement effect cannot be obtained.

(d)そして、上記のTi−Cr複合炭窒化物層は、従来TiCN層が具備する硬さと強度に加えて、上記従来TiCN層に比べて一段と高い高温強度を有するので、上記Ti−Cr複合炭窒化物層とAl層とを化学蒸着により交互に積層した積層構造の硬質被覆層を備えた被覆工具は、極めて高い機械的・熱的負荷のかかる高速高送り高切り込みミーリング加工においても、硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた性能を発揮するようになること。 (D) Since the Ti—Cr composite carbonitride layer has a higher high-temperature strength than the conventional TiCN layer in addition to the hardness and strength of the conventional TiCN layer, the Ti—Cr composite Coated tools with a hard coating layer with a laminated structure in which carbonitride layers and Al 2 O 3 layers are alternately laminated by chemical vapor deposition are used in high-speed, high-feed, high-cut milling processes that require extremely high mechanical and thermal loads. However, the hard coating layer exhibits excellent chipping resistance and exhibits excellent performance over a long period of time.

(e)上記のTi−Cr複合炭窒化物層とAl層との交互積層構造からなる硬質被覆層を設けた被覆工具において、さらに、硬質被覆層の下部層とし、合計平均層厚2〜10μmの窒化チタン(TiN)層、炭化チタン(TiC)層、炭窒化チタン(TiCN)層のうちの1層または2層以上、あるいは、これらの層のうちの少なくとも1層のチタン成分の一部をジルコニウムで置換したチタンとジルコニウムの複合窒化物(以下、(Ti,Zr)Nで示す)層、チタンとジルコニウムの複合炭化物(以下、(Ti,Zr)Cで示す)層あるいはチタンとジルコニウムの複合炭窒化物(以下、(Ti,Zr)CNで示す)層、を化学蒸着で形成することにより、硬質被覆層の強度が確保され、高速重切削条件下でのチッピング発生が抑制されること。 (E) In a coated tool provided with a hard coating layer composed of an alternately laminated structure of the Ti—Cr composite carbonitride layer and the Al 2 O 3 layer, the total average layer thickness is set as a lower layer of the hard coating layer. One or more of a 2 to 10 μm titanium nitride (TiN) layer, a titanium carbide (TiC) layer, a titanium carbonitride (TiCN) layer, or at least one titanium component of these layers A composite nitride layer of titanium and zirconium partially substituted with zirconium (hereinafter referred to as (Ti, Zr) N), a composite carbide layer of titanium and zirconium (hereinafter referred to as (Ti, Zr) C) layer or titanium; By forming a composite carbonitride (hereinafter referred to as (Ti, Zr) CN) layer of zirconium by chemical vapor deposition, the strength of the hard coating layer is secured, and chipping occurs under high speed heavy cutting conditions. Control is the thing.

