JP2008092800A - 電流制御形電力変換装置 - Google Patents

電流制御形電力変換装置 Download PDF

Info

Publication number
JP2008092800A
JP2008092800A JP2007336824A JP2007336824A JP2008092800A JP 2008092800 A JP2008092800 A JP 2008092800A JP 2007336824 A JP2007336824 A JP 2007336824A JP 2007336824 A JP2007336824 A JP 2007336824A JP 2008092800 A JP2008092800 A JP 2008092800A
Authority
JP
Japan
Prior art keywords
current
side current
offset
phase
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007336824A
Other languages
English (en)
Other versions
JP4670867B2 (ja
Inventor
Kenichi Sakakibara
憲一 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007336824A priority Critical patent/JP4670867B2/ja
Publication of JP2008092800A publication Critical patent/JP2008092800A/ja
Application granted granted Critical
Publication of JP4670867B2 publication Critical patent/JP4670867B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】簡単な構成で交流側に用いられる電流センサのゲイン,オフセットや温度ドリフトを補償でき、安価な電流センサを用いてコストを低減できる電流制御形電力変換装置を提供する。
【解決手段】直流電圧を三相交流電圧に変換するパワーモジュール3と、パワーモジュール3の交流側電流を検出する電流センサ1,2と、パワーモジュール3の直流側電流を検出するシャント抵抗7,増幅器6と、電流センサ1,2により検出された直流側電流とシャント抵抗7,増幅器6により検出された直流側電流に基づいて、パワーモジュール3を空間ベクトル変調法を用いたパルス幅変調により制御する制御部11とを備える。上記制御部11は、シャント抵抗7,増幅器6により検出された交流側電流のうちの交流側電流の所定の相の電流分に対応する電流分に基づいて、電流センサ1,2により検出される上記交流側電流の振幅とオフセットを補正する。
【選択図】図1