(f)上記下部層の形成について、TiN層、TiC層、TiCN層は、従来法と同様な形成条件で蒸着形成することができ、また、これらの層のチタン成分の一部をジルコニウムで置換した(Ti,Zr)N層、(Ti,Zr)C層あるいは(Ti,Zr)CN層は、それぞれ、TiN層、TiC層、TiCN層を形成する反応ガスに、ZrClを微量添加して化学蒸着を行うことにより形成できこと。
以上(a)〜(f)に示される研究結果を得たのである。
(F) Regarding the formation of the lower layer, the TiN layer, TiC layer, and TiCN layer can be formed by vapor deposition under the same formation conditions as in the conventional method, and a part of the titanium component of these layers is replaced with zirconium. The (Ti, Zr) N layer, the (Ti, Zr) C layer, or the (Ti, Zr) CN layer are formed by adding a small amount of ZrCl 4 to the reaction gas forming the TiN layer, TiC layer, and TiCN layer, respectively. It can be formed by chemical vapor deposition.
The research results shown in (a) to (f) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、少なくとも、
(a)0.2〜2μmの平均層厚を有し、かつ、チタンとクロムの合量に対するクロムの含有割合(Cr/(Ti+Cr))が、原子比で0.01〜0.1であるチタンとクロムの複合炭窒化物層、
(b)0.2〜2μmの平均層厚を有する酸化アルミニウム層、
上記(a)および(b)を少なくとも3層以上交互に積層し、合計平均層厚が1〜6μmとなるように化学蒸着で形成した硬質被覆層を設けてなることを特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
(2)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、少なくとも、上部層と下部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記上部層は、
(a)0.2〜2μmの平均層厚を有し、かつ、チタンとクロムの合量に対するクロムの含有割合(Cr/(Ti+Cr))が、原子比で0.01〜0.1であるチタンとクロムの複合炭窒化物層、
(b)0.2〜2μmの平均層厚を有する酸化アルミニウム層、
上記(a)および(b)を少なくとも3層以上交互に積層し、合計平均層厚が1〜6μmとなるよう化学蒸着で形成した交互積層からなり、
また、上記下部層は、
(c)合計平均層厚2〜10μmの化学蒸着で形成した窒化チタン層、炭化チタン層、炭窒化チタン層のうちの1層または2層以上からなる、
ことを特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
(3)前記(2)記載の表面被覆切削工具において、
上記下部層(c)のうちの少なくとも1層は、チタンの一部をジルコニウムで置換したチタンとジルコニウムの複合窒化物層、チタンとジルコニウムの複合炭化物層あるいはチタンとジルコニウムの複合炭窒化物層、
であることを特徴とする前記(2)記載の表面被覆切削工具。
(4)前記(2)または(3)記載の表面被覆切削工具において、
上部層と下部層の間に、炭酸化チタン層、窒酸化チタン層および炭窒酸化チタン層のうちの1層または2層以上からなる合計平均層厚0.2〜1μmの中間層を介在させたことを特徴とする前記(2)または(3)記載の表面被覆切削工具。
(5)前記(1)乃至(4)記載の表面被覆切削工具において、
上記(a)のチタンとクロムの複合炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にチタンとクロムと炭素と窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示すチタンとクロムの複合炭窒化物層であることを特徴とする前記(1)乃至(4)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) At least on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) It has an average layer thickness of 0.2 to 2 μm, and the content ratio of chromium to the total amount of titanium and chromium (Cr / (Ti + Cr)) is 0.01 to 0.1 in atomic ratio. A composite carbonitride layer of titanium and chromium,
(B) an aluminum oxide layer having an average layer thickness of 0.2-2 μm,
A hard coating layer comprising a hard coating layer formed by chemical vapor deposition, wherein at least three layers (a) and (b) are alternately laminated, and the total average layer thickness is 1 to 6 μm. A surface-coated cutting tool with excellent chipping resistance.
(2) In a surface-coated cutting tool in which a hard coating layer composed of at least an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The upper layer is
(A) It has an average layer thickness of 0.2 to 2 μm, and the content ratio of chromium to the total amount of titanium and chromium (Cr / (Ti + Cr)) is 0.01 to 0.1 in atomic ratio. A composite carbonitride layer of titanium and chromium,
(B) an aluminum oxide layer having an average layer thickness of 0.2-2 μm,
The above (a) and (b) are alternately laminated at least three layers, and consists of alternate lamination formed by chemical vapor deposition so that the total average layer thickness is 1 to 6 μm,
The lower layer is
(C) consisting of one or more of a titanium nitride layer, a titanium carbide layer, and a titanium carbonitride layer formed by chemical vapor deposition with a total average layer thickness of 2 to 10 μm.
A surface-coated cutting tool that exhibits excellent chipping resistance due to its hard coating layer.
(3) In the surface-coated cutting tool according to (2),
At least one of the lower layers (c) includes a titanium-zirconium composite nitride layer in which a part of titanium is replaced with zirconium, a titanium-zirconium composite carbide layer, or a titanium-zirconium composite carbonitride layer,
The surface-coated cutting tool according to (2) above, wherein
(4) In the surface-coated cutting tool according to (2) or (3),
Between the upper layer and the lower layer, an intermediate layer having a total average layer thickness of 0.2 to 1 μm composed of one or more of a titanium carbonate layer, a titanium nitride oxide layer, and a titanium carbonitride oxide layer is interposed. The surface-coated cutting tool according to (2) or (3) above, wherein
(5) In the surface-coated cutting tool according to (1) to (4),
The composite carbonitride layer of titanium and chromium in the above (a) uses a field emission scanning electron microscope to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam, and The tilt angle formed by the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains have titanium, chromium, and carbon at lattice points. Each of the constituent atoms has a crystal structure of NaCl type face centered cubic crystal in which constituent atoms composed of nitrogen and nitrogen are present, respectively, at the interface between adjacent crystal grains based on the measured tilt angle. Calculates the distribution of lattice points that share one constituent atom between the crystal grains (constituent atom shared lattice points), and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is N An even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal When the configuration of existing constituent atomic shared lattice points is represented by ΣN + 1, the constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 in terms of frequency) In any of the above, it is a composite carbonitride layer of titanium and chromium that shows a constituent atomic shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 in the entire ΣN + 1 is 60% or more. The surface-coated cutting tool according to any one of (1) to (4), which is characterized in that "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに限定した理由を説明する。
(a)交互積層構造の構成層であるチタンとクロムの複合炭窒化物層(Ti−Cr複合炭窒化物層)
上記Ti−Cr複合炭窒化物層は、すぐれた高温硬さおよびすぐれた高温強度を有するが、この特性は、反応ガスにCrClを0.02〜1容量%の割合で添加して化学蒸着し、蒸着形成された層中のCr含有割合をTiとの合量に占める割合で1〜10原子%とした結果として、構成原子共有格子点分布グラフにおけるΣ3の分布割合が60%以上となることにより得られるものであって、一方、Σ3の分布割合が60%未満では、高温強度の向上効果が少なく、高速高送り高切り込みミーリング加工において、硬質被覆層にチッピングが発生することは避けられず、すぐれた耐摩耗性を発揮することはできないことから、TiとCrの合量に対するCrの含有割合(Cr/(Ti+Cr))を0.01〜0.1(但し,原子比)と定め、また、Σ3の分布割合を60%以上と定めた。
また、Ti−Cr複合炭窒化物層は、その平均層厚が0.2μm未満では、交互積層構造の構成層であるAl層の高温強度不足を補完し、硬質被覆層全体としての高温強度向上を図ることはできず、一方、平均層厚が2μmを超えると、隣接するAl層との十分な付着強度を確保することができなくなり、硬質被覆層にチッピングがおこりやすくなるため、その平均層厚を0.2〜2μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.
(A) Titanium-chromium composite carbonitride layer (Ti-Cr composite carbonitride layer) which is a constituent layer of an alternately laminated structure
The Ti—Cr composite carbonitride layer has excellent high-temperature hardness and excellent high-temperature strength, but this characteristic is obtained by chemical vapor deposition by adding CrCl 3 to the reaction gas at a ratio of 0.02 to 1% by volume. As a result of setting the Cr content ratio in the deposited layer to 1 to 10 atomic% in the ratio to the total amount with Ti, the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph is 60% or more. On the other hand, if the distribution ratio of Σ3 is less than 60%, the effect of improving the high temperature strength is small, and it is inevitable that chipping occurs in the hard coating layer in the high-speed, high-feed, high-cut milling process. Since the excellent wear resistance cannot be exhibited, the Cr content ratio (Cr / (Ti + Cr)) with respect to the total amount of Ti and Cr is set to 0.01 to 0.1 (however, the atomic ratio). , And it was defined as 60% or more a distribution ratio of [sum] 3.
In addition, when the average layer thickness of the Ti—Cr composite carbonitride layer is less than 0.2 μm, the shortage of high-temperature strength of the Al 2 O 3 layer that is a constituent layer of the alternately laminated structure is supplemented, On the other hand, when the average layer thickness exceeds 2 μm, sufficient adhesion strength with the adjacent Al 2 O 3 layer cannot be secured, and the hard coating layer is likely to chip. Therefore, the average layer thickness was set to 0.2 to 2 μm.

(b)交互積層構造の構成層である酸化アルミニウム層(Al層)
上記Al層は、高温硬さと耐熱性にすぐれ、切削加工時の摩耗に対して耐摩耗性を示すが、その平均層厚が0.2μm未満では、十分な耐摩耗性を発揮することができず、また、その平均層厚が2μm以上の場合は、隣接するTi−Cr複合炭窒化物層との十分な付着強度を確保することができなくなるばかりか、高速重切削条件下では高温強度の不足によりチッピングが発生しやすくなることから、その平均層厚を0.2〜2μmとした。
(B) Aluminum oxide layer (Al 2 O 3 layer) which is a constituent layer of an alternately laminated structure
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and exhibits wear resistance against wear during cutting, but exhibits sufficient wear resistance when the average layer thickness is less than 0.2 μm. In addition, when the average layer thickness is 2 μm or more, it is not only possible to secure sufficient adhesion strength with the adjacent Ti—Cr composite carbonitride layer, but under high speed heavy cutting conditions. Since chipping is likely to occur due to insufficient high-temperature strength, the average layer thickness was set to 0.2 to 2 μm.

(c)酸化アルミニウム層(Al層)と、チタンとクロムの複合炭窒化物層(Ti−Cr複合炭窒化物層)からなる交互積層(上部層)
上記Al層と上記Ti−Cr複合炭窒化物層を、少なくとも3層以上交互に積層し、合計平均層厚が1〜6μmとなるように交互積層構造の硬質被覆層(上部層)を化学蒸着で形成し、Al層の高温強度不足を、すぐれた高温強度を有するTi−Cr複合炭窒化物層を交互積層することによって補完し、硬質被覆層(上部層)全体としての耐チッピング性を確保するが、交互積層構造からなる硬質被覆層(上部層)の合計平均層厚が1μm未満では、高速高送り高切り込みミーリング加工において十分な耐摩耗性を発揮することができず、一方、合計平均層厚が6μmを超えると、チッピングや異常摩耗が発生し易くなるため、硬質被覆層(上部層)の合計平均層厚を1〜6μmと定めた。
(C) Alternating stack (upper layer) composed of an aluminum oxide layer (Al 2 O 3 layer) and a composite carbonitride layer of titanium and chromium (Ti—Cr composite carbonitride layer)
The Al 2 O 3 layer and the Ti—Cr composite carbonitride layer are alternately laminated at least 3 layers, and a hard coating layer (upper layer) having an alternately laminated structure so that the total average layer thickness is 1 to 6 μm. Is formed by chemical vapor deposition, and the lack of high-temperature strength of the Al 2 O 3 layer is supplemented by alternately laminating Ti—Cr composite carbonitride layers having excellent high-temperature strength, and the hard coating layer (upper layer) as a whole However, if the total average layer thickness of the hard coating layer (upper layer) composed of alternating layers is less than 1 μm, sufficient wear resistance can be demonstrated in high-speed, high-feed, high-cut milling processing. On the other hand, if the total average layer thickness exceeds 6 μm, chipping and abnormal wear are likely to occur. Therefore, the total average layer thickness of the hard coating layer (upper layer) was set to 1 to 6 μm.

(d)窒化チタン(TiN)層、炭化チタン(TiC)層、炭窒化チタン(TiCN)層のうちの1層または2層以上からなる下部層、あるいは、これらの層のうちの少なくとも1層は、チタンの一部をジルコニウムで置換したチタンとジルコニウムの複合窒化物((Ti,Zr)N)層、チタンとジルコニウムの複合炭化物((Ti,Zr)C)層あるいはチタンとジルコニウムの複合炭窒化物((Ti,Zr)CN)層で形成した下部層
硬質被覆層の下部層を構成するTiN層、TiC層、TiCN層、また、これらの層のうちの少なくとも1層を(Ti,Zr)N層、(Ti,Zr)C層あるいは(Ti,Zr)CN層とした下部層は、いずれも、すぐれた強度を備えるとともに、硬質被覆層の上部層を構成するAl層、Ti−Cr複合炭窒化物層とすぐれた密着性・接合強度を有し、高速重切削条件下での耐チッピング改善に寄与する。
上記各下部層のうち、TiN層、TiC層、TiCN層の形成条件は従来法と同様であり、また、Tiの一部をZrで置換した(Ti,Zr)N層、(Ti,Zr)C層、(Ti,Zr)CN層は、TiN層、TiC層、TiCN層を形成するそれぞれの反応ガス中に、0.1〜1%のZrClを添加含有させ、通常の化学蒸着装置で蒸着することによって形成することができる。そして、(Ti,Zr)N層、(Ti,Zr)C層、(Ti,Zr)CN層におけるTiとZrの合量に対するZrの含有割合(Zr/(Ti+Zr))について、Zrの含有割合が0.02未満の場合には、強度向上効果を期待することができず、一方、Zrの含有割合が0.15を超えた場合には、硬さが低下するため、(Ti,Zr)N層、(Ti,Zr)C層、(Ti,Zr)CN層におけるZrの含有割合は、原子比で0.02〜0.15とすることが望ましい。
(D) a titanium nitride (TiN) layer, a titanium carbide (TiC) layer, a titanium carbonitride (TiCN) layer, or a lower layer composed of two or more layers, or at least one of these layers is Titanium and zirconium composite nitride ((Ti, Zr) N) layer, titanium and zirconium composite carbide ((Ti, Zr) C) layer or titanium and zirconium composite carbonitride Lower layer formed of a material ((Ti, Zr) CN) layer TiN layer, TiC layer, TiCN layer constituting the lower layer of the hard coating layer, and at least one of these layers is (Ti, Zr) The N layer, the (Ti, Zr) C layer, or the (Ti, Zr) CN lower layer are all provided with excellent strength, and the Al 2 O 3 layer constituting the upper layer of the hard coating layer, Ti -Excellent adhesion and bonding strength with Cr composite carbonitride layer, contributing to improved chipping resistance under high speed heavy cutting conditions.
Among the above lower layers, the formation conditions of the TiN layer, TiC layer, and TiCN layer are the same as those in the conventional method, and (Ti, Zr) N layer in which a part of Ti is replaced with Zr, (Ti, Zr) The C layer and the (Ti, Zr) CN layer contain 0.1 to 1% of ZrCl 4 in each reaction gas forming the TiN layer, TiC layer, and TiCN layer. It can be formed by vapor deposition. And about the Zr content ratio (Zr / (Ti + Zr)) with respect to the total amount of Ti and Zr in the (Ti, Zr) N layer, (Ti, Zr) C layer, (Ti, Zr) CN layer, the Zr content ratio Is less than 0.02, the effect of improving the strength cannot be expected. On the other hand, when the content ratio of Zr exceeds 0.15, the hardness decreases, so (Ti, Zr) The content ratio of Zr in the N layer, the (Ti, Zr) C layer, and the (Ti, Zr) CN layer is preferably 0.02 to 0.15 in atomic ratio.