Description

この発明は、電流制御形電力変換装置に関する。
従来、電流制御形電力変換装置としては、直流側の電流センサ1つで線電流を検出するものがある(例えば、特開2004−282974号公報(特許文献1)参照)。
この電流制御形電力変換装置は、原理的に線電流が検出できない位相があり、座標変換によりdq軸電流を求めるために三相電流の瞬時値を検出する電流センサを交流側に設ける必要がある。
このような、交流側に電流センサを設けた電流制御形電力変換装置では、電力系統に接続されるときに直流分を含んだ電流が系統側の変圧器に流れると、変圧器の偏磁を招くという問題がある。資源エネルギー庁の「系統連系技術要件ガイドライン」によれば、交流側の直流レベルを定格交流電流の1%程度以下にする必要がある。
このため、上記交流側に電流センサを設けた電流制御形電力変換装置の電流制御には、直流分の検出が可能なDCCTを交流側に設ける必要があり、このようなDCCTのホール素子から出力される低い電圧信号は増幅器で増幅しなければならないため、振幅、オフセット、温度ドリフトについて高い精度で補償されたDCCTを用いる必要があり、コストが高くなるという問題がある。
特開2004−282974号公報
そこで、この発明の課題は、簡単な構成で交流側に用いられる電流センサの振幅,オフセットや温度ドリフトを補償でき、安価な電流センサを用いてコストを低減できる電流制御形電力変換装置を提供することにある。
上記課題を解決するため、この発明の電流制御形電力変換装置は、
三相ブリッジ回路を構成する6つのスイッチング素子を有し、三相交流電圧を直流電圧に変換するかまたは直流電圧を三相交流電圧に変換する変換部と、
上記変換部の交流側電流を検出する交流側電流検出部と、
上記変換部の直流側電流を検出する直流側電流検出部と、
上記交流側電流検出部により検出された上記交流側電流と上記直流側電流検出部により検出された上記直流側電流に基づいて、上記変換部を空間ベクトル変調法を用いたパルス幅変調により制御する制御部と
を備え、
上記制御部は、上記直流側電流検出部により検出された上記直流側電流のうちの上記交流側電流の所定の相の電流分に対応する電流分に基づいて、上記交流側電流検出部により検出される上記交流側電流の振幅とオフセットを補正することを特徴とする。
上記構成の電流制御形電力変換装置によれば、空間ベクトル変調法によるパルス幅変調では、上記直流側電流検出部により検出された変換部の直流側電流の所定の位相区間おいて、変換部の交流側電流の所定の相の電流分に相当する電流が流れる。また、通常シャント抵抗が用いられる直流側電流検出部により検出される上記直流側電流は、振幅誤差,オフセットや温度ドリフトが少なく、上記交流側電流の所定の相の電流分に相当する電流を基準に用いることによって、上記交流側電流検出部により検出される上記交流側電流の所定の相の電流分に対して、振幅とオフセットを補正することが可能となる。したがって、簡単な構成で交流側に用いられる電流センサの振幅,オフセットや温度ドリフトを補償でき、安価な電流センサを用いてコストを低減できる。
また、一実施形態の電流制御形電力変換装置では、上記制御部は、起動時に、上記交流側電流の振幅の補正または上記交流側電流のオフセットの補正の少なくとも一方を行う。
上記実施形態によれば、起動時に、上記交流側電流検出部により検出された上記交流側電流の振幅の補正またはオフセットの補正の少なくとも一方を制御部が行うことによって、上記交流側電流の振幅,オフセットの温度ドリフトを解消できる。
また、一実施形態の電流制御形電力変換装置では、上記制御部は、運転中に、上記交流側電流の振幅の補正または上記交流側電流のオフセットの補正の少なくとも一方を行う。
上記実施形態によれば、運転中に、上記交流側電流検出部により検出された上記交流側電流の振幅の補正またはオフセットの補正の少なくとも一方を制御部が行うことによって、上記交流側電流の振幅,オフセットの温度ドリフトを解消できる。
以上より明らかなように、この発明の電流制御形電力変換装置によれば、簡単な構成で交流側に用いられる電流センサの振幅,オフセットや温度ドリフトを補償でき、安価な電流センサを用いてコストを低減できる。
また、一実施形態の電流制御形電力変換装置によれば、起動時に、上記交流側電流の振幅の補正、または、上記交流側電流のオフセットの補正の少なくとも一方を行うことによって、上記交流側電流検出部の振幅,オフセットのばらつきを解消できる。
また、一実施形態の電流制御形電力変換装置によれば、運転中に、上記交流側電流の振幅の補正、または、上記交流側電流のオフセットの補正の少なくとも一方を行うことによって、上記交流側電流検出部の振幅,オフセットの温度ドリフトを解消できる。
以下、この発明の電流制御形電力変換装置を図示の実施の形態により詳細に説明する。
図1はこの発明の実施の一形態の電流制御形電力変換装置の構成を示している。この電流制御形電力変換装置は、直流側から交流側に電流が流れる逆変換器として構成した例を示しているが、点線で示すように、直流電源Eの代わりに負荷Rを接続して、交流側から直流側に電流が流れる順変換器としても動作することができる。