(e)炭酸化チタン層(TiCO層)、窒酸化チタン層(TiNO層)および炭窒酸化チタン層(TiCNO層)のうちの1層または2層以上からなる合計平均層厚0.2〜1μmの中間層
炭酸化チタン(TiCO)層、窒酸化チタン(TiNO)層および炭窒酸化チタン(TiCNO)層のうちの1層または2層以上からなる合計平均層厚0.2〜1μmの中間層を、上部層と下部層との間に介在させると、上記中間層は、上記上部層と下部層のいずれに対しても密着性にすぐれ、また、付着強度も大きいため、上記上部層と下部層間の接合強度を高め、その結果、硬質被覆層全体としての高温強度をより一層高めて耐チッピング性をさらに向上させる効果があるが、その合計平均層厚が0.2μm未満では接合強度の向上効果が少なく、また、合計平均層厚が1μmを超えると、チッピングなどの異常損傷が生じやすくなることから、中間層の合計平均層厚を0.2〜1μmと定めた。
(E) Total average layer thickness of 0.2 to 1 μm consisting of one layer or two or more of a titanium carbonate layer (TiCO layer), a titanium nitride oxide layer (TiNO layer) and a titanium carbonitride oxide layer (TiCNO layer) Intermediate layer of Titanium carbonate (TiCO) layer, Titanium oxynitride (TiNO) layer and Titanium carbonitride oxide (TiCNO) layer Intermediate layer having a total average layer thickness of 0.2 to 1 μm consisting of one or more layers If the intermediate layer is interposed between the upper layer and the lower layer, the intermediate layer has excellent adhesion to both the upper layer and the lower layer, and also has high adhesion strength. It has the effect of increasing the bonding strength between the layers and, as a result, further increasing the high temperature strength of the entire hard coating layer and further improving the chipping resistance, but if the total average layer thickness is less than 0.2 μm, the bonding strength is improved. Less effective If the total average layer thickness exceeds 1 μm, abnormal damage such as chipping is likely to occur. Therefore, the total average layer thickness of the intermediate layer is set to 0.2 to 1 μm.

なお、被覆工具の切削後の使用コーナーの識別を容易にする目的で、硬質被覆層の上層に、金色を有するTiN層を被覆することが一般的に知られているが、本発明被覆工具においても、使用コーナー識別の目的で、Al層とTi−Cr複合炭窒化物層の交互積層構造からなる上部層の最表層に、TiN層を被覆してもよい。その際のTiN層の被覆層厚は0.2〜1μmで十分である。 It is generally known that a TiN layer having a gold color is coated on the hard coating layer for the purpose of facilitating identification of a use corner after cutting of the coated tool. Alternatively, for the purpose of identifying the use corner, a TiN layer may be coated on the outermost layer of the upper layer composed of an alternately laminated structure of Al 2 O 3 layers and Ti—Cr composite carbonitride layers. In this case, the thickness of the coating layer of the TiN layer is sufficient to be 0.2 to 1 μm.

また、近年、硬質被覆層を形成後、物理的な手法、具体的には砥石、ナイロン製等のブラシ、SiC、AlおよびZrO粒子等をメディアとして使用する乾式あるいは湿式ブラスト処理等により、硬質被覆層の表面を平滑化し、耐溶着性を向上させることが知られているが、本発明被覆工具に対してこれを適用することも勿論可能である。 Also, in recent years, after forming a hard coating layer, a physical method, specifically, a dry or wet blasting process using a grinding wheel, a brush made of nylon, etc., SiC, Al 2 O 3 and ZrO 2 particles as a medium, etc. Thus, it is known that the surface of the hard coating layer is smoothed and the welding resistance is improved, but it is of course possible to apply this to the coated tool of the present invention.