この電流制御形電力変換装置は、図1に示すように、三相交流電源10のR相の出力端子をリアクトルLRを介して変換部の一例としてのパワーモジュール3の第1交流側端子に接続し、三相交流電源10のS相の出力端子をリアクトルLSを介してパワーモジュール3の第2交流側端子に接続し、三相交流電源10のT相の出力端子をリアクトルLTを介してパワーモジュール3の第3交流側端子に接続している。上記パワーモジュール3の正極側端子にコンデンサCの一端を接続し、コンデンサCの他端をシャント抵抗7を介して負極側端子に接続している。上記コンデンサCに直流電源Eを並列に接続している。
また、上記電流制御形電力変換装置は、三相交流電源10のR相電圧の位相を検出する位相検出部4と、リアクトルLRとリアクトルLSを夫々流れる電流を検出する交流側電流検出部の一例としての電流センサ1,2と、シャント抵抗7により検出される電流を表す信号を増幅する増幅器6と、上記位相検出部4からの信号と電流センサ1,2からの信号および増幅器6からの信号に基づいて、パワーモジュール3に制御信号を出力する制御回路5とを備える。上記位相検出部4と増幅器6と制御回路5で制御部11を構成している。上記シャント抵抗7と増幅器6で直流側電流検出部を構成している。
上記パワーモジュール3は、スイッチング素子の一例としての6つのトランジスタQ1〜Q6により三相ブリッジ回路を構成している。
上記制御回路5は、図2に示す電圧ベクトルを順次選択する空間ベクトル変調法によりPWM変調でパワーモジュール3を制御する。ここで、60度毎に分割される6つのモードの領域内の位相角φにより、電圧ベクトルτ4,τ6,τ0の時比率は次の(1)〜(3)式により求められる。
Figure 2008092800
0:キャリア周期、ks:電圧制御率
また、表1は各モードの領域毎の電圧ベクトル、直流電流、逆変換のときの直流側に表れる線電流成分、順変換のときの直流側に表れる線電流成分、および、電圧ベクトルの出力時間を示している。
Figure 2008092800
例えば、モード1においては、電圧ベクトルV4,V6が選択され、電圧ベクトルV4ではR相上アーム(トランジスタQ1)がオンするため、R相の電流が直流側のシャント抵抗7に流れて、逆変換では正の電圧信号Irとして検出され、順変換では負の電圧信号-Irとして検出される。また、電圧ベクトルV6ではT相下アーム(トランジスタQ6)がオンするため、T相の電流が直流側のシャント抵抗7に流れて、逆変換では負の電圧信号-Itとして検出され、順変換では正の電圧信号Itとして検出される。このように、シャント抵抗7に発生する電圧信号を電圧ベクトルV4,V6の出力時間内にサンプリングすることにより、交流側の線電流を検出することができる。
このシャント抵抗7に発生する電圧信号のサンプリングは、トリガー信号により制御回路5のA/Dコンバータをスタートさせることにより行う。
図4は、二相変調波形における検出タイミングを示し、図5は、三相変調波形における検出タイミングを示している。
図4,図5に示すように、PWM出力は上記(1)〜(3)式より求まる通電時間をPWMカウンタで比較することにより得られ、検出可能な期間は、各電圧ベクトルの出力期間よりデッドタイムを除いた図中の傾斜部となる。このため、PWMカウンタと同期した別のA/Dトリガーカウンタを用いて、図中の式で得られる値と比較することにより、検出可能期間の中間でA/Dコンバータをスタートさせるトリガー信号を発生させることができる。
図4では、A/Dトリガーカウンタが電圧ベクトルV0の出力時間τ0の中間τ0/2をカウントすると、直流電流i0をサンプリングし、A/Dトリガーカウンタが時間(τ0+τ4/2+td/2)をカウントすると、直流電流i1をサンプリングし、A/Dトリガーカウンタが時間(τ0+τ4+τ6/2+td/2)をカウントすると、直流電流i2をサンプリングする。
一方、図5では、A/Dトリガーカウンタが時間τ0/4をカウントすると、直流電流i0をサンプリングし、A/Dトリガーカウンタが時間(τ0/2+τ4/2+td/2)をカウントすると、直流電流i1をサンプリングし、A/Dトリガーカウンタが時間(τ0/2+τ4+τ6/2+td/2)をカウントすると、直流電流i2をサンプリングする。
なお、電圧ベクトルV0,V7が選択される零ベクトル期間は、三相交流電源10とパワーモジュール3との間を環流するため、シャント抵抗7には電流は流れないが、ここでは、シャント抵抗7の信号を増幅する増幅器6のオフセットレベルをまず補正するために、他のベクトルと同様にサンプリングして、次の(4)式,(5)式により補正する。
Figure 2008092800
なお、二相変調波形、三相変調波形において、図4,図5以外のベクトルパターンも選択できるが、上記(1)〜(3)式の通電時間に基づいて、制御回路5のA/Dコンバータへのトリガータイミングを設定すればよく、また、オフセット検出は電圧ベクトルV0,V7のいずれのタイミングで行ってもよい。
図3は表1と上記(1)〜(3)式に基づく線電流,出力時間および直流電流の波形を示している。電圧ベクトルV4の出力時間t4は位相角60度で最小となり、電圧ベクトルV6の出力時間t6は0度で出力時間が最小となることに留意し、出力時間t6からt4へのモードの遷移に伴い、同一のベクトルが選択される状態を用いると、120度期間の電流が検出できることになる。
例えば、モード1でT相が検出できる電圧ベクトルV6については、位相角60度で出力時間t6は最大となり、次のモード2では出力時間t4であるから位相角0度で最大の出力時間が得られるため、2つのモードを通じて120度期間、連続して電流が検出できる。
以上の動作は、図2の電圧ベクトルの図からも明らかであり、各頂点を中心として±60度の期間、各電圧ベクトルに相当する線電流が検出できる。
図6にゲイン、オフセット検出波形を示している。
正弦波の全波整流平均値は次の(6)式で表される(Aは定数)。
Figure 2008092800
直流側のシャント抵抗7で検出される電流は、線電流の120度期間を除いた全波整流波形に相当するため、全波整流平均値Aavgを求めると、次の(7)式で表される。
Figure 2008092800
上記(7)式では、(6)式と比較すると、0.87倍程度の平均値が得られ、交流側の電流センサ1,2の振幅補正用の基準信号として十分なレベルの全波整流平均値Aavg(DC)を確保することができる。
以上の線電流の120度の期間において、交流側の電流センサ1,2についても同期してサンプリングすることにより全波整流平均値Aavg(AC)を求め、次の(8)式で振幅補正値としてのゲイン補正値ΔGを得る。
Figure 2008092800
一方、オフセット電圧については、次の(9),(10)式により、直流側、交流側ともに半波毎の120度期間の半波整流平均値Havg+,Havg-を求め、次の(11)式の関係より、交流側電流オフセット成分Voffset(AC)と直流側電流オフセット成分Voffset(DC)を夫々求める(図3参照)。
Figure 2008092800
なお、交流側については、運転中の検出電流と増幅器それぞれのオフセットの分離が困難であるため、交流側電流オフセット成分Voffset(AC)を信号より除去し、直流側電流オフセット成分Voffset(DC)を加算する。
図7A, 図7Bに上記の電流検出法による制御部の構成を示している。図7Aは直流側から交流側に電流が流れる逆変換のときの制御部11Aを備えた電流制御形電力変換装置の構成を示し、図7Bは交流側から直流側に電流が流れる順変換のときの制御部11Bを備えた電流制御形電力変換装置の構成を示している。なお、図7A, 図7Bにおいて、図1に示す電流制御形電力変換装置と同一の構成部には同一参照番号を付している(ただし、リアクトルLr,Ls,Ltは省略してLとしている)。また、図7A, 図7Bでは、シャント抵抗7により検出された直流側の電流Idcを増幅する増幅器6を省略している。
図7Aに示すように、直流側から交流側に電流が流れる逆変換を行う電流制御形電力変換装置の制御部11Aは、有効電力指令値p*と有効電力pを減算する加減算器20と、加減算器20からの出力を比例積分して有効電流指令値Iq*を出力する電力制御器21と、電力制御器21からの有効電流指令値Iq*と無効電流指令値Id*=0に基づいて、電圧指令値Vi*を出力する非干渉電流制御部22と、非干渉電流制御部22からの電圧指令値Vi*に基づいてPWM制御信号をパワーモジュール3に出力する空間ベクトル変調部23と、空間ベクトル変調部23からのタイミング信号に基づいて、交流側の電流センサDCCT(図1の1,2)により検出された電流Ir,Isの校正処理を制限する最小パルス幅制限部24と、最小パルス幅制限部24からの制御信号と、シャント抵抗7により検出された直流側の電流Idcと、電流センサDCCTからの電流Ir,Isに基づいて、ゲイン補正値ΔGと交流側電流オフセット成分Voffset(AC)と直流側電流オフセット成分Voffset(DC)を演算する電流校正部25と、電流校正部25からの交流側電流オフセット成分Voffset(AC)を電流Ir,Isから夫々減算する交流側電流オフセット補正部の一例としての減算器26と、減算器26の出力に電流校正部25からのゲイン補正値ΔGを乗算する交流側電流振幅補正部の一例としての乗算器27と、乗算器27の出力に電流校正部25からの直流側電流オフセット成分Voffset(DC)を加算する交流側電流オフセット加算部の一例としての加算器28と、加算器28からの補正された電流Ir,Isに基づいて、二相/三相変換により有効電流Idと無効電流Idを非干渉電流制御部22に出力する座標変換器29とを有する。
上記電流校正部25は、第3のスイッチング状態のときにシャント抵抗7により検出された直流側電流をオフセット成分として用いて、第1,第2のスイッチング状態のときに上記直流側電流のオフセットを補正するオフセット補正部25aと、上記オフセット補正部25aによりオフセットが補正された上記直流側電流のうちの交流側電流の所定の相の電流分(電流Ir,Is)に対応する電流分と、上記交流側電流の所定の相の電流分(電流Ir,Is)に基づいて、上記交流側電流の所定の相の電流分(電流Ir,Is)の振幅を補正するための振幅補正値としてのゲイン補正値ΔGを演算する振幅補正値演算部25bと、上記オフセット補正部25aによりオフセットが補正された上記直流側電流のうちの上記交流側電流の所定の相の電流分(電流Ir,Is)に対応する電流分に基づいて、直流側電流オフセット成分Voffset(DC)を演算する直流側電流オフセット成分演算部25cと、上記交流側電流の所定の相の電流分(電流Ir,Is)に基づいて、交流側電流オフセット成分Voffset(AC)を演算する交流側電流オフセット成分演算部25dとを有する。