この発明の被覆工具は、その表面に、Ti−Cr複合炭窒化物層とAl層の交互積層構造からなる硬質被覆層を備え(請求項1)、あるいは、これを上部層とし、上部層と工具基体間にTiN層、TiC層、TiCN層のうちの1層または2層以上からなる下部層、あるいは、これらの層のうちの少なくとも1層を(Ti,Zr)N層、(Ti,Zr)C層あるいは(Ti,Zr)CN層とした下部層を設け(請求項2、3)、或いは更に、上部層と下部層間に、TiCO層、TiNO層およびTiCNO層のうちの1層または2層以上からなる中間層を設け(請求項4)、さらに、前記Ti−Cr複合炭窒化物層が、Tiとの合量に占める割合で1〜10原子%のCrを含有し、構成原子共有格子点分布グラフでのΣ3の分布割合が60%以上のきわめて高いものとして構成されている(請求項5)ので、各種の鋼、工具鋼および鋳鉄などの通常条件でのミーリング加工は勿論のこと、特に、機械的・熱的負荷が大きく、かつ高い発熱を伴う高速高送り、高切り込み切削でも、すぐれた耐チッピング性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものである。 The coated tool of the present invention includes a hard coating layer having an alternately laminated structure of a Ti—Cr composite carbonitride layer and an Al 2 O 3 layer on the surface thereof (Claim 1), or this as an upper layer, Between the upper layer and the tool substrate, a TiN layer, a TiC layer, a lower layer composed of two or more of the TiCN layers, or at least one of these layers is a (Ti, Zr) N layer, ( A lower layer made of a Ti, Zr) C layer or a (Ti, Zr) CN layer is provided (Claims 2 and 3), or further, one of a TiCO layer, a TiNO layer and a TiCNO layer is provided between the upper layer and the lower layer. An intermediate layer comprising two or more layers is provided (Claim 4), and further, the Ti-Cr composite carbonitride layer contains 1 to 10 atomic% Cr in a proportion of the total amount with Ti, Distribution ratio of Σ3 in constituent atomic grid distribution graph Since it is configured as an extremely high material of 60% or more (Claim 5), not only milling processing under normal conditions such as various steels, tool steels, and cast irons, especially mechanical and thermal loads are large. In addition, it exhibits excellent chipping resistance and wear resistance even at high speed, high feed and high depth of cut with high heat generation, and exhibits excellent cutting performance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を準備し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアルコール中で10時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部に幅0.15mm、角度20度のチャンフォーホーニング加工することによりISO・SEEN1203AFTN1に規定するスローアウェイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in alcohol for 10 hours, dried under reduced pressure, and then press molded into a compact of a predetermined shape at a pressure of 98 MPa. Is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa, and after sintering, the cutting edge portion has a width of 0.15 mm and an angle of 20 degrees Chamfor Honing As a result, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · SEEN1203AFTN1 were produced.

ついで、これらの工具基体A〜F表面に、まず、表5に示される条件かつ表7に示される目標平均層厚で下部層を蒸着形成し、或いは更に表6に示される条件かつ表7に示される目標平均層厚で中間層を蒸着形成した後、通常の化学蒸着装置を用いて、表2に示される条件かつ表8に示される目標平均層厚でTi−Cr複合炭窒化物層を蒸着形成し、ついで、表4に示される条件かつ表8に示される目標平均層厚でκ型もしくはα型の結晶形態を有するAl層を蒸着形成し、Ti−Cr複合炭窒化物層とAl層の交互積層からなる硬質被覆層を有する本発明被覆工具1〜18を製造した。(なお、表2、5でいう「目標含有割合」は、原子比で表したCr/(Ti+Cr)又はZr/(Ti+Zr)の値である。) Next, a lower layer is formed by vapor deposition on the surface of these tool bases A to F with the conditions shown in Table 5 and the target average layer thickness shown in Table 7, or further, the conditions shown in Table 6 and Table 7 below. After the intermediate layer is formed by vapor deposition with the target average layer thickness shown, a Ti—Cr composite carbonitride layer is formed with the conditions shown in Table 2 and the target average layer thickness shown in Table 8 using a normal chemical vapor deposition apparatus. Then, an Al 2 O 3 layer having a crystal form of κ type or α type was formed by vapor deposition under the conditions shown in Table 4 and the target average layer thickness shown in Table 8, and Ti—Cr composite carbonitride the present invention coated tool 18 having a hard coating layer consisting of alternating stacked layers and the Al 2 O 3 layer was produced. (The “target content ratio” in Tables 2 and 5 is the value of Cr / (Ti + Cr) or Zr / (Ti + Zr) expressed in atomic ratio.)

比較の目的で、表3に示される条件かつ表10に示される目標平均層厚でTi−Cr複合炭窒化物層の代わりにTiCN層を形成し、他の条件(例えば、下部層、中間層、Al層の形成条件等)については上記本発明被覆工具1〜18と同一の条件とすることにより、比較被覆工具1〜18をそれぞれ製造した。(比較被覆工具1〜18の下部層、中間層、層厚を表9に示す。)
なお、例えば、特開平6−8010号公報に示されるような層の強度向上を目的として形成された縦長成長結晶組織を有するTiCN層を、表5中では「l−TiCN」として示す。
For the purpose of comparison, a TiCN layer is formed in place of the Ti—Cr composite carbonitride layer under the conditions shown in Table 3 and the target average layer thickness shown in Table 10, and other conditions (for example, lower layer, intermediate layer) Comparative forming tools 1 to 18 were manufactured by setting the same conditions as the above-described coated tools 1 to 18 of the present invention as to the conditions for forming the Al 2 O 3 layer. (The lower layer, the intermediate layer, and the layer thickness of the comparative coated tools 1 to 18 are shown in Table 9.)
For example, a TiCN layer having a vertically long crystal structure formed for the purpose of improving the strength of the layer as disclosed in JP-A-6-8010 is shown as “l-TiCN” in Table 5.