一方、図7Bに示すように、交流側から直流側に電流が流れる順変換を行う電流制御形電力変換装置の制御部11Bは、図7Aに示す制御部11A加減算器20と電力制御器21の代わりに、電圧指令値Vdc*と電圧値Vdcを減算する加減算器30と、上記加減算器30からの出力を比例積分して有効電流指令値Iq*を出力する電圧制御器31を備えている。
上記図7A, 図7Bに示す電流制御形電力変換装置の検出タイミングでは、電圧制御率、キャリア周波数、デッドタイムにより、120度区間の両端は、電圧ベクトルの出力時間が短くなり、検出不能となる場合がある。このため、最小パルス幅で制限するブロックとして最小パルス幅制限部24を設け、電圧ベクトルの出力時間が最小パルス幅よりも短くなると、電流Ir,Isの補正を停止する。
上記構成の電流制御形電力変換装置によれば、簡単な構成で交流側の電流センサ1,2の振幅,オフセットや温度ドリフトを補償でき、安価な電流センサを用いてコストを低減することができる。
また、60度毎に異なる6つの電圧ベクトルを選択する空間ベクトル変調法を用いたパルス幅変調によってパワーモジュール3を制御する電流制御形電力変換装置において、第1,第2のスイッチング状態のときにシャント抵抗7,増幅器6により検出された直流側電流は、交流側電流の所定の相の電流分に対応する電流分を有している。この直流側電流のうちの交流側電流の所定の相の電流分に対応する電流分を利用して、電流センサ1,2により検出された上記交流電流のオフセットや振幅を補正することが可能となる。
また、交流側電流オフセット成分Voffset(AC)を用いて交流側電流の所定の相の電流分のオフセットを補正した後に、振幅補正値ΔGを用いて交流側電流の所定の相の電流分である電流Ir,Isの振幅を補正し、振幅が補正された電流Ir,Isに直流側電流オフセット成分Voffset(DC)を加算することにより、増幅器のオフセットの分離が困難な電流センサ1,2により検出された交流側の電流Ir,Isの振幅,オフセットを補正できる。
また、表1に示すように、第1,第2のスイッチング状態のときに直流側電流検出部(6,7)により検出された直流側電流のうちの隣接する2つの上記所定の120度区間の電流分は、上記所定の120度区間の交流側電流の所定の相の電流分に対応することにより、上記所定の120度区間で対応づけられた直流側電流の電流分と交流側電流の所定の相の電流分の夫々の平均値を求めることによって、振幅補正値を容易に演算できる。また、上記所定の120度区間で対応づけられた直流側電流の電流分と交流側電流の所定の相の電流分について、それぞれのオフセット成分を容易に演算することができる。
また、起動時に、上記交流側電流振幅補正部である乗算器27による交流側電流の振幅の補正と、交流側電流オフセット補正部である減算器26と交流側電流オフセット加算部である加算器28よる交流側電流のオフセットの補正を行うことによって、交流側電流の振幅,オフセットのばらつきを解消できる。なお、起動時に、交流側電流の振幅の補正または交流側電流のオフセットの補正のいずれか一方のみを行ってもよい。
また、運転中に、上記交流側電流振幅補正部である乗算器27よる交流側電流の振幅の補正と、交流側電流オフセット補正部である減算器26と交流側電流オフセット加算部である加算器28よる交流側電流のオフセットの補正を行うことによって、交流側電流の振幅,オフセットの温度ドリフトを解消できる。なお、運転中に、交流側電流の振幅の補正または交流側電流のオフセットの補正のいずれか一方のみを行ってもよい。
図1はこの発明の実施の一形態の電流制御形電力変換装置の構成を示す図である。 図2は上記電流制御形電力変換装置の空間ベクトル変調法を説明するための図である。 図3は上記電流制御形電力変換装置の各部の波形を示す図である。 図4は二相変調波形における検出タイミングを示す図である。 図5は三相変調波形における検出タイミングを示す図である。 図6はゲイン、オフセット検出波形を示す図である。 図7Aは逆変換の場合の電流制御形電力変換装置の構成を示す図である。 図7Bは順変換の場合の電流制御形電力変換装置の構成を示す図である。
符号の説明
1,2,DCCT…電流センサ
3…パワーモジュール
4…位相検出部
5…制御回路
6…増幅器
7…シャント抵抗
10…三相交流電源
11…制御部
20…加減算器
21…電力制御器
22…非干渉電流制御部
23…空間ベクトル変調部
24…最小パルス幅制限部
25…電流校正部
25a…オフセット補正部
25b…振幅補正値演算部
25c…直流側電流オフセット成分演算部
25d…交流側電流オフセット成分演算部
26…減算器
27…乗算器
28…加算器
29…座標変換器
30…加減算器
31…電圧制御器
C…コンデンサ
L,LR,LS,LT…リアクトル
Q1〜Q6…トランジスタ