ついで、上記の本発明被覆工具の硬質被覆層の交互積層構造を構成するTi−Cr複合炭窒化物層、および、比較被覆工具の硬質被覆層の交互積層構造を構成するTiCN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフを作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記本発明Ti−Cr複合炭窒化物層、および、従来TiCN層の表面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
Next, the field emission of the Ti—Cr composite carbonitride layer constituting the alternate laminated structure of the hard coating layer of the above-described coated tool of the present invention and the TiCN layer constituting the alternate laminated structure of the hard coated layer of the comparative coated tool is described. Using a scanning electron microscope, a constituent atom shared lattice distribution graph was created.
In other words, the constituent atomic shared lattice point distribution graph is shown in the column of the field emission scanning electron microscope in a state where the surfaces of the Ti-Cr composite carbonitride layer of the present invention and the conventional TiCN layer are respectively polished surfaces. Electron backscattering is performed by irradiating the polishing surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain within the measurement range of the surface polishing surface. Using a diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step and the (001) plane and (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polishing plane Measure the tilt angle formed by the normal, and based on the measured tilt angle, each of the constituent atoms shares one constituent atom between the crystal grains at the interface between the adjacent crystal grains. Lattice points (constituent atom sharing (Distribution point) distribution, and there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl-type face-centered cubic crystal) When the atomic shared lattice point form is represented by ΣN + 1, it was created by determining the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit value is 28 due to frequency).

この結果得られた本発明被覆工具の硬質被覆層の交互積層構造を構成するTi−Cr複合炭窒化物層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表8に示した。
また、比較のために、比較被覆工具のTiCN層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表10に示した。
In the atomic distribution lattice point distribution graph of the Ti—Cr composite carbonitride layer constituting the alternately laminated structure of the hard coating layers of the coated tool of the present invention obtained as a result, the entire ΣN + 1 (N is in the range of 2 to 28) Table 8 shows the distribution ratio of Σ3 in all the even numbers).
For comparison, in the constituent atomic shared lattice point distribution graph of the TiCN layer of the comparative coated tool, the distribution ratio of Σ3 in the entire ΣN + 1 (N is all even numbers in the range of 2 to 28) is shown in Table 10, respectively. Indicated.

上記の各種の構成原子共有格子点分布グラフにおいて、表8、10にそれぞれ示される通り、本発明被覆工具1〜18の交互積層構造を構成するTi−Cr複合炭窒化物層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、比較被覆工具1〜18の従来TiCN層は、いずれもΣ3の分布割合が30%未満の構成原子共有格子点分布グラフを示すものであった。
なお、図3は、本発明被覆工具5のうちA−7の条件にて形成したTi−Cr複合炭窒化物層の構成原子共有格子点分布グラフ、図4は、比較被覆工具5のうち、a−7の条件にて形成した従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 8 and 10, respectively, Ti—Cr composite carbonitride layers constituting the alternately laminated structure of the present coated tools 1 to 18 are all Σ3. In contrast to the constituent atom sharing lattice distribution graph in which the distribution ratio occupied by 60% or more is shown, the conventional TiCN layers of the comparative coated tools 1 to 18 all share constituent atoms with a Σ3 distribution ratio of less than 30%. A grid point distribution graph was shown.
3 is a constituent atomic shared lattice distribution graph of the Ti—Cr composite carbonitride layer formed under the condition A-7 in the present coated tool 5, and FIG. 4 is a comparison coated tool 5. FIG. 6 shows a constituent atom shared lattice point distribution graph of a conventional TiCN layer formed under the conditions of a-7. FIG.

さらに、上記の本発明被覆工具1〜18および比較被覆工具1〜18について、これらの硬質被覆層の構成層をオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-described inventive coated tools 1-18 and comparative coated tools 1-18, the constituent layers of these hard coating layers were observed using an Auger spectroscopic analyzer (observation of the longitudinal section of the layers). And the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (same longitudinal section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

まず、上記の本発明被覆工具1〜18および比較被覆工具1〜18について、次の切削条件A〜Cにより、単刃での正面フライス加工を実施した。
[切削条件A]
被削材: JIS・SCr420Hのブロック材、
切削速度: 380 m/min、
切り込み: 4 mm、
一刃送り量: 0.4 mm/刃、
切削時間: 5 分、
の条件での合金鋼の湿式高速高切り込み高送り切削試験(通常の切削速度、切り込み、送りは、それぞれ、200m/min、1.5mm、0.2mm/刃)、
[切削条件B]
被削材: JIS・SKD11のブロック材、
切削速度: 320 m/min、
切り込み: 3.5 mm、
一刃送り量: 0.4 mm/刃、
切削時間: 5 分、
の条件での工具鋼の湿式高速高切り込み高送り切削試験(通常の切削速度、切り込み、送りは、それぞれ、150m/min、1.5mm、0.15mm/刃)、
[切削条件C]
被削材: JIS・FC350のブロック、
切削速度: 420 m/min、
切り込み: 4.3 mm、
送り: 0.45 mm/刃、
切削時間: 5 分、
の条件での鋳鉄の湿式高速高切り込み高送り切削試験(通常の切削速度、切り込み、送りは、それぞれ、250m/min、1.5mm、0.2mm/刃)、
そして、上記の各切削試験における切刃の逃げ面摩耗幅を測定し、この測定結果を表11に示した。
First, front milling with a single blade was performed on the above-described inventive coated tools 1 to 18 and comparative coated tools 1 to 18 under the following cutting conditions A to C.
[Cutting conditions A]
Work material: JIS / SCr420H block material,
Cutting speed: 380 m / min,
Cutting depth: 4 mm,
Single blade feed rate: 0.4 mm / tooth,
Cutting time: 5 minutes,
Wet high speed high cutting high feed cutting test of alloy steel under the conditions of (normal cutting speed, cutting, feed are 200 m / min, 1.5 mm, 0.2 mm / blade, respectively),
[Cutting conditions B]
Work material: Block material of JIS / SKD11,
Cutting speed: 320 m / min,
Cutting depth: 3.5 mm,
Single blade feed rate: 0.4 mm / tooth,
Cutting time: 5 minutes,
Tool steel wet high-speed high-cut high-feed cutting test (normal cutting speed, cutting and feed are 150 m / min, 1.5 mm, and 0.15 mm / tooth, respectively),
[Cutting conditions C]
Work material: JIS / FC350 block,
Cutting speed: 420 m / min,
Cutting depth: 4.3 mm,
Feed: 0.45 mm / tooth,
Cutting time: 5 minutes,
Cast iron wet high speed high cutting high feed cutting test (normal cutting speed, cutting, feed are 250 m / min, 1.5 mm, 0.2 mm / blade, respectively),
The flank wear width of the cutting edge in each of the above cutting tests was measured, and the measurement results are shown in Table 11.

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770

Figure 2008093770
Figure 2008093770


Figure 2008093770
Figure 2008093770

表8、10、11に示される結果から、本発明被覆工具1〜18は、硬質被覆層の上部層が、Ti−Cr複合炭窒化物層とAl層の交互積層構造から構成され、かつ、前記交互積層構造の構成層であるTi−Cr複合炭窒化物層は、Tiとの合量に占める割合で1〜10原子%のCrを含有し、構成原子共有格子点分布グラフでのΣ3の分布割合が60%以上のきわめて高いものとして構成されているので、機械的・熱的負荷が大きく、しかも、高い発熱を伴う各種の鋼、工具鋼および鋳鉄などの高速高送り、高切り込みミーリング切削において、硬質被覆層がすぐれた耐チッピング性とすぐれた耐摩耗性を発揮するのに対して、硬質被覆層の交互積層構造が従来TiCN層とAl層で形成された比較被覆工具1〜18においては、高速高送り、高切り込みミーリング切削の激しい機械的・熱的負荷に耐えられず、硬質被覆層にはチッピングが発生し、また摩耗も促進され、これが原因となり比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 8, 10, and 11, the present invention coated tools 1 to 18 are configured such that the upper layer of the hard coating layer has an alternately laminated structure of Ti—Cr composite carbonitride layers and Al 2 O 3 layers. And, the Ti—Cr composite carbonitride layer, which is a constituent layer of the alternately laminated structure, contains 1 to 10 atomic% of Cr in the proportion of the total amount with Ti, and is a constituent atomic shared lattice point distribution graph. The distribution ratio of Σ3 is extremely high with 60% or more, so it has high mechanical and thermal load, and high-speed, high-feed, high-speed feeds for various steels, tool steels and cast irons with high heat generation. In incision milling, the hard coating layer exhibits excellent chipping resistance and excellent wear resistance, whereas the alternating laminated structure of the hard coating layer is conventionally formed of a TiCN layer and an Al 2 O 3 layer For coated tools 1-18 Therefore, it cannot withstand the severe mechanical and thermal loads of high-speed, high-feed, high-cut milling, and chipping occurs in the hard coating layer, and wear is also accelerated. It is clear that

上述のように、この発明の被覆工具は、各種の鋼、工具鋼および鋳鉄などの通常の条件でのミーリング加工は勿論のこと、特に、機械的・熱的負荷が大きく、かつ高い発熱を伴う高速高送り高切り込みの高速重切削条件でも、すぐれた耐チッピング性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化ならびに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only milled under normal conditions such as various types of steel, tool steel, and cast iron, and particularly has a large mechanical and thermal load and is accompanied by high heat generation. Even under high-speed, high-feed, high-cut high-speed heavy cutting conditions, it exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. It can be used satisfactorily for labor saving, energy saving, and cost reduction.

硬質被覆層の従来TiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the conventional TiCN layer of a hard coating layer has. NaCl型面心立方晶の結晶構造を有する結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane and the (011) plane of the crystal grain which has a crystal structure of a NaCl type face centered cubic crystal. 本発明被覆工具5の形成条件A−7で形成したTi−Cr複合炭窒化物層の構成原子共有格子点分布グラフである。It is a constituent atom shared lattice point distribution graph of the Ti-Cr compound carbonitride layer formed on formation condition A-7 of the present invention covering tool 5. 比較被覆工具5の形成条件a−7で形成した従来TiCN層の構成原子共有格子点分布グラフである。It is a constituent atom shared lattice point distribution graph of the conventional TiCN layer formed on the formation condition a-7 of the comparative coating tool 5.