Claims (3)

  1. 三相ブリッジ回路を構成する6つのスイッチング素子を有し、三相交流電圧を直流電圧に変換するかまたは直流電圧を三相交流電圧に変換する変換部(3)と、
    上記変換部(3)の交流側電流を検出する交流側電流検出部(1,2)と、
    上記変換部(3)の直流側電流を検出する直流側電流検出部(6,7)と、
    上記交流側電流検出部(1,2)により検出された上記交流側電流と上記直流側電流検出部(6,7)により検出された上記直流側電流に基づいて、上記変換部(3)を空間ベクトル変調法を用いたパルス幅変調により制御する制御部(11,11A,11B)と
    を備え、
    上記制御部(11,11A,11B)は、上記直流側電流検出部(6,7)により検出された上記直流側電流のうちの上記交流側電流の所定の相の電流分に対応する電流分に基づいて、上記交流側電流検出部(1,2)により検出される上記交流側電流の振幅とオフセットを補正することを特徴とする電流制御形電力変換装置。
  2. 請求項1に記載の電流制御形電力変換装置において、
    上記制御部(11,11A,11B)は、起動時に、上記交流側電流の振幅の補正または上記交流側電流のオフセットの補正の少なくとも一方を行うことを特徴とする電流制御形電力変換装置。
  3. 請求項1または2に記載の電流制御形電力変換装置において、
    上記制御部(11,11A,11B)は、運転中に、上記交流側電流の振幅の補正または上記交流側電流のオフセットの補正の少なくとも一方を行うことを特徴とする電流制御形電力変換装置。
JP2007336824A 2007-12-27 2007-12-27 電流制御形電力変換装置 Active JP4670867B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336824A JP4670867B2 (ja) 2007-12-27 2007-12-27 電流制御形電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336824A JP4670867B2 (ja) 2007-12-27 2007-12-27 電流制御形電力変換装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006233246A Division JP4082438B2 (ja) 2006-08-30 2006-08-30 電流制御形電力変換装置