Claims (5)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、少なくとも、
(a)0.2〜2μmの平均層厚を有し、かつ、チタンとクロムの合量に対するクロムの含有割合(Cr/(Ti+Cr))が、原子比で0.01〜0.1であるチタンとクロムの複合炭窒化物層、
(b)0.2〜2μmの平均層厚を有する酸化アルミニウム層、
上記(a)および(b)を少なくとも3層以上交互に積層し、合計平均層厚が1〜6μmとなるように化学蒸着で形成した硬質被覆層を設けてなることを特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
At least on the surface of the tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) It has an average layer thickness of 0.2 to 2 μm, and the content ratio of chromium to the total amount of titanium and chromium (Cr / (Ti + Cr)) is 0.01 to 0.1 in atomic ratio. A composite carbonitride layer of titanium and chromium,
(B) an aluminum oxide layer having an average layer thickness of 0.2-2 μm,
A hard coating layer comprising a hard coating layer formed by chemical vapor deposition, wherein at least three layers (a) and (b) are alternately laminated, and the total average layer thickness is 1 to 6 μm. A surface-coated cutting tool with excellent chipping resistance.
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、少なくとも、上部層と下部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記上部層は、
(a)0.2〜2μmの平均層厚を有し、かつ、チタンとクロムの合量に対するクロムの含有割合(Cr/(Ti+Cr))が、原子比で0.01〜0.1であるチタンとクロムの複合炭窒化物層、
(b)0.2〜2μmの平均層厚を有する酸化アルミニウム層、
上記(a)および(b)を少なくとも3層以上交互に積層し、合計平均層厚が1〜6μmとなるよう化学蒸着で形成した交互積層からなり、
また、上記下部層は、
(c)合計平均層厚2〜10μmの化学蒸着で形成した窒化チタン層、炭化チタン層、炭窒化チタン層のうちの1層または2層以上からなる、
ことを特徴とする硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of at least an upper layer and a lower layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
The upper layer is
(A) It has an average layer thickness of 0.2 to 2 μm, and the content ratio of chromium to the total amount of titanium and chromium (Cr / (Ti + Cr)) is 0.01 to 0.1 in atomic ratio. A composite carbonitride layer of titanium and chromium,
(B) an aluminum oxide layer having an average layer thickness of 0.2-2 μm,
The above (a) and (b) are alternately laminated at least three layers, and consists of alternate lamination formed by chemical vapor deposition so that the total average layer thickness is 1 to 6 μm,
The lower layer is
(C) consisting of one or more of a titanium nitride layer, a titanium carbide layer, and a titanium carbonitride layer formed by chemical vapor deposition with a total average layer thickness of 2 to 10 μm.
A surface-coated cutting tool that exhibits excellent chipping resistance due to its hard coating layer.
請求項2記載の表面被覆切削工具において、
上記下部層(c)のうちの少なくとも1層は、チタンの一部をジルコニウムで置換したチタンとジルコニウムの複合窒化物層、チタンとジルコニウムの複合炭化物層あるいはチタンとジルコニウムの複合炭窒化物層、
であることを特徴とする請求項2記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 2,
At least one of the lower layers (c) includes a titanium-zirconium composite nitride layer in which a part of titanium is replaced with zirconium, a titanium-zirconium composite carbide layer, or a titanium-zirconium composite carbonitride layer,
The surface-coated cutting tool according to claim 2, wherein
請求項2または3記載の表面被覆切削工具において、
上部層と下部層の間に、炭酸化チタン層、窒酸化チタン層および炭窒酸化チタン層のうちの1層または2層以上からなる合計平均層厚0.2〜1μmの中間層を介在させたことを特徴とする請求項2または3記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 2 or 3,
Between the upper layer and the lower layer, an intermediate layer having a total average layer thickness of 0.2 to 1 μm composed of one or more of a titanium carbonate layer, a titanium nitride oxide layer, and a titanium carbonitride oxide layer is interposed. The surface-coated cutting tool according to claim 2 or 3, wherein
請求項1乃至4記載の表面被覆切削工具において、
上記(a)のチタンとクロムの複合炭窒化物層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にチタンとクロムと炭素と窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示すチタンとクロムの複合炭窒化物層であることを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
The composite carbonitride layer of titanium and chromium in the above (a) uses a field emission scanning electron microscope to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam, and The tilt angle formed by the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains have titanium, chromium, and carbon at lattice points. Each of the constituent atoms has a crystal structure of NaCl type face centered cubic crystal in which constituent atoms composed of nitrogen and nitrogen are present, respectively, at the interface between adjacent crystal grains based on the measured tilt angle. Calculates the distribution of lattice points that share one constituent atom between the crystal grains (constituent atom shared lattice points), and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is N An even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal When the configuration of existing constituent atomic shared lattice points is represented by ΣN + 1, the constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 in terms of frequency) In any of the above, it is a composite carbonitride layer of titanium and chromium that shows a constituent atomic shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 in the entire ΣN + 1 is 60% or more. The surface-coated cutting tool according to any one of claims 1 to 4, wherein the surface-coated cutting tool is characterized in that:
JP2006276969A 2006-10-10 2006-10-10 Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance Pending JP2008093770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276969A JP2008093770A (en) 2006-10-10 2006-10-10 Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276969A JP2008093770A (en) 2006-10-10 2006-10-10 Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance

Publications (1)

Publication Number Publication Date
JP2008093770A true JP2008093770A (en) 2008-04-24

Family

ID=39377162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276969A Pending JP2008093770A (en) 2006-10-10 2006-10-10 Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP2008093770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772300B1 (en) * 2012-12-28 2017-08-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface coated member, and manufacturing method for same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool
JP2003225808A (en) * 2002-01-31 2003-08-12 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool with hard coating layer superior in chipping resistance in high speed intermittent cutting
JP2004167620A (en) * 2002-11-19 2004-06-17 Hitachi Tool Engineering Ltd Film coating tool for titanium-chromium compound film
JP2004195568A (en) * 2002-12-17 2004-07-15 Hitachi Tool Engineering Ltd Aluminum oxide-covered tool
JP2006075976A (en) * 2004-08-11 2006-03-23 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting work

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool
JP2003225808A (en) * 2002-01-31 2003-08-12 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool with hard coating layer superior in chipping resistance in high speed intermittent cutting
JP2004167620A (en) * 2002-11-19 2004-06-17 Hitachi Tool Engineering Ltd Film coating tool for titanium-chromium compound film
JP2004195568A (en) * 2002-12-17 2004-07-15 Hitachi Tool Engineering Ltd Aluminum oxide-covered tool
JP2006075976A (en) * 2004-08-11 2006-03-23 Mitsubishi Materials Corp Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting work

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101772300B1 (en) * 2012-12-28 2017-08-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface coated member, and manufacturing method for same
US11591695B2 (en) 2012-12-28 2023-02-28 Sumitomo Electric Hardmetal Corp. Surface coated member and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5029825B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2008093770A (en) Surface coated cutting tool with hard coated layer exhibiting excellent chipping resistance
JP5088477B2 (en) Surface coated cutting tool
JP4853829B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2008000881A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720995B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110713

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A02 Decision of refusal

Effective date: 20111213

Free format text: JAPANESE INTERMEDIATE CODE: A02