Publications (2)

Publication Number Publication Date
JP2008092800A true JP2008092800A (ja) 2008-04-17
JP4670867B2 JP4670867B2 (ja) 2011-04-13

Family

ID=39376333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336824A Active JP4670867B2 (ja) 2007-12-27 2007-12-27 電流制御形電力変換装置

Country Status (1)

Country Link
JP (1) JP4670867B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273242A (ja) * 2008-05-08 2009-11-19 Panasonic Corp 直流電源装置およびそれを備えた空気調和機
CN102263512A (zh) * 2010-05-25 2011-11-30 李尔公司 带有电流感测的电源模块
WO2019008676A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217365A (ja) * 1998-07-16 2000-08-04 Tdk Corp 電力変換装置
JP2004304925A (ja) * 2003-03-31 2004-10-28 Toshiba Corp インバータ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217365A (ja) * 1998-07-16 2000-08-04 Tdk Corp 電力変換装置
JP2004304925A (ja) * 2003-03-31 2004-10-28 Toshiba Corp インバータ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273242A (ja) * 2008-05-08 2009-11-19 Panasonic Corp 直流電源装置およびそれを備えた空気調和機
CN102263512A (zh) * 2010-05-25 2011-11-30 李尔公司 带有电流感测的电源模块
WO2019008676A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置
JPWO2019008676A1 (ja) * 2017-07-04 2019-11-07 三菱電機株式会社 インバータ装置、及び、電動パワーステアリング装置
CN110785920A (zh) * 2017-07-04 2020-02-11 三菱电机株式会社 逆变器装置及电动助力转向装置
CN110785920B (zh) * 2017-07-04 2021-06-18 三菱电机株式会社 逆变器装置及电动助力转向装置
US11063544B2 (en) 2017-07-04 2021-07-13 Mitsubishi Electric Corporation Inverter device and electric power steering apparatus

Also Published As

Publication number Publication date
JP4670867B2 (ja) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4082438B2 (ja) 電流制御形電力変換装置
JP4448855B2 (ja) 電力変換装置
JP6735827B2 (ja) 電力変換装置
EP1921740B1 (en) Power converter control
JP4670867B2 (ja) 電流制御形電力変換装置
JP5865104B2 (ja) 電圧型電力変換器の電流制御装置及び電圧型電力変換器の電流制御方法
JP4946886B2 (ja) アナログ/ディジタル変換装置
JP2009254093A (ja) 電圧検出器のオフセット及びゲイン調整方法
JP2017085727A (ja) 電力変換装置
JP2009089555A (ja) 交流直流変換装置
JPH06233546A (ja) 電圧形インバータのpwm制御方法
JP2004015897A (ja) Pwm整流器の出力制御方法およびその出力制御装置
KR20080037669A (ko) 전력 변환 장치
JP2005253190A (ja) 半導体電力変換装置
JPH078141B2 (ja) Pwmコンバータ装置の制御装置
JP2005124270A (ja) マトリクスコンバータシステム
JP2008042988A (ja) 整流回路の制御装置
JP2007043796A (ja) インバータの出力電圧補正回路
JPS6380790A (ja) インバ−タの出力電圧検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3